Prime.

MIDASPLUS ™
User’s Guide

Revision 22.0

DOC9244-2LA

MIDASPLUS
User's Guide

Second Edition

_ by
Andrew Munro

This guide documents the software operation of the Prime Computer and
its supporting systems and utilities as implemented at Master Disk
— Revision Level 22.0 (Rev. 22.0).

Prime Computer, Inc.
Prime Park
Natick, Massachusetts 01760

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer, Inc.
Prime Computer, Inc., assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Copyright © 1988 by Prime Computer, Inc. All rights reserved.

PRIME, PRIME, PRIMOS, and the PRIME logo are registered trademarks of
Prime Computer, Inc. DISCOVER, INFO/BASIC, INFORM, MIDAS, MIDASPLUS,
PERFORM, PRIMAN, Prime INFORMATION, Prime INFORMATION/pc, PRIME/SNA,
PRIMELINK, PRIMENET, PRIMEWAY, PRIMIX, PRISAM, PST 100, PTI25, PT45,
PI65, PTR200, PT250, PW153, PW200, PW250, RINGNET, SIMPLE, 50 Series,
750, 850, 2250, 2350, 2450, 2455, 2550, 2655, 2755, 4050, 4150, 4450,
6150, 6350, 6550, 9650, 9855, 9750, 9755, 9950, 9955, and 9955II are
trademarks of Prime Computer, Inc.

PRINTING HISTORY

First Edition (DOC92444-11A) July 1985 for Rev. 19.4
Update 1 (UPD9244-11A) January 1986 for Rev. 20.0
Update 2 (UPD9244-12A) August 1986 for Rev. 20.2
Update 3 (UPD9R44-13A) July 1987 for Rev. 21.0

Second Edition (DOC9244-2LA) October 1988 for Rev. 22.0

CREDITS

Editorial: Thelma Henner, Eric Wurzbacher
Project Support: Judy Paris

Illustration: Therese Bacharz

Document Preparation: Jeff Cohen
Production: Jean Fitzgerald

ii

HOW TO ORDER TECHNTCAL DOCUMENTS

To order copies of documents, or to obtain a catalog and price list:

United States Customers International
Call Prime Telemarketing, Contact your local Prime
toll free, at 1-800-343-2533, subsidiary or distributor.

Monday through Friday,
8:30 a.m. to 5:00 p.m. (EST).

CUSTOMER SUPPORT

Prime provides the following toll-free numbers for customers in the
United States needing service:

1-800-322-2838 (within Massachusetts) 1-800-541-8888 (within Alaska)
1-800-343-2320 (within other states) 1-800-651-1313 (within Hawaii)

For other locations, contact your Prime representative.

SURVEYS AND CORRESPONDENCE

Please comment on this manual using the Reader Response Form provided
in the back of this book. Address any additional comments on this or
other Prime documents to:

Technical Publications Department
Prime Computer, Inc.

500 0ld Comnecticut Path
Framingham, MA 01701

iii

Contents

ABOUT THIS BOCK xi

PART I —— OVERVIEW

1 INTRODUCTION

Accessing MIDASPLUS 1-2
MIDASPLUS Terms and Concepts 1-2
MIDASPLUS File Access Methods 14
Execute-only MIDASPLUS 14
Language Groups 1-5

PART II —— FILE CONSTRUCTION

2 CREATING A MIDASPLUS FILE

Dialogs 2-1
File Read/Write Locks 2-3
Sample File 24
Variable-length Records and

Space Usage 2-5
Keyed Access Dialog (Minimum

Options) 2-6
Direct Access Dialog (Minimum

Options) 2-9
Optional CREATK Features 2-11

3 BUILDING A MIDASPIUS FILE

Input Files 3-2
Building a Variable-length

File 3-6
Adding Secondary Index Entries

Only -7
Error Reporting 3-8
The KBUILD Dialog 3-9
KBUILD Examples 3-11
Alternatives to KBUILD 3-22
KBUILD Error Messages 3-223

PART IIT —- FILE ACCESS

4 INTRODUCTION TO FILE ACCESS

Access Operations 4-1
Language Access 4-2
Direct Access 4-2
Running MIDASPLUS on PRIMIX 4-2

5 THE FORTRAN INTERFACE

The Current Record 5-1
Direct Access in FORTRAN 5-2
The Communications Array 5-2
$INSERT Mnemonics 54
MIDASPLUS Flags 54
Compile and Load Sequence 5-9
The FORTRAN/MIDASPLUS

Interface Subroutines 5-10
Opening and Closing MIDASPLUS

Files 5-12
OPENM$ 5-13
CLOSM$ 5-15
NTFYM$ 5-16
ADD1$ 5-17
Reading a MIDASPLUS File 5-26
FIND$ 5-25
NEXT$ 5-31
GDATA$ 5-35
Updating a Record 5-37
LOCK$ 5-37
UPDAT$ 541
DELET$ 544
FORTRAN Programming Example 547

6 THE COBOL INTERFACE

Language Dependencies 6-2
Summary of COBOL Statements 64
Defining an Indexed MIDASPLUS

File 64
Error Handling 6-11
File Position 6-14
Reading a File 6-17
Adding Records 6-21
Updating Records (REWRITE) 6-22
Deleting Records 6-22
Ind=2xed Programming Example 6-24
Direct Access Files in COBOL 6-28
Accessing RELATIVE Files 6-30
RELATIVE Programming Example 6-35

7 THE BASIC/VM INTERFACE

Language Dependencies

Summary of Access Statements
Locking and Unlocking Records
Opening/Closing a MIDASPLUS File
Error Handling

File Positioning

The REWIND Statement

Adding Records

Reading Records

Updating Records

Deleting Records

I |
AR

N

&

AR B B B A A
=P OO0

(VARV}

8 THE PL/I INTERFACE

Running a PL/I Program 8-2
Opening/Creating a MIDASPLUS

File 8-3
File I/0 Concepts in PL/I 8-5
Adding Records 86
Reading a MIDASPLUS File 8-9
Updating File Records 8-13
Deleting Records 8-15
Accessing CREATK-defined Files 8-17
Error Handling 8-18

9 THE VRPG INTERFACE

Language-dependent Features 9-3
Compile and Load Sequence 9-2
Describing a MIDASPLUS File in

VRPG 9-3
File Operations 9-8
Indexed File Examples 9-13
Direct Access in VRPG 9-20
Multiple Key Processing 9-20
Processing with Secondary Keys 9-25
Alternate File Processing 9-30

PART IV -— MAINTENANCE AND ADMINISTRATION

10 THE MDUMP UTILITY

MDUMP Options 10-1
The Sequential Dump

File 10-3
The MDUMP Dialog 104
Status and Descriptive Messages 10-5
Error Messages 10-8
Sample MDUMP Session 10-8

vii

11

12

13

14

15

16

DELETING A MIDASPLUS FILE

The KIDDEL Utility
KITDEL Dialog
KIDDEL Error Messages

CLEANING UP A MIDASPLUS FILE

MPLUSCLUP Options
Remote Cleanup

MONITORING A MIDASPLUS FILE

User Interface

Record Locks Display
Statistics Display
Configuration Display

Keys of Locked Records Display
Errors

ADDITIONAL CREATK FUNCTIONS

Function Summary
Examining a File
Modifying a Template

The Extended Options Path
Extended Options Dialog

PACKING A MIDASPLUS FILE

Functions and Options of MPACK
MPACK Dialog

Abnormal Termination of MPACK
MPACK Error Messages

INSTALLING AND ACMINISTERING MIDASPLUS

Installing MIDASPLUS the First Time
Upgrading MIDASPLUS

Sharing MIDASPLUS

MTIDASPLUS Components

Providing Access to MIDASPLUS
Initializing MIDASPLUS

MSGCTL

Networking MIDASPLUS

System Error Logging

viii

11-1
11-2
11-3

12-2
12-2

13-1
13-2
13-3
13-6
13-12
13-13

14-1
14-2
14-7
14-14
14-15

15-1
154
15-5
15-10

16-1
16-2
16-2
16-3
16-3
164
16-9
16-10
16-11

PART V —— OFFLINE ROUTINES
17 OFFLINE CREATE ROUTINES
KX$CRE 17-1
KX$RFC 17-6

18 OFFLINE BUILD ROUTINES

Guidelines 18-2
Restrictions 18-3
Event Sequence Flag 18-3
PRIBLD ' 18-5
SECBLD 18-7
BILDS$R 18-8
Offline Routine Example 18-9
PRIBLD, SECBID, and BILD$R Error
Messages 18-14

PART VI —— APPENDICES
A GLOSSARY A-1

B ERRCR MESSAGES

KBUILD Error Messages B-1
MDUMP Status and Descriptive
Messages B-3
MDUMP Error Messages B-5
KITIDEL Error Messages B-5
SPY Errors B-5
MPACK Error Messages B-6
KXCRE Error Messages B-7
PRIBILD, SECBLD, and BILD$R Error
Messages B-8
Runtime Error Codes B-12
COBOL Status Codes B-16
C PRIMOS ERRCR MESSAGES C-1
D USING PRIME CUSTOMER SERVICE D-1

E OONCURRENCY ISSUES

Locked Records E-1
Deleted Records E4
COBOL Sequential Access E-5
Hard-coded File Units E-6
Concurrency Rules E-%

OTHER MIDASPIUS OFFLINE ROUTINES
ERROPN
KX$TIM

THE CALL INTERFACE WITH C
Callable Interface Example

THE CALL INTERFACE WITH PASCAL
Callable Interface Example

FILE UNIT MANAGEMENT
MIDASPLUS File Unit Utilization
Potential Problems

INDEX

G2

About
This Book

This book is a user guide to MIDASPIUS™, Prime's Enhanced Multiple
Index Data Access System. The book is organized in six parts,
including eighteen chapters, nine appendixes, and an index.

Part I, containing Chapter 1, introduces MIDASPLUS, discusses MIDASPLUS
terms and concepts, provides an overview of MIDASPLUS file access
methods, and summarizes the MIDASPLUS language interfaces.

Part II explains how to create and build MIDASPLUS files using the
CREATK and KBUILD utilities. Part II contains Chapter 2, CREATING A
MIDASPLUS FILE, and Chapter 3, BUILDING A MIDASPLUS FILE.

Part III discusses how to use the MIDASPLUS language interfaces. Part
III contains Chapter 4, INTRODUCTION TO FILE ACCESS, Chapter &5, THE
FORTRAN INTERFACE, Chapter 6, THE COBOL INTERFACE, Chapter 7, THE
BASIC/VM INTERFACE, Chapter 8, THE PL/I INTERFACE, and Chapter 9, THE
VRPG INTERFACE.

Part IV explains how to perform maintenance on MIDASPLUS. Part IV
contains Chapter 10, The MDUMP UTILITY, Chapter 11, DELETING A
MIDASPIUS FILE, Chapter 12, CLEANING UP A MIDASPLUS FILE, Chapter 13,
MONITORING A MIDASPLUS FILE, Chapter 14, ADDITIONAL CREATK FUNCTIONS,
Chapter 15, PACKING A MIDASPLUS FILE, and Chapter 16, INSTALLING AND
ADMTNISTERING MIDASPLUS.

Part V explains how to create and build MIDASPLUS files using offline
routines. Part V contains Chapter 17, OFFLINE CREATE ROUTINES, and
Chapter 18, OFFLINE BUILD ROUTINES.

The nine appendixes are Appendix A, GLOSSARY, Appendix B, ERROR
MESSAGES, Appendix C, PRIMOS ERROR MESSAGES, Appendix D, USING PRIME
CUSTOMER SERVICE, Appendix E, CONCURRENCY ISSUES, Appendix F, OTHER
MTIDASPLUS OFFLINE ROUTINES, Appendix G, THE CALL INTERFACE WITH C,
Appendix H, THE CALL INTERFACE WITH PASCAL, and Appendix I, FILE UNIT
MANAGEMENT .

NEW FEATURES

This book includes details on the following features that are new at
Rev. 22.0:

e The ability to set minimum and maximum size 1limits on
Variable-Iength Record (VIR) files. (See Chapter 2.)

e A new insert file for COBOL programmers who want to refer to
error codes and key values by mnemonic names instead of absolute
values. (See Chapter 5.)

e A new SPY option that shows who is holding a locked record in a
local ASCIT file; the primary key value and the user number are
shown. (See Chapter 13.)

Also, Chapter 6 details the COBOL support for variable-length records
that was added at Rev. 20.2.

ADDITTIONAL DOCUMENTATION

The following Prime publications contain additional information useful
in conjunction with this book:

PRIMOS User's Guide, Rev. 22.0 DOC4130-5LA
BASTC/VM Programmer's Guide, Rev. 17.2 FLR3058-101A
Update pages, Rev. 18.1 COR3058-001
Update pages, Rev. 19.0 COR3058-002
Update pages, Rev. 19.4 UPD3058-33A
COBOL 74 Reference Guide, Rev. 20.0 DOC5039-2LA
Update pages, Rev. 20.2 UPDS039-21A
Update pages, Rev. 21.0 UPD5039-22A
FORTRAN Reference Guide, Rev. 17.2 FIR3057-101A
Update pages, Rev. 18.1 COR3057-001
Update pages, Rev. 19.0 COR3057-002
Update pages, Rev. 19.4 UPD3057-33A
Update pages, Rev. 21.0 UPD3057-34A

FORTRAN 77 Reference Guide, Rev. 19.4 DOC4A02941A

Update pages, Rev. 20.2 UPD402941A

Update pages, Rev. 21.0 UPD4029-42A
PL/I Reference Guide, Rev. 19.4 DOC5041-1LA

Update pages, Rev. 21 UPD5041-11A
RPG IT V-Mode Compiler Reference Guide,

Rev. 20.0 DOCS5040-2LA

Update pages, Rev. 21.0 UPD5040-22A

OTHER HELPFUL DOCUMENTS

The Guide to Prime User Documents (DOCS138-5PA) provides a brief
description of each of Prime’s technical documents.

Release Updates provide valuable information about Prime products prior
to major releases or complete revisions of a book. It is a good
practice, when inquiring about documentation, to ask about any updates
that may be available for a given product.

The PRIMOS HELP command provides information about PRIMOS-level
MIDASPLUS commands such as CREATK and KBUILD.

xiii

PRIME DOCUMENTATION CONVENTTIONS

The following conventions are used in command formats, statement
formats, and in examples throughout this document. Examples illustrate
the uses of these commands and statements in typical applications.
Terminal input may be entered in either uppercase or lowercase.

Convention

Explanation

UPPERCASE

lowercase

Brackets
[]

Braces
{}
Ellipsis

Default
indicator

Underscore
in examples

(CR)

In command formats, words
in uppercase indicate the
names of commands, options,
statements, and keywords.
Enter them in either upper-
case or lowercase.

In command formats, words

in lowercase indicate vari-
ables for which you must
substitute a suitable value.

Brackets enclose an
optional word or phrase.

Braces enclose a vertical
list of items. Choose one
and only one of these items.

An ellipsis indicates that
the preceding item may be
entered more than once on
the command line.

In a list of options, a bul-
let indicates the default
choice, if one exists.

If you do not select an
option, the system chooses
the default option.

In examples, user input is
underscored but system
prompts and output are not.

This symbol indicates a
RETURN key. (CR) is used in
examples to show that the
user presses the Return Key
and nothing else in response

to a MIDASPLUS utility prompt.

Example
MPLUSCLUP

key-name

[OWNER-IS literal-1]

SEQUENTTAL
RANDOM
DYNAMIC

[,filename2, ...]

X, creatk

This is the output
of MY PROG.CPL

(K’

INDEX NO.? (CR)

Angle brackets In messages, characters or DO YOU WANT THE
in messages words enclosed within angle INDEX <#> KEY DUMPED?
< > brackets indicate a vari-
able for which the utility
substitutes the appropriate
value.

The term word in this manual means a 16-bit entity.

Introduction

This chapter defines MIDASPLUS and lists its file access methods and
the language groups associated with MIDASPLUS. MIDASPLUS, the Enhanced
Multiple Index Data Access System, is a collection of subroutines and
interactive utilities that construct, access, and maintain keyed data
files. Once you have established the structure of a MIDASPIUS file,
you can add data to it online through interactive programs, or through
application programs. You can also use MIDASPLUS utilities to add data
in existing sequential (non-MIDASPLUS) files to MIDASPLUS files. Use
MIDASPLUS when:

e You wish to access a large data file by one or more keys. For
exanmple, you may access a customer master file by an account
number or by a customer name.

e Several users need to access and update a file online
similtaneously.

For details on features that are new at this revision of MIDASPIUS, see
ABOUT THIS BOCK, which immediately precedes this chapter; the section
NEW FEATURES summarizes each new feature and tells you where this book
describes it fully.

The MIDASPLUS system consists of Prime-supplied interactive programs,
called utilities, and file access subroutines. The utilities are
responsible for file creation, modification, and maintenance. The
subroutines are used to add, delete, modify, and access information in
existing MIDASPLUS files. The subroutines are integrated into and are
indirectly used by BASIC/VM, COBOL, PL/I and VRPG. Users of FORTRAN,
C, Pascal, and PL/I can call these subroutines directly from programs

1-1 Second Edition

MIDASPLUS USER'S GUIDE

written in these languages. (PL/I can call the subroutines either
directly or indirectly.) See Chapter 5, THE FORTRAN INTERFACE, for
information about the subroutines.

ACCESSING MIDASPLUS

You can access MIDASPLUS files through the following Prime languages:

F7? or FIN *
COBOL 74
BASIC/VM
PL/I

VRPG

C *

Pascal *

* You can access these languages using a call interface only. See
Appendix G, THE CALL INTERFACE WITH C, for more information
about using C with a call interface and Appendix H, THE CALL
INTERFACE WITH PASCAL, for more information about using Pascal
with a call interface.

Ordinarily, a MIDASPLUS file is set wup for use with a particular
language interface. It is possible, however, to access any MIDASPLUS
file with any of these Prime high-level languages.

MIDASPLUS TERMS AND CONCEPTS

A typical data file is composed of records, which are divided into one
or more related fields. Each field in a record is a piece of data,
such as a last name or identification number, which describes or
pertains to an individual event, person, company, and so forth. Each
record in a file has the same field layout. It is important to
remember that the actual contents of each field (called the field
value) will usually differ from record to record. As a result, at
least one field in each record must have a unique value that
distinguishes it from all other file records.

Some file records contain fields that identify the record and fields
that describe the record. The fields that identify a record are called
key fields or keys. These fields are distinguished from other fields
in the record that contain descriptive data, or detail information.
Files with key fields are called keyed files.

Some MIDASPLUS dialogs ask if you wish to use secondary data.
Secondary data 1s data that is stored in a secondary index subfile.
Since you cannot access secondary data in the same way as ordinary data
from the data subfile, the use of secondary data is not recommended.

Second Edition 1-2

R

INTRODUCTION

Keys

Each MIDASPIUS file must contain a primary key and may contain
secondary keys. A primary key must have a unique value for each record
in the data file. A secondary key is not required to have a unique
value in every record. There may be as many as 17 secondary keys for
each MIDASPIUS file record. See Figure 1-1 for a diagram of a
MIDASPLUS file.

The data file, also called a data subfile, consists of records that you
can reference through the primary index subfile by specifying a primary
key value. Each entry in the data subfile is pointed to by its unique
primary key entry in the primary index subfile. If secondary keys are
used, they can also reference the entries in the data subfile.

Primary N
Index \\
N,
N,
~
N,
\\
Secondary N ~
Index 1 Ssa N
~o ~
~o \\
~
\\\\\
Secondary }._--——----——-* Data
Index 2 // File
V4
4
o 7/
(o] //
o V4
(o] //
o 4
(<) il
V4
4
Secondary ,’
Index 17 ’
Figure 1-1

Sample MIDASPLUS File

1-3 Second Edition

MIDASPIUS USER'S GUILE

The MIDASPLUS Template

Although the exact number of files and subfiles varies, a MIDASPLUS
file always consists of index subfiles (one for each key in the file)
and the data subfile, which contains the information to be accessed.
Together, these two parts are called a template. A template is
essentially an initialized (unpopulated or empty; MIDASPIUS file.

A template’'s primary function is to accurately define the structure and
properties of a MIDASPLUS data file. MIDASPLUS utilities and access
routines require a template in order to access the information in a
data file. The template includes a description of the data file's key
types and their lengths, as well as the data file record length. The
record length can be fixed or variable. Variable-length records use
only the space needed to contain the data, thereby saving you space.

The MIDASPLUS utility CREATK sets up a MIDASPLUS file template using

interactive dialog. See Chapter 2, CREATING A MIDASPLUS FILE, for a
description of CREATK.

MIDASPIUS FILE ACCESS METHODS

You can use either the keyed-index access method or the direct access
method to retrieve information from a MIDASPLUS file. You can set up a
MIDASPLUS file template for keyed-index access only, or you can set it
up to use both methods. The MIDASPLUS file structure and access is
key-oriented, which makes it easier for you to maintain, update, and
retrieve information stored in both large and small files.

Keyed-index Access

Keyed-index access involves giving MIDASPLUS a primary or secondary key
value and waiting for MIDASPLUS to return the appropriate record.
MIDASPIUS does keyed-index file searches by looking through a list of
index subfile entries for a match on the user-supplied key value. When
a match is found, the corresponding record in the data subfile is
located by following the pointer from the index subfile to the data
subfile. You can do sequential searches by performing a get
next-record operation, which tells MIDASPLUS to return the next record
entry in the data subfile. You can do partial searches by using the
prefix of the full key value.

Direct Access

Direct access is based on record numbers. Each record in the data
subfile is given a unique number. To access a particular record, you
must give MIDASPLUS a record number. Although you must keep track of
record numbers, this method can be faster than keyed-index access

Second Edition 14

INTRODUCTION

because there is less searching involved. Direct access files in COBOL
require that the primary key be the record number. In FORTRAN, you can
access direct access files either by record number, primary Xkey, Or

secondary key.

For direct access files with primary and secondary keys in addition to
record numbers, you can use the keyed-index access method to retrieve
information by key value. This means that the keyed-index access
method can be used on files of either type of template, while direct
access only works on templates set up for direct access. You may use
direct access with the COBOL, FORTRAN, and VRPG MIDASPLUS interfaces.

EXECUTE-ONLY MIDASPLUS

Prime offers a reduced price version of MIDASPLUS with reduced
functionality, which you can use to execute prepackaged MTDASPLUS
programs. With execute-only MIDASPLUS, you cannot create new files or
new application programs, but you can use CREATK to examine and
maintain existing files. With this version of MIDASPLUS, calls to the
file creation routine KX$CRE have no effect, because KX$CRE is absent,
and no MIDASPLUS libraries are supplied for building an application.

Because execute-only MIDASPLUS offers limited functionality, only part

of this book applies this version of the product. The applicable
chapters are Chapters 1, 3, 10 through 16, and 18.

LANGUAGE GROUPS

Although you may use any of Prime’'s languages to access a MIDASPLUS
file, the languages with built-in interfaces have some limitations when
you are using MIDASPLUS. This is especially true if a file is to be
accessed by programs written in more than one language. Below are the
restrictions on template creation pertaining to each language
interface. Other restrictions pertaining to file access and
maintenance are addressed separately in each of the language interface
chapters.

FORTRAN

Because FORTRAN is the principal MIDASPLUS interface, and is the basis
of all of the other language interfaces, FORTRAN users can take
advantage of the full range of MIDASPLUS features. You can create up
to 17 secondary keys (and index subfiles) per file. Although keys do
not have to be part of the data record, including them in the data
record makes it easier to monitor file integrity. To include them,
define each key as an actual field in the record. See Chapter 5, THE
FORTRAN INTERFACE, for more information about FORTRAN.

1-5 Second Edition

MIDASPLUS USER'S GUIDE

COBOL

The COBOL interface to MIDASPLUS uses the Prime CBL compiler and is
based on the standard COBOL I/0 statements for INDEXED and RELATIVE
files. A keyed-index MIDASPLUS file, called an INDEXED SBQUENTTIAL file
in COBOL, can have one primary key and up to 17 secondary keys. Direct
access MIDASPIUS files are also available for COBOL use; these files
are called REILATIVE files in COBOL.

BASIC/VM

MIDASPIUS files built for access by BASIC/VM programs can have one
primary and up to 17 secondary keys. Although keys are not required to
be part of the data record, it is recommended that you include both
primary and secondary keys in the data record for convenience.
BASIC/VM does not support the direct access feature of MIDASPLUS. See
Chapter 7, THE BASIC/VM INTERFACE, for additional information about
BASIC/VM.

PL/T

The PL/I MIDASPLUS interface supports only ASCII primary keys, with a
maximum length of 32 characters. PL/I does not support secondary keys
or direct access. It is not necessary to use CREATK to set up a
MTDASPIUS file template, as PL/I has its own tools for doing so. You
can access files created with CREATK, however, through PL/I. See
Chapter 8, THE PL/I INTERFACE, for more information about PL/I.

VRPG

The VRPG interface to MIDASPLUS supports up to 17 secondary keys for
keyed-index files, but does not support the use of secondary data. The
keys may be of type ASCII or bit string. VRPG supports access to both
keyed-index and direct access MIDASPLUS files, but can only delete
keyed-index MIDASPLUS records. See Chapter 9, THE VRPG INTERFACE, for
more information about VRPG.

Second Edition 1-6

Creating a
MIDASPLUS File

This chapter tells you how to create keyed-index access and direct
access MIDASPLUS files, explains the CREATK dialogs, provides examples
of the CREATK dialogs, and summarizes other features of CREATK that you
can use on already existing MIDASPIUS files. CREATK is an interactive
program that uses your specifications in the form of parameters to set
up a template that describes a MIDASPLUS file and allocates space for
it. These parameters include the following:

e MIDASPLUS file type (keyed-index or direct access)
e Primary key type and size

e Secondary key types and sizes - optional. Use secondary keys
when you want more than one search key for the file

e Data record size

DIALOGS

CREATK has two dialogs - the minimum options dialog and the full
options dialog. The minimum options dialog supplies default parameters
for the template. With the extended options dialog, you provide all of
the parameters to build a template. Both of these options allow you to
build a keyed-index or direct access MIDASPLUS file.

2-1 Second Edition

MIDASPLUS USER'S GUIDE

Vhile the minimum options dialog only asks a few questions about the
file and its keys, the extended options dialog asks for more details,
such as segment length and index block size.

The default parameters give the best performance. Use the extended
options dialog only if you want to change the index block size. (See
Chapter 14, ADDITIONAL CREATK FUNCTIONS, for information about the
extended options dialog.)

Dialog Guidelines

As with other MIDASPLUS utilities, input to CREATK can be in either
lowercase or uppercase. If you make an input error, CREATK displays a
message telling you what the problem is. This message repeats until
you enter acceptable input. When CREATK asks a "YES/NO" type of
question, it accepts the following responses:

YES
NO
AYE
NAY
X

CREATIK also accepts the first letter of the above responses (Y, N, A,
or 0). To end CREATK's dialog, press the RETURN key after the INDEX
NO? prompt appears.

Note

User responses are underlined in this manual to distinguish
your responses from system output. Never underline your input.
The (CR) symbol shown in the examples indicates the RETURN key.
Enter CREATK to begin the CREATK dialog. See the keyed-access
and direct access dialogs and examples later in this chapter.

Key Types

Table 2-1 lists the data types for MIDASPIUS keys. The maximum number
of words per key is limited to 16 words for bit strings and 32 words
for ASCIT strings. The other data types are automatically sized
according to their internal specifications. In the MIDASPLUS dialog,
the term word refers to 16 bits.

Second Edition 22

CREATING A MIDASPLUS FILE

Table 2-1
MIDASPLUS File Key Types

Key Code Key Type length Specifications
A ASCII Words or Bytes: W nn or B nn
Max. 32 Words (64 Bytes)
B Bit String Bits or Words: B nn or W nn
Max. 16 words (256 bits)
D Double Precision Hardware-defined: 4 words
Floating Point
(REAL*4)
I Short Integer Hardware-defined: 1 word
(INT*2)
L Long Integer Hardware-defined: 2 words
(INT*4)
S Single Precision Hardware-defined: 2 words
Floating Point
(REAL*2)

FILE READ/WRITE LOCKS

CREATK automatically sets the file Read/Write lock on each MIDASPLUS
file it creates to n readers and n writers. This setting is equivalent
to the PRIMOS RWIOCK setting of 3. With a lock setting of 3, multiple
users may have the file open for reading, writing, or updating. The
Read/Write lock settings are part of MIDASPLUS concurrent process
handling.

CREATK displays the message:

SETTING FILE IOCKS TO N READERS AND N WRITERS

at the end of every session in which a new MIDASPLUS file is created.

2-3 Second Edition

MIDASPIUS USER’'S GUIDE

SAMPLE FILE

Figure 2-1 shows the layout of a sample MIDASPIUS file called RANK,
which is used for examples throughout this book. This file is designed
to provide information about a bank’'s customers and their accounts.
The file consists of the following three major fields:

customer identification number
customer name
account number

The BANK file is a keyed-index access file created with one primary key
and two secondary keys. The primary key is an ASCII key, nine
characters in length, describing a customer’s identification number.
The first secondary key is an ASCII key of 25 characters describing the
customer’s name. The second secondary key, a ten—character ASCII
string, describes the customer's account number. The non-keyed fields
include street address, city, state, and zip code.

Field 1 Field 2 Field 3 Field 4

CUSTOMER ID CUSTOMER NAME | ACCOUNT NUMBER ADDRESS

* Primary key » Secondary key 01 » Secondary key 02 *Nota
keyed field
* 9 characters — « 25 characters - * 10 characters - * 42 characters
duplicates not duplicates duplicates not
allowed allowed allowed
* ASCll key » ASCII key * ASCli key

Record length = 86 characters

Layout of a BANK File
Figure 2-1

Second Edition 24

CREATING A MIDASPLUS FILE

VARTABLE-LENGTH RECORDS AND SPACE USAGE

If you create a file with records of fixed length, but with each record
containing a different amount of data, some disk space is wasted. For
instance, if you indicate that each record will be 36 characters long,
but record X contains only 24 characters, a third of the record’s disk
space is unused. For this situation, MIDASPLUS allows you to create a
file of records that vary in length. Each one of these variable-length
records (VLRs) uses only the disk space it needs to contain the data.

To create and load a file of variable-length records, use CREATK and
load the file as follows:

1) Begin the CREATK dialog, indicating that you are creating a
keyed-indexed access file, the only type of MIDASPLUS file that
may contain variable-length records.

2) When CREATK prompts DATA SIZE IN WORDS, respond in one of the
following ways:

e Press RETURN or enter a 0. Either action prohibits
CREATK from setting a minimum or a maximum limit on the
record size.

e Enter a O followed by two values. The first value sets
the minimum record size; the second value sets the
maximum record size. The minimum must be at least 1;
the meximum can be up to 32767. Setting these size
limits accommodates applications that check size limits
when opening a file or before adding a record.

3) Load the file according to the instructions in BUILDING A
VARTABLE-LENGTH RECORD MIDASPIUS FILE in Chapter 3.

Three CREATK commands, INITTALIZE, GET, and PRINT, help you administer
variable-length record files. If you created the file without setting
size limits and the file is still empty, use the INITIALIZE command tO
set size limits. You can also use INITTIALIZE to change these limits,
before or after you load the file. If you loaded the file before
setting size limits, use the GET command, which sets the limits to the
size of the smallest and largest records in the file. To find out the
current size limits, issue the PRINT command and look for a line with
the following format:

VLR MIN SIZE: <number> VIR MAX SIZE: <number>

2-5 Second Edition

MIDASPLUS USER'S GUIDE

KEYED ACCESS DIALOG (MINIMUM OPTIONS)

This section consists of the prompts and responses for the CREATK
keyed-index access dialog with minimum options. Remember that in the
MIDASPLUS dialog, the term word refers to 16 bits (2 bytes).

Prompt
MINIMUM OPTIONS?

FILE NAME?

NEW FILE?

DIRECT ACCESS?

DATA SUBFILE QUESTIONS

PRIMARY KEY TYPE:

PRIMARY KEY SIZE = :

DATA SIZE IN WORDS = :

SECONDARY INDEX

INDEX NO.?

Second Edition

Response
Enter YES.

Enter the pathname of the file to be
created.

Enter YES to create a new template.

Enter NO to create a keyed-index
acecess file.

Enter one of the key codes listed in
Table 2-1 to define the primary key
data type (A, B, D, I, L, or S).

Enter the size of key in words, bytes,
or bits. Size must be preceded by W
and a space for words or B and a space
for bytes or bits. See Table 2-1.

For fixed-length records, enter the
maximum length in words of the data
record in the data subfile. If the
MIDASPIUS files will be used in COBOL
applications, include the total length
of all keys in the data size.

For variable-length records, either
press RETURN, or enter O, or enter O
followed by a value for the minimum
record size and a value for maximum
record size.

For FORTRAN, BASIC/VM, VRPG and COBOL
applications, enter a number from 1-17
to indicate which secondary index is
being defined. For COBOL:
applications, define the secondary
keys in order, that is, define
secondary key 1 before secondary key
2, and so forth.

26

—_—

DUPLICATE KEYS PERMITTED?

KEY TYPE:

KEY SIZE = :

SECONDARY DATA SIZE IN WORDS = :

CREATING A MIDASPLUS FILE

For use with PL/I applications, press
the RETURN key. (PL/I does not

support secondary keys.)

Enter O or press the RETURN KEY to enmd
the secondary index definition
sequence.

Enter YES or NO. YES allows the same

secondary key value to appear more
than once in the index.

Enter one of the codes listed in Table
2-1 to indicate data type of the
secondary key (A, B, D, I, L, or S).

Enter the size of key in words, bytes,
or bits. Size must be preceded by W
and a space for words or B ard a

for bytes or bits. (Asked only if A
or B type key is specified above.)

For use with FORTRAN, enter the number
of words of secondary data to be
stored with this secondary key or
press the RETURN key. The use of
secondary data is not recommended.

For other languages, enter O or press
the RETURN key.

Note

The secondary index prompts repeat, enabling you to enter
information about each secondary index. To complete the CREATK
process, press RETURN at the INDEX NO? prompt.

-7 Second Edition

MIDASPLUS USER’'S GUIDE

Keyed Access Example

X, creatk
[CREATK rev 19.4.0]

MINIMUM OPTIONS? yes

FILE NAME? bank
NEW FILE? yes
DIRECT ACCESS? no

DATA SUBFILE QUESTIONS

PRIMARY KEY TYPE: a
PRIMARY KEY SIZE = : b 9
DATA SIZE IN WORDS = : 43

SECONDARY INDEX

INDEX NO.? 1

DUPLICATE KEYS PERMITTED? yes

KEY TYPE: a

KEY SIZE = : b 25
SECONDARY DATA SIZE IN WORDS = : (CR)

INDEX NO.? 2
DUPLICATE KEYS PERMITTED? no

KEY TYPE: a

KEY SIZE = : b 10
SECONDARY DATA SIZE IN WORDS

I

: (GR)
INDEX NO.? (CR)

SETTING FILE IOCK TO N READERS AND N WRITERS
X,

Second Edition 2-8

CREATING A MIDASPLUS FILE

DIRECT ACCESS DIALOG (MINIMUM OPTIONS)

This section consists of the prompts and responses for using the direct
access dialog with minimum options for CREATK. Direct access, which is
available in FORTRAN, OOBOL, and VRPG, is discussed in Chapters 5, 6,

and 9.

Prompt
MINIMUM OPTIONS?

FILE NAME?

NEW FILE?

DIRECT ACCESS?

DATA SUBFILE QUESTIONS

PRIMARY KEY TYPE:

PRIMARY KEY SIZE =

DATA SIZE IN WORDS = :

NUMBER OF ENTRIES TO ALIOCATE?

2-9

Response
Enter YES.

Enter the pathname of the file to
be created.

Enter YES to create a new
template.
Enter YES to create a direct

access file. Records are stored
in the data subfile in sequential
order according to record number.

Enter B or A for files used with
COBOL.. Enter A for files used
with VRPG. Enter one of the codes
listed in Table 2-1 for FORTRAN
(A, B, D, I, S, or L).

Enter the size of the key in
words, bytes, or bits. Size must
be preceded by W and a space for
words or B and a space for bytes
and bits. See Table 2-1.

Enter the length of the data
record in the data subfile.
Direct access files must have
fixed-length records supplied in
16-bit words.

CREATK preallocates space for
direct access files. Enter the
maximum number of entries

(records) that you expect to use
in the data subfile.

Second Edition

MIDASPLUS USER'S GUIDE

SECONDARY INDEX

INDEX NO.?

DUPLICATE KEYS PERMITTED?

KEY TYPE:

KEY SIZE =

SECONDARY DATA SIZE IN WORDS =

For use with FORTRAN or VRIG,
enter a number from 1-17Y if
secondary keys are desired.

For use with COBOL, press the
RETURN KEY.

Enter YES or NO. YES allows the
same secondary key value to appear
more than once in the index.

Enter one of the codes 1listed in
Table 2-1, to indicate data type
of the secondary key (A, B, D, I,
S, or L).

Enter the size of key in words,
bytes, or bits. Size must be
preceded by W for words or B for
bytes or bits. See Table 2-1.

: Enter O or press the RETURN key to

specify no secondary data. For
use with FORTRAN, enter the number
of words to Dbe stored with this

secondary key.

The use of secondary data is not
recommended.

Note

The secondary index prompts repeat, enabling you to enter
information about each secondary index file. To complete the
CREATK process, press the RETURN key at the INDEX NO? prompt.

Second Edition 2-10

CREATING A MIDASPLUS FILE

Direct Access Example

K, creatk
[CREATK rev 19.4.0]

MINIMUM OPTIONS? yes
FILE NAME? dacust

NEW FILE? yes

DIRECT ACCESS? yes

DATA SUBFILE QUESTIONS
PRIMARY KEY TYPE: b
PRIMARY KEY SIZE = : b 48
DATA SIZE IN WORDS = : 17
NUMBER OF ENTRIES TO ALIOCATE? 15
SECONDARY INDEX

INDCEX NO.? (CR)

SETTING FILE LOCK TO N READERS AND N WRITERS
X,

OPTIONAL CREATK FEATURES

CREATK also lets you get information about an existing MIDASPIUS file,
its key types and sizes, its index subfile structure, segment length,
block size, and so forth. You can also change the length of the data
file record and get estimates on how much room is needed for a
projected number of files.

If you enter CREATK and type NO to the NEW FILE? prompt, the next
prompt will be FUNCTION?. To obtain a list of these CREATK functions,

type H (HELP) after the FUNCTION? prompt appears oOn your Screen.
These functions can only be used on existing files. For example:

CK, creatk
[CREATK rev 19.4.0]
MINIMUM OPTIONS? yes

FILE NAME? bank
NEW FILE? no

2-11 Second Edition

MTDASPLUS USER'S GUIDE

FUNCTION? help

A[DD) = ADD AN INDEX

C[OUNT] ~ COOUNT ACTUAL INDEX ENTRIES

D[ATA] ~ CHANGE DATA RECORD SIZE

E[XTEND] = CHANGE SEGMENT & SEGMENT DIRECTORY LENGTH

FLIIE] - OPEN A NEW FILE

GLET] ~ GET AND SET THE ACTUAL MIN/MAX RECORD SIZE OF THE
VARIABLE LENGTH RECORD (VIR) FILE

H[ELP) - PRINT THIS SUMMARY

I[NITIALIZE] = SET THE MIN/MAX RECORD SIZE FOR THE VARIABLE
LENGTH RECORD (VIR) FILE

M[ODIFY) - MODIFY AN EXISTING SUBFILE

P[RINT] = PRINT DESCRIPTOR INFORMATION

QLUIT] = EXIT CREATK

(C/R) = IMPLIED QUIT

S[IZE] - DETERMINE THE SIZE OF A FILE

U[SAGE] = DISPLAY CURRENT INDEX USAGE

V[ERSION] = MIDASPLUS DEFAULTS FOR THIS FILE

Explanation of CREATK Options

The CREATK options are summarized below and described in more detail in
Chapter 14, ADDITIONAL CREATK FUNCTIONS.

OPTION

ATD

DATA

FILE

Second Edition

USE

Allows you to add a secorndary index subfile and a key
to an existing MIDASPLUS template. You cannot have
more than 17 secondary index subfiles.

Counts the number of entries currently in the file.

Changes the data record length and the number of
records allocated for that file if the file is a direct
access file. DATA does not display the current record
length. (Use the PRINT option to get the current
record length.)

Lets you change the number of segments per segment
directory and words per segment subfile. With EXTEND,
you can extend the segment subfile and segment
directory lengths; this allows you to make bigger
index and data subfiles.

Lets you create a new file template without returning
to PRIMOS and reentering CREATK, or lets you work on
another old file. Returns you to PRIMOS after file
definition is complete.

2-12

INITIALIZE

MODIFY

PRINT

SIZE

USAGE

CREATING A MIDASPIUS FILE

Displays the sizes of the largest and smallest records
in a variable-length record file. Also sets or changes
record size limits in the three situations: a) if
minimum and maximum record sizes are not set, GET sets
them to the sizes of the largest and smallest records
in the file; b) if size limits are set, but the
smallest record is smaller than the minimum size, GET
changes the minimum to that record’'s size. c¢) if size
limits are set, but the largest record is larger than
the maximum size, GET changes the maximum to that
record’'s size.

Displays the list of functionms.

Iets you set the minimum and maximum record sizes for a
variable-length record file before you load it. (£
you already loaded the file, but size limits are not
set, use the GET command to set them.) Before or after
you load the file, INITIALIZE lets you decrease the
minimum or increase the maximum record sizes.

Allows you to change support of duplicate keys and
change secondary data size. You can change the index
block length if you use the extended options feature of
CREATK.

Describes each index subfile and the data subfile in
terms of segments allocated, index capacity, key type,
key size, and number of index levels for that subfile.
For each index level, describes the entry size, block
size, control words, maximum number of entries per
block, and the number of blocks in that level. PRINT
displays data subfile information, as of the last
MPACK, including the file access type (keyed or
direct), the number of indexes, the entry size, and the
key size. For a variable-length record file, PRINT
also displays the minimum and maximum record sizes, if
these size limits are set.

Exits the CREATK dialog and returns you to PRIMOS.
(Pressing the carriage return does the same thing.)

Estimates the number of segments and disk records
required for a hypothetical number of entries.
Estimates size for each index, for the data records, or
the total file.

Provides information on the total number of entries in
the file, the number of entries indexed, the number of
entries deleted, and the number of entries inserted
since the last MPACK. Also displays the version of
MIDASPIUS which last modified the file.

2-13 Second Edition

MIDASPLUS USER'S GUIDE

VERSION Displays the revision stamp of the version of MiDASPLUS
under which this file was created and the default
parameters for the file (for example, DAM file length
or segment directory length).

Note
If CREATK cannot get exclusive use of the AID, DATA, EXTEND, or

MODIFY options, the following message appears:

THIS FILE IS IN USE. AVATILABLE OPTIONS ARE:

F[ILE) ~ OPEN A NEW FILE

H[ELP) - PRINT THIS SUMMARY

P[RINT] = PRINT DESCRIPTOR INFORMATION
QLUIT] = EXIT CREATK

(C/R) - IMPLIED QUIT

S[IZE] - DETERMINE THE SIZE OF A FILE
U[SAGE] = DISPLAY CURRENT INDEX USAGE
V[ERSION] = MIDASPLUS DEFAULTS FOR THIS FILE

Second Edition 2-14

Building a
MIDASPLUS File

This chapter discusses input files and the location of keys with
KBUILD, explains how to use KBUILD to build keyed or direct access
MIDASPLUS files, and presents sample KBUILD dialog sessions.

Using the KBUILD utility is one method of adding records to a MIDASPLUS
file. (Other methods of adding records are by using application
programs, offline routines, and PRIME/POWER+.) KBUIID is the
recommended method when you wish to add a large number of records at
one time. The functions of KBUILD include:

e Adding data to a new (that is, "empty") MIDASPLUS file template.
This includes adding entries to the needed index subfiles from
sorted or unsorted input data.

e Adding new data and index entries to an existing MIDASPIUS file
that already contains data entries.

e Building keyed-index MIDASPLUS files containing either
fixed-length or variable-length records.

e Building direct access MIDASPLUS files.

e Adding entries from an external data file to a new secondary
index subfile that was defined for a previously populated
MIDASPILUS file.

e Converting a field from existing MIDASPLUS data subfile records

to a secondary key field. (These entries are added to a new or
already existing secondary index subfile.)

3-1 Second Edition

MIDASPIUS USER'S GUILE

Use KBUILD to add a large number of records to a MIDASPIUS file.
KBUIID adds the primary index entry, the data subfile entry, and the
supplied secondary index entries for each record. If you are adding
many entries to a file, keep a copy of the input file(s) in case the
MIDASPIUS file is damaged or the system crashes. An easy way to
regenerate a file is to set up a command file that first invokes CREATK
to set up the template; then invoke KBUILD to populate the file.

Note

KBUILD zeroes out secondary data and cannot handle concatenated
keys. .

INPUT FILES

¥hile KBUILD only supports input files with fixed-length records, you
can use specially formatted fixed-length input files to build MIDASPLUS
files with variable-length records. See Building a Variable-length
MIDASPIUS File later in this chapter for more information.

KBUILD can handle input files created by various methods. Table 3-1
lists KBUIID supported files and their file type codes. Before
beginning the KBUILD dialog, make sure that you know the type of file
that you are using. KBUILD needs this information to process the input
correctly.

Second Edition 32

BUILDING A MIDASPLUS FILE

Table 3-1
KBUILD-Supported Input File Types

File Type Code Description

BINARY A binary file created by PRWF$$, which is
usually called from a FORTRAN program. Such a
file has no newline characters (.NL.).

COBOL An uncompressed file of fixed-length records
containing ASCIT or. binary data and delimited
by a newline character.

FINBIN A FORTRAN WRITE statement creates this binary
file via the routine O$BDO7. FINBIN is used in
FORTRAN as binary output. The first word of
each record in this type of file indicates the
record’'s length. It contains no newline
characters. A CBL WRITE statement for
variable-length records also produces this
filetype.

RPG The file to which O$ADO8 routine writes the
data. It is an uncompressed file with
fixed-length records and newline character
delimiters. Fach record must contain the
primary key but it does not have to be the
first field in the record.

TEXT Any file that is created in, or used Dby, the
editor. A newline character ends the records.
Text files are the most common type. A CBL
WRITE statement for COMPRESSED records also
produces this filetype.

Input File Rules

Input files always have fixed-length records. Input files can contain:

e Primary key values and data values (secondary key values are
optional)

e Secondary key values only (include the primary key value with
which its record is associated)

Data is defined as the information that is to be written to the data
subfile. If you want to use KBUILD to convert existing files to
MIDASPLUS files, KBUILD requires the following from input files and
their record structure:

3-3 Second Edition

MIDASPIUS USER’'S GUIDE

e All key elements should be at the beginning of the record.

e No unnecessary data can be located before the fields that you
want KBUILD to process.

Specify the starting character position of each key field in the input
record. The first character position in the record is character
position 1. Begin key fields on byte boundaries. If the key fields
are not physically part of the data subfile entry, other key fields may
appear after the data.

Tell KBUILD the input record length. The length is the number of words
in an input record excluding anything that the file inserts (for
example, leading word count in FINBIN files). Input files are not
required to have the same record length as that of output MIDASPLUS
files.

Location of Keys

If you do not want the keys to be in the data subfile records, put the
keys after the data that you want included in the data subfile entries.
KBUILD can truncate the entries when KBUILD writes them to the data
subfile. Only the initial portion of the input record (without keys)
is written to the MIDASPLUS data subfile.

Record Compatibility

Make sure that all records of the input file have identical record
layouts. For example, if the primary key begins in character position
1 of the first record, the primary key should begin in the same
position for all of the other records in the file. When writing a
record from the input file to the output (MIDASPLUS) file, KBUILD
always begins with character position 1 of the input record. The
length of the entry written to the output file depends on whether the
MIDASPIUS file has fixed-length or variable-length records.

Multiple Input Files

KBUILD lets you process more than one input file during a single run;
therefore, you can add information from up to 99 data files to a single
MIDASPLUS file, but you must assign special names to the files. If
there is more than one input file, begin the filenames with the same

Second Edition 34

BUILDING A MIDASPLUS FILE

letters and end in a two digit number, representing the sequence in
which the files should be processed. For example:

BRANCHO1
BRANCHO2
BRANCHO3

Make sure all of the files exist in the same directory and have exactly
the same format and file type.

Note

While KBUILD can process multiple input files, it can create
only one output MIDASPLUS file at a time.

Sorted Input Files

Input files can be sorted by primary and/or secondary key in ascending
order only. If the input files are sorted by primary key, the data
records and the key entries are all added in primary key order. If the
file contains secondary index entries for a subfile that allows
duplicates, the duplicate keys are added to the index subfile in the
order in which they are read from the input file.

The data subfile entries are always stored in the order in which they
are read from the input file. If you frequently need to access the
data sequentially by a key, sort the input file by that key before
using KBUILD. This step will improve the performance of future
sequential reads.

You can only add pre-sorted index entries to a primary or secondary
index that does not contain entries. If you try to build a non-empty
secondary index from a sorted input file, KBUILD informs you of your
error. When the index appears to be empty but has keys pointing to
deleted records, you must run MPACK on the index to clean it out before
you can add sorted input entries to it. If you do not care about the
entries that are in the index, you can delete them all at once, by
running KITDEL to clean out the secondary index subfile before trying
to add sorted entries to it. (See Chapters 15 and 11, respectively for
details on MPACK and KITDEL.)

3-5 Second Edition

MIDASPIUS USER'S GUIDE

Sort Requirements: A file is considered sorted only if a primary or
secondary key field is a sort key. In addition, the following rules
apply if there are several input files:

e Sort all of the input files on the same field.

e Make sure that all of the sorted key values in the first file
are less than the sorted key values of the second file. The
same rule holds for the other files.

e If a MIDASPLUS file index to which the entries are being added
already contains entries, do not declare the input files sorted
by that key even if they are sorted. If the input file is
called "sorted", KBUILD does not process an input file for
building a MIDASPLUS index.

BUILDING A VARTABLE-LENGTH FILE

KBUILD can take fixed-length records from input files and add them as
variable-length records to MIDASPLUS files. Before you use KBUILD in
this way, you must perform the two steps below:

1) Determine the number of words in each input record. For
instance, if the file contains character data, you would do the
following:

A. For each record, count the number of characters (including
blank spaces) that the primary key, secondary keys, and
nonkeyed data occupy.

B. If the number of characters in the record is an odd number,
increase the number of characters by 1.

C. Divide the number of characters by 2 to determine the
character size in words of the record.

For example:

R First St Dedham MA 02026 = 28 chars./2 = 13 words

1

18 First St Dedham MA 02026 = (27 chars. + 1)/2 = 14 words

2) For each record, edit the input file to add the length you

determined. Place this number in the same word position in
each record, as shown in the following example.

Second Edition 36

BUILDING A MIDASPLUS FILE

The following example shows an input file that contains the record
length in positions one and two, which are highlighted.

3927650388%harper, anne chk412389112 washington st newton ma 02159
37036792406harper, anne 1n7253746518 first st dedham ma 02026

189264289mrra.y: paul me28374646123 orchard rd manchester nh 03102
B39023677386¢corrado, thomas sav127356542 maple ave arlington ma 02174
— — " o . o— - —
[} 1
Primary Key Secondary Key # 2
Record Secondary Key # 1 Non-keyed Field
Length

This input file, created for the sample banking application, consists
of a customer identification number (primary key), name, account
number, and address. This file was created using the PRIMOS screen
editor (EMACS) and is in ASCII form (TEXT).

After KBUILD determines that your output file has variable-length
records, the KBUILD dialog asks whether this number is a bit (B) string
or an ASCIT (A) string.

Note
Rather than using KBUILD, you can also build variable-length

MIDASPLUS files with PRIBLD, SECBLD, BILD$R, and the standard
interface. These routines also support direct access files.

If KBUILD or a build routine adds a variable-length record that is
outside a record size limit, MIDASPLUS automatically resets that 1limit
to the size of the record.

ATDING SECONDARY INDEX ENTRIES ONLY

Besides adding all of the primary and secondary key entries with the
data subfile entries, KBUILD can also populate a secondary index
subfile when

e You decide to make one of the fields in a MIDASPLUS data record
a secondary key. (You would do this if you need more keys.)

e You did not supply secondary key values for all of the data
entries that you originally added. As a result, there is no
one-to-one correspondence between secondary index entries and
data subfile entries.

When one of the above statements is true, either make one of the fields
in the data record a secondary key or take the secondary index entries
from an external input file. (The primary key must be present in the
input record.)

-7 Second Edition

MIDASPIUS USER’'S GUIDE

Note
You must first use CREATK to define a new index subfile before

you can use that subfile with KBUILD. KBUIID alone cannot
define a new index subfile.

ERROR REPORTING

KBUILD reports all fatal and non-fatal errors that it finds during
processing. KBUILD prints the type and number of the error, as well as
the record number that was being processed when the error occurred.
The log/error file records fatal errors just before KBUILD aborts.

All errors are displayed at your terminal. KBUILD also displays the
name of the input file that it is processing and tells you what part of
the MIDASPIUS file that it is currently in. If you want to record this
data, enter a new file name when KBUILD prompts you for a log/error
file name; otherwise, press the RETURN key.

Milestone Reporting

KBUILD reports milestone statistics at your terminal. If you want to
record this data, enter a new file name when KBUILD prompts you for a
log/error file name; otherwise, press the RETURN key. Sample
milestone reports are included with the KBUILD examples. A milestone
report consists of:

e The record number for which the milestone is generated
e The current date and time

e The CPU and disk time used since KBUILD began to process the
file

e The total disk and CPU time elapsed since the start of KBUILD's
Tun

e The amount of time elapsed since the last milestone report was
created

If the input file is unsorted, KBUILD tells you when the file begins
and ends a sort pass through each set of index entries. For large
files, set the milestone count according to how concerned you are with
resource usage.

Milestone Reports for Multiple Files: If there is more than one input
file, the name of each successive input file is displayed above the
record count column as each new input file is processed.

Second Edition 3-8

THE KBUILD DIAIOG

BUILDING A MIDASPLUS FILE

Type KBUILD to invoke the KBUILD utility. The KBUILD dialog and an
explanation are included in this section. The dialog is numbered in
this book for explanatory purposes only.

PROMPT

1. SECONDARIES ONLY?

2. USE MIDASPLUS DATA?

3. ENTER MIDASPLUS FILENAME:

4. ENTER INPUT FILENAME:

5. ENTER INPUT RECORD
LENGTH (WORDS):

RESPONSE
YES or NO

YES - Builds/adds entries to one oOr
more of the secondary index
subfiles. Subfiles need mnot be
empty. The dialog continues at step
2.

NO - Adds data entries to data
subfiles in primary key order. Also
adds entries to the primary index
subfile and any secondary index
subfiles as indicated. The dialog
continues at step 4.

YES or NO

YES - Uses existing data entries as
a source of values for a secondary
index subfile when you have existing
records in the data subfile and you
want to make fields from these
records into secondary keys. The
dialog continues at step 3.

NO - All subfile and data subfile
entries are taken from an input file
(not a MIDASPLUS file) which must
contain primary key values. The
dialog continues at step 4.

The MIDASPIUS pathname from which
MIDASPIUS should get the secondary
key entries. The dialog continues
at step 14.

The name of the input file that
KBUILD will process. If you are
using multiple files, enter the name
of the file with the lowest sequence
number.

The size in 16-bit words of the
input file record.

3-9 Second Edition

MIDASPLUS USER'S GUIDE

6.

10.

11.

12.

13.

14.

15.

INPUT FILE TYPE:

. ENTER NUMBER OF FILES:

. ENTER OUTPUT FILENAME:

. THE OUTPUT FILE SELECTED

CONTAINS VARTABLE LENGTH
DATA RECORDS. IS THE
OUTPUT RECORD LENGTH
SPECIFIED IN EACH INPUT
RECORD AN ASCIT STRING
OR A BINARY (INT*)
STRING? (ENTER A OR B):

ENTER STARTING CHARACTER

POSITION IN INPUT RECORD:

ENTER ENDING CHARACTER

POSITION IN INPUT RECORD:

ENTER STARTING WORD
NUMBER IN INPUT RECORD:

ENTER STARTING
CHARACTER POSITION,
PRIMARY KEY:

SECONDARY KEY NUMBER:

ENTER STARTING
CHARACTER POSITION:

Second Edition

The appropriate KBUILD code (BINARY,
COBOL, FINBIN, RPG, TEXT).

1 for single files.

The total number of files for

multiple input files.

The pathname of the MIDASPIUS file
to which you will add data in the
input file.

If the MIDASPLUS file has
fixed-length records, the dialog
continues at step 13. Otherwise,

the dialog continues with the next
step.

A, if the Editor, OOBOL, or VRPG
created the input file and the
output record length is in ASCII
form. The dialog continues with
step 10. B if the file is BINARY
or FINBIN. The dialog continues
with step 12.

The character position where the
output record length specification
begins.

The character position that marks
the end of the output record length
specification. Dialog continues
with step 13.

The word number in the input record
record that specifies the output
record length for Binary (INT*RQ)
representations.

The starting position of the input
record field containing a primary
key value.

The number of the secondary index
entry for which you will take an
entry from the input file record.

The character position in the input
record where the secondary key field
begins.

3-10

16.

17.

18.

19.

20.

IS THE FILE SORTED?

IS THE PRIMARY KEY
SORTED?

ENTER INDEX NUMBER

OF SECONDARY SORT KEY:

ENTER LOG/ERRCR
FILE NAME:

ENTER MILESTONE

KBUTLD EXAMPLES

BUILDING A MIDASPLUS FILE

Note

Prompts 14 and 15 are
repeated until you press the
RETURN key.

NO if the file is wunsorted. The
dialog continues with step 19.

YES if the file is sorted.

YES if the input file is sorted
by the primary key field.

NO if the input file is not sorted
by the primary key field.

If the file was sorted on a field
corresponding to a secondary key,
enter that key number. This prompt
is repeated until you press the
RETURN key.

The name of the file in-which you
will record errors and KBUILD
milestone statistics.

Make sure that this file name is
different from all existing files.

Press the RETURN key if you do not
want to record the statistics. The
statistics still appear on your
terminal.

The frequency (number of records) at
which you want the records displayed
and recorded in a log/error file.

If you enter O, milestones are
printed for the first and last
records of the input file only.

This section includes KBUILD examples showing the following features:

e Building a fixed-length record MIDASPLUS file from unsorted

input

e Building a fixed-length MIDASPLUS file from sorted input

3-11 Second Edition

MIDASPLUS USER'S GUIDE

e Building a variable-length record MIDASPLUS file from unsorted
input

e Building a fixed-length direct access MIDASPLUS file from
unsorted input

User input in the examples is underlined to distinguish it from system
prompts and messages.

Example 1: Using Unsorted Input

This example uses an unsorted input. file to build entries for the BANK
file, which has fixed-length records of 22 words. Input files are not
required to have the same record length as that of the output MIDASPLUS
files. If the input files are too long when added, they are truncated.
If the records are shorter than the specifications in the MIDASPLUS
template, the records are blank-padded to the correct length. The
input file contains the following records:

27650388%harper, anne chk412389112 washington stnewton ma02159
036792406harper, anne 1n7253746518 first st dedham ma0026
189264289murray, paul mcR8374646123 orchard rd manchester nh03102
023877386corrado, thomas 5av127356542 maple ave arlington ma02174
S— p 7 — ~ -
| |
Secondary Key # 1 Non-keyed Field

Primary Key Secondary Key # 2

Second Edition 3-12

BUILDING A MIDASPIUS FILE

The file was built with the following dialog:

K, kbuild

[KBUIID rev 19.4.0]

SECONDARTES ONLY? no

ENTER INPUT FILENAME: names
ENTER INPUT RECORD LENGTH (WORDS): 43
INPUT FILE TYPE: text

ENTER NUMBER OF INPUT FILES: 1
ENTER OUTPUT FILENAME: bank
ENTER STARTING CHARACTER POSITION,

SECONDARY KEY NUMBER: 1
ENTER STARTING CHARACTER POSITION: 10
SECONDARY KEY NUMBER: 2
ENTER STARTING CHARACTER POSITION: 35
SECONDARY KEY NUMBER: (CR)

IS FILE SORTED? no

ENTER I0G/ERROR FILE NAME: (CR)

ENTER MILESTONE COUNT: 1

BUILDING: DATA

DEFERRING: O, 1, 2

PROCESSING FROM: names

COUNT DATE TIME CPU MIN
0 01-11-85 13:52:31 0.000
1 01-11-85 13:52:31 0.002
2 01-11-85 13:52:31 0.003
3 01-11-85 13:52:31 0.004
4 (01-11-85 13:52:32 0.004

FIRST BUILD/DEFER PASS COMPLETE.
4 01-11-85 13:52:32 0.005

SORTING INDEX O

COUNT DATE TIME CPU MIN
0 01-11-85 13:52:32 0.000

SORT COMPLETE
4 (01-11-85 13:52:32 0.006

3-13

PRIMARY KEY: 1

2

DIFF
0.000
0.002
0.001
0.001
0.001

(@] C)OC)OO§
s 83338%

5

0.001

TOTAL TM DIFF
0.000 0.000
0.006 0.006

Second Edition

MIDASPIUS USER'S GUIDE

BUILDING INDEX O
COUNT DATE
01-11-85
01-11-85
01-11-85
01-11-85
01-11-85

INDEX O BUILT
4 O01-11-85

RO~ O

SORTING INDEX 1
COUNT DATE
0 01-11-85
SORT COMPLETE
4 01-11-85

BUILDING INDEX 1

COUNT DATE
0 01-11-85
1 01-11-85
2 01-11-85
3 01-11-85
4 01-11-85

INDEX 1 BUILT
4 01-11-85

SORTING INDEX 2
COUNT DATE
0 01-11-85
SORT COMPLETE
4 01-11-85

BUILDING INDEX 2

COUNT DATE
0 01-11-85
1 01-11-85
2 01-11-85
3 01-11-85
4 01-11-85

INDEX 2 BUILT
4 01-11-85

KBUILD COMPLETE.
K,

Second Edition

13:
13:
13:
13:
13:

13:

13:

13:

13:
13:
13:
13:
13:

13:

13:

13:

13:
13:
13:
13:
13:

13:

TIME

52:32
52:32
52:32
52:32
52:32

52:32

TIME
52:32

52:33

TIME

52:33
52:33
52:33
52:33
52:33

52:33

TIME
52:33

52:3%4

TIME

52:34
52:34
52:34
52:34
52:34

52:34

CPU MIN

T

3-14

DISK MIN
0.000

0.000
0.000
0.000

0.000

DISK MIN
0.000

0.000

DISK MIN
0.000
0.002
0.002
0.002
0.002

0.002

99999§

8833885

0.004

0.000
0.005

o OOOOO§
R

:

TOTAL TM
0.000

0.005

:
2

3 gages

DIFF
0.000
0.001
0.001
0.001
0.001

0.001
DIFF
0.005

DIFF
0.000
0.002
0.001
0.001
0.001

0.001
DIFF
0.005

DIFF
0.000
0.004
0.001
0.001
0.001

0.001

BUILDING A MIDASPLUS FILE

Example 2: Using Sorted Input

The following BANK.SORT file is built from sorted input records (sorted
according to the primary key). Since KBUILD is not required to sort
the file, the build is faster. The input file contains the following
records:

023677386corrado, thomas sav127356542 maple ave arlington ma02174

036792406harper, anne 1n7253746518 first st dedham ma02026

189264289murray, paul mc28374646123 orchard rd manchester nh03102

276503889harper, anne chk412389112 washington st newton ma02159

— — 4 “ s
Secondary Key # 1 : Non-keyed Field

Primary Key Secondary Key # 2

The following dialog was used to build the file:

K, kbuild
[KBUIID rev 19.4.0]

SECONDARIES ONLY? no

ENTER INPUT FILENAME: names.sort

ENTER INPUT RECORD LENGTH (WORDS): 43

INPUT FILE TYPE: text

ENTER NUMBER OF INPUT FILES: 1

ENTER OUTPUT FILENAME: bank.sort

ENTER STARTING CHARACTER POSITION, PRIMARY KEY: 1
SECONDARY KEY NUMBER: 1

ENTER STARTING CHARACTER POSITION: 10
SECONDARY KEY NUMBER: 2

ENTER STARTING CHARACTER POSITION: 35
SECONDARY KEY NUMBER: (CR)

IS FILE SORTED? yes

IS THE PRIMARY KEY SORTED? yes

ENTER INDEX NUMBER OF SECONDARY SORT KEY: (CR)
ENTER LOG/ERROR FILE NAME: (CR)

ENTER MILESTONE COUNT: 1

BUILDING: DATA, O
DEFERRING: 1, 2

3-15 Second Edition

MIDASPIUS USER'S GUIDE

PROCESSING FROM: names.sort

COUNT DATE TIME CPU MIN
0 01-10-85 14:36:19 0.000
1 01-10-85 14:36:19 0.002
2 01-10-85 14:36:19 0.002
3 01-10-85 14:36:19 0.003
4 01-10-85 14:36:19 0.004
FIRST BUILD/DEFER PASS COMPLETE.
4 01-10-85 14:36:19 0.005
SORTING INDEX 1
COUNT DATE TIME CPU MIN
0 01-10-85 14:36:19 0.000
SORT COMPLETE '
4 01-10-85 14:36:20 0.005
BUILDING INDEX 1
COUNT DATE TIME CPU MIN
0O 01-10-85 14:36:20 0.000
1 01-10-85 14:36:20 0.002
2 01-10-85 14:36:20 0.002
3 01-10-85 14:36:20 0.003
4 01-10-85 14:36:20 0.003
INDEX 1 BUILT
4 01-10-85 14:36:20 0.004
SORTING INDEX 2
COUNT DATE TIME CPU MIN
0O 01-10-85 14:36:20 0.000
SORT OOMPLETE
4 (01-10-85 14:36:20 0.005
BUTLDING INDEX 2
COUNT DATE TIME CPU MIN
0 01-10-85 14:36:20 0.000
1 01-10-85 14:36:21 0.002
2 01-10-85 14:36:21 0.002
3 01-10-85 14:36:21 0.003
4 01-10-85 14:36:21 0.004
INDEX 2 BUILT
4 01-10-85 14:36:21 0.005
KBUILD COMPLETE.
a{’
Second Edition 3-16

DISK MIN
0.000
0.000
0.000
0.000
0.000

0.000

DISK MIN
0.000

0.000

DISK MIN
0.000
0.000
0.000
0.000
0.000

0.000

OOOO§
2888

0.004
0.005
TOTAL T™
0.000
0.005

g
coop

TEEP

0.004
0.005

TOTAL T™
0.000

g .
288888 &

O 00000

3

DIFF
0.000
0.002
0.001
0.001
0.001

0.001

DIFF
0.000

0.005

DIFF
0.000
0.002
0.001
0.001
0.001

0.001

DIFF
0.000

0.005

DIFF
0.000
0.002
0.001
0.001
0.001

0.001

BUILDING A MIDASPIUS FILE

Example 3: Building Variable-length Records

If you use variable-length records, supply KBUILD with the length of
each data rTecord to be written to the output file. The input file,
VARNAMES, contains the following records:

3927650388%harper, anne chk412389112 washington st newton ma 02159
37036792406harper, anne 1n7253746518 first st dedham ma 02026
41189264280murray, paul meR8374646123 orchard rd manchester nh 03102
39023677386corrado, thomas sav127356542 maple ave arlington ma 02174
T — o— W o i, m— -
1 1

Primary Key Secondary Key # 2
Record Secondary Key # 1 7 Non-keyed Field
Length

The input file VARNAMES was used to build the MIDASPLUS file. Although
the output records have different lengths, KBUILD needs to know the
maximm input data record length (41 words in this example). Each
record in the file contains a number that indicates the output record
length for that particular record. In this example, the output record
length begins in character position 1 and ends in character position 2.

If the number was in binary (INTEGER*2) form, you would indicate the
word number that the entry begins in. The KBUILD dialog and the user
responses for this example are:

K, kbuild
[KBUILD rev 19.4.0]

SECONDARIES ONLY? no

ENTER INPUT FILENAME: varnames

ENTER INPUT RECORD LENGTH (WORDS): 41

INPUT FILE TYPE: text T

ENTER NUMBER OF INPUT FILES: 1

ENTER OUTPUT FILENAME: varbank

THE OUTPUT FILE SELECTED OONTAINS VARTABLE LENGTH DATA RECORDS.
IS THE OUTPUT RECORD LENGTH SPECIFIED IN EACH INPUT RECORD
AN ASCII STRING OR A BINARY (INT*2) STRING? (ENTER A OR B): a
ENTER STARTING CHARACTER POSITION IN INPUT RECORD: 1

ENTER ENDING CHARACTER POSITION IN INPUT RECORD: 2

ENTER STARTING CHARACTER POSITION, PRIMARY KEY: 3

SECONDARY KEY NUMBER: 1 B

ENTER STARTING CHARACTER POSITION: 12

SECONDARY KEY NUMBER: 2 o

ENTER STARTING CHARACTER POSITION: 37

SECONDARY KEY NUMBER: (CR)

IS FILE SORTED? no

ENTER IOG/ERROR FILE NAME: (CR)

ENTER MILESTONE COUNT: 1

3-17 Second Edition

MIDASPIUS USER'S GUIDE

BUILDING: DATA

DEFERRING: O, 1, 2

PROCESSING FROM: varnames

COUNT DATE TIME CPU MIN
0O 01-11-85 14:56:28 0.000
1 01-11-85 14:56:28 0.002
2 01-11-85 14:56:28 0.003
3 01-11-85 14:56:28 0.003
4 O01-11-85 14:56:28 0.004
FIRST BUILD/DEFER PASS COMPLETE.
4 01-11-85 14:56:29 0.005
SORTING INDEX O :
COUNT DATE TIME CPU MIN
0O 01-11-85 14:56:29 0.000
SCRT COMPLETE
4 (01-11-85 14:56:29 0.005
BUILDING INDEX O
COUNT DATE TIME CPU MIN
0O 01-11-85 14:56:29 0.000
1 O01-11-85 14:58:29 0.001
2 01-11-85 14:56:29 0.001
3 01-11-85 14:56:29 0.002
4 01-11-85 14:56:29 0.003
INDEX O BUILT
4 (01-11-85 14:56:29 0.004
SORTING INDEX 1
COUNT DATE TIME CPU MIN
0 01-11-85 14:56:29 0.000
SORT COMPLETE
4 (01-11-85 14:56:29 0.004
BUILDING INDEX 1
COUNT DATE TIME CPU MIN
0O 01-11-85 14:56:30 0.000
1 01-11-85 14:56:30 0.002
2 01-11-85 14:56:30 0.002
3 01-11-85 14:56:30 0.003
4 01-11-85 14:56:30 0.003
INDEX 1 BUILT
4 01-11-85 14:56:30 0.004
SORTING INDEX 2
OOUNT DATE TIME CPU MIN
0 01-11-85 14:56:30 0.000
SORT COMPLETE
4 (01-11-85 14:56:30 0.004
BUILDING INDEX 2
COUNT DATE TIME CPU MIN
0 01-11-85 14:56:30 0.000
Second Edition 3-18

DISK MIN
0.000

:
=

© 00000
5 28888

g
o of
S 83

g
© o0o0o0o0Op
3

3 88888

(@) O§
BF

g
© o000o0OR
g8888s

5

(@) O§
‘BF

&
T

DIFF
0.000
0.002
0.001
0.001
0.001

0.001

DIFF
0.000

0.005

DIFF
0.000
0.001
0.001
0.001
0.001

0.001
DIFF
0.000
0.004
DIFF
0.000
0.002
0.001
0.001
0.001
0.001
DIFF
0.000
0.004

DIFF
0.000

BUILDING A MIDASPLUS FILE

1 01-11-85 14:56:30 0.002 0.000 0.002 0.002

2 01-11-85 14:56:30 0.002 0.000 0.002 0.001

3 01-11-85 14:56:30 0.003 0.000 0.003 0.001

4 01-11-85 14:56:30 0.003 0.000 0.003 0.001
INDEX 2 BUILT

4 01-11-85 14:56:30 0.004 0.000 0.004 0.001

KBUILD COMPLETE.

X,

Example 4: Using Direct Access Files

This section concerns only users with direct access MIDASPLUS files.
Direct access MIDASPLUS files are called REIATIVE files in COBOL and
DIRECT files in VRPG.

Building Direct Access Files: Building direct access MIDASPLUS files
is similar to building keyed-index MIDASPLUS files. The major
differences are:

e You must supply a record number for each record. The data type
of the record number must be either a REAL*4 (floating-point)
number in the form of a bit string, or an ASCII string.

e You must place the record number at the same character position
in each input record.

e The record number must be the primary key in COBOL and VRPG
files.

e You can supply a primary key in addition to a record number in
non-COBOL files.

e A direct access file can have up to 999,999 entries.
e The relative record number cannot be greater than the number of
entries allocated during CREATK.

KBUILD Dialog Requirements: After determining that the MTIDASPLUS
output file is a direct access file, KBUILD prints the following
message:

IS THE ENTRY NUMBER SPECIFIED IN EACH INPUT RECORD
AN ASCIT STRING OR A BINARY (REAL*4) STRING? (ENTER A CR B):

If the record number is an ASCII string, KBUILD prompts for the record
number’s beginning and ending character positioms. If you specify the

3-19 Second Edition

MIDASPIUS USER'S GUILE

number as a single-precision floating-point bit string, KBUILD asks for
the word-number (not the character position) where the number begins in
the input record. KBUILD warns you if the word number is beyond the
logical end of the record that you specified earlier in the dialog.
See Chapter 6 THE COBOL INTERFACE, for information on COBOL's direct
access (RELATIVE) files. See Chapter 9, THE VRPG INTERFACE, for more
information about VRPG's direct access files.

Direct Access Example: You can build a direct access file with KBUILD
as long as you include record entry numbers for each record in the
input file. Write numbers in ASCII or binary (floating point) form.
If the primary key was defined as a record number (this always occurs
in COBOL and VRPG), make sure "that the numbers match the key type
specification.

The following input file was used to build,a direct access file. The
record number was placed at the end of the file so that the number
would not be included in the data subfile record. The direct access
entry appears in characters 87 to 92 of the input file record. The
file is written in ASCIT format.

27650388%harper, anne chk412389112 washington stnewton 1202159000001
036792406harper, anne 1n7263746518 first st dedham ma02026000002
189264289murray, paul mcR8374646123 orchard rd manchester nh03102000003
023677386corrado, thomas sav127356542 maple ave arlington ma02174000004
N— o " W 4 ~ o/
t |
Secondary Key # 1 Non-keyed Field
Primary Key Secondary Key # 2 Record

Number

KBUILD processed this file in the sample session that follows:

0K, kbuild
[KBUTLD rev 19.4.0]

SECONDARIES ONLY? no

ENTER INPUT FILENAME: directnames

ENTER INPUT RECCRD LENGTH (WORDS): 47

INPUT FILE TYPE: text

ENTER NUMBER OF INPUT FILES: 1

ENTER OUTPUT FILENAME: directbank

THE OUTPUT FILE SELECTED 1S A DIRECT ACCESS FILE.

IS THE ENTRY NUMBER SPECIFIED IN FACH INPUT RECORD
AN ASCII STRING OR A BINARY (REAL*4) STRING? (ENTER A CR B): a
ENTER STARTING CHARACTER POSITION IN INPUT RECORD: 87
ENTER ENDING CHARACTER POSITION IN INPUT RECORD: 92
ENTER STARTING CHARACTER POSITICN, PRIMARY KEY: 1
SECONDARY KEY NUMBER: 1

Second Edition 3-20

ENTER STARTING CHARACTER POSITION: 10
SECONDARY KEY NUMBER: 2
ENTER STARTING CHARACTER POSITION: 35

SECONDARY KEY NUMBER:

IS FILE SORTED? no

ENTER IOG/ERRCR FILE NAME: (CR)

(CR)

ENTER MILESTONE COUNT: 1

BUILDING: DATA
DEFERRING: O, 1, 2

PROCESSING FROM: directnames

COUNT DATE

01-10-85
01-10-85
01-10-85
01-10-85
01-10-85

PRDOLHO

FIRST BUILD/DEFER PASS COMPLETE.

4 (Ci-10-85

SORTING INDEX O
COUNT DATE
O 01-10-85
SORT COMPLETE
4 01-10-85

BUILDING INDEX O
COUNT DATE
01-10-85
01-10-85
01-10-85
01-10-85
01-10-85

INDEX O BUILT
4 01-10-85

RO+~ O

SORTING INDEX 1
COUNT DATE
0 01-10-85
SORT COMPLETE
4 (01-10-85

BUILDING INDEX 1
COUNT DATE
01-10-85
01-10-85
01-10-85
01-10-85
01-10-85

INDEX 1 BUILT
4 01-10-85

HPADDHHO

SORTING INDEX 2
COUNT DATE

TIME CPU MIN
18:15:05 0.000
18:15:05 0.002
18:15:05 0.003
18:15:05 0.003
18:15:05 0.004
18:15:05 0.005

TIME CPU MIN
18:15:06 0.000
18:15:06 0.005

TIME CPU MIN
18:15:06 0.000
18:15:08 0.001
18:15:06 0.002
18:15:06 0.002
18:15:06 0.003
18:15:08 0.004

TIME CPU MIN
18:15:06 0.000
18:15:06 0.004

TIME CPU MIN
18:15:06 0.000
18:15:07 0.002
18:15:07 0.002
18:15:07 0.003
18:15:07 0.003
18:15:07 0.004

TIME CPU MIN

3-21

BUILDING A MIDASPLUS FILE

g8

o coooof
3 8888

—

DISK MIN
0.000

0.000

DISK MIN
0.000
0.000
0.000
0.000
0.000

0.000
DISK MIN
0.000
0.000
DISK MIN
0.000
0.000
0.000
0.000
0.000

0.000

DISK MIN

:
2

© oo0o0o00
§ S8888

(&)

TOTAL TM
0.000

0.005

:
2

SE8E8

0.004

TOTAL TM
0.000

0.004

DIFF
0.000
0.002
0.001
0.001
0.001

0.001

DIFF
0.000

0.005

DIFF
0.000
0.001
0.001
0.001
0.001

0.001
DIFF
0.000
0.004
DIFF
0.000
0.002
0.001
0.001
0.001

0.001

DIFF

Second Edition

MIDASPLUS USER'S GUIDE

O 01-10-85 18:15:07 0.000 0.000 0.000 0.000
SORT COMPLETE
4 01-10-85 18:15:07 0.004 0.000 0.004 0.004
BUILDING INDEX 2
COUNT DATE TIME CPU MIN DISK MIN TOTAL TM DIFF
0 01-10-85 18:15:07 0.000 0.000 0.000 0.000
1 01-10-85 18:15:07 0.002 0.000 0.002 0.002
2 01-10-85 18:15:07 0.002 0.000 0.003 0.001
3 01-10-85 18:15:07 0.003 0.000 0.003 0.001
4 01-10-85 18:15:07 0.003 0.000 0.004 0.001
INDEX 2 BUILT
4 01-10-85 18:15:07 0.004 0.000 0.005 0.001

KBUTLD COMPLETE.

X,

ALTERNATIVES TO KBUILD

Use an application program, rather than KBUILD, to build a MIDASPLUS
file if one or more of the following statements are true:

e You lack a preexisting sequential disk file containing data in
an easily convertible form.

e It is more work to prepare an existing data file for use with
KBUIID than to use AID1$ (FORTRAN call interface), an add
statement in another language interface, or other offline
routines.

e You already have an application program (requiring little
revision) that handles additions, updates, deletes, and other
processes.

e You regularly make changes that could be handled more easily
with an application program.

Chapters 5 through 9 cover data entry using the language interfaces.

KBUILD ERROR MESSAGES

The following are KBUILD runtime error messages. If an error is fatal,
KBUILD aborts after reporting it. Although files are sometimes damaged
in fatal errors, the files are usually still usable. A non-fatal error
is a warning only and does not harm the KBUILD process. The record
that causes the warning message, however, is not added to the file.

Second Edition 3-22

BUILDING A MIDASPLUS FILE

e UNABLE TO REACH BOTTOM INDEX LEVEL

The last level index block could not be located; file is damaged.
(Fatal)

e FILE IN USE

The file is not available for KBUILD use. KBUILD must have exclusive
access to the file. You are returned to PRIMOS. (Fatal)

e INDEX O FULL —— INPUT TERMINATED

If the maximum number of entries in primary index is exceeded, KBUILD
aborts. (Fatal, but file is still okay)

e INDEX index-no FULL -— NO MORE ENTRIES WILL BE ACDED TO IT

If the maximum number of entries in the secondary index is exceeded,
KBUILD aborts. Building of other indexes continues. (Fatal, but file
is still okay)

e INDEX O FULL ——- REMAINING RECORDS WILL BE DELETED

Data records are added to the subfile first, in the order read in from
the input file. Then the primary index entries are added, in sorted
order, to point +to them. KBUILD ran out of room in the primary index
when trying to add entries to point to those already in the data
subfile. KBUILD is forced to set the delete bit on in data subfile
entries whose primary keys will not fit in the primary index. (Fatal,
but file is still okay)

e INVALID DIRECT ACCESS ENTRY NUMBER —- RECORD NOT ADDED

The user-supplied direct access record number is an ASCIT string, but
it is not legitimate if it contains non-numeric characters. Also, the
entry number may be less than or equal to O, may not be a whole number
or may exceed the number of records allocated. (Non-fatal)

e INVALID OUTPUT DATA RECORD LENGTH —— RECORD NOT ADDED

The output record length is an invalid ASCII string (that is, it

contains non-numeric characters). Also, the size specified might
exceed the input record size. (Non-fatal)

3-23 Second Edition

MIDASPLUS USER'S GUIDE

e THIS INDEX IS NOT EMPTY. EITHER ZERO THE INDEX OR DO NOT SPECIFY
THIS KEY AS SORTED.

KBUILD cannot add sorted data entries to any index subfile that already
contains entries. Do not specify the sorted option during the KBUILD
dialog. (Non-fatal)

e CAN'T FIND PRIMARY KEY IN INDEX —— RECORD NOT ADDED

This error occurs when adding secondary index entries to an already
populated file. The primary key value that you supplied in the input
file was not found in the primary index. (Non-fatal)

e INDEX O: INVALID KEY —— RECORD NOT ADDED

This error could occur if the input file is sorted and an entry was out

of order, or if a duplicate key value appeared for an index that does
not allow duplicates. (Non-fatal)

0
e INDEX KEY SEQUENCE ERROR —— RECORD NOT AUDED
index-no:

A duplicate value was discovered for the primary key or for a secondary
key that does not allow duplicates. (Non-fatal)

Second Edition 324

Introduction to

File Access

This chapter gives an overview of the MIDASPLUS file operations that
you can perform in each programming language; summarizes the available
file access operations with each language interface; tells you where
to find more information on the language interfaces; gives an overview
of direct access.

Chapters 5 through 8 and Appendixes G and H use the BANK file, created
in the CREATK chapter, to illustrate MIDASPLUS file access. These
chapters explain information retrieval, update, and deletion, with the
different language interfaces.

ACCESS OPERATIONS

Accessing a file involveé the following operations:
e Opening a file for update and/or reading
e Adding a record
e Positioning to a file record
e Reading a record by any key (partial/full)
e Reading the next record in sequence
" @ Reading the next (sequential) record with the same key

4-1 Second Edition

MIDASPLUS USER'S GUIDE

e Locking a record with a read operation
e Updating the current record

e Deleting the current record

e Deleting a record by a key

e Closing the file

LANGUAGE ACCESS

The following chapters/appendixes of this manual discuss the following
language interfaces:

Chapter/Appendix Language

5 FORTRAN

6 COBOL

7 BASTIC/VM

8 PL/I

9 VRPG

G C

H Pascal
DIRECT ACCESS

The FORTRAN, COBOL, and VRPG interfaces support direct access MIDASPLUS
files based on record numbers. Each record in the file has a unique
floating-point record number (single-precision) that identifies that
record. To get a particular record, give MIDASPLUS the desired record
number; the record is found and returned. When using direct access,
you must keep track of the correlation between record numbers and
record values.

Direct access uses an algorithm to calculate the exact physical

location of the record in the file from the specified record number.
Direct access files do not support variable-length records.

Second Edition 4-2

INTRODUCTION TO FILE ACCESS

Direct Access File Structure

CREATK creates a direct access file template in a manner similar to the
one in which it creates a template for keyed-index access MIDASPLUS
files. The basic differences between keyed-index and direct access
MIDASPIUS files are:

e Direct access files require fixed-length records. Supply the
record length (data size) in words.

e Each record in a direct access file requires a unique record
number. Depending on the language interface used to access the
file, the record number might have to be the primary key.

e Direct access files require preallccation of storage space.
Estimate the maximum number of entries that will eventually
reside in the data subfile. CREATK will allocate enough space
to accommodate a file with the number of records that you
indicated.

Note
If keys are included in the file template, you can use both the

direct access method and the keyed-index access method to
access direct access files in FORTRAN.

RUNNING MIDASPLUS WITH PRIMIX

If a MIDASPIUS application executes a PRIMIX fork system call while
MIDASPLUS files are open, automatic cleanup is invoked for the child
process. All MIDASPLUS files opened by the parent process are
inaccessible to the child process. When automatic cleanup completes,
the child process can reinvoke MIDASPLUS by making a file—open call.
The parent process continues unaffected. (That is, all files opened
previously are still accessible to the parent process.)

4-3 Second Edition

The FORTRAN

Interface

This chapter explains how to use the FORTRAN interface to MIDASPLUS.
This interface consists of routines callable from any program written
in FORTRAN, PL/I, Pascal, C, or COBOL. Both keyed-index and direct
access MIDASPIUS files are discussed as well as the commnications
array, MIDASPIUS flags, $INSERT mnemonics, and the MIDASPLUS
subroutines.

OOBOL users have the option to use either the FORTRAN interface or the
MIDASPLUS interface available through the COBOL language. (See Chapter
6, THE COBOL INTERFACE.)

FIN and F77 (Prime-supported FORTRAN versions) handle calls to
MIDASPLUS identically. Although you can access MIDASPLUS files with
either version of FORTRAN, be careful with the differences between the
two languages. For example, FIN assumes that variables declared as
"INTEGER" are INTEGER*2 while F77 assumes that they are INTEGER*4. See
the FORTRAN 77 Reference Guide for a summary of the differences between
FIN and F77.

THE CURRENT RECORD

In order to perform the correct operation, some MIDASPLUS calls need to
know which record is the current one. For example, if a record is
being read, it is the current record. After the read operation is
complete, that current record location is stored away so that the next
operation knows which record to act upon if necessary.

5-1 Second Edition

MIDASPLUS USER'S GUIDE

If the next operation is a read-next operation, the file handler must
check the location of the current file position so that it can read the
proper record. Since the proper record is the one after the record
just read, that record becomes the new current record. If, however,
the next operation is a call to FIND$, MIDASPLUS does not care which is
the current record because MIDASPLUS is required to do an index search
to find the requested record.

The current record position information is stored in a 14-word
(28-byte) array supplied on each MIDASPLUS call. MIDASPLUS constantly
updates and checks the array. The array contains the index location,
file position, and the current record location. This array is called
the MIDASPIUS communications array.

DIRECT ACCESS IN FORTRAN

FORTRAN's direct access files do not require you to define the record
number as a primary or secondary key. Although you may define the
record number as the primary or secondary key, MIDASPLUS stores the
record number as a single-precision floating-point number. If you do
not want the record number to be a key field, define the primary key as
some other unique field in the record. You can also define up to 17
secondary indexes during template creation.

If you decide not to make the record number a key field, do not be
concerned about it during template definition. The only time you
should be concerned about the record number is when you are adding
entries to the file. Then, supply a unique record number for each
record to be added to the data subfile. MIDASPLUS stores the record
numbers in the proper place.

You can also use KBUILD to build (populate) direct access files.
Supply record numbers in the same word position in each record.

To access direct access files by record number (instead of by key), use

the same basic subroutine calls. In this case, communications array
format is slightly different than for keyed-index access.

THE COMMUNICATIONS ARRAY

After a MIDASPLUS file is opened for access, MIDASPIUS uses the
commmnications array to keep track of the current file position. The
array stores the following:

e The current record’'s address

e The current position in the index subfile

e A status code for the operation

Second Edition 5-2

THE FORTRAN INTERFACE

e The word number of the located entry in the index subfile
e The data record address
Most FORTRAN/MIDASPLUS file access subroutines use the array as an

argument. Formats and use of the array differ for keyed-index access
and direct access.

Keyed-TIndex Array Format

Only the first word of the array is important for keyed-index access
users. You may only modify the first word of the keyed-index access
array. When you supply the first word, it can be O, 1, or -1. Vhen
MIDASPIUS returns the first word, it contains the status code of the
executed operation. Words 2-14 contain index and data record
addresses, subfile numbers, and the key’'s hash value.

Word 1: Input Value: Word 1 is the only word that you may modify.
You may set the value to either 1, O, or -1. Any other value produces
an error on any call in which that array is used. If the value is set
to O or 1, MIDASPLUS will use the current array contents on the call.
If the value is set to -1 (which has precedence over the FL$USE flag),
MIDASPLUS ignores the contents of the array. Flag usage 1is discussed
later in this chapter.

Word 1: Output Value: MIDASPIUS always uses the first word in the
array to return a completion code after an operation is finished. If
set to O or 1, the array contents are valid, and no error was flagged
on the last call. If there was an error on the last call, word 1 has a
value greater than 1 corresponding to a MIDASPLUS error condition code.
Error codes are listed in Appendix B, ERRCR MESSAGES.

Direct Access Array Format

In direct access, the first five words of the array are important.
Table 5-1 shows the complete format of the array as used in direct
access. When using the direct access array, supply the proper values
for words 2, 3, and 4 of the array.

5-3 Second Edition

MIDASPLUS USER'S GUIDE

Table 5-1
Direct Access Array Format
Word No. Setting Meaning
1 Oor 1l Array contents. Supplied by
user.
2 entry size Primary key 1length in words,
(in words) plus data record length in
words, plus 2 words. Supplied
by user.
34 record number A single-precision (REAL*4)
floating-point record number.
Supplied by user.
5 Hash value (based on current key
value).

$INSERT MNEMONICS

To allow programmers to refer to error codes and key values by mnemonic
names rather than absolute wvalues,

program insert files. Each PARM.K.
the FORTRAN subroutines;

the following statements:

$INSERT SYSOOM>PARM.K.INS.FTIN (FORTRAN)
$INSERT SYSCOM>KEYS.INS.FIN (FORTRAN)
$INSERT SYSOOM>PARM.K.INS.PL1 (PL/I)
$INSERT SYSCOM>KEYS.INS.PL1 (PL/I)
#INCLULE “SYSCOM>PARM.K.INS.CC" (C)
#INCLULE "SYSCOM>KEYS.INS.CC" ©)
%INCLUDE ‘SYSCOM>PARM.K.INS.PASCAL’ (Pascal)
%INCLUDE ‘SYSCOM>KEYS.INS.PASCAL' (Pascal)
COPY "SYSCOM>PARM.K.INS.CBL" (OOBOL)

MIDASPLUS FLAGS

A flag is a means of specifying options for a particular call.
is actually a switch with a bit value of either on or off.

Second Edition

54

the SYSCOM directory contains
INS file contains parameters used in
each KEYS.INS contains key declarations.
insert these files in column 1 at the beginning of the program. Use

A flag
You can set

THE FORTRAN INTERFACE

MIDASPIUS flag parameter values to one or more of the MIDASPLUS keys.
Options are specified with a set of flag names that are defined in the
insert file SYSCOM>PARM.K.INS.FIN. The flag names correspond to single
bits of a one-word parameter called flags and are passed to MIDASPLUS
in each subroutine call.

The default setting for each flag bit is off. Depending on what you
want to do with a particular call, you set certain flags on before a
call. To set a flag on, specify the name of that flag in an assignment
statement or in place of the flags argument on the actual call. For
example:

FLAGS = FL$FST + FL$RET

This example tells MIDASPLUS to position to the first index entry for
the specified key and to return the user communication array. As a
result of the above assignment, the octal values of the flags FL$FST
and FL$RET are added. Their sum, which is a single octal value,
determines which bits are set off and which are set on in the flag
word. All of the bits are initialized in the PARM.K.INS.FIN file, and
the bit settings indicate the actions to be taken on the call.

Figure 5-1 1lists the subroutines in which the flags can be used, and

Table 5-2 lists the bits to which the flags correspond and their
meanings when set on or off.

5-85 Second Edition

MIDASPLUS USER'S GUIDE

Flag ATD1$ FIND$ NEXT$ LOCK$ UPDAT$ DELET$ GDATA$

FL$USE
FL$RET
FL$KEY
FL$BIT
FL$PLW
FL$UKY
FL$SEC
FL$UIK
FL$FST
FLSNXT
FL$PRE

X
X

X

(R)
(R1)
(Rs)

X

X

X

x(R)

X

X

X

X

Required.
Required for first record.

Required for all records after the first record.

x x(R) X
x(R)
x x

x(R1)

x(Rs)

Second Edition

Flags for Subroutines
Figure 5-1

5-6

THE FORTRAN INTERFACE

Table 5-2
MIDASPLUS Flag Names, Settings, and Meanings

Bit No. Name

Setting

Meaning

1 FL$USE

4 FL$BIT

on

off

on

off

on

off

on

off

Uses current copy of array.

Does not use current copy
of array.

Returns entire array for
use on subsequent calls.

Returns completion code
only, in array (1).

On calls to FIND$, NEXT$,
and LOCK$, returns primary
key with data record.

On calls to AID1$, tells
MIDASPLUS not to store the
primary key in the buffer,
since MIDASPLUS stores the
primary key automatically,
using the key argument.

Used only if primary key is
first field in data record.

On calls to FIND$, NEXTS,
and IOCK$, does not add the
primary key to the
beginning of the data
buffer.

In ADD1$, tells MIDASPLUS
to store a copy of the
primary key in each
internal data subfile
record.

If the key is a bit string,
the call specifies the key
size in bits; if the key is
ASCII, the call specifies
the key size in bytes.

Specifies key size in words
(default).

5-7

Second Edition

MIDASPLUS USER'S GUIDE

Table 5-2 (continued)

MIDASPIUS Flag Names, Settings and Meanings

Bit No.

Name

Setting

Meaning

10

11

FL$PLW

FL$UKY

FL$SEC

FLSUIK

FL$FST

FL$NXT

FL$PRE

on

on

off

on

off

on

of f

on

off

on

off

on

off

Positions to next index
entry greater than or equal
to current or user-supplied
entry.

Updates user-supplied key
field with wversion stored
in the file. Useful in
partial key searches.

Does mnot update user-
supplied key field.

Returns secondary data
instead of data record.

Returns data record read
from data subfile.

Unlocks data entry only.
Do not update it.

Updates data entry and
unlocks it.

Positions to first index
entry in subfile.

Positions to first entry
that matches current entry
or user-supplied key value.

Positions to next index
entry greater than current
entry or user-supplied key
value.

Positions to next index
entry that matches current
entry or user-supplied key
value.

Positions to previous index
entry.

Does not position to the
previous index entry.

Second Edition

5-8

THE FORTRAN INTERFACE

Notes

On designates that a particular flag is specified in flags.
Off (the default) designates that the flag is not specified.
Bits 12-16 of the flags parameter must be set to O, the default
setting, at all times. Do not change the flag setting. When
you combine flags, some flags have precedence over others. The
priority level is:

e FL$FST

e FL$NXT

e FL$PLW
Certain combinations of flags are not sensible. For example,
FLYNXT and FL$FST. Although meanings are given when each flag

is set off, the combination of keys that are set on is what
actually dictates the action.

COMPILE AND LOAD SEQUENCE

You must include the MIDASPLUS library MPLUSIB in the BIND load
sequence of all FORTRAN programs that use MIDASPLUS. Substitute the
name of your program for the word program in the example.

A sample BIND session using FIN:

ftn program —64v

0000 ERRORS [<.MAIN.>FIN-REV19.3]
K, bind

[BIND rev 19.4]

: load program

: 11 mpluslb

:1i

BIND COMPLETE

: file

(K, resume program

5-9 Second Edition

MIDASPLUS USER'S GUIDE

A sample BIND session using F77:

f77 program -ints

0000 ERRORS [<.MAIN.>F77-REV19.3]
CK, bind

[BIND rev 19.4]

: load program

¢ 1i mpluslb

1

BIND COMPLETE

: file

(X, resume program

Note

You must wuse the option -INTS with Fv7. F77 defaults to long
integer if -INTS is not used.

The FORTRAN/MIDASPLUS INTERFACE SUBROUTINES

A FORTRAN programmer can directly use ten FORTRAN subroutines to access
a MIDASPIUS file. The other language interfaces also use these
subroutines, though transparently to the user. Most of these
subroutines share the same calling sequence. The following is a list
of the subroutines and their functions:

Subroutine Function
OPENM$ Opens a MIDASPLUS file, associates it with a

file unit, and notifies MIDASPLUS that
processing is about to begin on the file.

CLOSM$ Closes a file and its subfiles.

NTFYM$ States that a MIDASPLUS file is opened or is
about to be closed.

ADD1$ Adds a data record and index entries.

FIND$ Finds a data entry by any key.

NEXT$ Finds the next data entry via an index.

GDATAS$ Reads data entries in the order stored.

Second Edition 5-10

THE FORTRAN INTERFACE

LOCK$ Locks a data entry for update.

UPDAT$ Updates a data entry.

DELETS$ Deletes a data entry or secondary index entry.
Record Locking

In order to update a record, lock that record for exclusive use.
Locking the record stops anyone else from trying to read or change the
record while you are changing it. While FORTRAN requires you to call
the IOCK$ subroutine before an update operation can occur, the other
MIDASPLUS language interfaces automatically perform locking. Locking
prevents other users from updating the record, but will not protect
against deleting it.

General Calling Sequence

The MIDASPLUS access subroutines (ADD1$, FIND$, LOCK$, DELET$, NEXTS,
and UPDAT$) use the following arguments as a general format for their
calling sequence:

CALL routine (funit, buffer, key, array, flags, altrtn, index,
fileno, bufsiz, keysiz)
Note

routine is a character data type, but all of the other
arguments are short integer (INT*2).

Argument Specifies

routine One of these six routines: AID1$, FINDS,
NEXT$, LOCK$, UPDAT$, or DELETS.

funit The file unit on which the MIDASPLUS file is
open.

buffer The data record buffer into which data 1is
read or from which it is written to the
file.

key The key value to be used in the call.

array The communications array that holds current

record and index position information. It
also returns status codes after each call.

5-11 Second Edition

MIDASPLUS USER’'S GUIDE

flags

altrtn

file-no

bufsiz

keysiz

Optional Arguments:

The flag options for this call.

The statement label in the program to which
control passes if amn error occurs. Set to O
if no alternate return exists.

The access method to be used (keyed-index or
direct access) and the index subfile number
to use if not direct access.

Ignored by MIDASPLUS, but kept for
compatibility with older wversions.

The length of the data to be transferred
to/from file (except in calls to DELETS).
Set to O, if full data entry is being
transferred. Always supplied in words.

The length of the key to be used in partial
key access (used with FIND$ and NEXT$ only).

You may supply a O instead of another value

the following arguments:

Argument
altrtn

file-no

bufsiz

keysiz

Default

No alternate return for handling errors on this
call.

Obsolete, maintained for compatibility.

Defaults to data subfile entry length (stored in
file).

Defaults to key length specified in file. Can
be set to O if full key is being used.

Note

GDATA$, a data access subroutine used for sequential retrieval
of entries in the data subfile, does not use the general
calling sequence just described.

OPENING AND CLOSING MIDASPLUS FILES

for

MIDASPLUS requires that you open or close a file through MIDASPLUS or
otherwise notify MIDASPLUS of every MIDASPLUS file that you open or
close. You may use either of the following methods to open a file:

Second Edition

5-12

THE FORTRAN INTERFACE

e Use the OPENM$/CLOSM$ subroutines.

e Make calls to NIFYM$ to modify existing programs that use SRCHS
or SRSFX$ to open and close a file. When SRCH$$ or SRSFX$ opens
a MIDASPLUS file, meke the call to NIFYM$ after opening the
file. When SRCH$$ or SRSFX$ closes a MIDASPLUS file, issue
NTFYM$ before the closing the file.

OPENM$

OPENM$ is the MIDASPLUS routine that opens a MIDASPLUS file (segment
directory). Through OPENM$, MIDASPLUS opens a file, validates it as a
MIDASPIUS file, and stores the information in its file table.
MIDASPIUS requires a call to OPENM$ (or NIFYM$ as an alternative but
unequal choice) before a file can be acoessed using the online
MIDASPLUS routines. If you try to access a file that MIDASPLUS is
unaware of, an error code of 23 will appear saying that the file is not

opened.

Always use the same access mode when opening a file more than once from
the same program. To manage file units more efficiently, open a
MIDASPLUS file only once in the same application.

OPENM$ Keys

OPENM$ replaces direct calls to either of the following PRIMOS file
system routines:

e SRCH$$ (takes a filename argument)

e SRSFX$ (takes a pathname argument)
These routines open a file and associate the file with a PRIMOS file
unit. OPENM$ requires the use of certain PRIMOS keys (listed below)

that specify whether to open a file for reading, writing, or a
combination of both:

Key Action

K$GETU Opens a file on an available PRIMOS file unit.
K$READ Opens a file for reading only.

K$WRIT Opens a file for writing only.

K$RDWR Opens a file for reading and writing.

5-13 Second Edition

MIDASPLUS USER'S GUIDE

Note

The keys listed above are used in calling OPENM$ as shown
below. You must specify one of the choices K$READ, K$WRIT, or
k$RDWR. K$GETU is strongly recommended.

OPENM$ Calling Sequence

The calling sequence of OPENM$ is

CALL OPENM$ (key, pathname, namlen, funit, status)

The arguments, which are all INTEGER*2, are

key

pathname
namlen

funit

status

Second Edition

Input parameter. Valid OPENM$ access key:
either K$READ or K$WRIT or K$RDWR used together
with K$GETU.

Pathname of MIDASPLUS file to be opened.

Length of the pathname in characters, supplied
by the user. F77 programs will not run if the
namlen parameter is supplied as a constant.

The file unit on which the file was opened,
returned by OPENM$ when K$GETU is specified.

OPENM$ status code returned by MIDASPIUS at the
completion of the call. Possible values are
0] No error.
< 10001 FRIMOS file system error.
10001 Invalid key supplied.
10002 Too many MIDASPILUS files are
open. The default is 256 file

units and the maximum is 512.

10003 Specified file is not a MIDASPLUS
segment directory.

10004 Internal error. Ask the System
Administrator for assistance.

10005 Internal error encountered while
trying to open a remote file.

5-14

THE FORTRAN INTERFACE

CLOSM$

The CLOSM$ routine closes a MIDASPLUS file (segment directory) that was
opened on a specified file unit. CLOSM$ also closes any of the
subfiles that MIDASPLUS opened during file access. CLOSM$ can also be
called as a function, returning these values in the status code return
argument :

0 No error.

1 Error occurred. Check status oode> .

-1 File was not opened and status code is O.

CLOSM$ Calling Sequence

The calling sequence of CLOSM$ is:

CALL CLOSM$ (funit, status)

The arguments, which are both all INTEGER*2, are:

funit Input parameter. File unit on which the
MIDASPIUS file is opened.
status Output parameter. CLOSM$ status codes.
0 No error.

< 10001 PRIMOS file system error.

10001 MIDASPIUS is unaware that the file
is opened. Internal error. Ask
the System Administrator for
assistance.

5-15 Second Edition

MIDASPIUS USER’'S GUIDE

NTFYM$

Use NTFYM$ if you are using SRCH$$ to open files rather than OPENMS.
The NIFYM$ routine informs MIDASPIUS that you either opened a MIDASPLUS
file (segment file) or are about to close a file using SRCH$$ or
SRSFX$. Place NTFYM$ into an existing program immediately after a call
to SRCH$$ is made to open the file and immediately before SRCH$$ is
called again to close the file.

Before a MIDASPIUS file is closed, a call to NTFYM$ tells MIDASPIUS to
close any of the file’'s segment subfiles that were left open.
MIDASPLUS requires a call to OPENM$ or NTFYM$ before you can access a
file with the online MIDASPIUS routines. Without this call, the online
routines return an error code of 23 (File not Found).

NIFYM$ Calling Sequence

The calling sequence is:

CALL NTFYM$ (key, funit, status)

The arguments (all INTEGER*2) used in this call are:

key Specifies whether the file has been opened or is
about to be closed (user supplied).

[
]

file is open

AV
Il

file is about to be closed
funit File unit on which MIDASPIUS file is opened
(user-supplied).

status NTFYM$ status codes

0 No error.

< 10001 PRIMOS file system error.

10001 Invalid key supplied.

10002 Too many MIDASPIUS files are

opened. The default is 256 and the
maximum is 512.

Second Edition 5-16

THE FORTRAN INTERFACE

10003 Specified file is not a MIDASPLUS
segment directory.

10004 Internal error. Ask the System
Administrator for assistance.

10005 Internal error encountered while
trying to open a remote file.

ADD1$

Use the AID1$ routine to add primary index entries and data subfile
entries to keyed-index and direct access MIDASPLUS files. You can add
secondary index entries (and optional secondary data) to files with
secondary indexes. If you want your secondary keys to be in the data
record, make sure that the secondary keys exist in the buffer when the
primary key and record are added to the file.

If ADD1$ adds a variable-length record that is outside a record size
limit, MIDASPIUS automatically resets that 1limit to the size of the
record.
Note
Because MIDASPIUS is a word-aligned product, the key or record

buffer passed to MIDASPIUS must be word-aligned. In this
manual, the term word means 16 bits.

5-17 Second Edition

MIDASPIUS USER'S GUIDE

Keyed-index Adds

You can only add records to a MIDASPLUS file when the records have a
primary key value. Likewise, you can only add a secondary key value if
the record which it will reference already exists in the data subfile
and if a primary index entry references it. Add records and keys
associated with them in the following order:

1. To add a data entry and its primary value, make a call to ADD1$
with the flag FL$RET set on.

2. To add a secondary index entry for this record, make a separate
call to AID1$ with the flag FL$USE set on.

In order to add secondary index entries for an existing data subfile at
a later time, you can do either one of the following:

e Supply the primary key value in the argument buffer and set
index and key to the desired secondary index number and value,
respectively, on a call to AID1S$.

e Use the primary key (with a FIND$ or NEXT$ call using FL$RET) to
locate the record. This call returns the array so that the call
to AID1$ can use it. Set the index and key to the index number
and value, respectively, on the call to AID1S$.

ADD1$ Calling Sequence

The calling sequence format is:

CALL ADD1$ (funit, buffer, key, array, flags, altrtn, index,
file-no, bufsiz, keysiz)

Table 5-3 explains the arguments that have meanings unique to ADD1S$.

Second Edition 5-18

THE FORTRAN INTERFACE

Index Values: The index argument indicates whether the add operation
is being performed on a direct access file or a keyed-index access
file. It also tells whether a primary or secondary index entry will be
processed on this call. The values for the index argument are:

Value for Index Meaning
0 Primary index
1 - 17 Secondary index
-1 Direct access

When index is 0, use the buffer to supply the data entry information
which will be added to the data subfile. If you are storing keys in
the secondary indexes, make sure that index is a number from 1 to 17.
For secondary keys, specify the corresponding primary key as the first
item in the buffer and specify the secondary value in the full key
argument.

Table 5-3
ATD1$ Arguments

Argument Meaning
funit File unit on which the MIDASPLUS file is open.
buffer Buffer containing the data subfile record on a

data entry add operation. If keys are being
stored in the data record, include all key
values in buffer as well. On a secondary index
add without FLSUSE set, buffer contains the
primary key value followed by optional secondary
data.

key Value of the key that must contain full primary
key value on a data record add. Contains full
secondary key value on a secondary index add.

array Communications array that returns a completion
or error code.

flags The switch with a bit wvalue that can be set
either on or off. (See Table 5-4 for flags that
can be used with ADD1$.)

5-19 Second Edition

MIDASPIUS USER’'S GUIDE

Table 5-3 (continued)
ADD1$ Arguments

Argument

Meaning

altrtn

file-no

bufsiz

keysiz

Statement number of alternate return to be used
in case an error occurs on the subroutine calls.
Supply O if you cannot use an alternate return.

Access method and index subfile to use. The
values for the index argument are listed in the
Index Value section above.

Set to O (obsolete).

Length of data to be added to subfile from
buffer. If bufsiz = 0 and index = O, MIDASPLUS
adds data from Dbuffer to data subfile.
MIDASPLUS takes only the number of words it
needs to match the record size defined for the

MIDASPLUS file during CREATK.

If index > O and secondary data is supported for
that index, adds secondary data from buffer to
indicated index subfile. If bufsiz is less than
data record size or is less than key size plus
secondary data, only that part of buffer will be
used.

The rest of the data subfile or secondary data
entry is zero-filled. In general, specify O for
fixed-length records. For files with
variable-length records, specify length of data
to be written to file.

Set to 0 (ignored).

Second Edition

5-20

THE FORTRAN INTERFACE

Table 54
Flags for ADD1$

Flag Function

FL$USE: Uses contents of the array from previous call -

used on calls to add secondary index entries.
Set off when adding primary index entries or
secondary index entries if using the primary key
to locate data records.

FL$RET: When set on, returns array contents from this
call (set only on calls to add data records).

FLSKEY: When set on, tells MIDASPIUS that the primary
key is included at the beginning of the buffer.
Since the primary key is already stored with the
data, this flag alerts MIDASPLUS that the data
portion of the record is offset from the start
of the buffer by the length of the primary key.
For storage purposes, MIDASPLUS will ignore the
primary key portion of the buffer.

Redundant Primary Keys

Since MIDASPIUS always stores a copy of the primary key along with the
data record, redundant primary keys would result if the file were
created with the primary key as part of the data record. However,
users may wish to consider the primary key as part of the data record.
To solve this problem, MIDASPLUS provides a flag, FL$KEY. FL$KEY tells
MIDASPIUS to place the primary key in the front of the record buffer
argument for retrieval operations and to ignore the primary key in the
beginning of the buffer on update and insert operations. Logically,
the user will see the key as part of the data record. Physically,
MIDASPLUS will store only one copy of the key.

Adding Data Records

When adding primary index and data entries, place the full primary key
value associated with the record in key. Place the information added
to the data subfile in the buffer. Set bufsiz to O for keyed-index
MIDASPIUS files with fixed-length records. Set bufsiz to the length of
the data entry in words for variable-length records. If you are adding
secondary indexes to this file, return the array (set the FL$RET flag

on in flags) for use in later calls to ATID1$.

5-21 Second Edition

MIDASPLUS USER'S GUILE

Note

¥hen adding entries to a MIDASPLUS file with ADD1$, supply the
full key value in the key argument. Partial key values are
illegal. Since the argument keysiz is ignored, set it equal to

0.

Adding Secondary Index Entries

To add secondary index values, supply MIDASPIUS with the following
information:

Secondary index number (in index).
Secondary key value (in key).
Primary key value —— place it in the first part of buffer or set

FL$USE to use a valid copy of array. The array is valid only if
the previous call (in which the desired key value was used
and/or returned) returns it.

Secondary data (optional — supplied in buffer following primary

key value).

Duplicate secondary key entries are supported only for those index
subfiles that were created with duplicate status during CREATK. If you
try to add duplicate entries to a secondary index that does not support
them, an error is returned and the add operation fails.

For example, if you want to add all secondary index entries for a
particular data subfile entry, perform the following eigth steps
immediately after you have added the primary key and the data entry:

1.

Set FL$RET in flags on the AID1$ call when adding the primary
index and data entry.

If you have one or more secondary index entries to add after
the above call, set FL$USE in flags.

Set index to the appropriate index subfile number (1 - 17).

If the array is not valid, put the primary key value of this
record in the first part of the buffer.

If adding any secondary data for this index entry, put the
secondary data in buffer immediately following the primary key
value.

Set key to the full secondary value that you want stored in the
index subfile.

Call ATD1$ to add this secondary index entry.

Secord Edition 5-22

THE FORTRAN INTERFACE

8. Repeat steps 2 - 7 for each secondary index entry that you want
added for this record.

Direct Access Adds

For direct access files, set the index value to -1 in all calls to
ATD1$ that add data entries. To add secondary index entries, set index
to the secondary index subfile. The record number may be defined as
the primary key. Since MIDASPLUS stores the numbers, it is not
necessary to define the record number as a key during the template
creation.

Provide the following in each call to AID1$:

e A primary key value (in key)

e A floating-point entry number (in words 3 and 4 of the array)

e The data entry size (in word 2 of array)
The data entry size is equal to the key length (rounded up in words)
plus the data length (in words) plus 2. Make sure you supply the
correct data entry size every time. For example, given a primary key

size of 3 words and a data entry size of 10 words, the data size
argument would be 15.

The Array: See Table 5-1 for the array format for direct access calls.
The contents of the array’s first four words in direct access calls to
ATD1$ are:

e Vord 1: Condition code (O or 1)

e VWord 2: Data entry size (key size + data length + 2)

e Words 34: Entry number (record number) in REAL*4 format
If an entry already exists with the supplied record number, MIDASPLUS
places the new record number into an overflow area. Duplicates are not
allowed for any primary key. Therefore, MIDASPLUS will not place the

new record into an overflow area if the primary key is defined as the
record number.

5-23 Second Edition

MIDASPIUS USER’'S GUIDE

Return Code Values

Common return codes in word 1 after a call to AID1$ are:

Code Meaning

0 Successful completion of the call.

1 Successful completion of the call. There are
duplicates for this index (okay).

7 No entry exists with supplied primary index
value. '

12 You attempted to add duplicates to a primary
index or to a secondary index that does not
allow them.

other codes See Appendix B, ERROR MESSAGES, for a 1list of
MIDASPLUS error codes.

READING A MIDASPLUS FILE

Use FIND$ or NEXT$ to perform keyed reads of primary and secondary
keys. For direct access files, you can use FIND$ to read by record
number. Use GDATA$ to retrieve records directly from the data subfile
in the order in which they appear.

Note
Unlike some of the other language interfaces, none of the

FORTRAN interface’s data retrieval routines locks a record upon
positioning to it. To lock a record, use LOCKS$.

Second Edition 5-24

THE FORTRAN INTERFACE

FIND$

Using either a primary or a secondary key, FIND$ locates and reads a
MIDASPLUS data entry. Searches can also be done on partial primary or
secondary key values. If a partial key search is used, you can request
FIND$ to return the full key value as stored in the index subfile being
searched. If a secondary index contains secondary data, you can
request FIND$ to return the secondary data instead of the data record.

FIND$ Calling Sequence

The calling sequence for FIND$ is:

CALL FIND$ (funit, buffer, key, array, flags, altrn, index,
file-no, bufsiz, keysiz)

Table 5-5 shows the arguments that have special meaning. Table 56
lists the flag values valid for use with FIND$.

Specifying Which Index to Use

The index argument tells which access mode is being used on this call
to FIND$. It also states which index will be used in a keyed-index
file. The settings are:

Index Values Access Mode
0 Use primary index as search key.
1-17 Use indicated secondary index as

basis of search.
-1 Direct access: locate entries by
record number.

Read the FIND$ and Direct Access section in this chapter for
information on reading direct access files.

5-25 Second Edition

MIDASPLUS USER'S GUIDE

Table 5-5
FIND$ Arguments

Argument

Meaning

funit

buffer

array

flags

altrtn

file-no

bufsiz

keysiz

File unit on which the MIDASPLUS file is open.

Buffer in which data entry, primary key values,
or secondary data are returned as a result of
call to FIND$.

Full or partial primary or secondary key value
supplied by the user. In direct access, if
index=-1, do not supply a value for key unless
FL$UKY is set in flags.

The communications array that returns a
completion or error code in word 1 after each
call. In direct access, you are required to
supply the entry size and record number in words
24 of this array.

The switch with a bit value that can be set on
or off. (See Table 5-6 for flags that can be
used with FINDS.)

Statement number of alternate return to be used
in case an error occurs on the subroutine calls.
Supply O if you cannot use an alternate return.

Access method and index subfile to wuse. The
values for the index argument are 1listed in
Specifying Which Index to Use above.

Obsolete, set to O.

Length of buffer. Set to O if complete data
entry and primary key (if FL$KEY is set on) are
to be returned. Otherwise, specify the number
of words you want returned from data subfile
entry.

Size of key. Set to O if full key, otherwise
set to number of bits, bytes, or words in key.
The keysize is assumed to be in words unless
FL$BIT is on, in which case keysize is bits or

bytes depending on the key type.

Second Edition

THE FORTRAN INTERFACE

Table 5-6
Flags for FIND$

Flag Meaning

FL$BIT Specifies that the length of key in keysiz is in
bits if the key is defined as a bit string, or
in bytes if the key is an ASCII string. When
set off, length of key is specified in keysiz in
words.

FL$FST Tells FIND$ to position to first entry in
specified index subfile. If set off, FIND$
positions to first index entry that matches the
user-supplied key, unless another flag setting
overrules this.

FL$KEY Tells FIND$ to return the full wvalue of the
pr:l_ma.ry key for this record in buffer, beginning
in buffer(l). The returned data record will
then immediately follow the primary key in
buffer.

FL$NXT Positions to the next index entry that is
greater than the current value.

When set off, FL$NXT positions to the index
entry that matches the current or user-supplied
entry. A flag setting with a higher precedence
(FL$FST) may overrule this.

FL$PLW Positions to meet the index entry that is
greater than or equal to the current or
user-supplied value.

FL$RET Tells MIDASPIUS to return entire array after
this call to FIND$. If set off, only the first
word of array, the completion code, is returned.

FL$SEC Returns secondary data from the secondary index
being searched instead of returning the data
record. Secondary data is returned in buffer.
Not applicable in direct access or primary index
access, that is, if index is O or -1.

FLYUKY Returns in key the full primary or secondary
index value that oorresponds to the
user-supplied key value used in this call.

- FL$USE In keyed-index access, tells MIDASPLUS to use
contents of array as returned by previous call.
In direct access, the setting is ignored.

5-27 Second Edition

MIDASPLUS USER'S GUIDE

Specifying Key Values

If index is O, supply a primary key in the key argument. If you wuse
FL$USE, however, the key is not needed. If a secondary index is
indicated, specify a value from the index in key. This allows FIND$ to
use it in the retrieval. If the full key value is specified in key,
you can set the keysize argument to O.

Partial Key Values: You may use full or partial keys in both primary
and secondary key searches. Partial key values must be the left-most
characters of the key (i.e., take the values from the beginning of the
key value). For example, if the key value is Massachusetts, possible
partial values include M, Ma, Mass, Massach, and so forth. During a
partial key search, FIND$ returns the first data entry that has a key
value beginning with the indicated partial value.

To indicate a partial key value, supply, in keysiz, the exact length of
the value you have specified in key. If the key is a bit string or an
ASCIT string, specify the key's length in bits or bytes as appropriate,
and set the FL$BIT flag on. If FL$BIT is set off, the key size is
assumed to be in words. How the file was created determines what the
value of FL$BIT should mean. If its binary form is used, Dbits are
assumed with FL$BIT. If ASCII is used, bytes are assumed.

If the keys are not being stored in the record and you want the full

key value returned, set FL$KEY on in the flags when doing partial key
searches.

Retrieval Options

FIND$ permits you to retrieve the following items from a MIDASPLUS
file:

e A data subfile (full or partial). Set bufsiz to O to return all
information. To return a partial entry, specify in bufsiz the
number of words that you want returned.

e The primary key value associated with the record that is sought.
Set FL$KEY on. Use this method when keys are not stored in the
data record, or when entries were added with FL$KEY set on
during calls to ADD1§. Primary key value along with the data
record is returned in buffer. Set Dbufsiz t0 include both
primary key and data record.

Second Edition 5-28

THE FORTRAN INTERFACE

e The secondary data stored with the secondary kcy value on which
the search is conducted. Secondary data is returned in buffer
in place of a data record. Set bufsiz to O to return all
secondary data, or to the number or words that you want
returned. Use FL$SEC in the call. (Index: must be a value
between 1 and - 17.)

e A full primary or secondary key value when searching on partial
keys. Set FL$UKY on. The full key value is returned in key.

All information that FIND$ returns is placed in buffer (except when you
specify FL$UKY to return key value in key). Set bufsiz to accommodate
all of the data during each call.

Using FL$KEY: It is only necessary to set FL$KEY on (to return full
primary key value) when FL$KEY was set on during calls to ADD1$ or when
you are not storing keys in the data record.

Using FLS$UKY: The FL$UKY flag is useful when you are doing record
access via partial key. FL$UKY returns the complete value of the key
that was used for the search. If you store keys in the record, you can
check to make sure that the index entries correspond to the key values
in the data record. These keys also help identify which record you are
looking at when you are doing retrievals on duplicate keys.

FIND$ and the Array

During access to keyed-index access MIDASPLUS files, you do not have to
worry about the settings for the array argument in calls to FINDS.
Word 1 always gives you a completion code after a call to FIND§. If
the value of array(l) is O, the call was successful. A value of 1
indicates that there are duplicates.

When the FL$RET flag is set in the call to FIND$, the entire array is

returned to you. You can subsequently use the array in calls to other
routines such as ATD1$, NEXT$, DELET$, and LOCKS.

5-29 Second Edition

MIDASPIUS USER'S GUIDE

FIND$ and Direct Access

You can access direct access files by any key or entry number. To
access a direct access file by primary or secondary key, use the
keyed-index access method. Treat the direct access file just like a
keyed-index access file. To access a direct access file by entry
number (record number), index must have a value of -1, and both key and
keysiz should be set to 0. In some direct access files, the entry
number and the primary key must be the same, as in COBOL RELATIVE
files.

Accessing a direct access file by entry number involves a search
algorithm that calculates the physical location of the record in the
file (given the entry number and the data subfile record size). To use
the entry number method, supply the floating-point data entry number in
array words 3 and 4 and the full data subfile entry in bufsiz, in
words. -

Argument Settings: Set the index argument to -1 for accessing by entry
number. I1f you use the primary key to search, the key must contain the
full primary key value used in the search, and keysiz must always be O
(indicating a full key value). For the direct access method, set the
array argument to the entry number used on the call. Since MIDASPLUS
always uses the array on this type of call, do not set FLSUSE for this
type of call. See Table 5-1 for the direct access array format.

Second Edition 5-30

NEXT$

THE FORTRAN INTERFACE

NEXT$ allows you to perform a variety of operations on a keyed-index
access MIDASPLUS file. Use NEXT$ to retrieve the following:

File records sequentially according to primary or secondary key
order

All file records with a primary or secondary key value greater
than a given key value

All records with the same partial key value

All records with duplicate index emtries for a specified
secondary key value

All records whose key values come before a certain key value in
a particular index subfile

A particular record using a full or partial primary or secondary
key value (keyed retrieval)

See Table 5-8 for the special flag settings required to perform these
retrievals.

Note

Because you cannot use NEXT$ on direct access files, index will
never have a value of -1 in a call to NEXT$. Specify FLSRET in
calls to NEXT$ or a MIDASPLUS error will occur.

NEXT$ Calling Sequence

The calling sequence for NEXT$ is:

CALL NEXT$ (funit, buffer, key, array, flags, altrn, index,

fileno, bufsiz, keysiz)

See Table 5-7 for the meanings of NEXT$ arguments and Table 5-8 for the
flag arguments settings for NEXTS$.

5-31 Second Edition

MIDASPIUS USER'S GUIDE

Table 5-%
NEXT$ Arguments

Argument

Meaning

funit

buffer

key

array

flags

altrtn

file-no

bufsiz

keysiz

File unit on which the MIDASPIUS file is open.

Buffer into which retrieved data record or
secondary data value is read. If FL$KEY is set,
buffer will include key value plus data record.
If FL$SEC is set, secondary data is returned
instead of data record. See Table 5-8.

Value of the key used in the search. Either
full or partial, as specified in keysiz.

Communications array that returns a completion
or error code.

Switch that can be set on or off. (See Table
5-8 for flags that can be used with NEXTS$.)

Statement number of the alternate return to be
used in case an error occurs on the subroutine
calls. Supply O if you cannot use an alternate
return.

Index subfile to use. Direct access is illegal
(index cannot be -1).

0]

primary index
1-17 = secondary index

Obsolete, set to O.

Iength of data to be returned. If set to O,
full data subfile entry is returned. If FL$KEY
is set on, the full key value is returned with
the data. If FL$SEC is set on, secondary data
is returned instead of the data subfile entry.
Make the wvalue of bufsiz large enough to
accommodate everything that must be returned in
buffer.

Length of user-supplied key on this call. If
set to O, full key value is used. If greater
than O, partial key is specified in either Dbits
or bytes (if FL$BIT is set on) or in words
(FL$BIT set off).

Second Edition

5-32

THE FORTRAN INTERFACE

Table 5-8
Flags for NEXT$

Flag Function
FL$BIT Specifies that the keysiz is specified in bits

or bytes. When set off, keysiz is in words.

FL$FST Tells NEXT$ to return the record referenced by
first entry in the specified index.

FL$KEY Tells NEXT$ to return the full wvalue of the
primary key for this record in buffer, beginning
in buffer(l). The returned data record will
then immediately follow the primary key in

buffer.

FLENXT Positions to next index entry greater than key.

FL$PLW Positions to next index entry greater than or
equal to key.

FL$RET Tells MIDASPLUS to return the contents of the

array after this call. This flag is required on
calls to NEXT$. If it is set off, an error code
of 30 will appear.

FL$SEC When set on, FL$SEC returns secondary data in
buffer instead of data record. Use FL$SEC only
when index is greater than or equal to 1.

FL$UKY Returns in key the full primary or secondary
index wvalue that corresponds to the
user-supplied key value used in this call.

FL$USE Tells MIDASPLUS to use the contents of array.
(Array must be present from a previous call to
FIND$ or NEXTS.)

FL$PRE Finds the previous index emtry when the array is
used for positioning.

Buffer Size Specifications

Data retrieved on a call to NEXT$ is returned in buffer. The bufsiz
argument determines the amount to be returned. To return the entire
data subfile entry, set bufsiz to 0. Also set bufsiz to O when
retrieving seoonda.ry data (when index is set to a value greater than O
and FL$SEC is set). Otherwise, set this argument to the number of
words that you want returned from the index or data subfile. Make sure

5-33 Second Edition

MIDASPLUS USER'S GUIDE

bufsiz specifies a large enough buffer to include the full primary key
and the data record when FL$KEY is used.

Array Settings

Word 1 returns a completion code after the call. The settings for
array(l) are:

Code Meaning
0 Successful retrieval.
1 Successful retrieval, but duplicate may exist

for this key value.
other codes Error in retrieval. See Appendix B, ERROR

MESSAGES, for a list of the MIDASPLUS error
codes.

Sequential Record Retrieval

To retrieve records sequentially from some point in a primary or
secondary index, use FIND$ to locate the initial key value. Once the
starting point is found, make repeated calls to NEXT$ to return the
data subfile records based on the order of entries in the primary or
secondary index. In combination, FIND$ and NEXT$ calls enable a
"greater than or equal to" search. First, you find a particular value;

then you find all of the values that are greater than or equal to it.

To start this type of retrieval, set the FIND$ call flag to FL$RET so
that you can use the returned array in the NEXT$ loop. Set the FL$RET
and FL$USE flags in the NEXT$ call. The array that the FIND$ call
returns is used for the first NEXT$ call. The NEXT$ call returns
another array, which acts as input for the following NEXT$, and sO
forth.

To retrieve file records sequentially, begin with the first index entry
in a given subfile and make a call to NEXT$ with FL$FST set on in
flags. When set on, the FL$FST flag tells NEXT$ to return the record
pointed to by the first index entry in the specified index subfile.
The index to be used in the retrieval is specified in the index
argument of the call. The FL$RET flag should also be set on in this
call. After the initial call is made, the FL$FST flag is set off and
the FL$PLW and FL$USE flags are set on in the next call. This tells
NEXT$ to get the next entry in the index regardless of whether it
matches the one just retrieved or not.

Second Edition 5-34

THE FORTRAN INTERFACE

Retrieving Duplicates

NEXT$ can retrieve duplicate secondary key values or key values that
begin with identical prefixes. Take key values from the first part of
the full key value. For example, if the full key is Brookline,
acceptable prefixes include Brook, Bro, Br, and so forth.

To perform a duplicate key search, use a FIND$ (with FL$RET set), or
use NEXT$ without FL$USE, to retrieve the first entry with the desired
full or partial key value. The rest of the values that match this one
can be found by calling NEXT$ with FL$USE set on. (FL$NXT and FL$PLW
are set off.) Set the FL$RET flag on for all calls to NEXT$ when doing
this type of retrieval.

GDATAS$

GDATA$ is used for sequential access only and retrieves records
directly from the data subfile in the order that they appear in the
data subfile. Unless the records were added in order by primary key or
an MPACK was performed on the file by DATA, this order does not
necessarily correspond to any key order.

Set the FL$FST flag on in the first call. Set the FL$NXT flag on in
the following calls.

WARNING

Successive calls to GDATA$ with FL$NXT cannot be mixed with
calls to other MIDASPIUS file access routines. Only use GDATA$
on one file at a time.

GDATA$ Calling Sequence

The unique calling sequence for GDATAS$ is:

CALL GDATA$ (funit, flags, buffer, bufsiz, status)

See Table 5-9 for the file arguments and their meanings.

5-35 Second Edition

MTDASPLUS USER'S GUIDE

Table 5-9
GDATA$ Arguments

Argument Meaning

funit PRIMOS file unit on which a MIDASPIUS file is
open.

flags The record to be retrieved. For the first call,

set it to FL$FST to retrieve the first record in
the data subfile. For subsequent calls, set it
to FL$NXT to retrieve the next sequential

record.
buffer Buffer in which data is returned.
bufsiz Size of buffer in characters.
status Error codes include:

0 No error

>0 System error code

-1 Bad flag value supplied
-3 Invalid record position

-4 TFatal internal error

After returning from a successful GDATA$ call buffer contains the
retrieved data record.

Second Edition 5-36

THE FORTRAN INTERFACE

UPDATING A RECCRD

IOCK$ and UPDAT$ are used together to perform a record update. LOCK$
secures a record for update and prevents other users from locking or
updating the record. Other users may still delete a locked record. To
update a record, lock the record with IOCK$ and then update it with
UPDATS .

LOCK$

LOCK$ works on both keyed-index and direct access MIDASPLUS files. It
is similar to FIND$ except that IOCK$ also locks the record it
retrieves. ILOCK$ returns the located data record in buffer. ILOCK$
cannot lock an already locked record, and returns an error if you try
to do so. When IOCK$ is successful, the record remains locked until
you call UPDAT$ to update or unlock the record. UPDAT$ is the only way
to unlock the record. Always call UPDAT$ after a successful call to
LOCKS .

IOCK$ Calling Sequence

The LOCK$ calling sequence is:

CALL IOCK$ (funit, buffer, key, array, flags, altrtn, index
file-no, bufsiz, keysiz)

See Table 5-10 for an explanation of the arguments and Table 5-11 for a
list of the LOCK$ flags.

5-37 Second Edition

MIDASPLUS USER'S GUIDE

Table 5-10
IOCK$ Arguments

Argument

Meaning

funit

buffer

array

flags

altrtn

file-no

bufsiz

keysiz

File unit on which the MIDASPIUS file is open.

Buffer into which the data record to be locked
is read.

Full primary or secondary key value that
identifies the record to be locked. This
argument is not necessary if the record was
already retrieved by a call to FIND$ or NEXTS.

Communications array that returns a completion
or error code after each call. For direct
access, array must include the user-supplied
record number and size to identify the record to
be locked. See LOCK$ and Direct Access below.

Switch that can be set either on or off. (See
Table 5-11 for flags that can be used with
LOCK$.)

Statement number of alternate return to be used
in case an error occurs on the subroutine calls.
Supply O if you cannot use an alternate return.

Access method and index subfile to use:

0] = primary index
1-17 = secondary index
-1 = direct access

(Obsolete, set to 0.)

Length of the data to be read from the file.
Set it to O to return the whole record. If
FL$KEY is set on, make sure that bufsiz is large
enough to include the primary key along with the
record buffer.

(LOCK$ ignores this. Full key is assumed if
supplied.)

Second Edition

5-38

THE FORTRAN INTERFACE

Table 5-11
Flags for LOCK$

Flag Function

FL$KEY When set on, includes full primary key value in
buffer along with the data record. Use this
flag only if keys are not stored in the record.

FL$RET Required in each call to LOCK$. This flag
allows UPDAT$ to use the array that this call
returns. If not set, an error 30 occurs.

FL$USE Set on if the previous call to FIND$ or NEXT$
already found the record that was to be locked.
The previous call’'s returned array is used on
this call to ILOCK$. You do not have to supply a
value for key.

Specifying a Key

In order to lock a record, you must retrieve it and make it current.
To retrieve the record to be updated, supply a full key value in key on
a call to LOCK$. Otherwise, make sure a valid array has been supplied
by a previous call and that FL$USE is set. You can use the primary or
secondary key to position and lock the record.

Partial key retrieval is possible only if you use FIND$ or NEXT$ first
with FL$UKY and FL$RET set on in flags. You can then call LOCK$ with
FL$USE set on. No key is required in this call to LOCK$ because the
previous FIND$ or NEXT$ call has already located the data record.

The Array in LOCK$

When you have already found the entry to be updated on a previous call
to FIND$ or NEXT$ (with FLSRET set on), set FL$USE on in flags on the
call to ILOCK$. The first word of the array (the completion code) may
contain one of the following values.

5-39 Second Edition

MIDASPIUS USER'S GUIDE

value Meaning

0] Successful retrieval.

1 Successful retrieval. There might be duplicates
of this key value (secondaries only).

7 Entry not found.

10 Entry found, but already locked.

other error See Appendix B, ERROR MESSAGES for a
code list of MIDASPLUS error codes.

Note

On all calls to LOCK$, set FL$RET on so that the next call to
UPDAT$ can use the array that the LOCK$ operation returns.

IOCK$ and Direct Access: The use of LOCK$ with direct access resembles
the use of LOCK$ with keyed-index access. Unlike keyed-index access,
set the index to -1 with direct access. If a prior call to FIND$ does
not return an array, include the data entry number and size in the
array. Set up the array as follows:

Word Number Setting
1 If set to 1, the array contents are used. If

set to -1, the array contents are not used.

2 Supply entry size (in words). This includes the
key length (in words) plus secondary data length
(in words) plus 2 words.

34 Supply the record entry number. This is a
single-precision (REAL*4) floating-point record
number.

5-14 Set to O (obsolete).

To retrieve records before locking them, call FIND$ with FL$RET set on.
Then call IOCK$ with FL$USE set on. It is not necessary to reset the

array.

Second Edition 540

THE FORTRAN INTERFACE

UPDAT$

Always call 1OCK$ before calling UPDAT$. After the IOCK$ call, check
the returned completion code in array(l) to make sure that the record
was successfully locked before calling UPDAT$. Record updates are
allowed on both keyed-index and direct access MIDASPIUS files. An
update is a true rewrite of the record as returned in buffer. After
the UPDAT$ call, the record is unlocked. To unlock the record without
updating it, call UPDAT$ with FLSUIK set on.

UPDAT$ Calling Sequence

The calling sequence for UPDAT$ is:

CALL UPDAT$ (funit, buffer, key, array, flags, altrtn, index,
file-no, bufsiz, keysiz)

Since key values are not supplied in updates, both the key and keysize
arguments should be set to O in a call to UPDATS. Index must match
index specified on the prior call to LOCK$. The updated record is
supplied in buffer. Table 5-12 describes the UPDAT$ arguments and
Table 5-13 describes the UPDAT$ flags.

Unlock only: If you want to unlock a record without updating it, set
FLSUIK on in flags. It is not necessary to change the buffer; the
record will not be rewritten.

UPDAT$ and the Array: Always set the FL$USE flag on when calling
UPDAT$. The array is supplied by FL$USE being set on anrd the array
should not be tampered with following a call to IOCK$. The completion
code indicates whether the update was successful. The update was
successful if array(l) is returned as 0. If the completion code was
returned as 11, the entry was not locked and the operation failed.
Other errors also occur, such as a concurrency error if another user
deletes the record between IOCK$ and UPDAT$ calls. See Appendix B,
ERROR MESSAGES, for a list of MIDASPLUS error codes.

Note

Neither primary nor secondary keys including secondary data
values can be changed in a call to UPDAT$. VWhen keys are
stored in the data record, changes to secondary key fields
(during a call to UPDAT$) will not affect the secondary index
subfile entries that point to the updated record. To change a
secondary index entry and/or secondary data, delete the entry
from the index subfile, and then re-add it in the desired

5-41 Secord Edition

MIDASPLUS USER'S GUIDE

manner. If the keys are stored in the data record, you should
then update the data record accordingly.

Table 5-12
UPDAT$ Arguments

Argument

Meaning

funit

buffer

array

flags

altrtn

file—no

bufsiz

keysiz

File unit on which the MIDASPLUS file is open.

Buffer that contains the record as it is to be
rewritten. If FL$KEY was set in the previous
call to IOCK$, include the primary key in
buffer.

(Ignored, set to 0.)

Communications array that the previous call to
IOCK$ supplies. The array should, if
successful, already be set to 0 or 1.

Switch that can be set either on of off. (See
Table 5-12 for flag options on update calls.)

Statement number of alternate return to be used
in case an error occurs on the subroutine calls.
Supply O if you cannot use an alternate return.

Index that you are referencing. Set to O if the
primary index was used in the LOCK$ call. Set
to 1-17 if secondary index was used in LOCK$
call. Set to -1 if direct access. Make sure
that the index setting for UPDAT$ matches its
setting in the previous LOCK$ call.

(Obsolete, set to 0.)

(Ignored for this call.) It can be left the
same as it was for LOCKS$.

(Ignored, set to 0.)

Second Edition

542

THE FORTRAN INTERFACE

Table 5-13
UPDAT$ Flags
Flag Function
FL$KEY Indicates that a full primary key is present in

the buffer. Use only when keys are not stored
in the data records.

FL$UIK Tells UPDAT$ to unlock the record only. All
other flags are ignored and the data is not
updated. -

FL$USE Required. Set this flag on. The returned array

from the prior LOCK$ call is used on the UPDAT$
call. If not set on, error 30 occurs.

WARNING

You cannot increase the size of variable-length records in a
call to UPDAT$. UPDAT$ only updates the length of the data
that was originally declared in AID1§. Problems occur if the
bufsiz is less than but not equal to the declared size in
ADD1$; MIDASPIUS updates only that portion of the record and
leaves the remainder of the record unchanged. For example:

If the data record is 12345678 (8 characters long) and you
call UPDAT$ with the buffer set to NNNNNN (6 characters)
and the bufsiz set to 3 words, MIDASPLUS only writes out
three words and leaves the fourth word unchanged. The
resulting data record is NNNNNN7V8.

Problems also occur if the bufsiz equals zero and the buffer is
longer than the declared size; MIDASPLUS truncates the buffer
to the declared size and does not produce an error message.

For example:

If the data record is 12345678 (8 characters long) and you
call UPDAT$ with the buffer set to NNNNNNNNOO (10
characters) and the bufsiz set to O words, MIDASPLUS only
writes out 4 words. The last 00 is lost; the resulting
data record is NNNNNNNN.

543 Second Edition

MIDASPIUS USER'S GUIDE

DELET$

DELET$ removes either a data subfile entry (and its associated primary
key) or a secondary index entry. When a primary index entry and record
entry are deleted, the associated secondary index entries (if there are
any) are not deleted. If you delete a primary key, the data record is
marked for deletion and can no longer be retrieved. The secondary keys
are not deleted, but since they point to a "deleted" record, they are
meaningless. They will be deleted the first time that they are
accessed or when MPACK is used with the file. When a secondary key is
deleted, there is no effect on the data record and consequently no
effect on other keys. For more information about handling deleted
records, see Appendix E, CONCURRENCY ISSUES.

DELET$ deletes a record whether it is locked or unlocked. Since DELET$
both positions to and removes a record or an index subfile entry, it is
not necessary to call another subroutine to first find the record or
key.

DELET$ Calling Sequence

The DELET$ calling sequence is the same sequence that is shared with
most of the other interface routines. MIDASPLUS ignores some of the
arguments and they can be set to O in the call. Table 5-14 lists the
arguments for DELETS.

Call DELET$ (funit, buffer, key, array, flags, altrn, index,
file-no, bufsiz, keysiz)

Locating the Record to Delete

Either a primary or secondary key value can be used to locate the
record intended for deletion. Give DELET$ the full primary or
secondary key value in key and set index appropriately. You may also
use a FIND$, NEXT$, or LOCK$ operation before a delete operation to
find the record to be deleted. In this case, set the FL$RET flag in
this prior call so that DELET$ can use the returned array. Then set
FLYUSE in flags in the call to DELET$. When FL$USE is set on in the
call, the key and keysiz arguments are ignored.

Deleting Duplicates

When deleting duplicate key entries, you must use NEXT$ to locate the
record that you want deleted. Check the record to make sure that you
have the right one. Neither DELET$ nor FIND$ will work unless the
record or index that you plan to delete is the oldest duplicate (that
is, the first duplicate to physically appear in the index) in a

Second Edition 5-44

THE FORTRAN INTERFACE

subfile. Both DELET$ and FIND$ are unacceptable for deleting
duplicates because they automatically position to the oldest duplicate
value for that key in the file.

Table 5-14
DELET$ Arguments

Argument Meaning

funit File unit on which the MIDASPIUS file is open.
buffer Ignored.

key Full primary or secondary key used to identify

the entry to be deleted. Do not supply a value
for key if you are using the array from the
previous call (assumes FL$USE is set).

array Communications array that supply array(l) as O
or 1 in keyed-index access. Include data size
in word 2 and entry number in words 3 ard 4 for
direct access. See DELET$ and Direct Access
below.

flags FLSUSE is the only applicable flag in this call.
Set FL$USE if a previous call to FIND$ or NEXT$
was made to locate the entry to be deleted. All
other flag options are ignored.

altrtn Statement number of alternate return to be used
in case an error occurs on the subroutine calls.
Supply O if you cannot use an alternate return.

index Index that you are referencing. Indicates
whether a data record (and primary index entry)
or a secondary index entry should be deleted.

0 Deletes primary index entry and
the data record that it
references.

1 -17 Deletes secondary index entry from
a specified index.

-1 Deletes the primary index entry
and the data record from a direct
access file.

5-45 Second Edition

MIDASPLUS USER'S GUIDE

Table 5-14 (continued)
DELET$ Arguments

Argument Meaning

file-no (Obsolete, set to 0.)
bufsiz (Ignored, set to 0.)
keysiz (Ignored, set to 0.)

Deleting Secondary Index Entries

You can remove a secondary index entry without touching the data record
that it references and without deleting the primary index entry
associated with it. To locate the entry to be deleted, call DELETS$
with FLYUSE set off. Set index and key to the index number and full
key value to be used in the call.

As an alternative, the secondary index to be deleted can be located
with a call to FIND$ or NEXT$ with FL$RET set in flags and with index
set to the appropriate secondary index subfile number. A call to
either FIND$ or NEXT$ is then followed by a call to DELET$ with FL$USE
set on and with the value for index unchanged. Set key to O since it
is ignored when FL$USE is set.

Removing a Record and All Keys

In order to avoid useless entries that do not point to anything, delete
the secondary index entries before the actual data record is deleted.
First, delete all of the secondary index entries that reference a
record, then delete the data record and its primary index key. Storing
all of the keys in the data record makes this process much easier.

DELET$ and Direct Access

To delete a record from a direct access file, supply a full primary key
in key or a floating-point data entry number and data entry size in

array.

To delete a secondary index entry from a direct access file, use the
same method as for an indexed file. The index number should be the
index that is referenced and not -1.

Second Edition 5-46

THE FORTRAN INTERFACE

FORTRAN PROGRAMMING EXAMPLE

C THIS PROGRAM ATDS, DELETES, AND PRINTS NAMES FROM A BANK CUSTOMER
C FIIE.
C
C
C THE FORTRAN INTERFACE RBQUIRES THAT THE SYSCOM>PARM.K. INS.FIN
C FILE (CONTAINS PARAMETFRS USED IN FORTRAN SUBRROUTINES) AND THE
C THE SYSCOM>KEYS.INS.FTN (CONTAINS KEY DECLARATIONS) FILES BE
C INSERTED AT THE BEGINNING OF EACH PROGRAM THAT USES MIDASPLUS.
C
C
$INSERT SYSCOM>PARM.K.INS.FIN
$INSERT SYSCOM>KEYS.INS.FIN
C Declarations

INTEGER*2 TERMINAL

INTEGER*2 ARRAY (14)

INTEGER*2 INDEX, FUNIT, STATUS, FLAGS, NAMELEN

INTEGER*2 BUFSIZ, KEYSIZ, CODE, MODE

CHARACTER*9 PKEY

CHARACTER*1 ANSWER /* P(PRINT), A(ADD), D(DELETE),

CHARACTER*10 SKEY2 /* Q(QUIT)

CHARACTER*25 SKEY1

CHARACTER*86 BUFFER

CHARACTER*25 KEY

CHARACTER*16 STREET

CHARACTER*2 STATE

CHARACTER*15 CITY

CHARACTER*9Q ZIP

CHARACTER*4 PATHNAME

BEQUIVALENCE (BUFFER(1:1),PKEY),
1(BUFFER(10:10), SKEY1), (BUFFER(35:35),SKEY2),
1(BUFFER(45:45), STREET), (BUFFER(61:61),CITY),
1(BUFFER(76:76),STATE), (BUFFER(78:78),ZIP)

CHARACTER*1 ANSERZ /* Y(es) or N(o)
LOGICAL*2 SWITCH(2)
INTEGER*2 FILE OPEN
MODE = K$RDWR + K$GETU

C THE BANK FILE WAS CREATED DURING CREATK
PATHNAME = 'BANK’

NAMELEN = 4

TERMINAL = 1

SWITCH(1) = .FALSE. /*SKEY1l SWITCH

SWITCH(2) = .FAISE. /*SKEY2

FILE OPEN = O /* FILE OPEN SWITCH

C OPEN THE BANK FILE
CALI, OPENM$ (MODE, PATHNAME, NAMELEN, FUNIT, STATUS)
C
IF (STATUS.EQ.O) THEN
FILE OPEN = 1
ELSE

547 Secornd Edition

MIDASPLUS USER'S GUIDE

PRINT *, '**ERROR OPENING BANK *ILE: ‘', STATUS
GO TO 8000
END IF
C
C QUERY USER FOR ACTION (PRINT, ADD, DFIETE, OR QUIT).
C

900 WRITE (TERMINAL, 9002) 'ENTER ACTION - P(rint), A(dd), ',
1’ D(elete) OR Q(uit):’
READ (TERMINAL, 9001) ANSWER
IF (ANSWER.EQ. 'P’ .OR. ANSWER.EQ.’'A’ .OR. ANSWER.EQ.'D’) THEN
GO TO 950
EISE IF (ANSWER.EQ.'Q’) THEN
GO TO 8000 :

EISE

C
C THE MESSAGE "INVALID OPTION...PLFASE TRY AGAIN" APPEARS IF A
C USER ENTERS A RESPONSE OTHER THAN P, A, D, OR Q.
FRINT *, 'INVALID OPTION...PLEASE TRY AGAIN'
GO TO 900
END IF
950 CONTINUE

ADD A RECORD

QaQa

IF (ANSWER.EQ.'A’) THEN
GO TO 1000

ELSE
GO TO 2000

END TF

THE USER SELECTED THE ACD OPTION SECTION; THE PROGRAM GETS
DATA AND ADDS IT INTO THE FIIE.

Qaaaa

1000 WRITE (TERMINAL, 9001) 'ENTER 9 DIGIT CUSTOMER ID: '
READ (TERMINAL, 9001) PKEY

1010 WRITE (TERMINAL, 9001) 'ADDING CUSTOMER NAME?'
READ (TERMINAL, 9001) ANSER2

IF (ANSER2.EQ.'Y’') THEN
SWITCH(1) = .TRUE.
GO TO 1100
EISE IF (ANSER2.EQ.'N’') THEN
GO TO 1200 /* RECORD WILL HAVE CUST-ID# ONLY
ELSE
C USER IS PROMPTED REPEATEDLY UNTIL THE RESPONSE IS Y OR N
WRITE (TERMINAL, 9001) ‘ANSWER Y or N’
GO TO 1010
END IF
C USER ENTERS CUSTOMER NAME (UP TO 25 CHARACTERS)
1100 WRITE (TERMINAL ,9001) 'ENTER CUSTOMER NAME: '
READ (TERMINAL, 9001) SKEY1

Second Edition 548

THE FORTRAN INTERFACE

C USER HAS THE OPTION OF ADDING A UNIQUE, 10 DIGIT, ALPHA
C NUMERIC ACCOUNT NUMBER.
1120 WRITE (TERMINAL, 9001) 'ADDING ACCOUNT # ?'
READ (TERMINAL, 9001) ANSER2
IF (ANSER2.EQ.'Y’') THEN
SWITCH(2) = .TRUE.
GO TO 1150
EISE IF (ANSER2.EQ.'N’) THEN
GO TO 1160
ELSE
WRITE (TERMINAL, 9001) 'ANSWER Y or N’
GO TO 1120
END IF
1150 WRITE (TERMINAL, 9001) ‘ENTER 10 DIGIT ACCOUNT NUMBER: '
READ (TERMINAL, 9001) SKEY2
C USER ENTERS CUSTOMER AIIDRESS
1160 WRITE (TERMINAL, 9001) 'ENTER STREET ALDRESS: '
READ (TERMINAL, 9001) STREET
WRITE (TERMINAL, 9001) ‘ENTER CUSTOMER CITY: '
READ (TERMINAL, 9001) CITY
WRITE (TERMINAL, 9001) 'FNTER CUSTOMER STATE: '
READ (TERMINAIL, 9001) STATE
WRITE (TERMINAL, 9001) 'ENTER ZIP CODE: '
READ (TERMINAL, 9001) ZIP
1200 CONTINUE
INDEX = O
KEYSIZE = 9
FIAGS = FL$RET
C THE NEW RECORD IS AIDED TO THE FILE
CALI ADD1$ (FUNIT, BUFFER, PKEY, ARRAY, FLAGS, $5000,
1INDEX, O, O, KEYSIZE)

IF (.NOT. SWITCH(1)) GO TO 1210

INDEX = 1

KEYSIZE = 25

FLAGS = FL$USE + FL$RET

CALIL ADD1$ (FUNIT, BUFFER, SKEY1l, ARRAY, FLAGS, $5000,
1INDEX, O, O, KEYSIZE)

SWITCH (1) = .FALSE.

1210 IF (.NOT. SWITCH(2)) GO TO 1220
INDEX = 2
KEYSIZ = 10
CALI ArD1$ (FUNIT, BUFFER, SKEY2, ARRAY, FLAGS, $5000,
1INDEX, O O, KEYSIZE)
SWITCH (2) = .FALSE.
C
1220 GO TO 9200
C ERROR MESSAGE FOR ADD: PRINTS MESSAGE, INDEX #, STATUS CODE,

2000 CONTINUE /* PRINT RECORD

C'THE USER IS GIVEN THE OPTION OF LOCATING THE CUSTOMER BY THE
C ACCOUNT NUMBER. IF THE USER ANSWERS YES, THE USER IS PROMPTED

5-49 Second Edition

MIDASPLUS USER'S GUIDE

C FOR THE CUSTOMER’'S ACCOUNT NUMBER. IF THE USER ANSWERS NO,
C THE USER IS PROMPTED FOR THE CUSTOMER'S IDENTTFICATION NUMBER.

2010 WRITE (TERMINAL, 9001) 'LOCATE BY ACCOUNT NO.? '
READ (TERMINAL, 9001) ANSER2
IF (ANSER2.EQ. 'N’) THEN
GO TO 2050
EILSE IF (ANSER2.EQ.'Y’) THEN
GO TO 2040
END IF
PRINT *, 'PLEASE ANSWER Yes or No '
GO TO 2010

C THE USER ENTERS THE CUSTOMER'S 10 DIGIT ACCOUNT NUMBER.

2040 WRITE (TERMINAL, 9001) ‘ENTER 10-DIGIT ACCOUNT NO: '
READ (TERMINAL, 9001) SKEY2
WRITE (TERMINAL, 9001) ‘READ SKEY2'
INDEX = 2
FIAGS = FL$RET
CALL FIND$ (FUNIT, BUFFER,SKEY2, ARRAY, FLAGS, $5050,
1INDEX, O, O, 0O)
GO TO 2100

C THE USER IS GIVEN THE OPTION OF LOCATING THE CUSTOMER BY THE

C CUSTOMER'S IDENTIFICATION NUMBER. IF THE RESPONSE IS YES,

C THE USER IS PROMPTED FOR THE CUSTOMER'S IDENTIFICATION NUMBER.

C IF THE RESPONSE IS NO, THE MESSAGE "NO KEY SUPPLIED FOR PRINTING"
C APPEARS AND THE USER IS RETURNED TO LINE 900 - QUERY FOR ACTION.

2050 WRITE (TERMINAL, 9001) ‘LOCATE BY CUSTOMER ID? '
READ (TERMINAL, 9001) ANSER2
IF (ANSER2.EQ. 'N’) THEN
GO TO 2080
EISE IF (ANSER2.EQ.'Y’) THEN
GO TO 2070
ELSE
PRINT *, 'PLEASE ANSWER Yes or No’
GO TO 2050
END IF
2080 PRINT *, 'NO KEY SUPPLIED FOR PRINTING'
GO TO 900

2070 WRITE (TERMINAL, 9001) ‘ENTER CUSTOMER ID'
READ (TERMINAL, 9001) PKEY
WRITE (TERMINAL, 9001) '‘READ PKEY'

INDEX = O
c
FLAGS = FL$RET
CALL FIND$ (FUNIT, BUFFER,PKEY, ARRAY, FLAGS, $5050,
1INDEX, O, 0, 0)
C

C THE CUSTOMER NAME, ID, ADDRESS, AND ACCOUNT NUMBER ARE
C PRINTED.

Second Edition 5-50

THE FORTRAN INTERFACE

2100 PRINT *, 'ACCOUNT# = ', SKEY2
WRITE (TERMINAL, 9002) 'CUSTOMER NAME: ', SKEY1
WRITE (TERMINAL, 9002) ‘CUSTOMER ID#: ', PKEY
WRITE (TERMINAL, 9002) 'CUSTOMER AITRESS: ', STREET
WRITE (TERMINAL, 9002) '’ ', CITY
WRITE (TERMINAL, 9004) ' ' STATE, ZIP

o IF PRINT REQUESTED, THEN DONE, GO BACK FOR NEXT REQUEST
2110 CONTINUE
IF (ANSWER.EQ.'P’') THEN
GO TO 900
END IF

THE USER IS ASKED WHETHER THE DISPLAYED RECORD SHOULD BE DELETED.
IF THE RESPONSE IS YES, THE RECORD IS DELETED. IF THE RESPONSE
IS NO, USER IS RETURNED TO LINE 900 - QUERY FOR ACTION.

aaaaaa

DELETE SECTION
2500 WRITE (TERMINAL, 9001) ‘CKAY TO DELETE THIS RECORD?’
READ (TERMINAL, 9001) ANSER2
IF (ANSER2.HQ.'Y') THEN
GO TO 3000
EISE IF (ANSER2.EQ.'N’) THEN
GO TO 9200
END IF
PRINT *, 'PLEASE ANSWER Yes or No’
GO TO 2500

3000 ARRAY (1) = O

INDEX = 2

CAII, DELET$ (FUNIT, BUFFER, SKEY2, ARRAY, FLAGS,
1$5100, INDEX, O, O, 0O)

INDEX = 1

CALL DELET$ (FUNIT, BUFFER, SKEY1, ARRAY, FLAGS,
1$5100, INDEX, O, 0, 0)

INDEX = O

CALIL DELET$ (FUNIT, BUFFER, PKEY, ARRAY, FLAGS,
1$5100, INDEX, O, O, O)

GO TO 900

5000 WRITE (TERMINAL, 9001) 'ERROR ON AID, KEY = '
PRINT *, PKEY
GO TO 900

5050 WRITE (TERMINAL, 9001) ‘ERROR ON FIND, KEY = '
PRINT *, PKEY
GO TO 900

5100 WRITE (TERMINAL, 9001) ‘ERROR ON DELETE'
PRINT *, PKEY
GO TO 900
8000 IF (FILE OPEN .EQ. 1) THEN
C USER REQUESTED EXIT.

5-51 Secord Edition

MIDASPIUS USER'S GUIDE

PRINT *, 'NOW CLOSING FILE'

CALL CLOSM$ (FUNIT, STATUS)

IF (STATUS.NE.Q) THEN

PRINT *, ‘**ERROR CLOSING BANK FILE: ‘', STATUS

ELSE
FILE OPEN = O
END IF
ELSE
PRINT *, 'FILE NOT OPEN’
END TIF
C
8010 PRINT *, ‘PROGRAM COMPLETED. '
CALL EXIT
C END OF EXECUTABLE CODE.
C

C FORMAT STATEMENTS
9001 FORMAT (A)
9002 FORMAT ((A),(A))
9003 FORMAT ((A),(A),(A))
0004 FORMAT ((A),(A),(A),(A)
CONTINUE
END

OK, F?7 CUST -INTS

[(F7? Rev. 19.4]

0000 ERRORS [<.MAIN.> F?7 Rev. 19.4]
OK, BIND

[BIND rev 19.4.1]

: LOAD CUST

: LT MPLUSLB

: T

BIND COMPLETE

: FILE

OK, RESUME CUST

ENTER ACTION - P(rint), A(dd), D(elete) OR Q(uit):
A

ENTER 9 DIGIT CUSTOMER ID:
28276503889

ACDING CUSTOMER NAME?

Y

ENTER CUSTOMER NAME:
HARPER, ANNE

ACDING ACCOUNT # @

Y

ENTER 10 DIGIT ACCOUNT NUMBER:
CHK4123891

ENTER STREET ADCRESS:

12 WASHINGTON ST

ENTER CUSTOMER CITY:
NEWTON

ENTER CUSTOMER STATE:

MA

ENTER ZIP COLE:

02159

Second Edition 5-52

THE FORTRAN INTERFACE

ENTER ACTION - P(rint), A(dd), D(elete) OR Q(uit):

A

ENTER © DIGIT CUSTOMER ID:
32023677386

ATDING CUSTOMER NAME?

Y

ENTER CUSTOMER NAME:
CORRADO, THOMAS

ATCDING ACCOUNT # 2

Y

ENTER 10 DIGIT ACCOUNT NUMBER:
SAV1273565

ENTER STREET ADCRESS:

42 MAPIE AVE

ENTER CUSTOMER CITY:
ARLINGTON

ENTER CUSTOMER STATE:

MA

ENTER 2IP CODE:

02174

ENTER ACTION - P(rint), A(dd), D(elete) OR Q(uit):

P
TOCATE BY ACCOUNT NO.?
Y
ENTER 10-DIGIT ACCOUNT NO:
CHK4123891
READ SKEY2
ACCOUNT# = CHK4123891
CUSTOMER NAME: HARPER, ANNE

CUSTOMER ID#: 282765038

CUSTOMER AITRESS: 12 WASHINGTON ST
NEWTON
MAO2159

ENTER ACTION — P(rint), A(dd), D(elete) OR Q(uit):

P

TOCATE BY ACCOUNT NO.?

N

TOCATE BY CUSTOMER ID?

Y

ENTER CUSTOMER ID

32023677386

READ PKEY

ACCOUNT# = SAV1273565
CUSTOMER NAME: CORRADO, THOMAS

CUSTOMER ID#: 320236773
CUSTOMER AITRESS: 42 MAPLE AVE
ARLINGTON
MAO2174
ENTER ACTION — P(rint), A(dd), D(elete) OR Q(uit):
D
TOCATE BY ACCOUNT NO.?
Y
ENTER 10-DIGIT ACCOUNT NO:
SAV1273565

5-53

Second Edition

MIDASPLUS USER'S GUIDE

READ SKEY2
ACCOUNT# = SAV1273565

CUSTOMER NAME: CORRADO, THOMAS

CUSTOMER ID#: 320236773

CUSTOMER ADDRESS: 42 MAPLE AVE
ARLINGTON
MAO2174

OKAY TO DELETE THIS RECORD?
Y
ENTER ACTION - P(rint), A(dd),

NOW CLOSING FILE

PROGRAM COMPLETED.
X,

Second Edition

D(elete) CR Q(uit):

5-54

The COBOL Interface

This chapter discusses the COBOL interface to MIDASPLUS. The COBOL
interface to MIDASPLUS uses the Prime CBL compiler and is based on the
standard COBOL I/O statements for INDEXED and RELATIVE files.
Keyed-index access MIDASPLUS files are called INDEXED files in COBOL
and direct access MIDASPIUS files are known as RELATIVE files. You can
access MIDASPIUS files through the COBOL interface just as if they were
any other standard COBOL INDEXED or RELATIVE file.

You must create a template with CREATK for both INDEXED and RELATIVE
files. While OOBOL can access an existing file, it cannot create a
MIDASPLUS file from the program level. Using CREATK, a template has
been created for the sample MIDASPLUS file referred to in this chapter.

This chapter explains how to access both INDEXED files and RELATIVE
files from a OOBOL program. It explains the syntax of COBOL statements
used to read, write, and update records in a MIDASPLUS file. The
chapter also describes how to define the file's characteristics in the
different parts of a OOBOL program. See the Prime manual that
documents COBOL for detailed information on COBOL's syntax and
concepts.

6-1 Second Edition

MIDASPLUS USER'S GUIDE

LANGUAGE DEPENDENCIES

Certain rules exist about keys and record sizes in MIDASPLUS files
accessed by COBOL applications.

The rules about keys are:

Up to 17 secondary keys are supported per INDEXED file.

The primary key and any secondary keys m st be included in the
data record.

Vhile the primary key can be anywhere in the data record,
secondary keys cannot be embedded in the primary key. (If you
change any of the secondary key wvalues, you will affect the
primary key field which cannot be changed.)

Secondary key index subfiles may not contain any secondary data.
The maximum ASCII key size is 64 characters.

The maximum bit string key size is 32 characters.

The rules about record size are:

If a MIDASPIUS file has fixed-length records, the record size
indicated in the COBOL program must match the data size defined
for the file during CREAIK.

Variable-length records are supported for INDEXED files;
however, COBOL may require you to set minimum and maximum record
sizes for the file, sizes that match those in the program. For
details on setting record size limits, see the section
VARIABLE-LENGTH RECORDS AND SPACE USAGE, in Chapter 2.

Note

Restrictions for REIATIVE files are covered in the section
DIRECT ACCESS FILES IN COBOL in this chapter.

Second Edition 6-2

THE COBOL INTERFACE

Compiling and Loading a COBOL Program

The following is a compile and load sequence that shows all of the
libraries that must be loaded to run a program:

CK, cbl program

[CBL rev 19.4]

K, bind

[BIND rev 19.4]

: load program

: 1i cbllib

1

BIND COMPLETE

: file

CK, resume program

Substitute the appropriate program name for the program parameter shown
in the above sequence.

6-3 Second Edition

MIDASPLUS USER'S GUIDE

SUMMARY OF COBOL STATEMENTS

Table 6-1 summarizes the COBOL statements needed to process MIDASPLUS
files.

Table 6-1
Summary of COBOL Statements

Statement Function

OPEN Opens the MIDASPLUS file and establishes the
access mode. Execute this statement before
any other statement that references the file.

CLOSE Closes the MIDASPIUS file and causes the file
unit on which the file is opened to be
released.

USE AFTER Defines a procedure that will be executed if
an INVALID KEY clause or an AT END clause is
not specified.

START Moves the file pointer to a specific record
in the file and establishes the file position
in a MIDASPIUS file opened for or DYNAMIC

access.
WRITE Adds records to a file.
REWRITE Replaces the current record with a new text

string and destroys the original. REWRITE
does not establish or change file position.

DELETE Removes the data record and its primary index
entry.
READ Retrieves records from a file.

This chapter explains these statements in detail.

DEFINING AN INDEXED MIDASPLUS FILE

The rules for defining an INDEXED file in the File Control Section and
in the Data Division of a program are discussed below.

Second Edition 64

THE COBOL INTERFACE

The primary key in an INDEXED file is called the RECORD KEY. The
secondary keys are called ALTERNATE RECORD KEYS. Prime's OOBOL
supports the use of up to 17 secondary keys in INDEXED files.

FILE-CONTROL Requirements

The FILE-CONTROL paragraph contains
e The internal names of the files to be accessed
e The names of the devices on which they are to be opened (PFMS)
e The access mode specifications
e The names of the primary key (RECORD KEY) (one for each file)

e The names of any secondary keys (ALTERNATE RECORD KEY) present
in each file

e A file status, which if present, is used to monitor the success
or failure of each operation

The basic format of the SELECT statement for an INDEXED file is:

SELECT filename
ASSIGN TO PFMS

ORGANIZATTION IS INDEXED

SEQUENTIAL
ACCESS MODE IS 4 RANDOM
DYNAMIC
RECORD KEY IS key-name-1
[ALTERNATE RECORD KEY IS key-name-2 [WITH DUPLICATES]...]
[FILE STATUS IS status-code].
For a complete discussion of File-Control paragraph rules, refer to the

COBOL 74 Reference Guide. The following is a summary of the important
rules.

6-5 Second Edition

MTIDASPLUS USER'S GUIDE

The SELECT Clause: SELECT defines the name of the MIDASPIUS file and
tells the compiler to assign it some available file unit. Always
assign the file to PFMS (disk).

The ORGANIZATION Clause: ORGANIZATION tells the compiler that the file
to be opened is a keyed-index MIDASPLUS file.

The ACCESS MODE Clause: This clause is optional; the default mode is
SEQUENTTIAL. If SEQUENTIAL is specified, or if the clause is omitted,
you must perform all reads and writes sequentially. No random
operations are allowed. Add records in primary key order and retrieve
them in key order in SEQUENTIAL access mode.

If you choose the RANDOM access mode, write and retrieve the records in
a random fashion, based on a supplied key value. Sequential reads and
writes are not permitted.

The DYNAMIC access mode lets you read and write sequentially or
randomly. You can switch back and forth between the two.

The RECORD KEY Clause: RECORD KEY defines the key-name associated with
the primary key for the MIDASPLUS file. Define the parameter
key-name-1 in the Record Description entry associated with this file's
FD entry. The parameter key-name-1 can be anywhere in this
description.

The following rules apply to RECORD KEY definition:
e Do not specify a primary key with an OCCURS clause.

e The length of the primary key cannot exceed 64 characters if it
is an ASCII key or 32 characters if it is a bit string.

e The primary key must be the same length and type as that defined
during template creation.

e The primary key cannot have a P character in its PICTURE clause.

e The primary key cannot be defined as numeric with a separate
sign.

e Do not embed any secondary keys within the primary key. (The
primary key value cannot be changed.)

e The primary key cannot be defined in the WORKING-STORAGE
section.

If you are not sure of the key length or type when defining the keys in

the File-Control paragraph, use the PRINT option of CREAIK to get a
summary of each index description.

Second Edition 6-6

THE COBOL INTERFACE

The ALTERNATE RECORD KEY Clause: ALTERNATE RECORD KEY designates a
field within each record as a secondary key. As stated earlier, you
nay specify a MIDASPLUS file'’'s secondary keys during template creation.
In COBOL always define the keys in the order that they were created
during CREATK, (that is, index 1, index 2 ...). The ALTERNATE RECORD
clause tells COBOL about the order and length of each field that you
designated as a key for this MIDASPIUS file. Use a separate ALTERNATE
RECORD KEY clause for each secondary key you defined in the template.
Use the WITH DUPLICATES modifier, a documentation feature, only for
those keys that were given duplicate status during CREATK. You cannot
change the duplicate status of an index at the program level. (Only
CREATK can change this status.)

Secondary keys are bound by the same size and type restrictions as the
primary key and cannot have P characters in their PICTURE clauses. Do
not define secondary keys in the program’s WORKING-STORAGE section.
Remember that secondary keys apply to INDEXED files only.

The FILE STATUS Clause: Names a two-byte unsigned field declared in
WORKING-STORAGE, called status—code. COBOL's I/O uses this field to
indicate the execution status of each program statement that references
the file. Each time an I/O statement is executed, a 2-byte status code
is placed into this field indicating whether or not the operation was
successful. Each status code describes a different condition or
problem, as shown in Appendix B, ERROR MESSAGES.

DATA DIVISION Requirements

The FILE SECTION of the DATA DIVISION describes the record structure of
each file mentioned in the FILE-CONTROL paragraph. The WORKING-STORAGE
section may describe data items which are not part of files but which
are used to handle data written to and read from these files during
program execution.

The FILE SECTION of the DATA DIVISION consists of the following:
e One or more file description entries called FDs.

e One file-id wvalue, which defines the actual name of the
MIDASPIUS file.

e An FD may have one or more record descriptions. If an FD has

more than one record description, the key must be in the same
relative position in each record.

67 Second Edition

MIDASPIUS USER'S GUIDE

The general format of a File Description entry in CBL is:

FD filename EXTERNAL

RECCORD IS
LABEL
RECORDS ARE

[RECORD CONTAINS integer-2 [TO integer-3] CHARACTERS]
VALUE OF FILE-ID IS file-id-value

RECORD IS
[DATA data—name-1 [data—name-2]...]
RECORDS ARE

[OWNER-IS literal-1]
record description-entry...
Note the following for the File Section clauses:

e The name that the program uses to refer to this MIDASPIUS file
must follow the FD clause. The LABEL RECORD IS STANDARD clause
is not required for disk files with the CBL compiler, but is
required for the COBOL compiler.

e If you use the optional RECORD CONTAINS clause, make sure that
the number of specified characters matches the data record size
specified during template creation. The maximum record size is
32767 characters.

e If you use the DATA RECORD clause, it must name the record
description(s) that follow the FD entry. If more than one
record description is defined per file, give a separate
description of each one. Begin each new record description with
an 01 level number. Multiple record descriptions imply that a
file has more than one record description, but all share the
same buffer area. Specify the key fields in the same relative
position within each record description.

e The VALUE OF FILE-ID clause is used to tie an internal filename
to the actual name of the MIDASPIUS file as it appears on disk.
If this clause is omitted, the internal filename is the default.

The record description defines all of the items that make up a record
and their relationship to one another. The complete syntax of a Record
Description entry is described in the DATA DIVISION chapter of the
COBOL 74 Reference Guide.

Second Edition 6-8

THE COBOL INTERFACE

The OPEN Statement

The OPEN statement opens the MIDASPLUS file and establishes the access
mode. Execute it before any other statement that references the file.
You can open more than one file with this statement, but each file name
specified in an OPEN statement must appear in a SELECT and ASSIGN
statement and must be described with an FD entry in the DATA DIVISION.
The format is:

INPUT
OPEN {I-O filename-1 [,filename-2, ...]
OUTPUT .

The filename is the internal name as specified in the SELECT clause.
You may apply the INPUT, OUTPUT, I-O, or open modes to this file.

If MIDASPIUS cannot locate the named file based on the actual file
name, the program will abort at runtime.

You can use this statement to open more than one file as shown in this
example:

OPEN INPUT CARD-FILE
OUTPUT PRINT-FILE, DIRECTORY-FILE.

Modes: The open mode determines the operations you can perform on
a file, as follows:
e In INPUT mode, only READ statements can access a file.
e In OUTPUT mode, only WRITE statements can write to a file.
e In I-O mode, a file can be both read and written to and records
can be updated and deleted. Records are automatically locked

when read in I-O mode, whereas they are not locked in INPUT
mode. (See Record Locking later in this chapter.)

6-9 Second Edition

MTIDASPLUS USER'S GUIDE

Table 6-2 shows what statements can be used in each access mode.

Table 6-2
Statements Permitted in Each Access Path

Open Mode

File Access
Mode Statement L INPUT OUTPUT I-O

= —

SEQUENTIAL READ °

WRITE L
REWRITE
START o
DELETE
RANDOM READ []
WRITE {
REWRITE
START
DELETE
DYNAMIC READ []
WRITE e
REWRITE
START ®
DELETE

*Records are locked.
**Indexed files only.

Second Edition 6-10

THE COBOL INTERFACE

The CIOSE Statement

The CIOSE statement is the reverse of the OPEN statement. It causes
the file unit on which the file is opened to be released. The form is:

CLOSE filename-1 [, filename-2, ...]

filename is the name of the file specified in the SELECT and FD
clauses. You can open and close a file more than once in the same
program. Attempts to open a file which has not been closed, however,
will result in a runtime abort.

ERROR HANDLING

One of the following three clauses of handling runtime errors must be
specified for each I/O verb.

e The AT END clause
e The INVALID KEY clause
e The USE AFTER ERRCR statement

A brief explanation of how these error handlers work follows. Refer to
the COBOL 74 Reference Guide for complete details on error handlers.

The AT END Clause

The AT END clause, used only in a sequential READ statement (access
mode is DYNAMIC or SBQUENTIAL), prevents program failure when an
end-of-file condition is met during the read. The format is:

READ filename AT END imperative-statement

An illustration of the imperative-statement might be the use of a
PERFORM statement that transfers control to another procedure that
performs some further useful action or just closes the file.

6-11 Second Edition

MIDASPLUS USER'S GUIDE

The INVALID KEY Clause

The INVALID KEY clause identifies and traps MIDASPIUS errors. Use it
in START, READ, WRITE, READ, REWRITE, and DELETE statements to protect
your program from key errors. Without an INVALID KEY clause or a USE
AFTFR statement, the program aborts when an I/0 operation 1is
unsuccessful.

Three exceptions to the above usages of INVALID KEY are:

e SEQUENTIAL ACCESS READ statements (use AT END statement and/or
USE AFTER statement)

e SEQUENTTIAL or DYNAMIC ACCESS READ NEXT statements (use AT END
statement and/or USE AFTER statement)

e SBQUENTTAL ACCESS DELETE statements (use optional USE AFTER
statement)

The format of the INVALID KEY clause is:
INVALID [KEY] imperative-statement

The word KEY is optional. When this clause is executed, examine the
status code variable specified in the FILE STATUS clause of the FILE
CONTROL section to determine the cause of the error. See Appendix B,
ERROR MESSAGES, for a list of codes.

For example, this READ statement is protected by an INVALID KEY clause:
READ MFILE KEY IS PKEY INVALID KEY PERFORM READ-ERRCR.

If a key error in MIDASPLUS's MFILE file occurs during this read, the
READ-ERROR procedure is performed. This procedure might test
status-code for the various errors, and perform an appropriate
operation to recover from that error.

Second Edition 6-12

THE COBOL INTERFACE

The USE AFTER Statement

Place the USE AFTER statement under the DECLARATIVES section of the
program, immediately following a section header (and a period and a
space). This statement defines a procedure that is executed in one of
three cases: if an INVALID KEY clause is omitted; if an AT END clause
is omitted; or if an AT END clause is supplied, but a non-end-of-file
error occurs. '

The format of USE AFTER is:

USE AFTER [STANDARD] | EXCEPTION filename
ERROR PROCEDURE ON] INPUT
OUTPUT
I-0

Use the INPUT, OUTPUT, I-O, and filename parameters to indicate when
that particular procedure should be executed. VWhen filename is
specified, this procedure only handles errors occurring while
processing that file. USE AFTER is never executed. It identifies the
conditions under which the procedure it introduces should be executed.
The terms EXCEPTION and ERROR have the same meaning.

PROCEDURE DIVISION.
DECLARATIVES.

Section—name SECTION. USE AFTER etc.
paragraph-name. [sentence]

After the execution of the USE procedure, program control is returned
to the statement that follows the invoking statement. The following is
an example of a USE procedure:

PROCEDURE DIVISION.
DECLARATIVES.
ERROR-HANDLING SECTION. USE AFTER ERROR PROCEDURE ON I-O.
READ-ERR.
DISPIAY 'STATUS CODE IS:’' ERROR-STATUS.

ete.
END DECLARATIVES.

You can have a separate USE AFTER procedure for each file acocessed in
the program, or you can have one procedure for INPUT errors, another
one for OUTPUT errors, and another one for I-O errors.

6-13 Second Edition

MIDASPIUS USER'S GUILE

FILE POSITION

File position refers to the file pointer’s present position in the
file. The record to which it is currently pointing is the current
record. The COBOL statements that change the current record location
are OPEN, START, READ and DELETE. DELETE leaves the current record
position undefined after a record is deleted. After a DELETE, you can
do a sequential or keyed READ to reestablish the current position.

File Positioning

File positioning is done relative to a primary or secondary index
subfile. You see file positioning in terms of which record is returned
at any given point. The file position is based on the key that you
supply in a given START or READ statement. If you specify that a START
should be done using the primary key (the RECORD KEY), file position
will be established via the primary index subfile. If the file is then
processed sequentially, data subfile records will be returned in
primary key order. MIDASPLUS uses the order of entries in the primary
index subfile as a basis for finding and returning data subfile
records.

Likewise, if a secondary key value is used in a START or a keyed read,
the secondary index subfile becomes the basis for file processing. A
subsequent sequential read returns the next data subfile record
referenced by the next sequential entry in the secondary index subfile
references. MIDASPIUS always adds entries to the index subfiles in
sorted order. MIDASPLUS inserts things where you would logically
expect them to be inserted.

Record Locking

Record locking applies to files opened for I-O only. The READ
statement always locks the record to which it positions. This action,
which happens only in files opened for I-O, protects users from
conflicting updates and makes sure that you will update or delete the
current record. Generally, locking protects the record from harm by
any other user as long as the record remains locked. (The START and
Locked Records section of this chapter describes an exception to this
issue.) The record remains locked until another I/O operation is
performed. Only the current record can be locked, and READ is the only
COBOL statement that can lock a record. There are no specific lock and
unlock statements in COBOL.

Accessing a Locked Record: If your program tries to access a record
that someone else has already locked, a MIDASPIUS error occurs. A file
status code of 90 is returned. To avoid abnormal program termination,
make sure that your program handles all of the file status conditions
listed in Appendix B, ERROR MESSAGES.

Second Edition 6-14

THE COBOL INTERFACE

The START Statement

The START statement moves the file pointer to a specific record in the
file. This establishes the file position in a MIDASPLUS file opened
for SBQUENTIAL or DYNAMIC access. Do not use START in a file opened
for RANDOM access.

To position a MIDASPLUS file to a particular record, START uses a
specific key value or a conditional expression based on a key value.
Follow these steps to position the file:

1. Use a MOVE statement to assign an initial value to the key you
want to use in the START operation.

2. Use a START statement to specify whether the file should be
positioned to one of the following:

e The first record containing that key value

e The first record with a key value greater than the value
assigned to that key

e The first record with a key value greater than or equal
to the specified key value

The general format of START is:
GREATER THAN
START filename [KEY IS { NOT LESS THAN ; key-name]
EQUAL TO

[INVALID KEY imperative-statement].

Note
The symbols >, NOT <, or = may also be used.
key-name is the name of a file key and contains the value that the MOVE
operation previously assigned. The START statement uses the assigned
value in key-name for comparison. Include the INVALID KEY clause
unless the DECLARATIVES have provided a USE AFTER procedure.
Some important points to note about START are:

e START only positions the file pointer; it does not return the
record (as in a READ).

e Only use START with files opened for SEQUENTIAL or DYNAMIC
access.

6-15 Second Edition

MIDASPIUS USER'S GUIDE

e If you are using the BQUAL TO option and the key value specified
in the previous MOVE does not exist, the program terminates
abnormally unless an error-handling mechanism is included in the
program. A file status code of 23 is returned.

e You can use both primary and secondary key values to position
the file. Assign a value to either the RECORD KEY (primary key)
or to an ALTERNATE RECORD KEY (a secondary key) before the START
statement. If you use a secondary key, include the KEY IS
key-name clause in the START statement.

e The GREATER THAN option positions to the first file record whose
key value is greater than that assigned to key-name.

e The NOT LESS THAN option positions to the first record with a
key-name value that is equal to or greater than the value
assigned to the indicated key.

e If key-name is a primary key or a secondary key that does not
allow duplicates, the BQUAL TO option positions to the record in
wvhich the key field value is the same as the value assigned to
key-name.

e If key-name is a secondary key that allows duplicates, the EQUAL
TO option positions to the first record with the indicated key
value.

e START does not lock the record to which it positions.

e If arecord is not found in the file that satisfies the
comparison specified in the START statement, an INVALID KEY
condition exists and the position of the current record pointer
is undefined.

START and Locked Records: If you attempt a START operation on a record
that another user has already locked, MIDASPLUS returns a status code
of O (successful START). However, if you attempt to READ that record,
you receive a status code of 90, indicating that the record is locked.
START and READ do not unlock the record for the other user.

Second Edition 6-16

THE COBOL INTERFACE

- Examples: Generally, to process a file sequentially via some index,
first set the file pointer to the beginning of that index this way:

MOVE LOW-VALUES TO key-name.

START filename KEY IS NOT LESS THAN key-name
INVALID KEY GO TO KEY-ERR.

or

MOVE SPACES TO key-name
START filename KEY IS NOT LESS THAN key-name
INVALID KEY GO TO KEY-ERR.

To set file position with a particular key value, move that value to
the proper key field, as in:

MOVE ‘617’ TO AREA-CODE.
START PHONE-FILE KEY IS NOT LESS THAN AREA-CCODE INVALID KEY GO TO
ERRCRS.

Positioning on Partial Keys: You can use partial keys to position the
file in SHQUENTIAL or DYNAMIC modes only, using the MOVE and START
statements. The GREATER THAN and NOT LESS THAN options enable the use
of partial key values in positioning the file pointer as long as you
fully initialize the key value before the START statement is executed.
This applies to both primary and secondary keys. For example, using
the BANK file, if you wanted to find all of the records whose CUST-NAME
fields begin with the letter F and above, you might initialize the file
position as shown in this program excerpt:

PROCEDURE DIVISION.
FIRST-PROC.
OPEN INPUT BANK
MOVE 'F' TO CUST-NAME.
START BANK KEY IS NOT LESS THAN CUST-NAME
INVALID KEY GO TO KEY-ERR.

READING A FILE

File reads can be either sequential or keyed.

Sequential reads mean reading one record after the other in primary key
or secordary key order depending on the index to which the file is
- positioned. In this type of read, you do not supply a key value except
to +tell MIDASPIUS where in the index file to start reading

sequentially.

6-17 Second Edition

MTIDASPIUS USER'S GUIDE

Keyed reads are also called random reads because it is possible to
specify a mnew key value for searching and jumping anywhere from the
current file position.

Access Modes

The three types of access modes possible in COBOL -- DYNAMIC, RANDOM
and SEQUENTIAL -- were mentioned earlier. Each access mode permits
only certain operations to be performed on a file. Keyed reads are the
only type of read possible in RANDOM access mode, while sequential
reads are the only type permitted in SEQUENTIAL access mode. DYNAMIC
access mode allows you to switch from one type of read to another,
allowing you to do a keyed read to get to a certain spot in an index
and then do sequential reads from there to retrieve the records which
logically follow it.

Note

You must have the file open for INPUT or I-O in order to read
it.

Sequential Reads

Sequential reads position the file to the next logical record after the
current record, making it current. This record is then read and
returned to you. This implies the need for a current record as a
reference point. A MOVE and START or a previous READ operation
establishes the current record. Sequential reads are legal in
SEQUENTTAL and DYNAMIC access modes, but not in RANDOM mode.

In SEQUENTTAL Access Mode: You use the primary or secondary key to
read the file sequentially. You cannot read records randomly.

The format of a sequential READ statement in SEQUENTIAL access mode is:

READ filename [INTO read-var)
[AT END imperative-statement].

The optional INTO clause following the READ clause, moves the record
into the read-var. If omitted, the record value is returned in the
buffer associated with the file in the FD. Include the AT END clause
in each READ statement, unless an applicable USE AFTER procedure is
specified for this file under the DECLARATIVES. The NEXT RECORD clause
is implied for each READ statement although not shown in this format.
Every READ operation in SEQUENTIAL access mode automatically performs a
position to the next record in the file before the READ is performed.

Second Edition 6-18

THE COBOL INTERFACE

Records are not locked when read if the file is opened for INPUT only.
They are locked, however, if the file is opened for I-0. The current
record remains locked until another I/O operation is performed,
yielding a new current record.

Tn DYNAMIC Access Mode: To read sequentially, use the NEXT clause to
Tead a file sequentially by primary or secondary key. A START or a
keyed read can establish the key on which the READ is done. Once the
file position is established (relative to a primary or secondary
index), you can read the file sequentially, by index entry order, with
this form of the READ statement:

READ filename NEXT RECORD [INTO read-var)
[AT END imperative-statement].

The AT END clause is used to trap end-of-file conditions. Specify this
clause if there is not an applicable USE AFTER procedure under the
DECLARATIVES.

Keyed Reads

To perform keyed (random) reads, specify the key value on which a
search should be conducted. Keyed reads are legal in RANDOM and
DYNAMTC access modes and work the same way in each mode. Move the key
value into the proper key field, then use this form of the READ to
position to and retrieve the desired record:

READ file-name RECORD [INTO data-name-1]
[KEY IS data-name-2]

[INVALID KEY Imperative-statement]

A keyed read eliminates the need for a START operation. If the record
for which a key value has been supplied cannot be found, the INVALID
KEY clause is activated. A file status code of 23 is returned. STARTS
are illegal in RANDOM access mode, which allows only keyed reads. In
RANDOM access mode, any READ done without the KEY IS clause
automatically returns the current record (that is, the record to which
the file pointer points at the time the READ operation is encountered) .

6-19 Second Edition

MIDASPIUS USER'S GUIDE

Partial Key Access

Partial key access is possible only if you use the MOVE and START
statements (not available in RANDOM access). You canuot use partial
values in READ operations. The MOVE and START operations, however,
provide a good method of searching for values less than or greater than
a particuiar value. The value may represent a full or partial key
value. Partial key value means a prefix of a full key value. For
example, if a value is BOSTON, legal prefixes include B, BO, BOS, amd
so forth.

Changing Search Indexes

The KEY IS clause allows you to switch from one index subfile to
another without using a START. Put the key value that you want to
search for into the proper key-name variable; then use that key-name
in the KEY IS clause. This establishes key-name as the new key of
reference and automatically puts you into the corresponding index
subfile. If the record for which a key value has been supplied cannot
be found, the INVALID KEY clause is activated. A file status code of
23 is returned.

Reading Duplicates

For secondary keys that allow duplicates, you can retrieve all of the
records with the same secondary key value in DYNAMIC access mode only.
Follow these steps:

1. MOVE the desired secondary key value into the appropriate
secondary key, for example:

MOVE ‘sec-val’ TO sec-key-name

2. Position the file with a START to the first record with this
key value:

START filename KEY IS NOT LESS THAN sec-key-name
INVALID KEY imperative-statement.

3. In a loop, use a READ NEXT statement with the AT END option to
trap the end-of-file condition (status code 10). This
condition exists when there are no more entries in the file.

4. Compare the value just read with the value sought. Verify that
it is a valid duplicate.

Second Edition 6-20

THE COBOL INTERFACE

ADDING RECORDS

You can add records to a MIDASPIUS file when it is opened for OUTPUT or
1I-O. The WRITE statement takes information that you supplied and adds
it to the MIDASPLUS file.

Regardless of the order in which the records are presented, MIDASPLUS
inserts all primary key entries into the primary index subfile in
ascending key sequence (low values first). However, it always adds the
data records to the bottom of the data subfile.

Like primary key entries, MIDASPLUS adds secondary key entries to
secondary index subfiles in sorted order. When MIDASPIUS first tries
to add a duplicate entry (for a secondary index that allows
duplicates), it sets a flag in the original entry. The flag indicates
that there is more than one occurrence of this particular entry value
in the index subfile. It adds duplicates sequentially thereafter,
following the last matching key.

Using the WRITE Statement

Supply a unique key value for the primary key of each record added to
an INDEXED SEQUENTIAL file. Put a new value in the RECORD KEY (primary
key) field before each WRITE statement is executed. To add secondary
keys to their respective indexes, put the appropriate values in the
secondary key fields before the execution of the WRITE statement. The
WRITE statement format is:

WRITE record-name [FROM from-areal
[INVALID KEY imperative-statement].
When using this statement:

e Make sure from-area and record-name do not reference the same
memory location.

e The record from the from-area is moved to the record-name area
prior to the WRITE and is truncated or blank filled.

e Supply a unique value for the primary key before the execution
of each WRITE.

e Use the INVALID KEY clause to trap duplicate primary oOr
secondary key errors. This is required unless you specify a USE
AFTER procedure for this file in the DECLARATIVES.

Although you get better performance with sorted input, you can give
unsorted input to the program as well.

6-21 Second Edition

MIDASPLUS USER'S GUIDE

UPDATING RECORDS (REWRITE)

The REWRITE statement replaces the current record with a new text
string and destroys the original. REWRITE does not establish or change
file position. You can change any field with the exception of the
primary key field. Since a record must be locked in order to be
updated, you can only update the current record. In SEQUENTIAL access
mode, READ the record to indicate which one will be rewritten. 1In
RANDOM mode, position to the record with a keyed read. Either of these
methods is acceptable in DYNAMIC mode. If the record to be updated is
not read before a REWRITE, a status code of 91 (unlocked record) is
returned. In addition, in all access modes, the file must be open for
I-0.

The REWRITE Format

The REWRITE statement format is the same for all access modes. If
there is no USE AFTER procedure specified for this file under the
DECLARATIVES, include the INVALID KEY clause in all REWRITE statements.

REWRITE record-name [FROM from-area)
[INVALID KEY imperative-statement].

If the FROM option is used, make sure the RECORD KEY value is the same
as the key used in the previous READ. This option allows you to write
the new record from another file or data area. The data in this
from-area is moved to the record-name buffer before it is written to
the file. Without the FROM option, you directly modify the buffer
(record-name) that contains the just-read data and then write it back
to the file.

For variable-length records, record-name must be the same size as the
record being replaced.

DELETTNG RECORDS

COBOL's DELETE statement removes the primary index and marks the data
record for deletion. The space that secondary index entries and data
entries occupy is not reclaimed until the MPACK utility is run on this
file. The file must be opened for I-O in order to delete entries from
it.

Secornd Edition 6-22

THE COBOL INTERFACE

The DELETE Format

The DELETE format is:

DELETE filename RECORD
[INVALID KEY imperative-stmt].

filename is the name assigned to the MIDASPLUS file in the SELECT
olause and FD clause. When the file is opened for RANDOM or DYNAMIC
acoess and there is no USE AFTER procedure specified for this file,
include the INVALID KEY clause in the DELETE statement. Do not include
the INVALID KEY clause in DELETE statements used on files opened for

SEQUENTTAL access.

A few

reminders are:

In SEQUENTIAL access mode, the record must first be read in
order to be deleted. This is necessary because a DELETE
operation in SEQUENTIAL access mode does not perform a position
operation; the READ does the positioning.

In SEQUENTIAL access mode, do not change the value in the RECORD
KEY (primary key) between the READ and DELETE statements.
DELETE can only operate on the current record. DELETE uses the
primary key value, used in the READ, to check that it dis the
same key (or value) as the current record’s primary key value.

If the record for which a key value has been supplied cannot be
found in the DYNAMIC and RANDOM access modes, the INVALID KEY
clause is activated. A file status code of 23 is returned.

A DELETE operation leaves the current record pointer undefined.
A READ NEXT or a keyed read operation immediately after a DELETE
will be successful, unless you deleted the last record in the
file.

You cannot perform two deletes in a row without an intervening
READ in SEQUENTIAL access mode. If you supply a new primary key
value, you can perform two deletes in a row in RANDOM or DYNAMIC
modes.

6-23 Second Edition

MIDASPLUS USER’'S GUIDE

INDEXED PROGRAMMING EXAMPLE

The following indexed program adds names to the BANK file that was
created in Chapter 2.

IDENTTFICATION DIVISION.

PROGRAM-ID. NEW.

INSTALLATTON. PRIME COMPUTER, INC.

DATE-WRITTEN. 02/06/85.

DATE-COMPILED.

REMARKS. THIS PROGRAM IS USED TO ADD NEW NAMES TO A BANK
CUSTOMER FILE.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PRIME-750.
OBJECT-COMPUTER. PRIME-750.

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT BANK-FILE ASSIGN TO PFMS

ORGANIZATION IS INDEXED
ACCESS IS DYNAMIC
RECORD KEY IS CUSTOMER-ID .
ALTERNATE RECORD KEY IS CUST-NAME WITH DUPLICATES
ALTERNATE RECORD KEY IS ACCT-NUM
FILE STATUS IS FILE-STAT.

DATA DIVISION.
FILE SECTION.
FD BANK-FILE
VALUE OF FILE-ID IS 'BANK’.
01 RANK-REC.
05 CUSTOMER-ID PIC X(9).
05 CUST-NAME PIC X(25).
05 ACCT-NUM PIC X(10).
05 CUST-AIDRESS.
10 STREET PIC X(18).
10 CITY PIC X(15).
10 STATE PIC XX.
10 ZIP PIC X(9).

WORKTNG—STORAGE SECTION.

01 COMMAND PIC X VALUE SPACES.
88 ATD-COMMAND VALUES ‘A’, ‘a’.
88 PRINT-COMMAND VAILUES ‘P’, 'p’.
88 QUIT-ENTERED VALUES 'Q', 'q’.

01 WORK-REC.
05 WS-CUSTOMER-ID PIC X(9).
05 WS-CUST-NAME PIC X(25).
05 WS-ACCT-NUM PIC X(10).

Second Edition 6-24

THE OOBOL INTERFACE

05 WS-CUST-ADDRESS.
10 WS-STREET PIC X(16).
10 WS-CITY PIC X(15).
10 WS-STATE PIC XX.
10 WS-ZIP PIC X(9).

01 FILE-STAT PIC 99.
01 SEARCH-TYPE PIC X.

PROCEDURE DIVISION.
MATNLINE-CONTROL.
OPEN I-O BANK-FILE.
PERFORM GET-COMMAND THRU GC-EXTT
UNTIL QUIT-ENTERED. -
CLOSE BANK-FILE.
STOP RUN.

GET-COMMAND.
MOVE SPACES TO COMMAND.
DISPLAY ‘' '.
DISPIAY ‘Enter Command (A-add P-print @-quit): '
WITH NO ADVANCING.
ACCEPT COMMAND.
IF QUIT-ENTERED
GO TO GC-EXIT
ELSE IF ADD-COMMAND
PERFORM ADD-ROUTINE THRU AR-EXTT
ELSE IF PRINT-COMMAND
PERFORM PRINT-ROUTINE THRU PR-EXTT
ELSE
DISPIAY ‘** ERRCR = Invalid Command, try again’.
GC-EXIT.
EXIT.

ADD-ROUTINE.
MOVE SPACES TO CUSTOMER-ID.
DISPLAY ‘Enter CUSTOMER-ID (9 digits): '
WITH NO ADVANCING.
ACCEPT CUSTOMER-ID.
* check to make sure key is not in file
READ BANK-FILE
INVALID KEY
NEXT SENTENCE.
IF FILE-STAT = 0O
DISPLAY ‘** ERROR: CUSTOMER-ID already in file: ',
CUSTOMER-ID
GO TO AR-EXIT.
* ok, key is not in file, get information and write record
PERFORM GET-NEW-REC.
WRITE BANK-REC
INVALID KEY
DISPIAY '‘WRITE-ERROR: ' FILE-STAT.
IF FILE-STAT = 00
LISPIAY CUSTOMER-ID ' has been added’.

6-25 Second Edition

MIDASPLUS USER’'S GUIDE

AR-EXTT.
EXTIT.

GET-NEW-REC.
MOVE SPACES TO CUST-NAME, ACCT-NUM, STREET,
CITY, STATE, ZIP.
DISPLAY 'ENTER CUSTOMER NAME: ‘' WITH NO ADVANCING.
ACCEPT CUST-NAME.
DISPLAY 'ENTER ACCOUNT NUMBER (10 digits): '
WITH NO ADVANCING.
ACCEPT ACCT-NUM.
DISPLAY 'ENTER STREET ADCRESS: ' WITH NO ADVANCING.

ACCEPT STREET. :
DISPIAY 'ENTER CITY: ' WITH NO ADVANCING.
ACCEPT CITY.
DISPLAY ‘ENTER STATE: ' WITH NO ADVANCING.
ACCEPT STATE.
DISPLAY 'ENTER ZIP: ' WITH NO ADVANCING.
ACCEPT “IP.

PRINT-ROUTINE.
DISPLAY

"ENTER ‘A’ FOR ACCOUNT NUMBER CR ‘C’' FOR CUSTOMER-ID: "
WITH NO ADVANCING.
ACCEPT SEARCH-TYPE.
MOVE SPACES TO BANK-REC.
IF SEARCH-TYPE = 'C’
MOVE SPACES TO CUSTOMER-ID
DISPIAY 'Enter CUSTOMER-ID (9 digits): '
WITH NO ADVANCING
ACCEPT CUSTOMER-ID
READ BANK-FILE
INVALID KEY
DISPLAY ‘** ERRCR: NO SUCH CUSTOMER'
GO TO PR-EXIT
ELSE
IF SEARCH-TYPE = ‘A’
MOVE SPACES TO ACCT-NUM
DISPLAY 'Enter ACCT-NUM (10 digits): '
WITH NO ADVANCING
ACCEPT ACCT-NUM
READ BANK-FILE KEY IS ACCT-NUM
INVALID KEY
DISPLAY '** ERROR: NO SUCH ACCOUNT NUMBER'
GO TO PR-EXIT
EISE
DISPLAY ‘** ERROR: INVALID RESPONSE, TRY AGAIN'’
GO TO PRINT-ROUTINE.

DISPLAY ‘CUSTOMER ID: ', CUSTOMER-ID.

DISPLAY 'NAME : ', CUST-NAME.
DISPLAY ‘ADDRESS : ', STREET.

Second Edition 6-26

THE COBOL INTERFACE

DISPLAY ' ‘, CITY, ' ' STATE,

PR-EXTT.
EXTT.
(K, CBL NEW

[CBL rev 19.4]
CK, BIND

[BIND rev 19.4.1]
: IOAD NEW

: LT CBLLIB

i LT

BIND COMPLETE

: FILE

OK, RESUME NEW

Enter Command (A-add P-print @-quit): A
Enter CUSTOMER-ID (9 digits): 189264289
ENTER CUSTOMER NAME: MURRAY, PAUL

ENTER ACOOUNT NUMBER (10 digits): MC28374641
ENTER STREET ADIRESS: 23 ORCHARD RD

ENTER CITY: MANCHESTER

ENTER STATE: NH

ENTER ZIP: 03102

189264289 has been added

Enter Command (A-add P-print @-quit): A
Enter CUSTOMER-ID (9 digits): 28276503889
ENTER CUSTOMER NAME: HARPER, ANNE

ENTER ACCOUNT NUMBER (10 digits): CHK4123891
ENTER STREET ADCRESS: 12 WASHINGTON ST
ENTER CITY: NEWION

ENTER STATE: MA

ENTER ZIP: 02159

282765038 has been added

Enter Command (A-add P-print Q-quit): P

ENTER A FOR ACOOUNT NUMBER OR C FOR CUSTOMER-ID:

Enter CUSTOMER-ID (9 digits): 189264289
CUSTOMER ID: 189264289

NAME : MURRAY, PAUL
ADDRESS : 23 ORCHARD RD
MANCHESTER NH 03102

Enter Command (A-add P-print Q-quit): P

ENTER A FOR ACOOUNT NUMBER OR C FOR CUSTOMER-ID:

Enter ACCT-NUM (10 digits): CHK4123891
CUSTOMER ID: 282765038

NAME : HARPER, ANNE
ATTRESS : 12 WASHINGTON ST
NEWTON MA 02159

Enter Command (A-add P-print @-quit): Q
K,

6-27

Q

| >

1

" ZIP.

Second Edition

MTIDASPLUS USER'S GUIDE

DIRECT ACCESS FILES IN COBOL

COBOL treats direct access MIDASPLUS files as RELATIVE files. It uses
the standard REIATIVE file I/O statements, with a few minor
differences, as its interface to these type of files. The REIATIVE KEY
in a RETATIVE file is the primary key that you defined for your
MIDASPLUS file during template creation. Secondary keys have no
counterpart in a REIATIVE file; they are not supported.

Note

In a direct access MIDASPIUS file, the records must be
fixed-length; variable-length records are not supported.

COBOL requires that the REIATIVE KEY contain the relative record
number. As a result, a special method exists for defining the primary
key for direct access MIDASPLUS files to be accessed as COBOL RELATIVE
files. The following sections explains this method.

Declaring the REIATIVE KEY in the Program

Use a corresponding PICTURE clause to define the REIATIVE KEY in any
program that accesses a REIATIVE file. For example, a 48-bit string
would have a PICTURE clause of 9(8).

Reducing the REIATIVE KEY size from 48 bits decreases the maximum
number of entries that the file can accommodate. For example, if the
KEY is defined as a 32-bit string, the file can have a maximum of 9999
entries, as opposed to 999,999 entries. The PICTURE clause that would
describe this particular key in a program is PIC 9(4).

In a COBOL program that accesses a RELATIVE file, the RELATIVE KEY
cannot be declared as part of the data record. Declare the key in the
WORKING STORAGE SECTION.

Relative files do not support secondary keys since COBOL does not
provide a means for adding entries to secondary index subfiles.

Second Edition 6-28

THE COBOL INTERFACE

Defining the File in a Program

The SELECT statement defines the file's logical name and organization.
The ORGANIZATION clause specification and the terms used to describe
the primary key are different for an INDEXED file than for a RELATIVE
file. The format for these differences is

SELECT filename
ASSIGN TO PFMS
ORGANIZATION IS RELATIVE
ACCESS MODE IS { RANDOM
DYNAMIC
[REIATIVE KEY IS key-name-1]
[FILE STATUS IS status—codel.
RELATIVE KEY is the primary key and represents the record number in a
direct access file. When accessing the file through a program, treat
the RELATIVE KEY as a character string with a minimum size of one digit
and a maximum size of eighteen digits. If the file has an access mode
of SEQUENTIAL, it is not necessary to specify the key.

The following rules apply to REIATIVE KEY definition for RELATIVE
files:

e The REIATIVE KEY must be an unsigned numeric integer.
e Do not specify a RELATIVE KEY with an OCCURS clause.

e The RELATIVE KEY must be the same length and type defined during
template creation.

e The REIATIVE KEY cannot have a P character in its PICIURE
clause.

e The RELATIVE KEY cannot be defined as a numeric with a separate
sign.

e The RELATIVE KEY is numeric data defined as an ASCII or a bit
string during template definition. It must represent the record
number of each file record.

e The REIATIVE KEY cannot have a PICTURE clause larger than 9(18).

e The RELATIVE KEY that key-name-1 defines must be defined in the
WORKTING-STORAGE SECTION.

6-29 Second Edition

MIDASPLUS USER'S GUIDE

If the access mode is SEQUENTIAL, the RELATIVE KEY does not have to be
defined within the program. If you do not define a key in the SELECT
statement, the COBOL runtime 1library uses the size specified during
template creation; the largest record number allowed is 999,999. The
access modes are the same as those for INDEXED files.

See Appendix B, ERROR MESSAGES, for a list of the status codes returned
in status-code.

ACCESSING RELATIVE FILES

COBOL uses the standard COBOL RELATIVE file interface to access
MIDASPLUS direct access files. This method consists of the READ,
WRITE, REWRITE, DELETE, and START statements. The standard OPEN and
CLOSE statements are used to open and close the file from a COBOL
program.

Opening and Closing the File

Use the OPEN statement to open a direct access file.

INPUT
OPEN < OUTPUT ; filename
I-0

Direct access files may be opened for INPUT, OUTPUT, or I/O:
e INPUT means READ only.

e OUTPUT means WRITE only.

e I-Omeans all operations are 1legal including READ, UFPDATE,
DELETE, and WRITE.

In SEQUENTTAL access mode, you cannot open a REIATIVE file for I-O if a
WRITE statement is included for this file. It must be opened for
OUTPUT only. Only empty files can be opened for SEQUENTIAL OUTPUT. (A
WRITE is the only legal operation in OUTPUT mode.) OOBOL provides its
own record numbers in SEQUENTTIAL WRITEs and ignores any values that you
nay have supplied for the relative record number field. See Table 6-1
for a list of statements that can be used in each access mode.

Use the CIOSE statement to close the file. For example,

CIOSE filename-1 [,filename-2...]

Second Edition 6-30

THE COBOL INTERFACE

Put the CLOSE statement at the logical end of the program or in an
error-handling routine. You can close more than one file with a single
CLOSE statement.

Adding Records to a Relative File

COBOL'S REIATIVE files do not support the use of secondary keys. To
add a record to a direct access file, supply the record number and the
data to be added to the data subfile.

Populating RELATIVE files is handled differently than populating
INDEXED files. If a file contains no record or index subfile entries,
you can add records to that file in any of the three access modes.
Once a file contains entries, you can no longer add records to it imn
SEQUENTIAL access mode. The SEQUENTIAL access mode is intended for
initial loading of records (that is, for populating empty files).
Another restriction with SEQUENTIAL access mode is that the file must
be opened for OUTPUT, not I/0. RANDOM and DYNAMIC access modes allow
you to supply record numbers for each record to be added to the file.

The WRITE Statement: The WRITE statement adds records to a RELATIVE
file in all three access modes. In SEQUENTIAL mode, COBOL supplies the
record numbers for each record. You supply the data record information
to an empty file. This method is called loading or initially loading a
file. The file must be empty.

In SEQUENTIAL mode, the RELATIVE KEY starts at 1 and is incremented by
1 each time a new record is added. If you define the RELATIVE KEY
field in the program, COBOL returns the record number of each record
that you add after each WRITE operation is complete. This number is
returned in the RELATIVE KEY field.

The random method is used with the RANDOM and DYNAMIC access modes.
The random method requires you to supply a record number for each
record added (slots are pre-allocated for the record numbers in the
data subfile). Each record is placed in the proper slot according t€o
its assigned record number.

Adding Records Randomly

In random WRITEs, you supply a record number for each record added.
The format is the same as that shown for sequential writes. The file
can be opened for OUTPUT or I-O. You can add entries in any order. Do
not try to write a record that already exists and do not try to write
beyond the preallocated file boundaries. If you only allocated 15
records, then do not try to add a record with number 000016 or above.
CREATK asks for a number of records to allocate space for in an index
subfile.

6-31 Second Edition

MIDASPIUS USER'S GUIDE

The format of the WRITE statement is:

WRITE record-name [FROM identifier]
[INVALID KEY imperative-statement].

record-name is the name of a record description associated with the
file in the program’s DATA DIVISION. The FROM identifier clause is
optional. Without this clause, you must MOVE the new record
information to record-name so that it can be written to the file. When
the FROM identifier clause is used, data is moved from identifier to
record name.

Note
START operations are not legal in RELATIVE files opened for

SBQUENTTAL access in OUTPUT mode. The beginning of the file is
the only place to start adding records.

Reading a Relative File

There are two types of READ formats for REILATIVE files: the sequential
read format and the random read format. These formats are similar to
those used in reading INDEXED files.

Sequential Reads: In a direct access file opened for SEQUENTIAL
access, the READ operation retrieves records in order by record number.
A MOVE and START command, or setting an initial wvalue in
WORKING-STORAGE, or a default, establishes the initial record number
value. If the default is used, the initial position is set to the
first record in the file. The first file record has the lowest record
number in the entire file. Sequential READs are generally associated
with SBQUENTTAL access mode, although they are possible in DYNAMIC mode
also.

The READ statement format used for sequential retrieval is:

READ filename [NEXT RECORD] [INTO read-var]
[AT END imperative-statement].

filename is the name of the RELATIVE file. The INTO clause moves the
record read from the record buffer associated with the file into the
read-var variable. The NEXT clause is used only in DYNAMIC access
mode. This clause is not necessary if the file is opened for
SEQUENTTAL access mode. A READ operation automatically causes the file
pointer to move to the next record in the file. Always use the AT END

Second Edition 6-32

—

THE COBOL INTERFACE

clause unless the program has a USE AFTER procedure for handling errors
that occur while processing the file.

Reading the Current Record: In DYNAMIC access mode, READ without the
KEY IS clause or the NEXT RECORD returns the current record. In RANDOM
access mode, READ without the KEY IS clause also returns the current
record. (Sequential reads are not possible in RANDOM mode.)

Notes

1. The current record is the record just read or positioned to
by a START operation. (START is not legal in RANDOM
access) .

2. TIn SBQUENTIAL access mode, the file pointer is advanced
automatically to the next record in the file each time that
a read statement is encountered.

Ke Reads: Keyed reads (random reads) are permitted in DYNAMIC and
RANDOM access modes, if you use the REIATIVE KEY. To do a keyed read,
MOVE the appropriate record number value to the RELATIVE KEY field,
then use this form of the READ statement:

READ filename [INTO read-var]
[INVALID KEY imperative-statement].

Use the INTO clause to move the data record from the buffer into which
it is read to a program-specified temporary storage area specified by
read-var. Unless a USE AFTER procedure under the DECLARATIVES
specifies what to do when errors occur during processing of the file,
the INVALID KEY clause is required.

Move a new value to the RELATIVE KEY field before each READ or the same
record is returned repeatedly. The only way to do a keyed READ on a
RETATIVE file is to supply a record number value for the RELATIVE KEY
field.

Updating Records

The REWRITE statement replaces the current record with a new text
string and destroys the original. REWRITE does not establish or change
file position. Do a READ before a REWRITE in all access modes in order
to tell MIDASPLUS which record is to be updated and to lock the record.
In order to update the file, open it for I-O.

6-33 Second Edition

MIDASPIUS USER'S GUIDE

The REWRITE format is:

REWRITE record-name [FROM identifier]
[INVALID KEY imperative-statement].

record-name is the name of a record associated with a file described in
the FILE DESCRIPTION under the FILE SECTION of the program. The FROM
clause is optional. You can move the new record value to record-name
before you do the REWRITE. Unless the DECLARATIVES include a USE AFTER
procedure for dealing with errors that occur while processing this
file, the INVALID KEY clause is required in RANDOM and DYNAMIC modes.
Vhen the file is opened for SBQUENTIAL access, do not include the
INVALID KEY clause in REWRITE statements.

Deleting Records

The DELETE statement removes an indicated record from a direct access
file. You can do deletes in RANDOM, DYNAMIC, or SBEQUENTIAL access
modes as long as the file is opened for I-O. The DELETE format is:

DELETE filename RECORD [INVALID KEY imperative-statement].

Unless a USE AFTER procedure for trapping errors is included under the
DECLARATIVES, use the INVALID KEY clause in RANDOM and DYNAMIC modes.
The INVALID KEY clause is not legal in SEQUENTIAL access. A READ
statement, and not the DELETE, establishes the record to be deleted.

Deletes in SEQUENTIAL Mode: In SEQUENTIAL access mode, the record to
be deleted must be READ before a DELETE can be executed. The DELETE
statement in SBQUENTIAL access mode cannot establish a current record
position and depends on a READ statement to do so. Do not include the
INVALTD KEY clause in the DELETE statement when the file is opened for

SEQUENTIAL access.

Deletes in DYNAMIC and RANDOM Modes: In DYNAMIC and RANDOM access
modes, it is mnot required to READ prior to a DELETE since a DELETE
establishes the current record position on its own. Supply a value for
the REIATIVE KEY before a DELETE, which is then used to position to
that record before deleting it.

Second Edition 6-34

THE COBOL INTERFACE

REIATIVE PROGRAMMING EXAMPLE

The following REIATIVE program adds names to the direct access file
(DACUST) that was created in Chapter 2.

IDENTIFICATION DIVISION.

PROGRAM-TD. CUST.

INSTALIATION. PRIME COMPUTER, INC.

DATE-WRITTEN. 05/13/85.

DATE-COMPILED.

REMARKS. ADDS RECORD TO A DIRECT ACCESS FILE.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. PRIME-750.

OBJECT-COMPUTER. PRIME-750.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT CUST-FILE ASSIGN TO PFMS

ORGANIZATION IS RELATIVE
ACCESS MODE IS DYNAMIC
FILE STATUS IS STATUS-CODE
RELATIVE KEY IS ACCT-NO.

DATA DIVISION.
FILE SECTION.
FD CUST-FILE
VALUE OF FILE-ID IS ‘DACUST’.
01 CUST-RECORD.
05 CUST-ID PIC X(5).
05 CUST-NAME PIC X(25).
05 LOCATION-CODE PIC X(4).
WORKING—STORAGE SECTION.

01 ACCT-NO PIC 9(6B).

01 X-ACCT-NO PIC X(B).

01 J-ACCT-NO PIC X(8) JUSTIFIED RIGHT.
01 ANS PIC X.

01 EOF PIC X.

01 STATUS-CODE PIC XX.

PROCEDURE DIVISION.

MAINLINE-CONTROL.

OPEN I-O CUST-FILE.
PERFORM GET-RECORDS THRU GR-EXIT
UNTIL ANS = ‘N’ OR ANS = 'n’.

CLOSE CUST-FILE.
DISPLAY ‘Print file? ' WITH NO ADVANCING.
ACCEPT ANS.
IF ANS = 'Y’ or 'y’

PERFORM PRINT-FILE.
STOP RUN.

GET-RECORDS.
MOVE SPACES TO CUST-RECORD, X-ACCT-NO, ACCT-NO.

6-35 Secord Edition

MIDASPIUS USER'S GUIDE

DISPIAY 'Enter account number: '
WITH NO ADVANCING.

ACCEPT X-ACCT-NO.
UNSTRING X-ACCT-NO DELIMITED BY SPACE INTO J-ACCT-NO.
INSPECT J-ACCT-NO REPLACING LEADING SPACES BY ZERCES.
IF J-ACCT-NO IS NUMERIC

MOVE J-ACCT-NO TO ACCT-NO
ELSE

DISPLAY 'Error: invalid account number , ' X-ACCT-NO

GO TO GR-EXIT.

DISPLAY 'Enter customer id (5 chars): '
WITH NO ADVANCING.
ACCEPT CUST-ID.
DISPLAY ‘Enter Customer Name (25 chars): '
WITH NO ADVANCING.
ACCEPT CUST-NAME.
DISPLAY ‘Enter Location Code (4 chars): '
WITH NO ADVANCING.
ACCEPT LOCATION-COLE.
WRITE CUST-RECORD
INVALID KEY
PERFORM WRITE-ERR
GO TO GR-EXIT.

DISPLAY ‘Account number ‘' ACCT-NO ' added’.

MOVE SPACE TO ANS. -
DISPLAY ‘More? (Y/N) ' WITH NO ADVANCING.

ACCEPT ANS.

GR-EXIT.
EXTT.

WRITE-ERR.
IF STATUS-CODE = 22
DISPIAY 'Error: customer already exists ', ACCT-NO
ELSE
DISPIAY ‘Error writing to customer file: ‘, STATUS-COLE.

PRINT-FILE.
OPEN INPUT CUST-FILE.
READ CUST-FILE NEXT RECORD
AT END MOVE 'Y’ TO EOF.
PERFORM READ-PRINT UNTIL EOF = ‘Y’.
CLOSE CUST-FILE.

READ-PRINT.
DISPLAY ACCT-NO, ' ' CUST-ID ' ' CUST-NAME ' '
LOCATION-CODE.
READ CUST-FILE NEXT
AT END MOVE 'Y’ TO EOF.
0K, CBL CUST —

[CBL rev 19.4]

Second Edition 6-36

THE COBOL INTERFACE

OK, BIND

[BIND rev 19.4.1]

: LOAD CUST

: LI CBLLIB

LI

BIND COMPLETE

: FILE

OK, RESUME CUST

Enter account number: 1

Enter customer id (5 chars): 1234A

Enter Customer Name (25 chars): HARPER, ANNE

Enter Location Code (4 chars): NEMA

Account number 1 added

More? (Y/N) Y

Enter account number: 5

Enter customer id (5 chars): 5675B

Enter Customer Name (25 chars): CORRADO, THOMAS

Enter Location Code (4 chars): SWMA

Account number 5 added

More? (Y/N) N

Print file? ¥
1 1234A HARPER, ANNE NEMA
5 5675B CORRADO, THOMAS SWMA

K,

6-37 Second Edition

The BASIC/VM

Interface

The BASIC/VM interface to MIDASPLUS consists of a special set of file
handling statements that read, write, delete, and update entries in a
MIDASPLUS file. The MIDASPLUS access statements are similar in for:sat
to the standard file handling statements in BASIC/VM. Extensions to
their syntax permit the more complex operations associated with
MIDASPLUS files. The interface acts as a go-between and translates
your demands into the MIDASPLUS subroutine calls that do all of the
work. As a result, MIDASPLUS files can be processed as easily as any
other file type that BASIC/VM supports.

This chapter discusses the BASIC/VM language dependencies, access
statements, and error handling, and provides programming examples.

LANGUAGE DEPENDENCTES

As all of the other language interfaces (except PL/I), MIDASPLUS
requires you to use CREATK to create a template before BASIC/VM can
access a MIDASPLUS file. In addition, the following considerations
apply to the BASIC/VM MIDASPIUS interface:

e Only keyed-index access MIDASPIUS files are supported.
(BASIC/VM cannot process direct access MIDASPLUS files.)

e Up to 17 secondary indexes are allowed per file (duplicate index
entries are allowed).

7-1 Second Edition

MIDASPLUS USER'S GUIDE

e Although key fields are not required to be part of the data
record, it is strongly recommended that you include them.

e The secondary data feature is not supported.

BASIC/VM refers to keys by number. The primary key is KEYO, the first
secondary key is KEYOl, the second is KEYOR. Key numbers and index
subfile numbers are synonymous. A reference to a particular key is
also a reference to the index subfile in which the key values are
stored.

SUMMARY OF ACCESS STATEMENTS

Table 7-1 summarizes the BASIC/VM statements needed tO process
MIDASPIUS files. These statements are similar to those used to handle
other BASIC/VM file types.

Table 7-1
Summary of Access Statements

Statement Function

DEFINE FILE Opens the designated MIDASPIUS file on an
available PRIMOS file unit. Assigns a
user-specified BASIC/VM file unit number to it
for program reference.

POSITION Positions the file pointer by key value to a
particular record in the file and locks that
record.

REWIND Positions the file pointer to the first entry
in the specified index. Defaults to primary
index.

ADD Adds a record to the MIDSAPIUS file in primary

key sequence. You may not include secondary
keys with the AID command.

READ Finds, locks, and returns a MIDASPLUS file
record by primary or secondary key. Other
READ options allow duplicate retrieval as well
as sequential record retrieval.

UPDATE Rewrites the current record.

REMOVE Deletes a record by primary key. Can also
delete any secondary index entry.

Second Edition 7-2

THE BASIC/VM INTERFACE

LOCKING AND UNLOCKING RECORDS

BASIC/VM has no specific lock or unlock statements. In order to keep
the integrity of any record, the READ, UPDATE, POSITION, and DELETE
statements all lock a record before they perform their operatioms.
BASIC/VM locks the record to protect it from accidental harm by another
user or process. Include error traps in your programs for records that
other users may already have locked.

OPENING/CLOSING A MIDASPLUS FILE

BASIC/VM opens and closes a MIDASPLUS file the same way it does any
other file, by means of the DEFINE FILE and the CLOSE statements

respectively.

The DEFINE FILE Statement

The DEFINE FILE statement opens a MIDASPLUS file and assigns it a file
unit number. This number is used as an alias for the file during the
remainder of the program. You can open up to 12 files at a time from a
single BASIC program. Be sure to use the unit numbers 1 to 12 when
opening a MIDASPLUS file. The keyword MIDAS is required. The format
of this statement is:

DEFINE (READ] FILE #unit = filename, MIDAS [,record-size]

#unit is the user-assigned unit number (either a literal or
numeric expression). The # sign is required, as in: #2.

filename is the name of the MIDASPLUS file. The name can
either be a BASIC string variable that contains the filename or
the filename can be a quoted constant string.

record-size is the length of the MIDASPLUS data subfile record
in 16-bit units. If the MIDASPIUS file has fixed-length
records, this number, if specified, must match the data size
indicated in the MIDASPLUS template. (Use the PRINT option of
CREATK to determine this.) If the file has variable-length
records, no record-size is necessary. The default record-size
is 60 and the parameter is optional.

-3 Second Edition

MIDASPIUS USER'S GUIDE

The READ option opens the file for reading only and does not allow you
to add records to the file. The default access mode (when you omit the
READ option) allows the full range of file operations to be performed
on the MIDASPLUS file without restrictions.

For example, the first of the following two statements opens a file
with fixed-length records. The second opens a file with
variable-length records.

DEFINE FILE #1
DEFINE FILE #1

‘'BANK’, MIDAS, 35
'VARBANK', MIDAS

CILOSE Statement

MIDASPLUS files are closed just like any other BASIC/VM files:

CIOSE #unit

#unit is the user-assigned BASIC/VM file wunit on which the
MIDASPLUS file is opened and specified in the DEFINE FILE
statement. The # sign is required.

ERROR HANDLING

The BASIC/VM ON ERRCR statement directs program control to a statement
that will be executed if an error occurs. This action traps MIDASPLUS
errors. ON ERROR traps I/0 errors on the particular unit on which the
file was opened or on all file units with open files (a general error
trap).

Following an error, use MIDASERR, which prints the value of the
MIDASPIUS error code. This works much like ERR, the special error—code
variable that returns BASIC/VM error codes. Look up the MIDASPLUS
error code in Appendix B, ERROR MESSAGES, to determine the nature of
the problem. The ON ERROR format is:

ON ERROR [#unit] GOTO line-number

#unit is the user-assigned unit number on which the MIDASPLUS
file was opened. If #unit is not specified, all I/O errors
occurring on every opened file unit are trapped.

Line-number is the line number of the first statement of the
error handler.

Second Edition 74

THE BASIC/VM INTERFACE
Use the following PRINT statement to print out the MIDASPLUS error
code.

PRINT MIDASERR

FILE POSITTIONING

Almost all of the BASIC/VM file handling statements use and/or set the
current file position. The current file position is considered the
record in the file to which the file pointer is pointing and is
established relative to an index subfile. The file pointer points to a
specific entry in an index subfile. This index subfile entry in turn
points to a record in the data subfile. This record is known as the
current record.

You can establish the file position in the primary index subfile or in
one of the secondary index subfiles with the REWIND, POSITION, or READ
statements. If you do not supply a key value or an index number, the
file position uses the primary index by default. The current record is
then set to the record referenced by the first entry in the primary
index subfile. The index subfile that points to the current record is
the current index.

The POSITION Statement

The POSITION statement moves the file pointer to an index subfile entry
for any specified record in the MIDASPLUS file, making that record the
current record. POSITION locks the record and leaves it locked until
the file pointer is positioned to another record. The format is:

SEQ
POSITION #unit {,KEY [key-number] = key-value
SAME KEY

key-number is the key number (index subfile number) that may be
a literal or numeric expression. If it is unspecified or zero,
it is taken as the primary key.

key-value is the key value enclosed in quotes or a legal string
expression. Use this option to make a specific record current.

SEQ positions the pointer to the next sequential record in the
file according to the order of entries in the current index.

7-5 Secord Edition

MIDASPLUS USER'S GUIDE

SAME KEY positions the pointer to the next record with the same
key value as the current record. Use this option when a
secondary key allowing duplicates establishes the most recent
file position.

If there is no record at the specified file position, an error is
flagged. Some examples of the various POSITION options are:

POSITION #1, SAME KEY
POSITION #4, SEQ
POSITION #2, KEY 3 = ‘478’

How POSITION Works: Records are positioned according to primary or
secondary key as they are specified on the POSITION statement line.
This action establishes that key as the current key of reference. It
also establishes the index subfile in which the key's value is stored
as the current index of reference. If no key number is specified, the
primary key is assumed, and POSITION uses the primary index subfile as
its index of reference. The primary key is then the key of reference.
Once an index of reference is established, the file can be processed
sequentially without specifically referring to a key number or index
subfile. All READ requests are interpreted relative to that index;
that is, records are read in the order in which their key values appear
in the index of reference.

THE REWIND STATEMENT

The REWIND statement positions to and makes current the record with the
lowest value for the specified key. If no key number is specified, the
primary key is assumed. REWIND sets the file pointer relative to the
first entry in the indicated index subfile. (References to key numbers
are really references to index subfile numbers.) The REWIND statement
format is:

REWIND #unit [, KEY num-expr]

num-expr is the key (index subfile) number. Use it with the
KEY option.

Second Edition 76

THE BASIC/VM INTERFACE

Examples

The first example sets the file position to the record referenced by
the initial entry in the primary index. The second example sets the
position to the record referenced by the first entry in secondary index
subfile 03.

REWIND #3
REWIND #2, KEY 3

ADDING RECORDS

The ADD statement adds a record to a MIDASPIUS file without changing
the current file position or the current record. Although only the
primary key value is required in an AID, one or more secondary key
values may be added to the appropriate index subfiles with a single
ATD. This practice is recommended, because it avoids the possibility
of having index entries that do not match the key values in the data
record. Whenever keys are stored in the data record, make sure that
the entries in the primary and secondary index subfiles are the same as
the key entries stored in the data subfile record. This action
minimizes confusion. The format of the ADD statement is:

PRIMKEY
ATD #unit, new-record, |KEY[O-expr] = keyO-val [,keylist]

keylist has the form:
KEY key-number = key-val ..

You can repeat the above expresson for each secondary key field in the
record. If you are storing keys in the data record, the key values
assigned here should match the key values in the data record, specified
by the new-record. The parameters are described below:

new-record is the data record to be added. If the file has
fixed-length records, new-record should be equal in length to
the record size declared for the file. Pad the record to the
correct length with blanks. If you want keys stored in the
record, make sure new-record includes all of the key values.

PRIMKEY represents the primary key.

KEY[O-expr] represents the primary key. O-expr is a literal or
" numeric expression that evaluates to zero.

77 Secord Edition

MTDASPLUS USER'S GUIDE

keyO-val represents the primary key value. It may be a string
expression or a literal.

keylist is an optional list of secondary key numbers and
values.

key-number is a numeric expression indicating a secondary key
number (index subfile number).

key-val is a string expression or literal containing a
secondary key value.

Only the keys that are explicitly specified in the keylist are entered
in the respective index subfiles. It is recommended that you add all
index entries at the same time to avoid possible confusion. The
example below shows an ADD statement that adds all the index entries
along with the data subfile entry (also called the data record).

ADD Example

The following example shows a BASIC/VM program that adds records to the
BANK file that was created in Chapter 2. The program reads data from a
sequential disk file, called NAMES, pads each record with blanks until
the record is the correct length, and then adds each record to the data
subfile. (Since BASIC treats commas as delimiters, you cannot include
commas in your input file.) Since all of the necessary key values were
included in the keylist, the primary and secondary key entries are
placed in the proper index subfiles at the same time. This example
also shows the output from the program when it is executed. The
program is run from the PRIMOS command level, using the BASICV command.

10 DEFINE FILE #1 'BANK’, MIDAS, 43
20 DEFINE FILE #2 = 'NAMES’, 22
30 DEF FNS$(X$,N) ! PADS STRING X$ WITH SPACES

40 | ADD SPACES UNTIL THE LENGTH BEQUALS 86 CHARACTERS

50 X$ = X$ +' ' UNTIL LEN(X$) = N

60 FNS$ = X$ | ASSIGN THE NEW PADDED STRING TO FUNCTION
70 FNEND ! END OF PAD FUNCTION

80 J =4

90 N = 86 | NUMBER OF CHARACTERS PER RECORD
100 FRI=1T0d

110 READ #2, A$

120 PRINT ‘RECORD VALUE IS:': A$

130 B$ = SUB(A$,1,9)

140 PRINT 'PRIMARY KEY IS:’': B$

160 C$ = SUB(AS$,10,34)

170 D$ =SUB(A$,35,44)

180 | PAD STUFF HERE

190 A$ = FNS$(A$,N)

200 AID #1, A$, PRIMKEY = B$, KEY1l = C$, KEY2 = D$

Second Edition 7-8

THE BASTIC/VM INTERFACE

210 NEXT I

220 CLOSE #1

230 CLOSE #2

240 PRINT ‘'DONE’

250 END

K, basicv add

RECCRD VALUE IS: 27650388%harper anne chk4123891
PRIMARY KEY IS: 276503889

RECORD VALUE IS: 03679240charper anne 1n72537465
PRIMARY KEY IS: 0368792406

RECORD VALUE IS: 189264289murray paul mcR8374646
PRIMARY KEY IS: 189264289

RECORD VALUE IS: 023677386corrado thomas sav1’73565
PRIMARY KEY IS: 023677386 '

DONE

(I(s

Note the method used in the above example to pad the data record to the
specified record length. This method is mandatory in fixed-length
record files or you will get an error message when you attempt to add
the record.

READING RECORDS

The BASIC/VM READ statement provides you with a complete range of
options for getting information from a MIDASPLUS file. You can read a
MIDASPLUS file both randomly and sequentially on any index, and you can
alternate easily between the two types of reads. A READ operation
always locks the record to which it positions, which guards against
concurrency errors. The READ statement format allows you to read
records from a MIDASPLUS file sequentially, by duplicate keys, and Dby
primary or secondary key values. When the READ is complete, the record
remains locked until another operation is performed to change the file
pointer location.

READ Options

The READ format is:

SEQ
READ [KEY] #unit {,[KEY [key-num] = key-vall ,read-var
SAMEKEY

79 Second Edition

MIDASPLUS USER'S GUIDE

The keywords and parameters used in this format are described below:
[KEY] is used for reading the full value of any key contained
in an index subfile (optional).

#unit is the user-assigned unit number on which the file is
opened. The # sign is required.

KEY is used with key-num and key-val to indicate which record
should be read. If you omit the KEY [key-num] = key-val
clause, the current record is read. In this case, a POSITION
or REWIND must establish the current record before you specify

the READ statement.

—-num is a literal or numeric expression indicating which key
index subfile) should be used in this retrieval. If omitted,
the default is O (the primary key).

key-val is the full or partial value of the key on which to
conduct the search. It is used in conjunction with KEY
[key-num] .

SEQ indicates that the next sequential record, as determined by
the current index of reference, should be read.

SAMEKEY reads the next record with the same key value as the
current record.

read-var is a string variable into which the retrieved record
value is read.

READ Examples

The following program uses the SAMEKEY option to find all of the
records with the same secondary key value.

10 DEFINE FILE #1 = 'BANK',MIDAS,43

20 | THIS PROGRAM FINDS FIRST OCCURRENCE OF A CERTAIN
30 !| SECONDARY KEY VALUE AND THEN FINDS ALL THE DUPLICATES
40 READ #1,KEYOl='harper amnne’, G$

50 PRINT 'FIRST RECORD WITH THIS VALUE:', G$

60 PRINT

70 | NOW READ ALL DUPLICATES OF THIS KEY

80 ON ERROR GOTO 160

90 ! ERROR WILL OCCUR WHEN NO MCRE KEYS ARE FOUND WITH THIS VALUE
100 PRINT 'RECORDS WITH DUPLICATE VALUES ARE: '’

110 PRINT

120 FORI =1T0 4

130 READ #1, SAMEKEY, S$

140 PRINT S$

Second Edition 7-10

THE BASIC/VM INTERFACE

150 NEXT I

160 ! ERROR HANDLFR

170 PRINT ‘BASIC ERROR IS:’, ERR$(ERR)

180 CLOSE #1

190 END

K, basicv dups

FIRST RECORD WITH THIS VALUE:
27650388%harper anne chk4123891

RECORDS WITH DUPLICATE VALUES ARE:

036792406harper anne 1n72537465
BASTIC ERRCR IS: RECORD NOT FOUND
ER!

This program only works when secondary keys allow duplicates. The
duplicate feature is turned on or off during template creation. The
error handler is used to trap the error that will occur when you do not
find any more duplicates for this key value.

Partial key values can be used in a READ statement, as in:

READ #1, KEY 1 = 'Har’, K$

The full value of this key is actually "Harper Anne". Only the left
most positions of a key value are allowed as partial key values. It
would be illegal to do a search on "Anne" in this case.

As stated above, the READ KEY option returns the full value of a key.
With READ KEY, you can find out what key you are currently positioned
on (that is, the index you are using as the index of referemce) or you
can get the full key value of any key by specifying a partial key
value. For example:

10 DEFINE FILE #1 = 'BANK', MIDAS,43

20 | READ RECORD WITH PARTTAL KEY

30 READ #1, KEY 1 = ‘corra’, K$

40 PRINT 'RECORD READ WITH PARTIAL KEY:', K$

50 ! RETURN FULL VALUE OF CURRENT KEY OF REFERENCE

60 READ KEY #1, H$ | READS CURRENT KEY POS'D TO

70 PRINT ‘CURRENT KEY VAIUE IS:’': H$

80 ! READ KEY CAN ALSO BE DONE WITH A KEY SEARCH CLAUSE:
00 READ KEY #1, KEYR2 = '‘sav’, K$

100 ! FIND RECORD WITH PARTIAL KEY VALUE

110 ! THEN RETURN FULL KEY VALUE

120 PRINT ! SPACE

130 PRINT 'FULL KEY :': K$! KEY USED IN READING RECORD IS READ
140 CLOSE #1

7-11 Second Edition

MIDASPLUS USER'S GUIDE

150 END

(K, basicv readkey

RECORD READ WITH PARTTAL KEY:
0R23877386corrado thomas sav1273565

CURRENT KEY VALUE IS:
corrado thomas

FULL KEY :
sav1273565

X,

UPDATING RECORDS

The UPDATE statement replaces the current record with a new record
value. UPDATE does not change any of the index subfile entries. This
means that you should not attempt to change key values with UPDATE. To
change key values, delete the record and then add it back again with
the new key values. The UPDATE format is:

UPDATE #unit, new-record

#unit is the user-assigned file unit on which the file is open.

new-record is the new data record value. This can be a string
variable or a quoted literal.

Since an update operation is usually done to modify a certain record,
the record should first be read to establish it as the current record,
and to return the contents of the record to be modified. However, you
can use a REWIND or POSITION statement to establish the current record
position instead of READ. Because UPDATE overwrites the existing
record rather than deleting and replacing it, make the new record equal
in length to the o0ld one to ensure that all of the old data is
completely overwritten. For example:

10 DEFINE FILE #1 = 'BANK', MIDAS,43

20 ! FIND RECORD TO BE UPDATED

30 READ #1, KEYl='corr', X$

40 PRINT 'ORIGINAL RECORD IS:', X$

50 PRINT

60 ! UPDATE THIS RECORD BY ADDING SOMETHING TO THE END
70 A$= ' Call before 11:30 A.M.'

80 ! WRITE THE ORIGINAL RECORD BACK WITH THIS ADDITION
90 X$ = SUB(X$,1,43) ! TAKE JUST THE NON-BLANK PART
100 X$ = X$+A$ | COMBINE THE TWO

110 ! NOW PAD TO CORRECT LENGTH

120 X$ = X$ +' ' UNTIL LEN(X$) = 86

Second Edition 7-12

THE BASIC/VM INTERFACE

130 UPDATE #1,X$

140 REWIND #1

150 READ #1, KEY='023677386', X$

160 PRINT ‘UPDATED RECORD: ‘', X$

170 CLOSE #1

180 END

CK, basicv update

ORIGINAL. RECORD IS:

023677386corrado thomas sav1273565

UPDATED RECORD:

023677386corrado thomas sav127356 Call before 11:30 A.M.

K,

In files with fixed-length records, pad the record to the correct

length; otherwise you will get a record-size error and the update will
fail.

DELETING RECORDS

The REMOVE statement selectively deletes index entries for a particular
data record. If you specify only the primary key, the associated data
record and the primary index entries will be deleted. In this case,
the secondary key entries will not be deleted until they are used to
reference the now deleted data record, or until MPACK is run on the
file. The REMOVE format is:

REMOVE #unit [,KEY [key-num] = key-vall
[,KEY [key-numl=key-vall...

_num is the numeric variable containing an optional key
index subfile) number. This is the key to be deleted. If a
key number is not specified, the primary key is assumed. More
than one key value can be deleted in a single REMOVE statement,
as shown in the above format.

key-val is the string expression containing a key value. Along
with key-num, it indicates which primary or secondary key entry
is to be removed from an index subfile.

To delete the current record, use REMOVE without the options.

7-13 Second Edition

MIDASPIUS USER'S GUILE

DELETE Example

The following example shows how to remove specific secondary key values
from an index and how to delete an entire record and its primary index
entry. Note that removing wvalues from a secondary index does not
change the data record. The program uses the MIDASERR feature to print
out the MIDASPLUS error code associated with the read error that occurs
on an attempt to read a deleted record.

10 DEFINE FILE #1 = 'BANK’', MIDAS,43

20 ! REMOVE A SECONDARY INDEX ENTRY FROM THIS FILE

30 PRINT '‘REMOVE THE SECONDARY KEY VALUE: murray paul’
40 REMOVE #1, KEYOl='murray paul’’

50 ! BUT THE RECORD VALUE REMATNS UNCHANGED

60 PRINT

70 READ #1, KEY = '189264289', X$

80 PRINT ‘RECORD VALUE IS:':X$

90 REWIND #1, KEYOl ! POSITION TO TOP OF SECONDARY INDEX Ol
100 ! READ FILE ON SECONDARY KEY

110 !

120 QN ERROR GOTO 210

130 PRINT

140 PRINT 'RECORDS READ BY SECONDARY KEY: '

150 PRINT

160 FORI =1TO04

170 READ #1,SEQ,N$

180 PRINT N$

1900 NEXT I
200 ! DELETE THE RECORD
210 PRINT

220 PRINT 'NOTE: RECORD REFERENCED BY DELETED '
230 PRINT ‘'INDEX ENTRY IS NOT PRINTED'

240 PRINT

250 PRINT 'TELETE RECORD BY PRIMARY KEY'

260 REMOVE #1, KEYO='189264289'

270 REWIND #1

280 !

290 ON ERROR GOTO 340

300 PRINT

310 READ #1, KEY='189264289', X$

320 PRINT X$

330 GOTO 360 ! IF NO ERRCR

340 PRINT 'MIDASPLUS ERROR CODE:': MIDASERR
350 PRINT ‘BASIC ERROR IS:’': ERR$(ERR)

360 CLOSE #1

370 END

(K, basicv delete

REMOVE THE SECONDARY KEY VALUE: murray paul

RECORD VALUE IS:
189264280murray paul mcR8374646

Second Edition 7-14

THE BASIC/VM INTERFACE

RECORDS READ BY SECONDARY KEY:
27650388%harper anne Cchk4123891
036792406harper anne 1n72537465
NOTE: RECORD REFERENCED BY DELETED

INDEX ENTRY IS NOT PRINTED

DELETE RECORD BY PRIMARY KEY

MIDASPIUS ERROR CODE: 7

BASIC ERROR IS: RECORD NOT FOUND

ER!

The MIDASPIUS error code of 7 indicates an unsuccessful read resulting
from a failure to find a record with the indicated key value.

7-15 Second Edition

The PLI Interface

This chapter documents the PL/I interface to MIDASPIUS files. PL/I
views a MIDASPIUS file as a RECORD KEYED SEQUENTIAL file that the
standard PL/I READ, WRITE, REWRITE, and DELETE statements can access.
PL/I requires that the MIDASPLUS file have an ASCII primary key.
Besides supporting CREATK-defined files, PL/I can create its own
MIDASPLUS files. A PL/I—created file has an ASCII primary key of 32
characters in length and variable-length records. Further restrictions
on the PL/I interface are discussed later.

In this section, the syntax and usage of PL/I statements are addressed
in relation to MIDASPIUS only. See the PL/I Reference Guide for
complete syntax information on these and other PL/I statements
referenced here.

8-1 Second Edition

MIDASPLUS USER'S GUIDE

lLanguage Limitations

The PL/I interface to MIDASPLUS does not support the following
MIDASPLUS features:

e Non-ASCII primary keys
e Secondary keys
e Direct access MIDASPLUS files

e Secondary data

Since PL/I does not support secondary keys or non-ASCII primary keys,
you cannot use PL/I to set up a MIDASPIUS file template with these
features. To create a MIDASPLUS file with secondary keys, fixzed-length
records or a primary key of less than 32 characters, use CREATK. You
can access this type of file from a PL/I program as long as its primary
key is a character string of 32 characters or less. You can still
access existing MIDASPLUS files with secondary keys from a PL/I
program, but you will not be able to access any secondary index
subfiles from PL/I.

Conversion

The restriction on primary key type applies only to the actual
definition of the primary key during template creation. As long as the
primary key 1is declared as an ASCII character string of 32 or fewer
characters, you can access the file from PL/I using character or
numeric key values. Numeric values are converted to character strings
according to the standard PL/I conversion rules.

RUNNING A PL/I PROGRAM

The following is a sample compile and load sequence using BIND. User
input is wunderlined to distinguish it from system output. Substitute
the name of your program for the program argument in the following
example. This example appears in uppercase to help you distinguish
between the letter 1 and the number 1. You may use either uppercase or
lowercase letters.

Second Edition 8-2

THE PL/I INTERFACE

0K, PL1 program-name.PLl
[PL1 Rev. T1.0-21.0 Copyright (c) 1986, Prime Computer, Inc.]
0000 ERRCRS [PL1 Rev. 22.0]

(K, BIND

[BIND Rev. 21.0.1 Copyright (c) 1985, Prime Computer, Inc.]
: LOAD program-nane

: LT PL1LIB

: I

BIND COMPLETE

: FILE

CK, RESUME program-name

OPENING/CREATING A MIDASPLUS FILE

There are two ways to create a MIDASPLUS file for use with PL/I. You
caen create the file with CREATK and then open it for reading and/or
writing from a PL/I program. You could also create a MIDASPLUS file
from PL/I using the standard file I/0 statements. The next part of
this chapter tells how to create a new file with PL/I and how to open
an existing MIDASPIUS file.

For information on opening non-PL/I created files (MIDASPLUS files
created directly with CREATK or KX$CRE), see ACCESSING CREATK-DEFINED
FILES below.

Creating A MIDASPLUS File From PL/I

When creating a MIDASPLUS file from a PL/I program, declare the file
explicitly with the KEYED SBQUENTIAL [RECORD] attributes. It is not
necessary to specify the RECORD attribute since the KEYED attribute
implies it. Follow this sequence when creating a MIDASPIUS file from
PL/I:

DECIARE filename FILE KEYED SEQUENTIAL;
OPEN FILE(filename) OUTPUT;

The FILE keyword in the DECLARE statement must appear before or after
the actual filenmame. You can abbreviate the DECLARE statement to DCL.
These statements tell MIDASPLUS to open a MIDASPLUS file with the
default attributes. (See The PL/I Reference Guide for details on OPEN
and DECIARE syntax and attributes.) The MIDASPLUS file will have
variable-length records with a maximum length of 4096 bytes and a
maximum primary key of 32 characters.

Although the defamlt is defined as an ASCII character string, PL/I
conversion rules allow you to define the primary key from program level

8-3 Second Edition

MIDASPLUS USER'S GUIDE

as a character or numeric item. You can write file entries with
character or numeric key values. Remember that the data must be read
in the same format in which it was written. You cannot mix and match
data types in WRITE and READ statements.

Opening an Existing MIDASPLUS File

To open an existing MIDASPLUS file that was previously created with
PL/I, use the open statement with this format:
INPUT |-
OPEN FILE(filename) { OUTPUT
UPDATE

Filename must not be longer than 8 characters. You may specify it
before or after the FILE keyword. Declare the file as KEYED
SEQUENTIAL. The INPUT, OUTPUT, and UPDATE options indicate the access
mode in which to open the file. The access mode controls the types of
operations that can be performed on the file.

The INPUT option allows READ operations only and defines the access
mode for this file as read only.

The OUTPUT option permits only WRITE operations and is primarily used
to open and create new files. It also allows additions to be made to
an existing KEYED SBEQUENTTAL file with the indicated name. If such a
file does not exist, PL/I creates a new one. Read and update
operations cannot be performed on a file opened for OUTPUT.

The UPDATE option permits READ, WRITE, UPDATE, and DELETE operations on

an existing file. Use UPDATE when making changes or additions to an
existing file.

Combining DCL and OPEN

You can include the INPUT, OUTPUT, or UPDATE options in the DECLARE
statement where the KEYED SBEQUENTTAL file is first declared. This
eliminates the need for an explicit OPEN statement, for example:

DECLARE SAMPLE FILE KEYED SEQUENTIAL OUTPUT;
or
DCL OTHER FILE KEYED SEQUENTIAL INPUT;

A file opened or declared as INPUT or UPDATE must already exist. If it
does not exist, an error is returned.

Second Edition 84

THE PL/I INTERFACE

FILE I/0 CONCEPTS IN PL/I

The following PL/I statements are all used to access MIDASPLUS files
from PL/I programs:

Statement Function

READ [KEY] Reads next sequential record in a file (if KEY
is not specified) or reads record with the
indicated KEY value.

WRITE Adds a new record to the bottom of the file
with a specified primary KEY value.

REWRITE [KEY] Updates (rewrites) the indicated record (KEY
specified) or the current record (no KEY).

DELETE [KEY] Deletes the specified record (KEY specified)
or the current record (no KEY).

Table 8-1 indicates which statements can be used in each access mode.

Table 8-1
Access Mode Statements
INPUT OUTPUT UPDATE
READ WRITE READ
WRITE
REWRITE
DELETE

The Current Record in PL/I

PL/I automatically handles the current file position. As a result, you
do not have to be concerned about a communications array to keep track
of the current interface. Before performing the read operation, the
PL/I READ statement advances the current file position pointer to the
next sequential record in the file. After a READ, the current record
is always the one just read. The WRITE statement positions to the
proper spot in the primary index subfile so that it can insert the
primary key value of the record being added in
its proper place. The current record after a WRITE is the record just

8-5 Second Edition

MIDASPIUS USER'S GUIDE

written. No record is current after a DELETE because DELETE always
removes the current record. REWRITE does not update the current record
position.

Initial Current Record: When a MIDASPLUS file is opened for INPUT or
UPDATE in PL/I, the current file pointer is set just before the first
record in the file. A READ (with or without KEY) establishes a current
record position. This establishes the current file position and
initializes the MIDASPIUS communications array that PL/I transparently
handles for you.

DELETE and the Current Record: After a DELETE operation, the current
record is left undefined wuntil the next READ or WRITE operation.
Unless you just deleted the last record in the file, a sequential READ
(without the KEY option) will work. A WRITE operation positions the
file pointer to the place in the index where the key entry associated
with the record to be written logically fits according to the collating

sequence.

Locked Records

Since the PL/I WRITE and REWRITE statements always lock the current
record, there are no specific lock/unlock statements in PL/I. The lack
of such statements can cause problems if you hit CIRL-P or BREAK
immediately after a WRITE or REWRITE operation. Records are locked
only for WRITE or REWRITE statements.

ADDING RECORDS

To add records to a new or existing file, open the file for OUTPUT or
UPDATE. Use the following PL/I WRITE statement to write records to the
MIDASPLUS file.

WRITE FILE(filename) FROM(var) KEYFROM(keyvar);

The var argument contains the new record information. Declare its data
type as CHARACTER and its size (which PL/I views as the record size) as
varying (VAR) if desired. (See Declaring Data Size Section below.)

Second Edition 8-6

THE PL/I INTERFACE

The KEYFROM Option

The KEYFROM option specifies the primary key value for this new record.
Make sure that KEYFROM and a unique key value are present in every
WRITE statement performed on a MIDASPLUS file. You can declare keyvar
as a character string of 32 characters or less, or as a numeric field
(for example, fixed binary or fixed decimal). If declared as a
CHARACTER, it cannot be declared as VARYING. If the template was
created with CREATK, make sure that the variable matches the size and
type of the primary key as defined during template creationm.

PL/I always writes 32 characters per index entry regardless of how many
non-blank characters you specify in a WRITE statement and regardless of
how you define the primary key in your program. It is recommended that
you declare the key variable as 32 characters even if you have fewer
characters. For example, if you have a 10 character key, declare the
key variable as 32 characters. It is Dbetter to have PL/I add the
remaining 22 characters as blanks than to have unpredictable values
stored in the index entry slot.

Since PL/I uses only primary keys, no duplicates are allowed. If the
key value specified for keyvar already exists in the file, a KEY error
will be reported and the program will halt. Make sure the primary keys
are unique. Supply a new value for the keyvar argument with every
WRITE statement. (See the Error Handling section of this chapter for
more information on KEY errors.)

The WRITE Operation

The file must be opened for I/O or OUTPUT in order to use the WRITE
statement. WRITE updates the current record position in order to add a
new record to the file. WRITE positions the file to the proper index
location. After a WRITE, the current record is the one just written.
A read next record operation after a WRITE returns the record
immediately following the one just added.

Each WRITE operation places the primary key entry into its proper slot
in the index and adds the corresponding data record to the Dbottom of
the data subfile. Keys are added to the primary index subfile in
ascending order by key value. When reading sequentially through the
file, you will get all of the records in the order that you expect them
(based on primary index entry order) rather than in the order in which
you added them.

Declaring Data Size

It is not possible to create a true fixed-length record MIDASPLUS file
from a PL/I program. MIDASPLUS requires you to declare a maximum size
for the data variable from which each MIDASPLUS file record will be
written. This is the variable that your »yrogram puts data record

8-7 Second Edition

MIDASPLUS USER'S GUILE

information into so it can be written to the MIDASPIUS file as a unit.
By setting the size of this variable, you effectively limit the record
size of the MIDASPLUS file. For example:

DECIARE BANK FILE KEYED SEQUENTIAL;
DECLARE PKEY CHAR(32);

DECLARE DATAVAR CHAR(30);

PKEY = ‘aaaa’;

WRITE FILE(BANK) FROM(DATAVAR) KEYFROM(PKEY);

In the above example, datavar is set to 30 characters, indicating that
the records written to the MIDASPLUS file BANK will be 30 characters in
length. Datavar could be declared as "CHAR(30) VAR" to eliminate blank
padding. PKEY represents the primary key field for each file record
and is set to the default length of 32 characters (the maximum key size
that PL/I allows).

Example: The OPENIT program, listed below, opens a new MIDASPLUS file
called Sample and adds records to it. Since pkey is declared as
char(32), primary key values are supplied in ASCII form. The primary
key can either be a character string or a fixed decimal.

openit:
proc options(main);

/* This program creates a MIDASPLUS file called Sample */

dcl sample file keyed sequential; /* MIDASPLUS */
dcl pkey char(32); /* primary key */

/* recvar contains the data to add to the file */

dcl recvar char(30) var; /* record size */
open file(sample) output; /* for new file */

/* Values for pkey and recvar */

pkey = ‘0001°;

recvar = 'first file record’;

write file(sample) from(recvar) keyfrom(pkey);
pkey = '000R';

recvar = 'second file record’;

write file(sample) from(recvar) keyfrom(pkey);
pkey = ‘0003’ ;

recvar = 'third file record’;

write file(sample) from (recvar) keyfrom(pkey);
close file(sample);

end;

Second Edition 8-8

THE PL/I INTERFACE

Storing Priuary Keys in Record

To keep data integrity and to allow for future file requirements,
include the primary key in the data record as shown below:

add:
proc options(main);

/* this program adds a new record to the Sample file */

dcl sample file keyed sequential;
dcl pkey char(32); - /* primary key */
dcl recvar char(30) var;

open file(sample) output;

/* output mode is ok for adding records only */
/* primary key is in data record */

recvar = '0005fifth file record’;

pkey = substr(recvar, 1, 4);

write file(sample) from(recvar) keyfrom(pkey);
close file(sample);

end;

When reading the file, use PUT EDIT to print out just the part of the
record that you want. The key can also be stored at the end of the
data record. Since the primary key entry in the index subfile cannot
be changed, avoid making changes to the key field of the record during
an update.

READING A MIDASPLUS FILE

There are three types of file reads that PL/I can perform on a
MIDASPLUS file:

e Keyed read - a record is found based on a user-supplied key
value.

e Sequential read (also called non-keyed read) - records are read
from the file in primary key order. Either a keyed read or the
default establishes file position at some point in the primary
index subfile. This action puts the file pointer at the
beginning of the index subfile.

e Reading key values - the full key value of the primary key, as

MIDASPIUS stores it in the primary index, is returned. (This
can only be done in a non-keyed read.)

8-9 Second Edition

MTDASPIUS USER'S GUIDE

The READ Statement

The READ statement, with or without the KEY or KEYIO options, copies
the contents of one file record into a previously defined variable.
Reminder: open the file for INPUT or UPDATE in order to read it. The
READ statement format is:

READ FILE (filename) INTO(var) [KEY(keyvar)] [KEYTO (curkey)l;
A record is read into the var variable. Declare the record according
to the following rules.
For PL/I-created files, match var in size and type with the WRITE

argument that was used in writing the record. For example, the recvar
argument, as used in: -

WRITE FILE(filename) FROM(recvar) KEYFROM(pkey);

must match the var argument as used in the READ statement.

For non-PL/I created MIDASPLUS files with fixed-length records, use the
fixed record size value in declaring the INTO argument. (See Reading
Fixed-length Records below.)

For variable-length records in a file that PL/I did not create, make
sure that the record size is not larger than 256 bytes.

The KEY and KEYTO Options

The KEY option finds the record whose key matches the one specified in
keyvar. KEY is used in keyed reads only. (See Keyed Reads below.) If
KEY is omitted, the next sequential record is read. Make sure the
keyvar argument matches the data type and size of the primary key as
defined in the program that wrote entries to the file. For example, if
you wrote records using a primary key declared as FIXED(4), you would
read the file with the primary key declared as FIXED(4).

The KEYTO option copies the key value for the current record into the
curkey argument. (The key value is read from the primary index
subfile.) Always declare the curkey argument as CHAR(32) VARYING,
because of the way that PL/I handles the MIDASPLUS index subfile
entries.

Second Edition 8-10

THE PL/I INTERFACE

Note

The KEY and KEYTO options cannot appear together in the same
READ statement. Use KEY for keyed reads when the key value of
a record is known. Use KEYTO during sequential reads when you
want to determine the primary key value of the current record.
KEYTO is especially useful when keys are not stored in the
actual data file record.

Keyed Reads

To perform keyed reads, specify a valid key value with the KEY option.
valid means that the value must occur in the primary index subfile of
the MIDASPLUS file being read. Key clauses that do not appear in the
MIDASPLUS file cause key errors and program halts. If a match is
found, this record becomes the current record, and the contents of the
record are placed in the specified read variable. For example:

DECLARE SAMPLE FILE KEYED SEQUENTIAL;
DECLARE PKEY CHAR(32);

DECLARE READVAR CHAR(30);

PKEY = ‘aaaa’;

READ FILE(SAMPLE) INTO(READVAR) KEY(PKEY);
PUT LIST(READVAR);

Sequential Reads

Use a READ without the KEY option to read a MIDASPLUS file
sequentially, in primary key order. The ocurremt record pointer
advances to the next record in the file every time a READ operation is
performed. An error occurs if the pointer is at the bottom of the
file, because there are no more records to be read. The following is
an example of a sequential file read:

ON ENDFILE(SAMPLE) GOTO CLOSE _FITES;
DO WHILE(‘1‘'B); /* infinite loop */
READ FILE(SAMPLE) INTO(READVAR);

PUT SKIP LIST(READVAR);

END;

All of the records in the file from the current record are read as the
program loops. Then, the ENDFILE condition is signaled and control is
sent to the part of the program labeled "CLOSE_FILES" where the file is
closed.

8-11 Second Edition

MIDASPIUS USER’'S GUIDE

Reading Key Values

You can use the KEYTO option to obtain the value of the primary key of
the record currently being read. For example:

DECLARE KVAR CHAR(32) VAR;

READ FILE(SAMPLE) INTO(READVAR) KEYTO(KVAR);

PUT SKIP LIST('RECORD:’, READVAR);

PUT SKIP EDIT('KEY VALUE:', KVAR) (A, X(2), A(4));

The PL/I PUT EDIT statement is useful when you want PL/I to print only
the first few characters of the primary index subfile entry. Without
this statement, PL/I prints a 32-character version of the primary key.

Below is a listing of a sample program that performs keyed and
sequential reads on the file that OPENIT created.

(K, SLIST READ.PL1
read:

proc options(main);
dcl sample file keyed sequential;
dcl pkey char(32); /* primary key */
dcl sysprint file;
dcl readvar char(30) var;
/* make it the same as recvar */
dcl kvar char(32) var; /* reads keys */

/* KVAR is used with KEYTO option and must be CHAR VARYING */
/* set up an on-unit to handle end of file */
on endfile(sample) begin;
close file(sample);
put skip list('End of file');
stop;
end;
open file(sample) input;
/* read with a key */
/* Note: the first READ doesn’t have to be a keyed one */

pkey = ‘0001';
read file(sample) into(readvar) key(pkey);
put skip list(readvar);
/* now read sequentially (without key) */

read file(sample) into(readvar);
put skip list(readvar);

Second Edition 8-12

THE PL/I INTERFACE

/* read with KEYTO option */

/* now read next record and return the key value with KEYTO
option */

read file(sample) into(readvar) keyto(kvar);

put skip list(readvar);

put skip edit('Key value:', kvar) (a, x(2), a(4));
close file(sample);

end;

(K, PL1 READ.PL1
[PL1 Rev. T1.0-21.0 Copyright (c) 1986, Prime Computer, Inc.]
0000 ERRORS [PL1 Rev. 22.01] '

OK, BIND

[BIND Rev. 21.0.1 Copyright (c) 1985, Prime Computer, inc.]
: IOAD READ

: LT TLILIB

: FILE

: 1T

BIND COMPLETE

: FILE

(K, RESUME READ

first file record
second file record
third file record
Key value: 0003

UPDATING FILE RECORDS

Record updates in PL/I are performed with the REWRITE statement, which
replaces either the current record (that is, the one just read) or a
user-specified record with a new record value.

REWRITE uses either the communications array value or the supplied key
value to determine which record is current. The current record is
automatically locked during a REWRITE and kept locked until another I/0
operation is performed. The current record position is not updated
after the REWRITE operation is complete.

The REWRITE Statement

Records in an existing MIDASPLUS file can be updated with the REWRITE
statement:

REWRITE FILE(filename) FROM(datavar) [KEY(keyvar)];

8-13 Second Edition

MIDASPLUS USER’'S GUIDE

Datavar is the variable containing the data that will replace the
record being updated. You cannot update just part of a record. You
must rewrite the whole thing. If you make a mistake while adding the
original key field, delete the record and then WRITE it over correctly.

The REWRITE KEY Option

Use the KEY option when you want to specify exactly which record will
be updated, to avoid confusion about the record being updated. Without
the KEY option, REWRITE updates the current record, which is the record
that the READ statement just read or the record that the last WRITE
statement wrote when no intermediate READ statement occurred. This
means that a current record position would have already Dbeen
established (by a READ, WRITE, or another REWRITE with the KEY option)
before a REWRITE without the KEY option. In this case, PL/I uses the
MIDASPIUS communication array to determine where the current record is
and which record should be updated. If the KEY option is used with
REWRITE, it is not necessary to perform a READ or WRITE before REWRITE.
If keyvar indicates a key value that does not exist in the file, a key
error is triggered and the program aborts.

The following program performs an update on the MIDASPLUS file SAMPLE.

OK, SLIST UPDATE.PL1
update:
proc options(main);
dcl sample file keyed sequential;
dcl pkey char(32); /* primary key */
dcl sysprint file;
dcl readvar char(30) var;
/* make it same as recvar */
dcl kvar char(32) var; /* reads keys */

/* KVAR is used with KEYTO option and must be CHAR VARYING */
/* set up an on-unit to handle end of file */

on endfile(sample) begin;
close file(sample);
put skip list('End of file');
stop;
end;
open file(sample) update;
rkey = ‘0002’ ;
read file(sample) into(readvar) key(pkey);
put skip list(readvar);

/* update this record */

readvar = 'New second record’;

Second Edition 8-14

THE PL/I INTERFACE

/* use the KEY option to be sure */

rewrite file(sample) from(readvar) key(pkey);
read file(sample) into(readvar) key(pkey);
put skip list(’'New record:’', READVAR);
close file(sample);
end;

/* now run the program */

CK, PL1 UPDATE.PLl
[PL1 Rev. T1.0-21.0 Copyright (c) 1986, Prime Computer, Inc.]
0000 ERRORS [PL1 Rev. 22.0]

OK, BIND
[BIND Rev. 21.0.1 Copyright (c) 1985, Prime Computer, Inc.]
: LOAD UPDATE

: LT PLILIB

N Y

BIND COMPLETE

. FILE

OK, RESUME UPDATE

second file record
New record: New second record
X,

DELETING RECORDS

The primary key deletes records from a MIDASPLUS file. The index
subfile entry is marked for deletion and the corresponding primary
index value is deleted. Remember a file must be opened for UPDATE in
order to delete records from it. A READ or WRITE operation performed
immediately after a DELETE works fine, but a DELETE (with or without a
KEY) or a REWRITE operation after a DELETE signals an error.

The DELETE Statement

To delete a record from a MIDASPIUS file, use the DELETE statement.
Use DELETE with a KEY option to indicate which record is to be deleted:

DELETE FILE(filename) [KEY(keyvar)];

If specified, make sure that keyvar is a key value that occurs in the
MIDASPLUS file, otherwise a KEY error occurs. If no KEY is specified,
the current record is deleted. (It is assumed that a previous RFjAD or

8-15 Second Edition

MIDASPLUS USER'S GUIDE

REWRITE statement established the current record position.) DELETE
does not update the file pointer location; thus the current record is
always left undefined.

Delete Program: This program deletes a record from the Sample file:

OK, SLIST DELETE.PL1

delete:

proc options(main);
dcl sample file keyed sequential; /* existing file */
dcl pkey char(32); /* primary key */

dcl recvar char(30) var;

decl readvar char(30) var;

dcl kvar char(32) var; /* reads keys */
dcl sysprint file;

/* KVAR is used with KEYTO option and must be CHAR VARYING */

open file(sample) update;

/* UPDATE mode required for rewrites or deletes */
pkey = '0002';
read file(sample) into(readvar) key(pkey);
put skip list(readvar);

/* delete this record */
delete file(sample);
/* check to see if this record is gone */
/¥ if it is, a KEY error will be raised */
read file(sample) into(readvar) key('0002');
close file(sample);
end;
/* now run the program */
(K, PL1 DELETE.PL1

[PL1 Rev. T1.0-21.0 Copyright (c) 1986, Prime Computer, Inc.]
0000 ERRORS [PL1 Rev. 22.0]

(K, BIND

[BIND Rev. 21.0.1 Copyright (c) 1985, Prime Computer, Inc.]
: LOAD DELETE

: LT PL1LIB

BIND COMPLETE

: FILE

(K, R DELETE

New second record

KEY(SAMPLE) raised in DELETE at 4673(3)/1224
(record not found in READ)

Second Edition 8-16

THE PL/I INTERFACE

ERROR (file = SAMPLE) raised in DELETE at 4673(3) /1224
(no on-unit for KEY)

ER!

The error conditions are raised because there is no on-unit to trap key
errors. See See Key Errors below.

ACCESSING CREATK-DEFINED FILES

PL/I programs can access MIDASPLUS files that are not created through
PL/I. Remember to consider the restrictions on READ and WRITE argument
size. It is easier to determine how the arguments should be declared
if the file in question has fixed-length records.

Note

Avoid updating the same MIDASPLUS file with more than one
high-level language interface.

Reading Fixed-Length Records

When oOpening an existing CREATK-defined MIDASPLUS file with
fixed-length records, determine the record size so that you can use it
in defining the READ or WRITE statement arguments. Use CREATK's PRINT
function and enter data in response to the INDEX NO? prompt.

The data size is displayed next to ENTRY SIZE. (Since PL/I cannot
create a MIDASPIUS file with fixed-length records, the ENTRY SIZE is
displayed as USER-SUPPLIED for PL/I-created MIDASPLUS files.)

The following program opens and reads the sample MIDASPLUS file BARNK,
which is a CREATK-defined file:

OK, SLIST BANKREAD.PLl
bankread:
proc options(main);

/* this program opens and reads from */
/* a previously-created MIDASPLUS file BANK */
/* which has fixed-length records */

dcl bank file keyed sequential;
dcl pkey char(9); '
dcl sysprint file;
dcl readvar char(86);

" /* reads keys */

8-17 Second Edition

MIDASPIUS USER'S GUILE

/* KVAR is used with KEYTO option and must be CHAR VARYING */
/* set up an on-unit to handle end of file */

on endfile(bank) begin;
close file(bank);
put skip list('End of file');
stop;
end;
open file(bank) input;
pkey = ‘189264289 ;
read file(bank) into(readvar) key(pkey);
put skip list(readvar);
close file(bank); :
end;

OK, PL1 BANKREAD.PLl _
[PL1 Rev. T1.0-21.0 Copyright (c) 1986, Prime Computer, Inc.]
0000 ERRORS [PL1 Rev. 22.0]

OK, BIND

[BIND Rev. 21.0.1 Copyright (c) 1985, Prime Computer, INC.]

: load bankread

: 1i plllib

:1i

BIND COMPLETE

: file ~

OK, R BANKREAD

189264289murray, paul mcR8374646123 orchard rd manchester nh03102
mt

ERROR HANDLING

The most commonly encountered errors in the PL/I interface are key and
record errors. Include on-units for these conditions in your programs,
as well as an ENDFILE on-unit for files opened for INPUT or UPDATE.

Key Errors
The key error condition may be raised for several reasons, including:

e The record with the indicated KEY cannot be found during a READ
or REWRITE.

e The program attempted to add a record with a key value that
already exists in the file. Duplicate keys are not allowed.

Second Edition 8-18

THE PL/I INTERFACE

A partial key value is used during a READ or REWRITE. (The use
of partial keys is not supported.)

The size used in declaring the key variable during a READ is
smaller than the default size indicated for the key in the index
subfile. (The default for PL/I-created files is 32 characters.)

There is no more room to add keys in the primary index subfile.
(This error is very rare.)

The key value is in the wrong format or was not specified
properly. (For example, the key might have been written as a
fixed decimal and you are trying to read it back as a character
string.)

As an aid in debugging, the ONKEY function (built-in) returns the value
of the key that caused the key error. The following program contains
KEY and ENDFILE on-units to trap errors that may occur while performing
file reads:

(K, SLIST READERR.PL1
readerr:

/*

proc options(main);

this program shows the use of on-units in trapping KEY errors
during file reads */

dcl err_file file output;

/*

err_file is for error messages */

decl onkey builtin;

/*

returns key value that caused error condition to be raised */

dcl badkey char(32) var;

dcl sample file keyed sequential;
dcl pkey char(32);

dcl readvar char(30) var;

dcl kvar char(32) var;

dcl sysprint file;

/*

/*

/*

/*

VA

KVAR is used with KEYTO option and must be CHAR VARYING */
Set up on-unit to handle file read errors */

on key(sample) begin;
KEY condition is a common error */
badkey = onkey;
assign value of error-causing key to BAIKEY and print it out */
put skip file(err_file) list (‘Bad key is:’', badkey);
goto pick _up;
end; /* end on-unit */

set up an on-unit to handle end of file */

on endfile(sample) begin;

8-19 Second Edition

MIDASPLUS USER'S GUIDE

close file(sample);
put skip list(’End of file’);
stop;
end;
open file(sample) input;
open file(err_file);

/* the first READ doesn’t have to be a keyed one */

read file(sample) into(readvar);
put skip list(readvar);

/* now read with bad key */
pkey = '0008"; /* no such key */
/* this should trigger on-unit for KEY */

read file(sample) into(readvar) key(pkey);
put skip list(readvar);

/* control comes here in event of an error */

pick_up:
read file(sample) into(readvar) key('0001’);

/* read top of file */

put skip list(readvar);
close file(sample);

close file(err_file);
end;

/* now run the program */

(X, PL1 READERR.PL1
[PL1 Rev. T1.0-21.0 Copyright (c) 1986, Prime Computer, Inc.]
0000 FRRORS [PL1 Rev. 22.0]

K, BIND

[BIND Rev. 21.0.1 Copyright (c¢) 1985, Prime Computer, Inc.]
: LOAD READERR

: LT PL1LIB

: 1T

BIND COMPLETE

: FILE

K, R READERR
first file record

first file record
X,

Second Edition 8-20

THE PL/I INTERFACE

Record Errors

The record error condition is generally raised during a READ, WRITE, or
REWRITE operation when the size of the record in the data subfile does
not match the size of the variable into which the record is being read
or from which it is being written. The variable used may be too small
or too large to accommodate the size of the data being read into it.
PL/I requires that the record size and the read variable match exactly.
Careful programming is the only way to avoid this error in PL/I.

Other Possible Error Conditions

The undefined file condition may be raised during an unsuccessful
attempt to open a file. This can occur for a variety of reasons:

e The filename was misspelled when you opened the file for INPUT
or UPDATE. (Use of these access modes assumes that the file
exists.)

e An attempt was made to open a non-existent file for INPUT or
UPDATE.

e Incomplete or conflicting attributes were specified during an
OPEN or DECIARE FILE statement.

e Your version of PL/I has not been loaded with the proper
MIDASPLUS interface routines and/or proper libraries.

e Your compiler is not functioning properly.
In MIDASPIUS files, if one of the segment subfiles is left open (due to
program error or failure) an attempt to re-open the file will cause

this condition. Use the PRIMOS level command CLOSE ALL to close the
file before attempting to rerun the program.

Locked Records

If the program aborts and a record in the file remains locked, run
MPACK t0 unlock the record since the record cannot unlock itself. If a
record is locked and you press CTRL-P or BREAK immediately, the record
stays locked. If you attempt to read a locked record, an error
condition is signaled and the program fails. At this point, run the
MPACK utility using the UNLOCK option.

8-21 Second Edition

The VRPG Interface

This chapter explains how to use VRPG to access MIDASPLUS files. The
chapter discusses the language dependent features of VRPG, describes a
MIDASPLUS file in VRPG, explains the file operations, provides VRPG
programning examples, explains multiple key processing, and describes
IBM system/34 compatibility features. The following is an overview of
the VRPG Specification Statements. (This chapter refers to the
standard VRPG coding Specifications Sheet as a statement.)

File Specification describes the name of a file and its attributes.

Input describes all input record descriptions for input or update
files.

Calculation describes calculations performed on data. Allows the
programmer more flexibility beyond sequential processing.

Output describes all output records for output or update files.

Extension describes the tables and arrays.

Prime’s VRPG supports both keyed-indexed and direct access MIDASPLUS
files. You describe the file organization in the File Specification
Statement.

9-1 Second Edition

MIDASPIUS USER'S GUIDE

LANGUAGE-DEPENDENT FEATURES

VRPG can use the primary key and up to 17 secondary keys to access a
MIDASPLUS file. For information about using VRPG with secondary keys,
see the section MULTIPLE KEY PROCESSING later in this chapter. Special
congiderations for the VRPG interface with MIDASPLUS follow:

All keys must be in the data record.
VRPG does not support secondary data.

All keys of an indexed file can be no more than 32 characters
long.

During template creation with CREATK, the A (ASCII) option
defines a primary key of a direct file. This primary key,
defined as a standard numeric item, is called the relative
record number.

If the MIDASPIUS files are indexed and are designated as chained
files, you can use a key to randomly access the files.

If the MIDASPLUS files are direct files and are designated as
chained files, you can use a relative record number to randomly
access the files.

You can only delete records from indexed files.

COMPILE AND ILOAD SEQUENCE

Substitute the name of your program for the word program in the
example. A sample compiling and linking session using VRPG follows.

vIpg program

[VRPG Rev. 19.4]

F
I
0]

0000 ERRORS [VRPG Rev. 19.4]
K, bind

[BIND rev 19.4]

: load program

: 1i vrpglb

c1i

BIND COMPLETE

: file

CK, resume program

Second Edition 92

THE VRPG INTERFACE

DESCRIBING A MIDASPLUS FILE IN VRPG

The first part of MIDASPLUS file handling in VRPG is the definition
process. This process consists of correctly describing the MIDASPLUS
file to VRPG via the File Specifications Statement. Table 9-1 shows
how to define a keyed-index or a direct access MIDASPLUS file with the
File Specifications Statement. Table 9-2 lists the MIDASPLUS specific
fields in the other VRPG statements. See the RPG II V-Mode Compiler
Reference Guide for complete details of these statements.

Table 9-1
VRPG File Description Specifications
For MIDASPLUS Files

Attributes Column(s) What to Specify
File Type 15 I = Input

O = Output

U = Update
File Designation 16 P = Primary

S = Secondary

C = Chained

D = Demand

(Blank = Output)
File Format 19 F = Fixed-length
Record Length 24-27 MIDASPIUS data record

length, including the
Primary key length.

Mode of Processing 28 R = Random by key,
relative record number, or
AITROUT file.

L = Sequential within
limits, or by record
address file.

Blank = Sequential by key
(indexed files) or
consecutive access (direct
files).

Key-Field Length 29-30 Number of characters in
index —- for indexed files
only. (Ilength from 1-32)

Indexed
Direct

File Organization 32

o

I
D

9-3 Second Edition

MIDASPIUS USER’'S GUIDE

Table 9-1 (continued)
VRPG File Description Specifications
for MIDASPLUS Files

Attributes Column(s) What to Specify
Key Col. Position 35-38 Column where the key
starts in the data
record — for indexed
files only.
Extension Code 39 M = Multiple keys are
' being used. Key

definition lines follow
that give all of the keys
used in the indexed file.
For information about key
definition lines, see the
section MULTIPLE KEY
PROCESSING later in this

chapter.
Device 4046 DISK (Required)
File Addition 66 A = Add records to a

non-empty indexed file.
The records do not have to
be added in sequential
order.

U = Add unordered records
to an empty indexed file.
Must be used in
conjunction with an O in
column 15.

Blank = Add ordered
records to an empty
indexed file. Must De
used in conjunction with
an O in column 15.

Key of Reference 73-74 Number (00-17) indicating
the key being defined in
columns 35-38 — for
indexed files only.

A few of the attributes mentioned in Table 9-1 require more explanation
regarding their relationship to MIDASPLUS. This section describes how
file type specification (column 15), file designation restrictions
(column 18), file addition specifications (column 66), and mode of
processing (column 28) relate to MIDASPLUS file processing in VRFG.

Second Edition 94

THE VRPG INTERFACE

Table 9-2
VRPG Fields For Other Statements

Statement Column(s) What to Specify
Calculation 28-32 Operation: SETLL, SEIK,
READ, CHAIN
Calculation 54-55 Indicator on for record
not found
Extension 11-18 ' Name of the separate

sequential limits file
for the RAF method

Extension 19-26 Name of the MIDASPIUS
file to be processed

Input 61-62 Matching fields or
chaining fields

Output Specifications 16-18 AD = Add records to an
indexed file

DEL = Delete records

(Blank = Add records to
a direct file)

File Type Specification

The following restrictions apply to MIDASPLUS files as described in
column 15 of the File Description Statement.

The file type (column 15) can be one of these:

e I — Input (for reading only) *

® O — Output (for writing only)

e U — Update (for reading, writing, deleting, and updating) *
* If an A occurs in column 66 of the File Description Statement and an
ATD entry appears in column 16-18 of the Output Statement, new records
may be added to the file.

You cannot describe a MIDASPLUS file as a Display (D) file in VRFG.

o5 Second Edition

MIDASPLUS USER'S GUIDE

File Designation Restrictions

The legal file designations for a MIDASPIUS file, as indicated in
column 16 are: '

e Primary (P): The main file from which records are read.
Specify only one primary file per program. You can open the
primary file for input or update.

e Secondary (8): One or more files from which records are read
after the Primary file is processed. This happens if matching
is not specified in columns 61-62 of the Input Statement. If
matching is specified, standard VRPG matching algorithms process
secondary files. Secondary files can be Input or Update files,
and they are processed in the order in which they appear in the
File Description Statements.

e Chained (C): Either read randomly or loaded directly via the
CHAIN operation code in the Calculation Statement. Chained
files can be opened for Input, Output, or Update.

e Demand (D): Can be either input or update files. Use the READ

operation code in the Calculation Statement to read from a
Demand file. These files are processed sequentially by key.

File Addition Specifications

You can add records either sequentially or randomly to an indexed
(MIDASPLUS) file. Records cannot be added to a file opened for access
under the sequential within limits processing mode. For an indexed
file opened for Input, Output, or Update, A in column 66 indicates that
new records can be added in any order. For an indexed file opened for
Output, a blank indicates a load to an initially empty file where you
are required to supply records in key order. U in column 66 indicates
an unordered load to an initially empty file. It is more efficient to
add records in sorted order (by primary key value) since MIDASPLUS does
not have to sort the records in the loading process.

To initially load records to direct files, specify the file as Output
Chained. Put O (Output) in column 15, and C (Chained) in colum 16.
To add records to a direct file that already contains entries, specify
the file as Update Chained. Put U in column 15 and C in column 16. In
either case, column 66 of the File Specification Statement and columns
16-18 of the Output Statement should be blank. The relative record
number values cannot be larger than the number of records pre-allocated
during template creation.

Second Edition o6

THE VRPG INTERFACE

Primary or Secondary Files:

You may access primary or secondary files by sequential or random
access methods. The particular access method (mode of processing)
deperds on the file's organization.

Organization Mode of Processing

Direct Sequential by relative record number,
Random by ADDROUT file

Indexed Sequential by key, Sequential within limits,
Random by AIDROUT file

Chained Files

You may process MIDASPLUS files declared as Chained files according to
their organization. If the MIDASPLUS file is indexed, access it
randomly by key. If the file is direct, access it randomly by relative
record number only. You can only access MIDASPLUS files by key if they
are defined as Chained files.

Demand Files

You may process demand files (both indexed and direct) sequentially by
key or sequentially within limits (for indexed files only). There are
two methods of accomplishing limits processing: wusing the set lower
limit (SETLL) operation in a Calculation Statement, or using a record
address file (RAF). (RAFs are sequential files used to perform Ilimits
processing on indexed files.)

The SETLL operation specifies a lower limit for the primary key value.
The file can then be positioned to the record having that primary key
value and can be processed from that point.

The RAF method requires the creation of a separate sequential "limits"
file. The file contains records that specify the low value from which
to start processing, and the high value at which to stop processing.
To use the RAF method, specify the name of this file in the Extensions
Statement (in columns 11-18), along with the name of the MIDASPLUS file
that is to be processed (columns 19-26).

o7 Second Edition

MIDASPIUS USER'S GUIDE

FILE OPERATIUNS

The operations that can be performed on a MIDASPIUS file vary with the
file description in the File Description Statement. The following are
the standard file operations that a VRPG program can perform on
MIDASPLUS files:

e Position the file

e Read records

e Add records

e Load records

e Update records

e Delete Records

These operations are explained below.

Positioning the File

File position is thought of in terms of a file pointer that always
points to some record in the file. The record to which the file
pointer is positioned is called the current record, or the current file
position. Only a file designated as chained can be positioned to a
specific record in the file. Use a CHAIN operation in the Calculation
Statement to establish file position. When you specify a primary key
value for a chained file, the file pointer positions to the record with
this key value. This record becomes the current record and is read.
If the file is opened for Update, the record will also be locked.

Demand files can also be positioned, but only indirectly. SEILL or a
record address file (RAF) can do the positioning. Set the lower limit
for the primary key with the SETLL operation in a Calculation Statement
or in the RAF, and then perform a READ operation. The record
positioned to will be the one whose primary key value matches the lower
limit value, if such a record exists. If this primary key value does
not exist, the next record whose primary key value is greater than the
lower limit specification becomes the current record.

Reading Records

Depending upon their designation, you can read MIDASPIUS files as part
of the normal Input cycle or as part of the Calculation cycle. Files
whose records are read as part of the Input cycle are declared as
Primary or Secondary and are read sequentially. Files declared as
Demand can also be read sequentially from beginning to end using a
SETLL operation, or by using RAF to set an initial file position. The

Second Edition o-8

THE VRPG INTERFACE

read occurs during the READ operation of the Calculation S.atement.
Using the CHAIN operation of the Calculation Statement, the primary or
relative record key value randomly reads records from files declared as
chained. If the file is an Update file, the record is also locked when
positioned to and read.

Sequential Reads on Indexed Files: Indexed files read as a part of the
normal Input cycle are read sequentially by key. Each record is read
in the order in which the key values appear in the primary index
subfile. After a record is read, VRPG automatically advances the file
pointer and makes the next record (in primary key order) the current
record. The next READ operation then reads the current record, and
again advances the file pointer to the next record, making it current.
You cannot randomly read files opened as primary or secondary files.

Demand files can be read sequentially within limits using the SETLL or
RAF operations.

Random Reads: Random reads can be performed only on files designated
as chained files. This applies both to indexed and direct files. To
perform random reads, use the CHAIN operation in the Calculation
Statement. The primary key or relative record number is supplied to
MIDASPLUS, and the next record whose primary key matches this value is
returned. Set the indicator for "no record found" (in columns 54 and
55 of the Calculation Statement). This allows the program to recover
if there is no record in the file with that key value or a given record
number.

Note

In direct files, space is pre-allocated for every record during
template creation. If a legal record number is supplied in a
CHAIN operation, but there is no corresponding record for that
number, the record is returned as blanks. VRPG does not treat
a read of a non-existent record as an error, as long as the
record number is within the pre-allocated limit.

Adding Records

Use standard VRPG output methods or the KBUILD utility to add records
to a MIDASPLUS file.

In indexed files that contain entries, if column 66 of the File
Specifications Statement contains an A and columns 16-18 of the Output
Statement specify the ADD Operation, VRPG can add records to the file.
The file can be opened for Input, Output, or Update. This applies only
to files that already contain entries.

9-9 Second Edition

MIDASPLUS USER'S GUIDE

Direct access files do not support ADD because of their file structure.
Use an update to add records. (See Updating Records below.)

Loading Records

To load an indexed file, place a U or a blank in column 66 of the File
Specifications Statement. U implies an wunordered load and blank
implies an ordered (sequential by key) load. AID is not entered in
columns 16-18 of the Output Statement during a load.

To load a direct file, specify it as Output Chained. Use the CHAIN

operation in the Calculation Statement to indicate the relative record
number for each record to be loaded.

Updating Records

To update a MIDASPLUS file record in VRPG, you must first read the
record and then update it in the Output cycle. Be careful not to
change the primary key value when rewriting a record. MIDASPLUS does
not allow the primary key value to be changed. This applies to both
indexed and direct files.

The only way to add new records to a direct file that contains entries
is to perform an Update. VRPG assumes that any record for which space
has been pre-allocated by CREATK, but that was not added during the
initial load, exists as all blanks. As a result, any attempt to add a
new entry to a direct access file is an wupdate of the blanks that
already appear in this slot in the file.

Deleting Records

VRPG allows you to delete records for indexed files. In order to
delete a record, either use a CHAIN operation in the Calculation
Statement to read the file or use READ statements to read the file and
then use an output specification to delete the records. To delete
records, you must specify a file as an update file. The record that
was previously read is the record that will be deleted.

Use header, detail, total, or exception output in the output
specifications to specify deletion. Specify DEL in columns 16-18 of
the main line in an output specification along with the filename, the
type of output, and any output indicators. You may use OR-lines to
condition the deletion, but DEL should only be specified in the first
line of the specification. DIEL applies to all of the OR-lines. Do not
give any field specifications for a deletion.

Vhen a delete occurs, the key and record are deleted from the file and
are no longer available. MIDASPLUS marks the record as deleted and

Second Edition 9-10

THE VRPG INTERFACE

physically removes the record if MPACK is used. (See Chapter 15,
PACKING A MIDASPIUS FILE.) The following compilation errors and their
meanings can occur with DEL:

Severity 3 error DEL is specified for a file that is not an
update indexed file.

Severity 2 error An output field is specified for a DEL
output. All specifications are
ignored.

DEL is specified on an OR-line, but was
not specified in the main line.
DEL is ignored.

If DEL is specified on an OR-line and was specified in the main line,

no error occurs. The program is treated as if there were no DEL on the
OR-line.

Error Handling

A Tuntime error occurs if a program tries to delete a record without
successfully reading it first. You may enter S and the program
continues, ignoring this deletion attempt. The filename and the last
key processed (if a key existed) are displayed with the error message.
Runtime errors also occur if MIDASPLUS is unable to delete the record.

VRPG flags all MIDASPLUS errors but can only recover from "record
locked", "record not on file", and "delete before a successful read"
conditions. The messages are described below. The format of the
nessages is shown here.

Record Locked: The record locked message is:

% % % Xk m % % X %

Unable to lock the record for update. The record is already locked.
File : filename

Key : keyfield

RECORD IN USE. TYPE S(CR) TO TRY AGAIN.

The record has been locked in anticipation of an update. Keyfield is
the key that MIDASPLUS was processing when the error occurred. If no
other user is accessing the file, the file was not properly closed
after previous usage. If another user is accessing the file, take fthe
S(CR) option. Otherwise, close all files and perform the necessary
steps, depending upon your application, to have a reliable file. If
you enter S, the operation is executed again.

o-11 Second Edition

MIDASPIUS USER'S GUIDE

CHATN Errors: An unsuccessful CHAIN operation invokes the message:

UNSUCCESSFUL CHAIN. TYPE S(CR) TO SKIP PAST OUTPUT.

This message is returned when a CHAIN operation has been attempted on
the file and MIDASPIUS was unable to retrieve the record. This is a
serious message and indicates that the file is probably corrupted, or
that the file is not a valid MIDASPLUS file. Entering S restarts the
VRPG program cycle and skips all of the operations that would involve
this record.

Read Errors: The message for a general read error occurring at PRIMOS
level is returned as:

**x*UNSUCCESSFUL READ AT LINE nn.
This indicates an I/0 error at the system level. You have no control
over such errors.
The general MIDASPLUS error message is reported as:

MIDASPLUS [MIDASPLUS error message number] filename

MIDASPLUS errors cannot be handled by typing an S followed by RETURN.
Type an S only when VRPG's message states to do so.

MIDASPLUS Concurrency Errors: VRPG returns the MIDASPLUS concurrency
error message as:

X* K X % m X X Xk %k

A concurrency error occurred while updating the record.
Another program probably added a record into this position
in between the read and the output.

File : filename

Record : record

Key : key

PROGRAM EXECUTION TERMINATED. (VRPG)

Key represents the key value that VRPG was processing when the error
occurred.
In a multiuser environment, it is possible for several users to access

the same segment subfile (index) and get in each other’'s way. Usually,
this message occurs when one user deletes a record that another user

Second Edition 9-12

THE VRPG INTERFACE

has locked for reading and/or update. Although this cannot happen with
two VRPG users, it is possible that some FORTRAN or COBOL user may have
the same file open for update while a VRPG user is simply reading from
it. The VRPG user may get the above message when attempting to update
a now—deleted record or when the file has been changed because of
updated or added records.

INDEXED FILE EXAMPLES

The first example shows how a MIDASPLUS template can be created,
populated, and accessed through VRPG. The second example shows how to
delete indexed MIDASPIUS file records. ’

Example 1:

The indexed file Master is created using CREATK as shown in this sample
session. The primary key is defined as an ASCII key of 5 characters in
length. The data size is defined as 32 words (64 characters).

K, creatk

[CREATK rev 19.4.0]
MINIMUM OPTIONS? yes
FILE NAME? master

NEW FILE? yes
DIRECT ACCESS? no

DATA SUBFILE QUESTIONS

PRIMARY KEY TYPE: a
PRIMARY KEY SIZE = : b 5
DATA SIZE IN WORDS = : &2

SECONDARY INDEX (CR)

INDEX NO.? (CR)

SETTING FILE LOCK TO N READERS AND N WRITERS
X,

Although the above example shows how to create a template with only one
key, you can create a file with multiple keys, and use those keys to
access the file. For more information, see the section MULTIPLE KEY
PROCESSING later in this chapter.

9-13 Second Edition

MIDASPLUS USER'S GUIDE

The following program, ILOAD, loads the file Master with employee
records from a sequential disk file called SFILE. The primary key
values are taken from the employee number values in the sequential data
file records. :

The H that appears at the top of the program is a Header card. It is
optional if no entries are to be included in it.

H*

F* LOAD

F*

P THIS PROGRAM LOADS THE INDEXED FILE MASTER WITH EMPLOYEE
Fx RECORDS FROM THE SEQUENTIAL DISK FILE SFILE. THE EMPLOYEE
F* NUMBER IS USED AS THE INDEX.

F*

F*

FSFILE TIPE F 64 DISK

FMASTER O F 64 B5AT 2 DISK U
ISFILE NS 01

I 2 60EMPNO

I 7 ©64 DATA

OMASTER D 01

0] 1l 'P’

0o EMPNO 6

0 DATA 64

The sequential file SFILE contains the following records:

04416124 ADAMS WJ01234567800MH 200 380000 32000
Q2236124 BROWN HYR23456789000MH20000 800000 60000
25781125 COOPER IG33344555502SH 450 750000 52000
39840124 DAVIS TV44455666601MH 250 400000 30000
47124123 EVANS AS34567890100MH350001400000 120000
66031123 FOX F145678901200MH 350 660000 26000
73315125 HOLMES EBS6789012300MH10000 400000 30000
80081125 JONES (CO00011222200SH 400 640000 64000
86789123 KELLER ND99988777701MS 300 520000 38000
98570124 LAKE MP88877666604SS300001200000 80000

When the program above is run, the records in the sequential file are
added to the MIDAPLUS file Master. To read the records back from the
file and print out a report showing what is in the file, use the READ
program, listed below. The READ program reads Master sequentially and
prints out a report in the file Print.

Second Edition 9-14

F* READ

THE VRPG INTERFACE

F* THIS PROGRAM READS THE INDEXED MASTER FILE IN SEQUENTIAL CRDER
F* AND PRODUCES AN EMPLOYEE LISTING REPORT FROM THE DATA. TOTALS
F* ARE CALCULATED FOR CERTATN CATEGORIES AND ARE SHOWN IN THE

F* REPCRT.

é

0000000000000 000000000OOQQQNAQAOQHHHHHHHHHHHAH

1P
OF

19 27 SSN

31 31 PSTAT
32 362PRATE
37 432YTDG
44 502YTDT
62 62 DEL

SUB YIDT NETPAY 72
ATD NETPAY TOTAL 82
ATD YIDG GROSS 823
ATD YTDT TAX 82

ATD 1 HOURLY 20

PAGE Z 78

9-15

10

'EMPLOYEE LISTING'

"PAGE’

Second Edition

MIDASPIUS USER'S GUIDE

01 10

b8

0 D
0
0
0
0
0
o
0]
o)
o)
0 T1
0]
0
0
0
0
0
0 T
0
o
0
3
CK, vrpg read
[VRFG Rev. 19.4]
F
I
C
0
0000 ERRCRS [VRPG Rev. 19.4]
K, bind
[BIND rev 19.4.1]
¢ load read
¢ 11 vrpglb
c1i
BIND COMPLETE
: file

K, resume read
(K, slist PRINT

5/07/85

NUMBER NAME
00811 JONES
22361 BROWN
33151 HOLMES
44161 ADAMS
57811 COOPER
60311 FOX
67891 KELLER
71241 EVANS
85701 IAKE
98401 DAVIS

TOTAL SATARTED EMPIOYEES:
TOTAL HOURLY EMPLOYEES:

Second Edition

AFREIRERERES

NUMBER
25

24
25

4
25
23
23
23
24
24

2

8

SATAR 2
GROSS 1
TAX 1
TOTAL 1

HOURLY2

'TOTAL SALARIED'

EMPIOYEES: '

'TOTAL HOURLY '

EMPLOYEES: *

EMPLOYEE LISTING
EMPIOYEE EMPLOYEE DEPARTMENT RATE

588 uannBEs
3388338888

9-16

Y-T-D
GROSS

ARROOTABROO

-

¢ B888883888
3 8338888888

-2
-

PAGE
Y-T-D Y-T-D
TAX NET
640.00 5,760.00
600.00 7,400.00
300.00 3,700.00
320.00 3,480.00
520.00 6,980.00
260.00 6,340.00
380.00 4,820.00
1,200.00 12,800.00
800.00 11,200.00
300.00 3,700.00
5,320.00 66,180.00

1

THE VRPG INTERFACE

Example 2:

The indexed file INPR is created using CREATK as shown in this sample
session. The primary key is defined as an ASCII key of 2 characters in
length. The data size is defined as 40 words (80 characters).

CREATK
[CREATK rev 19.4.0]
MINIMUM OPTIONS? yes

FILE NAME? inp2
NEW FILE? yes
DIRECT ACCESS? no

DATA SUBFILE QUESTIONS

PRIMARY KEY TYPE: a
PRIMARY KEY SIZE = : b 2
DATA SIZE IN WORDS = : 40
SECONDARY INDEX (CR)
INDEX NO.? (CR)

SETTING FILE IOCK TO N READERS AND N WRITERS

The following KBUILD session populates the file.

0K, kbuild
[KBUIID rev 19.4.0]

SECONDARIES ONLY? no

ENTER INPUT FILENAME: data

ENTER INPUT RECORD LENGTH (WORDS): 40
INPUT FILE TYPE: text T
ENTER NUMBER OF INPUT FILES: 1

ENTER OUTPUT FILENAME: inp2

ENTER STARTING CHARACTER POSITION, PRIMARY KEY: 1
SECONDARY KEY NUMBER: (CR)

IS FILE SORTED? no

ENTER LOG/ERROR FILE NAME: (CR)

ENTER MILESTONE COUNT: 100

BUILDING: DATA
DEFERRING: O

9-17 Second Edition

MTDASPLUS USER'S GUIDE

PROCESSING FROM: data

COUNT DATE TIME CPU MIN DISK MIN
0O 05-0v-85 10:54:20 0.000 0.000
FIRST BUILD/DEFER PASS COMPLETE.
11 05-07-85 10:54:20 0.003 0.000
SORTING INDEX O
COUNT DATE TIME CPU MIN DISK MIN
0 05-07-85 10:54:20 0.000 0.000
SORT COMPLETE
11 05-07-85 10:54:20 0.0085 0.000
BUILDING INDEX O
COUNT DATE TIME CPU MIN DISK MIN
0 05-07-85 10:54:20 0.000 0.000
INDEX O BUILT
11 05-07-85 10:54:20 0.002 0.000

KBUILD COMPLETE.

K,

The input file DATA contains the following records:

O1**FIRST RECORD**
02**SECOND RECORD**
03**THIRD RECORD**
04**FOURTH RECORD**
O5**FIFTH RECORD**
06**STXTH RECORD* *
Q7**SEVENTH RECORD**
O8**EIGHTH RECORD**
O9**NINTH RECORD**
10**TENTH RECORD* *
99**LAST RECORD**

The input file INP1l contains the following records:

03
01
66
ov
03
05
35
09
01
99

Second Edition 9-18

TOTAL TM
0.000

0.003
TOTAL TM
0.000
0.005
TOTAL T™
0.000
0.002

DIFF

0.003

DIFF
0.000
0.005

DIFF
0.000

0.002

THE VRPG INTERFACE

The following program, DELl, loads a sequential disk file called INPR2.

F* DEL1
F* This program tests the deletion of records from
F* an indexed file using CHAIN reads to the indexed file.
F*
F* The program gets the keys from the sequential file INP1.
F* If the key matches with a record in the indexed file, the
F* record is deleted. The output file records each key read
F* from the sequential file and the record of the indexed file,
F* if the key is in the indexed file.
F*
FINP1 IP F 80 80 DISK
FINP2 UC F 80 80R 2AI 1 DISK
FOUT1 O F 80 80 DISK
IINP1 AA 01
1 20FIELD1
JINP2 BB
I 1 30 FIELD2
C FIELD1 CHAININP2 ol
C SETOF 03
C Nol SETON 03
OINP2 ODEL 03
OOUT1 D 01
0] 20 'FIELD: '
o FIELD1 40
o 03 FIELD2 80
/*
CK, vrpg dell
[VRFG Rev. 19.4]
F
I
Cc
0]
0000 ERRORS [VRPG Rev. 19.4]
K, bind
[BIND rev 19.4.1]
: load dell
: 11 vrpglb
:1i
BIND COMPLETE
: file
K, resume dell

o-19 Second Edition

MIDASPLUS USER'S GUIDE

K, slist outl

FTELD: 03 03**THIRD RECORD**
FIELD: 01 O1**FIRST RECORD**
FIELD: 66

FIELD: o7 O7**SEVENTH RECORD**
FIELD: 03

FIELD: 05 O5**FIFTH RECORD**
FIELD: 35

FIEID: 09 O9**NINTH RECORD**
FIEID: 01

FIELD: 99 99**LAST RECORD**

DIRECT ACCESS IN VRPG

VRPG supports direct access MIDASPLUS files as standard VRPG direct
files. When a direct access MIDASPIUS file template is created
specifically for use with VRPG, define the primary key as an A (ASCII).
In VRPG programs that process direct access files, specify the file
organization as direct (D) and open the file as a Chained file.
Records are read randomly by record number.

Updating Records

In Update mode, you can add new records to a file (if it already
contains data) and rewrite existing data records. To update a direct
file, use a sequential file that tells the update program what to do
with certain records in the direct file.

MULTIPLE KEY PROCESSING

VRPG allows for MIDASPIUS indexed file processing using primary and
secondary keys and supports the use of partial keys to read a record.
This section contains the details of defining an indexed file and its
keys, as well as reading, writing, updating and deleting records. Most
of this information is basic to primary key as well as secondary key
access. Although taking advantage of the new functionality requires
new programming techniques, existing VRPG programs do not need to be
altered in order to function as they always have.

Defining the File and the Keys with CREATK

Since VRPG cannot create a MIDASPLUS file template from program level,
you must create all MIDASPLUS files with the utility CREATK. By using
the CREATK dialog, you can define all primary and secondary keys for
MIDASPLUS indexed files.

Second Edition 9-20

THE VRPG INTERFACE

Use the following guidelines when creating a MIDASPLUS keyed-index file
template with secondary keys:

Up to 17 secondary keys are allowed.
Duplicate secondary keys are allowed.
All keys must be contained in the data record.

Although keys may be anywhere in the data record, it is
recommended that they not overlap the primary key field.

Keys may be of type ASCIT or type bit string, and have a maximum
length of 32 characters; packed, binary, floating point, or
concatenated keys are not allowed.

Secondary data is not supported.

A sample CREATK dialog for an indexed file template with two secondary
keys follows. Note that the dialog requests some sizes be specified in

words.

This refers to 16-bit entities or half-words.

[CREATK Rev. 20.0 Copyright (c) Prime Computer, Inc. 1985]

MINIMUM OPTIONS? YES

FILE NAME? TESTFILE
NEW FILE? YES
direct ACCESS? NO

DATA SUBFILE QUESTIONS

PRIMARY KEY TYPE: A
PRIMARY KEY SIZE = : B 8

DATA SIZE IN WORDS = : 64

SECONDARY INDEX

INDEX NO.? 1

DUPLICATE KEYS PERMITTED? NO

KEY TYPE: A
KEY SIZE = : B 32
SECONDARY DATA SIZE IN WORDS = : <CR>

INDEX NO.? 2

DUPLICATE KEYS PERMITTED? YES

o021 Second Edition

MIDASPIUS USER'S GUIDE

KEY TYPE: A
KEY SIZE = : B 8
SECONDARY DATA SIZE IN WORDS = : <CR>

INDEX NO.? <CR>
SETTING FILE LOCK TO N READERS AND N WRITERS

In the above example the key type is specified as ASCII, and the key
size is given in bytes. When the key is ASCII, the key size can also
be specified in half-words. Bit string keys are also allowed, and the
size then is given in bits (multiples of 8 only) or half-words. It is
usually easier to define keys as ASCII and use bytes for key size,
since these specifications correspond to the key definition in a VRPG
program.

File Specification for Multiple Key Processing

In order to use multiple keys to access a MIDASPLUS file, you must make
the appropriate definitions in the file specification section of your
program. The new elements of the F-Spec lines that are common to all
multiple key processing are discussed below.

The Main File Specification Statement: As in the past, columns 35-38
of the main File Specification Statement are used to define a key, but
this key can now be any one of the keys of the MIDASPLUS file. The key
defined on the main File Specification Statement is called the
beginning key of reference because it is the initial key that the
program uses to reference the data entries. You may change the key of
reference later in the program.

Format the main File Specification Statement as you always have, with
the following exceptions:

Column 35--38: The beginning key of reference’'s starting position
in the data record. The beginning key of
reference may be the primary key or any existing
secondary key.

Column 39: An M, to indicate that multiple keys are being
used.

Columns 73-74: The key index number (00-17) of the beginning key
of reference. The index number must be the same
number that was assigned to the key during
template creation.

Second Edition 922

THE VRPG INTERFACE

It is mnot absolutely neccessary to indicate an index number in columns
73-74. If you do not indicate an index number, the compiler searches
the continuation lines (explained below) for a key definition that
matches the one on the main File Specification Statement, and makes
that key the beginning key of reference. However, identifying the key
index number in the main File Specification Statement helps the
compiler to run more efficiently and serves to better document your
program.

Continuation Lines: All of the MIDASPIUS file's keys, including the
key defined in the main File Specification Statement, must be defined
on continuation lines, one line for each key. For an input file, you
only need to define the keys that you will be using to access the data
records. For update or output files, define all of the file's keys.

The definitions that the continuation lines provide are used at runtime
to tell MIDASPLUS which key indexes to update. If you do not define a
key, it will not be updated in the key index, even though you may have
changed the key field in the data record. An undefined key that has
been changed in the data record does not cause the program to abort,
nor does it cause an error message. An undefined key causes you to end
up with a file whose key indexes do not match the corresponding fields
in the data record. To avoid this situation, define all of the keys of
your MIDASPIUS file whether you use the file for Input, Output, or

Update.

The File Specification Statement continuation 1lines supply the
following information:

e Key number (00-17)
e Key's length (1-32 characters)
e Key's starting position in the data record

e Indication whether or not duplicates are allowed for a secondary
key

The key number on the key definition lines must correspond to the

numbers used when the file is defined with CREATK. You must structure
the continuation lines for key definition in the following format:

9-23 Second Edition

MIDASPLUS USER'S GUIDE

Column 6: F (File specification)

Columns 26-27: A key number (0-17), right justified

Columns 29-30: Length of the key (1-32), right justified
Columns 35-38: Key start location in the record, right justified
Column 39: D, if duplicates are allowed (secondary key only)

Column 67: K (indicates key definition line)

The primary key is always number O, and secondary keys are numbered Ol
through 17. The key index number must match the number assigned to it
during template creation. If the duplicate field is blank, duplicates
are not allowed.

The following is an example of the file specification lines that define
the indexed file that was created above with CREATK. The file is an
Update Chained file. Note that a key number is not specified in
columns 73-74 of the main File Specification Statement line. However,
the key defined on this line has the same attributes as the first
secondary key. The compiler, therefore, assigns the first secondary
key to be the beginning key of reference. As stated before, an entry
in columns 73-74 is not absolutely neccessary, but the program compiles
more efficiently if one is included.

FTESTFILEUC F 128R32 I SMDISK

F* |

F* Indicates Multiple keys.

F* Following F-lines define keys.
F*

F* Primary Key:

F 00 8 1 K
F* 1st Secondary Key:

F 01 32 9 K
F* 2nd Secondary Key:

F 02 8 41D K

Changing the Key of Reference in a Program

Once you have defined the keys of the MIDASPLUS file in the File
Specification Statements, you may use the new operation code opcode,
SETK, to change the key of reference. The format of the SETK statement
is:

Second Edition 9-24

THE VRPG INTERFACE

Columns 18-27 (factorl): a key number, left justified
Columns 28-32 (opcode): SEIK
Columns 3342 (factor?): the Indexed filename

The SETK opcode may be conditioned by indicators in columns 9-17, but
may not have resulting indicators in columns 54-59. Any entries in
other columns of the SETK statement are ignored. If the key number was
not used previously to define a key definition line, a compiler error
occurs. The SETIK statement is used in the Calculation Statement before
a SETLL, READ, or CHAIN statement when the progra.m wishes to reset to a
new key of reference.

Single Key Processing of a Multiple Key File

With an input file, you do not need to define all of the keys in order
to access a data record. If you plan to access a file using only one
key of reference, you can omit the continuation lines that define keys
and define your key of reference in the main File Specification
Statement. This is true whether the key of reference is the primary
key or a secondary key. For single key access, you must always specify
the key of reference’s index number in columns 73-74, unless the key is
the primary key. The main File Specification Statement is formatted as
usual except that you:

e Indicate the key of reference’s starting position in the data
record in columns 35-38

e Indicate the number of the key (00-17) in columns 73-74

When a key of reference is defined in the above manner, you will not be
able to change it within a program.

This new functionality does not require any changes to your old VRFG
programs if you want to run them as in the past, namely, with the
primary key as the sole key of reference. Similarly, if you want to
write new programs that do not use the new functionality, you can
program in the same fashion as you always have, ignoring columns 73-74
of the main File Specification Statement and the continuation lines
that define secondary keys.

PROCESSING WITH SECONDARY KEYS

The following discusses the basics of multiple key file access. All
basic types of indexed file access are included, with specifics noted
for secondary key access.

925 Second Edition

MIDASPLUS USER'S GUIDE

Position File by Secondary Key: Indexed files may be processed .
sequentially within 1imits. In the main File Specification Statement,
describe the file as Input or Update, and Primary, Secondary or Demand.
Put an L in Column 28 of the File Specification Statement to specify
limits processing.

Use the SETLL opcode in a Calculation Statement to set the lower limit.
Specify a data name or constant in factorl (columns 18-27) of the SETLL
calculation statement. Specify the name of the file to be processed in
factor? (columns 33-42).

Specify the key of reference in the main File Specification Statement,
or use a SETK statement before the SETLL statement.

Read Next Record by Secondary Key: Indexed files can be processed
sequentially by secondary key. This processing can occur either by a
demand read or in the normal cycle.

To process a Demand file sequentially, use the READ opcode in a
calculation statement. Ieave factorl of the calculation statement
blank. (The current key of reference is used for the read.) Specify
the name of the indexed file to be read sequentially in factor2. This
type of operation can be done with or without limits processing.

If the file is not specified as a Demand file, sequential input is done
through the normal program cycle, using the current key of reference.

With either type of sequential read, the key of reference can be
altered by a SETK statement. The reads continue at the first key value
in the key subfile indicated by the SETK statement. In the normal
program cycle, an indicator should condition SETK. You can then set
this indicator off after the SEIK, avoiding the possibility of an
infinite loop.

Read Record Randomly by Secondary Key: You can specify a key value to
process indexed files randomly. Describe the file as either Input or
Update, and Chained. Put an R in column 28 of the File Specification
Statement to indicate random processing.

Use the CHAIN opcode in a calculation statement. Specify a data name
containing the value of the key, or a constant, in factorl. Make sure
that the proper key of reference is set. Specify the name of the file
in factorz.

Random and Sequential Processing with the Same File: VRPG runtime was
modified to allow random and sequential processing with the same file.
This type of processing is useful for accessing all the records in a
file that have duplicate key values.

Second Edition 9-26

THE VRPG INTERFACE

Define the file as Chained in the main File Specification Statement.
Put an R in column 28.

Use a CHAIN statement to set the file pointer to the first occurrence
of the key wvalue. The Random read is accomplished by a CHAIN
statement, setting the file pointer to the appropriate record. Then,
use a standard READ statement to move through the file sequentially
from the current position. Normally, the initial READ operation starts
at the first record in the current index, and then reads sequentially
from there. The record following the current record is returned only
when a READ statement immediately follows a CHAIN statement.

When processing a file with duplicate secondary keys, code the program
to check that the record sought by a CHAIN or READ command was found.
If a secondary index has duplicate wvalues, a CHAIN statement will
always return the first record in the series of duplicate key values.
Use a READ statement to get to the duplicates.

Updating the Current Record: Update a current record during output in
the normal program cycle, or by exception output (using EXCPT in a
Calculation Statement).

Define the file as Update. The Update operation must be preceded by a
successful READ operation (either CHAIN or READ) in the same program
cycle as the Output/Update operation. When an update occurs, all
secondary key fields in that record that have been modified will hawve
their corresponding key index entries updated.

Define any keys that you want updated on key definition lines or else
the MIDASPLUS key index will not be updated. The update of the record
occurs even 1if the key field is not specified on the output record.
Update files with secondary keys must always have a primary key
definition line included, or a compiler error occurs.

VRPG checks to see if you have inadvertently created duplicates in a
secondary key where they are not allowed. If this condition occurs,
VRPG issues a runtime error message and halts execution if one is
found. In such cases, the record and any of its key index entries is
not updated. All data in the MIDASPIUS file is returned to the state
that it was in prior to the update attempt.

If the key field in the record that is being updated is also the key of
reference, the same record might be read again later in the sequence.
Therefore, it is recommended that you do not update the key of
reference in a file that also is being read sequentially.

Also, if a key field being updated overlaps another key field, the key
index entry might not be what is expected. VRPG runtime performs the
secondary key index update based upon the key’'s wvalue in the
constructed output record. The key may not even have been specified as
an output field, but the key index update will still occur if its value
in the record has changed.

927 Second Edition

MIDASPLUS USER'S GUIDE

Write Record and Keys: This operation is wusually referred to as
loading the file, as the file is empty at the beginning of the WRITE
operation. ILoading a file is handled during output during the normal
program cycle or by exception output (EXCPT).

Describe the file as Output in the main File Specification Statement.
The file may be loaded in ordered or unordered sequence. To specify an
unordered load, put a U in column 66 of the main File Specification
Statement; for an ordered load, column 66 is blank.

During an ordered load, the given key of reference value for each
record is checked against the key’s value in the previous record. The
keys must be in ascending ASCIT sequence. If a record is encountered
that is out of sequence, a runtime error occurs and the record is not
added to the file. Do not change the key of reference in an ordered
load program.

At output time all of the MIDASPLUS key indexes (primary and secondary)
whose keys have been defined in the File Specifications Statements are
updated to reflect the current record. This occurs whether or not the
key fields are specified on the Output Specification Statement.

When writing records, VRPG checks for duplicates in the secondary key
fields and issues a runtime error if a duplicate occurs where it is not
allowed. In such cases, neither of the record’'s key index fields nor
the record itself is added to the file. You are given the option of
skipping past the record or terminating execution.

MIDASPLUS always adds index entries in a logically sorted order,
independent of the order in which the records are added to the file.

Add Record and Keys: This operation is handled during output in the
normal program cycle or by exception output (EXCPT). Put AID in
columns 16-18 of the Output Specification Statement. Put an A in
column 66 of the File Specification Statement for the file to which
records or keys are being added.

Adding a record and keys differs from writing a record and keys in that
the file is usually described as Input or Update instead of Output, and
the file is normally not empty. The added records are not checked for
any particular sequence. At output time, all keys that have been
defined in File Specification Statements are added to the appropriate
indexes. Illegal duplicates during an add operation are handled as
they are in a WRITE operation.

A VRPG program cannot add a secondary index (define a new secondary
index) entry for an existing record.

Second Edition 9-28

THE VRPG INTERFACE

Deleting a Record and Keys: This operation is handled during output in
the normal program cycle. Enter DEL in columns 16-18 of the Output
Specification Statement. Define the file as Update. Update files with
secondary keys must always have the primary key included in the key
definition lines.

A successful read of the record must occur in the same program cycle
before the delete. Any key may be used to do the read. The primary
key index entry and the record are deleted. The secondary key indexes
are flagged by MIDASPLUS for deletion. The actual deletion of the
secondary indexes occurs when the key next is accessed, the file is
read sequentially, or MPACK is run on the file. VRPG does not allow
deletion of a secondary index entry alone.

Partial Key Searches: You may specify a constant or data item with a
length less than or equal to the actual key length in factorl of the
SETLL or CHAIN operations. The key is treated as a left-justified
partial key. The SETLL statement positions the file at the first
record that has a key equal to or greater than the specified partial
key value. Similarly, the CHAIN statement retrieves the first record
that satisfies the partial key value.

Error Recovery

The VRPG compiler checks the syntax and semantics of secondary key
definitions on the File Specification Statements. It is up to you,
however, to make sure that the program’'s key definitions match those of
the template. If you are not sure of how the template is structured,
you can find out by using the PRINT function of CREAIK.

Vhen the file is opened, the VRPG runtime system checks for correct
file and key definitions by means of the MIDASPLUS routine KX$RFC. If
there is a discrepancy between the program’s definitions and the
template, the file is not opened, and execution halts.

Always define secondary keys that perform add or delete functions. Any
program that is designed to add, delete, or update records must include
all of the affected keys to perform these operations correctly.

During runtime, the VRPG library handles errors in the same manner as
in the past. This involves issuing a message to the terminal, and in
selected cases, giving the user the option to skip the record and
continue processing. Other errors cause program execution to halt with
proper cleanup procedures (all files closed, and so forth). In some
cases, VRPG runtime relies on MIDASPLUS to tell it when there is an
error, but still issues a diagnostic message. In all cases, the VRPG
runtime integrity of the MIDASPLUS file is maintained. For example, if
a duplicate error occurs after part of the file has been updated, all
file data is restored to its prior state before execution halts and
further program access to the records is assured.

9-29 Secord Edition

MIDASPIUS USER'S GUIDE

Compatibility

For compatibility with past revisions of VRPG, the runtime library
handles all indexed files that do not have File Specification key
continuation statements. These files are handled as they were handled
prior to revision 20.0 —- with the primary key only. VRPG programs
compiled prior to this release do not have to be recompiled to execute
successfully.

ALTERNATE FILE PROCESSING

VRFG provides the following file processing methods to be compatible
with IBM System/34 functionality:

e Processing a sequential disk file randomly by relative record
number, as if the file is a VRPG direct file

e Processing a MIDASPLUS indexed file randomly by relative record
number, as if the file is a VRPG direct file

e Processing a MIDASPLUS indexed file consecutively (read only),
as if the file is a VRPG sequential file

e Processing a MIDASPLUS direct file consecutively (read only), as
if the file is a VRPG sequential file

Processing a Sequential Disk File Randomly

The file specifications required for a sequential file processed
randomly by relative record number are:

Column 15 (file type): IorvU
Column 16 (file designation): C
Column 19 (file format): U (if Update)

Column 28 (mode of processing): R
Column 31 (record address type): blank
Column 32 (file organization): D

The file is then read randomly with a CHAIN statement with a relative
record number, and optionally updated by exception, detail, or total
output. The record number must be a numeric field with length less
than, or equal to, 8. If the file is an update file, it must be
specified as uncompressed, and the sequential disk file must be
uncompressed for the update to occur.

Second Edition 9-30

THE VRPG INTERFACE

Processing a MIDASPLUS Indexed File Randomly

The file specifications required.for a MIDASPLUS indexed file processed
randomly by relative record number are:

Column 15 (file type): IorU

Column 16 (file designation): C

Column 28 (mode of processing): R

Column 31 (record address type): blank

Column 32 (file organization): D

The file is then read randomly with a CHAIN statement with a relative

record
output.

number, and optionally updated by exception, detail, or total
This implementation has a few restrictions:

Key field in data record. Since the file is really a MIDASPLUS
indexed file, the index field of the record may not be changed
on an Update operation. It is your responsibility to know which
field of the record is the index field. VRPG cannot check this
with the current implementation since the program’'s file
specification does not indicate any key location.

File structure. Accessing an indexed file by the fifth relative
record number, for example, actually returns the fifth data
record that was added to the MIDASPLUS file. That record may
not be the logical fifth record in the file if records were
added in an unordered sequence. This action also may not return
the same record as accessing a true MIDASPLUS direct file with
relative record number of 5 would, because a direct file has
record number slots allocated in the order O, 1, 2, 3, 4, 5, .
. . . That is, relative record number 5 actually could be the
sixth record in the file.

MIDASPLUS data segment size. This implementation assumes a

standard default MIDASPLUS data segment (subfile) size. Do not
attempt to modify this size.

9-31 Second Edition

MIDASPIUS USER'S GUILE

Processing MIDASPIUS Indexed and Direct Files Consecutively

For a MIDASPLUS indexed or direct file processed consecutively (read
only) as a sequential file, the file specifications required are:

Column 15 (file type): I
Column 16 (file designation): P, SorD
Column 28 (mode of processing): blank
Column 31 (record address type): blank
Column 32 (file organization): blank
The indexed file is processed by reading the data records

consecutively, and bypassing the index. The direct file is processed
consecutively by relative record number.

If a file is to be processed in one program as two different files, the
read-write lock on the file must be set to N readers and N writers.
MIDASPIUS does this during template creation (CREATK). The PRIMOS
command RWLOCK <filename> NONE can also do this.

Caution

Use of the alternate file processing features mentioned above
requires Revision 20.0 or later of MIDASPLUS. Access of a
MIDASPLUS indexed file located on a remote system is handled by
the MIDASPIUS installed on the remote system, not by the
MIDASPLUS installed on the local system. If the other system
has a revision of MIDASPLUS of 19.4 or earlier, then you cannot
access the file by relative record number (even though you may
have revision 20.0 of MIDASPLUS on your local system). Do not
attempt to use this functionality without the correct revision
of MIDASPLUS.

Second Edition 9-32

The MDUMP Ultility

This chapter discusses the MDUMP options, the sequential dump file,
status, descriptive, and error messages. MDUMP examples are also
included.

The MDUMP utility dumps a MIDASPLUS file into a sequential disk file.
You can use MDUMP to rebuild existing MIDASPLUS files. Once you have
dumped a MIDASPLUS file, you can:

e Edit the resulting sequential file if the data is in ASCII
format

e Use the edited file as input to build a new MIDASPLUS file via
KBUILD

e Examine the sequential file to see all of a MIDASPIUS file's
data records and key values

MDUMP OPTIONS

MDUMP prompts you for the order, contents, and format of the dump that
you want to perform. The prompts also ask you how and where MDUMP
should record status and error information during the dump.

10-1 Second Edition

MIDASPLUS USER'S GUIDE

The following options are available:

Order of the dump: MDUMP can order the output records according to any
of the index keys or according to the sequence of the data subfile
records. (Data subfile records are stored in the order that they are
added to the file and are not necessarily in order according to key
value.)

If you use a secondary key to do a dump, only the data records
associated with that index are dumped.

Contents of dump: You can specify that you want the output file to
contain data records (that is, data subfile entries) only, or index
entries only, or both data records and index entries. For example, to
check pairs of primary and secondary key values, you might dump only
the primary index and one secondary index.

Format of dump: MDUMP produces output in the following formats:
BINARY, COBOL, FINBIN, RPG, or TEXT. (These formats are explained in
Chapter 3, BUILDING A MIDASPLUS FILE.)

log/error file: Whenever you perform a dump, MDUMP displays
information about the layout of the output file. It also displays a
status report of the dump and any appropriate error messages. If you
provide the name of a log/error file, MDUMP writes this information to
the file as well to the screen.

Milestone recording: MDUMP displays a status report consisting of a
series of entries made periodically during the dump. Each entry
includes the current time, the amount of CPU and disk time used so far
in the dump, and the number of records that have been processed. The
milestone count determines how many of these entries are generated. If
MDUMP finds any errors while performing the dump (for example, a record
with an invalid primary key), MDUMP reports the errors along with the
milestone statistics.

If you choose a milestone count of O, an entry is made when the dump
begins and when the dump ends. If you choose a milestone count that is
greater than 0 (N>0), MDUMP makes an entry for every N records
processed.

Second Edition 10-2

THE MDUMP UTILITY

THE SEQUENTTAL DUMP FILE

Each record of the sequential dump file corresponds to one record in
the MIDASPIUS file. A record of MDUMP's output can contain the
following fields:

e The data subfile entry of the MIDASPLUS record

e The length of the data subfile entry for MIDASPLUS files with
variable-length records

e The direct access record number (if the MIDASPIUS file is a
direct access file)

e The primary key
e The secondary key (if the dump is a secondary key dump)

MDUMP files do not contain all of the above fields. For example, since
direct access files must have fixed-length records, a record number and
a data size could not appear in the same MDUMP file. The f{ields that
do appear in the MDUMP file are in the same order as the above list.
This order makes the dump file acceptable as input to KBUILD.

The following points concern the sequential dump file:

e If you dump both the data subfile and an index whose keys are
embedded in the data, then the keys appear twice in the MDUMP
file.

e Sometimes you must dump the primary key. For example, if you
want to feed the sequential file to KBUILD to build a new
MIDASPLUS file and if the primary key is not in the data record,
you must dump the primary key in order to provide KBUILD with
the key.

e You cannot dump secondary data.

e MDUMP recognizes and reports on damage that it finds in the
MIDASPIUS file being dumped. It includes error messages in the
milestone reports. This can be a means of validating the
integrity of an index.

e If you believe that your index subfiles have been damaged, and
if the keys are embedded in the data, you can use MDUMP and
KBUILD to rebuild the file. Dump the data records in the order
of the physical storage without dumping any indexes. This step
stops MDUMP from referencing the damaged index subfiles.

10-3 Second Edition

MIDASPIUS USER’'S GUIDE

THE MDUMP DIALOG

Enter MDUMP to begin the MDUMP dialog. The prompts and appropriate

user responses are listed below.

Prompt

ENTER TREENAME OF MIDAS FILE
TO DUMP:

ENTER DUMP METHOD ('DATA’
OR AN INDEX #):

DO YOU WANT THE DATA

RECORD DUMPED?

DO YOU WANT THE PRIMARY

INDEX KEY DUMPED?

DO YOU WANT THE INDEX <#>
KEY DUMPED?

ENTER OUTPUT FILE TREENAME:

Second Edition

Response

Enter the pathname of the
MIDASPIUS file to be dumped.

Enter DATA to dump records in

.the order of the data subfile

records, or enter an index
number (O to 17) to dump
records in ascending order by
that index.

YES = the data record is
dumped .

NO = only the index keys are
dumped.

YES = primary key is dumped.
The key value is appended to
the data record if the data
record is also being dumped.

NO = primary key is not dumped.

This prompt appears only if you
specify a secondary index in
response to the second prompt.

YES = index is dumped.
NO = index is not dumped.

Enter a filename for the output
file. If a file already exists
with the name that you chose,
MDUMP supplies an error message
and asks for another filename.

104

THE MDUMP UTILITY

ENTER OUTPUT FILE FORMAT: Enter BINARY, COBOL, RPFG, or
TEXT. If you are unsure, press
the carriage return or enter
HELP to get a 1list of these
options. These options are
explained in Chapter 3,
BUILDING A MIDASPLUS FILE.

ENTER IOG/ERROR FILE NAME: Enter the name of the file to
be opened for recording errors
and statistics. If this file
already exists, it will Dbe
overwritten.

Press the carriage return if
you do not want to oOpen a
log/error file. (The
statistics and error messages
are displayed on the screen as
MDUMP executes.)

ENTER MILESTONE COUNT: Enter a number to indicate how
often you want the milestone
report to appear. Enter O for
the briefest version of the
status report.

STATUS AND DESCRIPTIVE MESSAGES

MDUMP produces a series of messages describing the status of the dump
and the format of its output file. These messages are displayed at
your terminal. If you specify a log/error file, all messages are also
written to this file. This section describes the dump and the messages
that are normally produced.

When you finish the dialog, MDUMP uses your responses to plan the
format of the dump file. As it processes, MDUMP produces one nesSsage
for each field appearing in the output file and tells you what is in
each word of an output record. The following is a 1list of possible
messages. (The first three messages always appear.)

1. FORMAT OF MDUMP DUMP FILE: pathname of dump file

2. DUMP FROM MIDASPLUS FILE: pathname of MIDASPLUS file

3. RECORDS ARE record length WORDS LONG WRITTEN IN format_name
FORMAT

Record_length = length (in words) of the entire MDUMP output
record.

Format_name = BINARY, COBOL, FINBIN, RPG, or TEXT.

10-5 Second Edition

MIDASPIUS USER'S GUIDE

BA.

5B.

6B.

THE DATA PORTION OCCUPIES WORDS 1 THRU x
THE DATA PORTION IS VARIABLE AND OCCUPIES WORDS 1 THRU x

These messages appear only if you are dumping data records.
Message 4A appears if the dump file is a text file, and
message 4B appears for all other types of dump files. x is
the last word that the data occupies.

THE DATA LENGTH IS SPECIFIED AS A ASCII STRING IN BYTES x THRU
y

THE DATA LENGTH IS SPECIFIED AS A BINARY STRING IN WCRD z

These messages appear only if you are dumping variable-length
records. Message 5A appears if the dump file is a text file.
x is the starting byte and y is the ending byte of the data
length.

Message 5B appears for non-text dump files. BINARY STRING
refers to a single-word INTEGER*2 integer. 2z is the word that
contains the data length.

Data length is the length of the data record in the MIDASPLUS
file before any padding occurs in the dump. You can use this
information to tell the difference between blanks that are
part of the data and blanks that pad variable -length records.

THE DIRECT ACCESS RECORD NUMBER IS SPECIFIED AS A ASCII STRING
IN BYTES x THRU y

THE DIRECT ACCESS RECORD NUMBER IS SPECIFIED AS A BINARY
STRING IN WORDS z THRU w

These messages appear only if you are dumping direct access
records in order of DATA or primary key. Message 6A appears
if the dump file is a text file. x is the starting byte and w
is the exding byte of the direct access record number.

Message 6B appears for non-text dump files. BINARY STRING
refers to a two-word REAL*4 floating point number. z is the
starting word and w is the ending word of the direct access
record number.

If you dump a direct access file by a secondary key or do not
dump the data records, the record numbers do not appear in the
output file.

THE PRIMARY KEY (INDEX O) IS A key type KEY IN BYTES x THRU y

This message appears only if you dump the primary key.
Key type is the data type of the key as you defined it in the
CREATK session that created the MIDASPIUS file. x is the
starting byte and y is the ending byte of the primary key.

Second Edition 10-6

THE MDUMP UTILITY

8. THE INDEX w KEY IS A key type KEY IN BYTES x THRU y

This message appears only if you dump a secondary key.
Key_type is the data type of the key as you defined it in the
CREATK session that created the MIDASPLUS file. w refers to
the index number. X is the starting byte and y is the ending

byte of the secondary key.
The dump begins after these messages are produced. MDUMP then:
e Goes through the MIDASPLUS file in the specified order
e Reads in records
e Constructs and writes output recdrds
e Produces milestone reports as you requested them in the dialog

The following is an example of a milestone report with the milestone
count set to 1.

CK, mdump
[MDUMP rev 19.4.0]

ENTER TREENAME OF MIDAS FILE TO DUMP: bank
ENTER DUMP METHOD ('DATA’ OR AN INDEX #): data
DO YOU WANT THE DATA RECORD DUMPED? yes

DO YOU WANT THE PRIMARY INDEX KEY DUMPED? no
ENTER OUTPUT FILE TREENAME: out

ENTER OUTPUT FILE FORMAT: text

ENTER 10G/ERROR FILE NAME: 1log

ENTER MILESTONE COUNT: 1

FORMAT OF MDUMP DUMP FILE: <SYS1>COBOL>OUT

DUMP FROM MIDASPLUS FILE: <SYS1>COBOL>BANK

RECORDS ARE 43 WORDS IONG WRITTEN IN 'TEXT ' FORMAT
THE DATA PORTION OCCUPIES WORDS 1 THRU 43

BEGINNING DUMP

COUNT DATE TIME CPU MIN DISK MIN TOTAL TM DIFF
0O 05-21-85 15:37:47 0.000 0.000 0.000 0.000
1 05-21-85 15:37:47 0.003 0.004 0.006 0.006
2 05-21-85 15:37:47 0.003 0.004 0.007 0.001
DUMP COMPLETE, 2 RECORDS DUMPED
2 05-21-85 15:37:47 0.004 0.004 0.008 0.001
(jK,

10-7 Second Edition

MIDASFUS USER'S GUIDE

Since the MILESTONE OOUNT was set to 1, a statistics report was
generated for each record. Each line shows how many records have been
scanned so far (COUNT); the current date and time; the CPU, disk, and
total (CPU + disk) time in minutes elapsed since the beginning of the
scan; and the increment of total time elapsed since the last
milestone.

ERROR MESSAGES

Vhen MDUMP dumps a file, errors that it finds are reported along with
the milestone statistics. The following are MDUMP's error messages and
their meanings: :
e BAD DATA RECORD POINTER - IGNORED

MDUMP found a bad data record pointer in the MIDASPLUS file. The dump
continues.

e BAD INDEX BIOCK OR INDEX BLOCK POINTER

MDUMP found an incorrect index block or index block pointer in the
MIDASPLUS file. The dump halts.

e UNABLE TO REACH BOTTOM INDEX LEVEL

MDUMP found an incorrect index block or index block pointer before
dumping any records. The dump does not occur.

e INDEX BLOCK SIZE GREATER THAN MAXTMUM DEFAULT

MDUMP found an index block larger than the maximum default size. The
dump halts.

SAMPLE MDUMP SESSION

This section presents the dialog and output from a sample MDUMP
session.

BEGINNING DUMP

COUNT DATE TIME CPU MIN DISK MIN TOTAL TM DIFF
0 03-10-85 13:25:34 0.000 0.000 0.000 0.000
1 03-10-85 13:25:35 0.002 0.001 0.003 0.003
2 03-10-85 13:25:35 0.003 0.001 0.004 0.001
3 03-10-85 13:25:35 0.003 0.001 0.004 0.001
4 03-10-85 13:25:35 0.004 0.001 0.005 0.001
DUMP COMPLETE, 4 RECORDS DUMPED
4 03-10-85 13:25:35 0.005 0.001 0.006 0.001

X,

Second Edition 10-8

THE MDUMP UTILITY

The OUT file contains the following data:

189264289MURRAY, PAUL MC2837464123 ORCHARD RD MANCHESTER NHO3102
282765038HARPER, ANNE CHK412389112 WASHINGTON STNEWTON MAOR159

10-9 Second Edition

Deleting a
MIDASPLUS File

This chapter discusses the KITDEL utility, which provides you with the
fastest method of deleting entire MIDASPLUS files or selected indexes
of files.

The KIDDEL dialog asks if you want to delete or zero a file's indexes.
DELETE gets rid of an entire index subfile while ZERO only deletes the
entries and unused space in an index subfile. A zeroed-out file looks
exactly like the file's initial template created with CREATK.

Instead of using the KIDDEL utility, you may use the PRIMOS DELETE
command to delete an entire MIDASPLUS file.

THE KTDDEL UTTLITY

KITDEL performs the following functions:

e Deletes an entire MIDASPIUS file, including all index subfiles
and data subfiles

e Deletes one or more secondary index subfiles

e Deletes work files (called junk files) left over from an aborted
MPACK run

e Removes (also known as initializing or zeroing out) all entries
from one or more secondary index subfiles

11-1 Second Edition

MIDASPLUS USER'S GUIDE

® Removes all entries in the primary and secondary index subfiles;
it also removes all entries in the data subfile

KIDDEL DIALOG

This section lists the KIDDEL prompts and the valid responses.

Prompt Response
FILE NAME Enter the name of the MIDASPIUS file to be
used. ’

DELETE INDEXES Enter one of the following:

The subfile number (1-17) of one or more
of the secondary indexes - deletes the
secondary indexes that you listed. (Use
commas between the numbers.)

Al - kills the entire file, deletes the
file from its directory, and returns you
to PRIMOS.

JUNK - deletes work area information left
over after an aborted MPACK operation.

NONE - allows you to 2ero one oOr more
index subfiles. No index subfiles are
deleted.

ZERO INDEXES This prompt appears only if you entered NONE

to the above prompt.

Enter one of the following:
Numbers of the secondary index subfiles
whose entries will be deleted. (Use
commas between the numbers.)
ALL - zeroes all index subfiles and the
data subfile. If it is a direct access
file, the file is reinitialized.

NONE - returns you to PRIMOS without
action.

Second Edition 11-2

DELETING A MIDASPLUS FILE

Note
If you want to delete or zero the primary index, use the ALL

response. Do not enter O (primary index) to either the DELEIE
INDEXES or ZERO INDEXES prompts.

KIDDEL ERROR MESSAGES

e FIIE IN USE
The file is not available for KIDDEL use. KIDDEL mst have exclusive
access to the file. You are returned to PRIMOS.

Note

Error messages that are shared by several MIDASPIUS utilities
are listed in Appendix B, ERROR MESSAGES.

KIDDEL Examples

The examples below use the BANK file (created in Chapter 2) which was
accessed by a BASIC/VM program. KITDEL is first used to remove entries
from the secondary indexes in the file. KIDEL is then used to zero
all of the index subfiles and to delete one of the secondary index
subfiles.

The USAGE option of CREAIK is used to find out how many entries are in
the index subfiles before and after KIDDEL is run. USAGE (abbreviated
U) was briefly mentioned in Chapter 2, CREATING A MIDASPLUS FILE. See

Chapter 14, AIDITIONAL CREATK FUNCTIONS, for additional information
about USAGE.

Example 1: The following steps eliminate secondary entries:

K, kiddel

[KITDEL rev 19.4.0]
FILE NAME? bank
DELETE INDEXES: none

ZERO INDEXES: 1,2

11-3 Second Edition

MIDASPLUS USER'S GUIDE

The following steps check the contents of the index subfiles:
(K, creatk :
[CREATK rev 19.4.0]
MINIMUM OPTIONS? yes

FILE NAME? bank
NEW FILE? no

FUNCTION? u
INDEX? O

ENTRIES INDEXED: 0

ENTRIES INSERTED: 4
ENTRIES DELETED: 0

TOTAL ENTRIES IN FIIE: 4
LAST MODIFIED BY MIDASPLUS REV. 19.4
FUNCTION? u

INDEX? 1

ENTRIES INDEXED: 0

ENTRIES INSERTED: 0
ENTRIES DELETED: 0

TOTAL ENIRIES IN FILE: 0
LAST MODIFIED BY MIDASPLUS REV. 19.4
FUNCTION? u

INDEX? 2

ENTRIES INDEXED: 0

ENTRIES INSERTED: 0
ENTRIES DELETED: 0

TOTAL ENTRIES IN FILE: 0
LAST MODIFIED BY MIDASPLUS REV. 19.4

FUNCTION? g

Second Edition 114

DELETING A MIDASPLUS FILE

Example 2: The following steps eliminate all of the index subfile
entries end the data subfile entries:

0K, kiddel

[KITDEL, rev 19.4.0]
FILE NAME? bank
DELETE INDEXES: none
ZERO INDEXES: all
K, creatk

[CREATK rev 19.4.0]
MINIMUM OPTIONS? yes

FILE NAME? bank
NEW FILE? no

FUNCTION? u

INDEX? O

ENTRIES INDEXED: 0

ENTRIES INSERTED: 0
ENTRIES DELETED: 0

TOTAL ENTRIES IN FILE: 0
LAST MODIFIED BY MIDASPLUS REV. 19.4
FUNCTION? u

INDEX? 1

ENTRIES INDEXED: 0

ENTRIES INSERTED: 0
ENTRIES DELETED: 0

TOTAL ENTRIES IN FILE: 0
LAST MODIFIED BY MIDASPLUS REV. 19.4

FUNCTION? g

11-5 Second Edition

MIDASPLUS USER'S GUIDE

Example 3: The following steps delete an index subfile:
K, kiddel
[KIDDEL rev 19.4.0]
FILE NAME? bank
DELETE INDEXES: @
(K, creatk
[CREATK rev 19.4.0]
MINIMUM OPTIONS? yes

FILE NAME? bank
NEW FILE? no

FUNCTION? p

INDEX NO.? 2
INDEX DOES NOT EXTIST

INDEX NO.? (CR)

FUNCTION? g
X,

Second Edition 11-6

Cleaning Up a
MIDASPLUS File

This chapter discusses the MPLUSCLUP utility. MPLUSCLUP cleans up
files (segment directories and subfiles), releases locks held in
memory, and cleans up and re-initializes per-user information. The
MPLUSCLUP -ALL command also cleans up system information. Only the
supervisor terminal operator using the MIDASPLUS DEBUG mode can execute
MPLUSCLUP for others.

MPLUSCLUP releases record locks that are recorded in main memory and
reports if any record locks are recorded on disk. (To release locks
recorded on disk, run the MPACK utility.)

If an error condition abnormally interrupts an application, a static
on-unit automatically cleans up for you. The static on-unit closes all
MIDASPLUS files that you have opened, releases any held locks, and
releases any internal system resources. (Pressing the EREAK key is an
example of when the static on-unit is invoked.)

12-1 Second Edition

MIDASPIUS USER'S GUIDE

MPLUSCLUP OPTIONS

If you do not specify any options, MPLUSCLUP cleans up for you
exclusively. The available MPLUSCLUP options are -USER and -ALL. Both
of these options must be issued only from the supervisor terminal. The
MIDASPIUS syntax is:

-USER user—number
MPLUSCLUP

—ALL

Use MPLUSCLUP when you or another user receive a fatal error or are
forced-logged out and cleanup has not occurred.

To cleanup for another user, issue the
MPLUSCLUP -USER user-number

command from the supervisor terminal.

The USER option releases all of a specified user’s internal resources
and all of a user’s record locks held in main memory.

AlL cleans up all of the resources except the user file units and the
record locks. File units are not closed for the users. MPLUSCLUP
waits for all of the users to finish their current operation and then
causes the users to pause while MPLUSCLUP cleans up. MPLUSCLUP also
reports any users that are hung.

If the MIDASPIUS system hangs while MIDASPLUS is in use, issue the
MPLUSCLUP -ALL command from the supervisor terminal. This command
releases all of the MIDASPLUS resources for all of the users on the
system. (You cannot specify the -ALL option at a user terminal.)

The MPLUSCLUP -ALL command usually restores the system so that all
MIDASPLUS users can continue execution from the points where they were
interrupted. If MPLUSCLUP cannot complete the clean wup, reshare
MIDASPLUS.

REMOTE CLEANUP

If you perform MPLUSCLUP without any options, it performs a remote
cleanup of slaves for a single user. If you use the -ALL option or the
~USER option on a user other +than yourself, MPLUSCLUP releases the
MIDASPLUS resources for the users on the local system only. To clean
up remote slaves created by users other than yourself, run MPLUSCLUP on
each node accessed by the applications.

Second Edition 12-2

Monitoring a
MIDASPLUS File

This chapter discusses the menmu-driven utility, SPY, which displays
certain information at user-supplied intervals.

MIDASPIUS stores information in memory that is used and updated during
runtime. This information includes:

e A table of data record locks taken
e System-wide statistics on performance and use of the system
e System-wide configurable parameters

e User-specific configurable parameters

Keys of locked records for each user

USER INTERFACE

Type SPY to invoke the utility and then choose the appropriate option
on the SPY menu. See Figure 13-1 for a sample SPY menu. There are no
command line options with SPY. Depending upon your request, a second
menu may appear requiring an additional choice. After displaying the
information that you requested, SPY allows you to continue at the top
level menu again or to stop.

13-1 Second Edition

MIDASPIUS USER'S GUIDE

Each menu gives you an opportunity to exit from SPY. Since SPY is a
separate offline utility, you may run it whether or not you are using
MIDASPLUS, but MIDASPLUS must be initialized on the system.

(ENTER IF YOU WANT TO: \

1 Display DATA RECORD LOCKS

2 Display SYSTEM STATISTICS

3 Dispiay SYSTEM CONFIGURATION
4 Display KEYS OF LOCKED RECORDS
Q STOP

(lease enter <NUMBER> of the option you choose, or Q[uit] to STOP.)
>

SPY Menu
Figure 13-1

RECCRD ILOCKS DISPLAY

MIDASPIUS makes an entry to an in-memory table to hold data record
locks. You can display locks

e By user

e By file name (SPY_FNAMES must be ON in the MIDASPLUS
configuration file)

e For the entire system

The table holds 8,000 entries. If more than 8,000 record locks are
held, the extra locks are not held in memory but are writtem out to the
data record on disk. Because of the 8,000 record limit, there may be
record locks that are not included in the memory table and not shown
under SPY. SPY prints a message if any record locks are held on disk.
The statistics option also displays the number of disk locks taken
since initialization and the number currently held on disk.

Second Edition 13-2

MONITORING A MIDASPLUS FILE

To see the names of the files with locks, set the SPY FNAME option ON
in the MPLUS.CONFIG file (the default is OFF). The ON option stores
the file name in memory when a file is opened. (Only the first sixteen
characters of the file name are saved.)

To find out which locks you or other users are holding, select the

Display DATA RECORD LOCKS option. Normally, it is not necessary to
lock more than a few data records from any file at one time.

STATISTICS DISPLAY

The system keeps statistics as it is running to help you and/Or the
System Administrator monitor the efficiency of the system’s
configuration. Statistics are kept on the following information:

e Product

e Buffer management

e Subfile to file unit translation

e Function calls

e Process waits

e Record locks

Product
SPY displays information about the product that includes product name,
revision number, level, and date/time last initialized. The message
DATE NOT SET may appear if the system date is not set Dbecause of a
coldstart.

Note

To set the initialization date, reshare MIDASPLUS.

Buffer Management

The MIDASPLUS buffer pool consists of from 2 to 64 available buffers.
These buffers are used exclusively for index pages; records are on
disks. You may reserve a maximum of 2 buffers at once. MTDASPLUS
attempts to reserve the number of buffers it needs when a MTDASPLUS
function is invoked. If MIDASPLUS cannot reserve the buffers, it waits
until it gets the necessary ones.

13-3 Second Edition

MIDASPLUS USER'S GUIDE

The buffer allocation uses a least-recently-used algorithm. The buffer
management statistics provide information needed to fine tune the
system buffer pool size. These statistics include the number of:

e Requests to get an index block buffer

e Requests to release an index block buffer

e Vaits for buffers to become free

e Getbuffs (that is, the number of times that it was necessary to
get a buffer) that accessed the same block as last getbuff

e Getbuffs that found the desired block in buffer pool

e Getbuffs that caused a PRWF$$ disk read

e Requests to create a new index block

e Times more than one user used the same buffer at the same time
e PRVWF$$ writes of a buffer block

e Times a buffer block was demoted

e Waits for in-transition buffers (that is, buffer is being read
or written)

e Cycles through the buffer pool
The product information statistics also include the percentage of
e (Calls requiring wait for free buffer
e Times the same buffer as last was hit
e Times desired block was found
e C(Calls that caused a disk read
e Times multiple users shared a buffer

e C(Calls that cycled around the buffer pool

Subfile to Fileunit Translation

Getunit statistics include the

e Number of calls to getunit (that is, the number of times that it
was necessary to get a file unit)

e Number of times the requested subfile unit was in getunit cache

Second Edition 134

MONITORING A MIDASPLUS FILE

e Percentage of cache hits

e Number of times all units were used up

e Percentage of times all units were used up

Function Call

The FUNCTION CALL option tells how many times the following calls
occur:

e TIocal MIDASPLUS calls (OPENM$, CLOSM$, FIND$, FIND$$, NEXTS,
NEXT$$, LOCK$, UPDAT$, DELET$, ADDI$, and GDATAS)

e Outgoing remote calls
e Incoming remote calls

e MIDASPIUS remote errors

Process Waits

The PROCESS WAITS option shows the statistics on how often processes
must wait to get resources. Since the timeout is configurable, tune
the system according to usage. A heavily used system might need a
higher timeout wvalue. The terms Snooze and Awaken are used with the
PROCESS WAITS INFORMATION option. Snooze causes the user to wait until
a particular event occurs; see Figure 13-2. Awaken notifies a user
that a condition occurred. The PROCESS WAITS INFORMATION option
consists of:

e Number of calls to Snooze and Awaken

e Number of rewaits during Snooze

e Number of timechecks made during a wait

e Number of timeouts due to locked resources
e Average number of timechecks per Snooze

o Average number of rewaits during Snooze

13-5 Second Edition

MIDASPLUS USER'S GUIDE

\

Process

Snooze
until
change
occurs

Snooze Flowchart
Figure 13-3

Record Locks

SPY provides the following information about record lock calls:
e Number of record lock calls

e Number of record lock attempts when the record was already
locked

e Number of record locks actually written to disk
e Number of records currently locked on disk

e Percentage of calls resulting in disk locks

CONFIGURATION DISPLAY

SPY displays the values of both system-wide and per user configurable
parameters. If SYSTEM>MPLUS.CONFIG exists, system parameters are set
according to this file; otherwise, default values are assumed.

Second Edition 13-6

MONITORING A MIDASPIUS FILE

System Configuration

The system-wide configurable parameters are set when the system is

built.

Parameter

Debug

Print error

Report Dups

Report Locked

Remote Transmit
Remote Receive
Buffers

Semaphore

Timeout

Funits

Spy_fnames

Init _user Common

The following list defines these parameters:

Setting
ON - prints debug messages
OFF - no messages (default)
ON - prints error messages (default)
OFF - no error messages
ON - reports duplicate key entries (default)
OFF - no reports

ON - reports the record is already locked on a read
operation

OFF - no reports (default)

ON — allows remote calls out (default)

ON - allows remote calls in (default)

Number of buffers from 2 to 64 (default is 64)

Semaphore number that MIDASPIUS uses (default is
-14)

System wait time (default is 300 seconds)

Maximum file units that MIDASPLUS can use (default
is 256)

ON - saves file names when a file is opened
OFF - (default)

ON - reinitializes user common information at each
new program (command level change). (default)

OFF - user common information is not reinitialized

Per-user Configuration

The system default acts as the default for the following per-user

configurable parameters.

They can be configured for an individual user

137 Second Edition

MIDASPIUS USER'S GUIDE

through MSGCTL. (MSGCTL is described in Chapter 16, INSTALLING AND
ADMINISTERING MIDASPLUS.) The following are the per-user
configurations when turned on:

Debug ON - prints debug messages

Print Error ON - prints error messages

Report Dups ON - returns duplicate key status

Report Locked ONa‘;Sreturns record already locked status on
re

Statistics Option Example

The following SPY example displays a summary of the available system
statistics and a description of the statistics options.

K, spy

[SPY 22.0]
ENTER IF YOU WANT TO:
1 Display DATA RECORD LOCKS
2 Display SYSTEM STATISTICS
3 Display SYSTEM CONFIGURATION
4 Display KEYS OF LOCKED RECORDS
Q STOP

Please enter <NUMBER> of the option you choose, or Q[uit] to STOP.
> 2

Second Edition 13-8

MONITORING A MIDASPLUS FILE

SYSTEM STATISTICS MENU

:

IF YOU WANT TO:

Display PRODUCT INFO

Display BUFFER INFO

Display FILE UNITS INFO

Display FUNCTION CALLS INFO

Display PROCESS WAITS INFO

Display RECORD IOCKS INFO

Display ALL OF THE ABOVE

For HELP - brief description of each option
To STOP

OO R

Please enter <NUMBER> of the option you choose, or Q[uit] to STOP.
> 7

PLEASE ENTER LENGTH OF DISPLAY INTERVAL (in 10ths of a second).
IF < 1, STATISTICS WILL BE DISPLAYED ONCE: 1

PLEASE ENTER <NUMBER> OF INTERVALS.
IF < 1, STATISTICS WILL BE DISPLAYED CONTINUOUSLY: 1

STATISTICS WILL BE DISPLAYED EVERY 0.1 SECOND(S) FOR 1 INTERVALS.

Hit RETURN to Continue.

PRODUCT INFO: PRODUCT NAME: MIDASPLUS
REV NUMBER: 19.4.0
LEVEL: 130
DATE LAST INITIALIZED: date not set

FILE UNITS INFO: TOTAL NUMBER OF CALILS TO GETUNIT: 230
NUMBER OF GETUNIT CACHE HITS: 49
PERCENTAGE OF CACHE HITS: 21
NUMBER OF TIMES UNIT REASSIGNED: 0
PERCENTAGE OF TIMES UNIT REASSIGNED: 0

PROCESS WATITS INFO: TOTAL NUMBER OF CALLS TO SNOOZE: 0]
TOTAL NUMBER OF CALLS TO AWAKEN: 15

13-9 Second Edition

MIDASPLUS USER'S GUIDE

TOTAL NUMBER OF RE-WAITS DURING SNOOZE:
AVERAGE NUMBER OF RE-WATTS DURING SNOOZE:

TOTAL NUMBER OF TIMECHECKS:

AVERAGE NUMBER OF TIMECHECKS PER SNOOZE:
NUMBER OF TIMEOUTS DUE TO LOCKED RESOURCES:

BUFFER INFORMATION

oNoRoNoNe

NUMBER OF CALLS TO GET INDEX BLOCK:
NUMBER OF CALLS TO RELEASE INDEX BLOCK:
NUMBER OF WAITS FOR FREE BUFFER:

PERCENTAGE OF CALLS RBQUIRING WAIT FOR FREE BUFFER:

NUMBER OF TIMES SAME BUFFER AS IAST TIME WAS HIT:

PERCENTAGE OF TIMES SAME BUFFER AS LAST TIME WAS HIT:

NUMBER OF TIMES DESIRED BLOCK WAS FOUND:
PERCENTAGE OF TIMES DESIRED BLOCK WAS FOUND:
NUMBER OF CALLS WHICH CAUSED DISK READ:
PERCENTAGE OF CALLS WHICH CAUSED DISK READ:
NUMBER OF REQUESTS TO CREATE A NEW INDEX BLOCK:
NUMBER OF TIMES MULTIPLE USERS SHARED BUFFER:
PERCENTAGE OF TIMES MULTIPLE USERS SHARED BUFFER:
NUMBER OF DISK WRITES:

NUMBER OF TIMES BUFFER WAS DEMOTED:

NUMBER OF WAITS FOR BUFFERS IN TRANSITION:
NUMBER OF CYCLES AROUND THE BUFFER POOL:

PERCENTAGE OF CALLS WHICH CYCLED AROUND BUFFER POOL:

FUNCTION CALLS INFO:
NUMBER OF INCOMING REMOTE CALLS:
NUMBER OF OUTGOING REMOTE CALLS:
NUMBER OF MIDASPLUS REMOTE ERRORS:
LOCAL MIDASPLUS CALLS: OPENM$

ADD1$
GDATA$
RECORD LOCKS INFO:

TOTAL RECORD LOCK CALLS:
NUMBER OF TIMES RECORD WAS ALREADY LOCKED:
TOTAL NUMBER OF RECORD IOCKS WRITTEN TO DISK:
PERCENTAGE OF CALLS RESULTING IN DISK LOCKS:
CURRENT NUMBER OF RECORDS LOCKED ON DISK:

OgOOOOOOQCﬂaOOO

236

144
61
75
31

OOOO(@J‘JOOO\I

0000

Please enter 1 for SPY menu, 2 for STATISTICS menu, or Q[uit] to STOP

> 2

Second Edition 13-10

:

MONITORING A MIDASPLUS FILE

SYSTEM STATISTTCS MENU

IF YOU WANT TO:

OOV HD N

Display PRODUCT INFO

Display BUFFER INFO

Display FILE UNITS INFO

Display FUNCTION CALLS INFO

Display PROCESS WAITS INFO

Display RECORD IOCKS INFO

Display ALL OF THE ABOVE

For HELP - brief description of each option
To STOP

Please enter <NUMBER> of the option you choose, or Q[uit] to STOP.

> 8
DESCRIPTION OF EACH OPTION
PRODUCT INFO: Product name, rev number, level number,
and date/time last initialized.
BUFFER INFO: Statistics on index buffer allocation - calls

FILE UNITS INFO:

FUNCTION CALLS INFO:

PROCESS WAITS INFO:

RECORD LOCKS INFO:

to get or release buffer, waits for free buffers,
shared buffers, disk reads and writes, etc.

Total number of calls to getunit, number and
percent of: cache hits, times units re-assigned.

Statistics on local Midasplus calls
(find$,add1$,etec.) as well as remote calls.

Number of snoozes, awakens, and timeouts, total
and average rewaits, total and average timechecks.

Total record lock calls, calls for already locked
records, total disk locks written, percent of
calls causing disk locks and current number of
disk locks.

Please enter 1 for SPY menu, 2 for STATISTICS menu, or Q[uit] to STOP

> g

SPY is finished
X,

13-11 Second Edition

MTIDASPLUS USER'S GUIDE

KEYS OF LOCKED RECORDS DISPLAY

When a user has temporarily left the terminal without releasing a
record lock, users who need that record wait for it unnecessarily. If
the record has an ASCII primary key and exists in a local file, SPY can
show which user is tying up the record. By using the Display KEYS OF
LOCKED RECORDS option, you can display the primary key value of each
locked record and the number of the user holding it.

In the following example, the file BANK has records locked by two
users. User 72 has locked the record with the key value 11, and user
69 has locked the record with the key value 44.

0K, spy

[SPY 22.0]
ENTER IF YOU WANT TO:
1 Display DATA RECORD LOCKS
2 Display SYSTEM STATISTICS
3 Display SYSTEM CONFIGURATION
4 Display KEYS OF LOCKED RECORDS
Q STOP

Please enter <NUMBER> of the option you choose, or Q[uit] to STOP.
> 4

Enter the FILENAME:
> BANK

DATA RECORD IOCKS ON FILE <SYS1>EAST>BANK
User No Record Key

72 11
69 44

Please enter F for another FILE, <CR> to CONTINUE or , Q[uit] to STOP
>Q

Second Edition 13-12

MONITORING A MIDASPLUS FILE

ERRORS

Internal system errors and user input errors are the only kind of
errors that can occur during the execution of SPY. Internal system
errors are fatal. User input errors can usually be trapped, since only
specific input choices are allowed.

If you make a detectable error when entering a menu option, a user
number or a file name, you are given two more chances to enter a valid
choice and then SPY stops.

If you request that SPY report the number of locks on a file and the
SPY_FNAMES configuration is off (the default), the following error
nessage appears: '

The SPY FNAMES configuration is OFF for MIDASPLUS. SPY cannot
display locks by FILENAME. See your System Administrator if
you wish to have the SPY FNAMES configuration changed. Press
RETURN to continue.

See Chapter 16, INSTALLING AND ADMINISTERING MIDASPLUS, for additional
information about SPY FNAMES and the configurations.

13-13 Second Edition

Additional CREATK

Functions

Besides creating a template, CREATK allows you to examine and modify a
template. This chapter discusses these functions and the extended
options feature of CREATK.

FUNCTION SUMMARY

To examine an existing file template, invoke CREATK, provide the file's
name or pathname when prompted, and enter NO to the NEW FILE prompt.
If you want a list and brief description of the CREATK functions, enter
HELP after the FUNCTION prompt, as shown below:

K, creatk
[CREATK rev 19.4.0]
MINIMUM OPTIONS? yes

FILE NAME? bank
NEW FILE? no

FUNCTION? help

A[ID] = ADD AN INDEX
C[OUNT] = (OUNT ACTUAL INDEX ENTRIES
. DIATA] = CHANGE DATA RECORD SIZE
E[XTEND] = CHANGE SEGMENT & SEGMENT DIRECTORY LENGTH
F[ILE] = OPEN A NEW FILE

14-1 Second Edition

MIDASPLUS USER'S GUIDE

G[ET] = GET AND SET THE ACTUAL MIN/MAX RECORD SIZE OF THE
VARTABRLE IENGTH RECORD (VIR) FILE

H[ELP] = PRINT THIS SUMMARY

I[NITIALIZE] = SET THE MIN/MAX RECORD SIZE FOR THE VARIAELE
1LENGTH RECORD (VIR) FILE

M[ODIFY] = MODIFY AN EXTISTING SUBFILE

P[RINT] = PRINT DESCRIPTOR INFORMATION

QIUIT] = EXIT CREATK

(C/R) = IMPLIED QUIT

S[IZE] = DETERMINE THE SIZE OF A FILE

U[SAGE] = DISPLAY CURRENT INDEX USAGE

V[ERSION] = MIDASPLUS DEFAULTS FOR THIS FILE

Note

The FILE, HELP, QUIT, and C/R functions are discussed in
Chapter 2, CREATING A MIDASPLUS FILE. This chapter discusses
the remaining functions in terms of their use for either
exanining or modifying a file template.

EXAMINING A FILE

The functions to examine a file are:
e COUNT
e PRINT
e SIZE
e USAGE

e VERSION

COUNT
OOUNT reads through an index to verify and count each entry. COUNT
then displays the total number of valid entries found.

If you request a COUNT on a primary index (index = 0), CREATK
determines the number of records inserted or deleted since the last
MPACK. If the file descriptor values differ, COUNT updates them.

Inserted/deleted statistics cannot be recreated from a secondary index.
Therefore, if there is a difference between the total count and the
values of the index descriptor, COUNT is not updated. If this
condition occurs, a message appears stating that the file descriptor no
longer matches the true state of the file. Use MPACK to reestablish
the correct file statistics for display through the USAGE option.

Second Edition 14-2

ADDITICNAL CREATK FUNCTIONS

MPACK keeps a count of each time that a record is added to or deleted
from a file. These counts are updated at runtime either in intervals
of 100 or when the last user closes the file.

If the counters cannot be written to disk, as in the case of a system
failure, it is possible that the counts could be off by as much as 100.
If this happens, you can correct the counts either by using the COUNT
option of CREATK or by using the MPACK utility on the file.

Example:

FUNCTION? count
INDEX? 1

TOTAL ENTRIES IN THE INDEX: 4

FUNCTION? count
INDEX? O

ENTRIES INDEXED: 4
ENTRIES INSERTED: 0
ENTRIES DELETED: 0
TOTAL ENTRIES IN FILE: 4

LAST MODIFIED BY MIDASPLUS REV. 19.4

PRINT
PRINT displays index and data subfile information. It displays INDEX
NO? to prompt you for an index number. Enter a number from O to 17 if
you want to see information on a particular index subfile or enter the
word DATA to examine data subfile information.
If an index subfile is being examined, CREATK displays:

e Number of segments allocated

e Index capacity (approximate number of entries that can be
accommodated)

e Key type and size
e Number of index levels as of the last MPACK

PRINT displays the following information for each index level of an
index subfile:

e Block size (number of words per block)
e Number of control words

e Maximum number of entries per block

14-3 Second Edition

MIDASPLUS USER'S GUIDE

e Length of an index entry

e Number of blocks in that level

Example:

FUNCTION? print

INDEX NO.? 1

10 SEGMENTS ALIOCATED WHICH CAN HOLD ABOUT 285696. ENTRIES
KEY TYPE: CHARACTER)

KEY SIZE 25 BYTES (13 WORDS)

LEVELS: 1 SYNONYM ENTRIES SUPPORTED

ILAST LEVEL
ENTRY SIZE: 16 WORDS BLOCK SIZE: 1024 WORDS # CONTROL WCRDS: 10
MAX ENTRIES/BLOCK: 63 # BIOCKS THIS LEVEL: 1.

If you specify the DATA option, CREAIK displays:

e File type (keyed-index or direct-access)

e Number of index subfiles definec

e Number of entries currently indezed as of the last MPACK

e Entry size (record size)

e For a variable-length record fi’=. minimum and maximum record
sizes, if set

e Primary key size

Example:

The following example shows the use of ZRINT with the DATA option on a
variable-length record file.

FUNCTION? print

INDEX NO.? data

DATA SUBFILE:
FILE TYPE: KI # INDEXES: 1 4 ENTRIES: 4.
ENTRY SIZE USER-SUPPLIED
VIR MIN SIZE: 37 VIR MAX SIZE: 41
PRIMARY KEY SIZE: 9 BYTES (5 WORDS)

Second Edition 144

ADDITIONAL CREATK FUNCTIONS

SIZE

Given an expected number of records for a MIDASPLUS file, the SIZE
option determines the number of segments and disk records that would be
required for an index subfile, a data subfile, or an entire file.
After receiving the NUMBER OF ENTRIES prompt, supply the number of
records.

After receiving the INDEX NO prompt, enter one of the following:

User Input System Response

A number from Estimates size of an individual index
O through 17 subfile

DATA Estimates size for a data subfile

TOTAL Estimates an entire file, including all

index subfiles and data subfiles
(CR) Ends the SIZE option dialog and returns you
to the FUNCTION? prompt
If you specify an index number or the DATA option, CREATIK returns the
following:
e Number of disk records needed for the index or data subfile
e Number of segments required to contain these index blocks
e Number of segments currently assigned for the index blocks
already in the index or data subfile
Example:

FUNCTION? size
NUMBER OF ENIRIES: 10

INDEX NO.? 1
INDEX 1: 3 440 WD. RECS, 3 1024 WD. RECS
2 SEGMENTS REQUIRED, 10 SEGMENTS ALLOCATED

INDEX NO.? data

DATA : 2 440 WD. RECS, 1 1024 WD. RECS
1 SEGMENTS REQUIRED, 327 SEGMENTS ALLOCATED

If the MIDASPIUS file contains variable-length records, the following
message appears when you use the DATA option:

14-5 Second Edition

MIDASPLUS USER'S GUILE

VARTABLE LENGTH DATA, NO COMPUTATION

If you specify the TOTAL option in response to the INDEX NO.? prompt,
CREATK prints the above information for each index subfile. 1In
addition, it prints the data file plus the number of disk blocks needed
to accommodate all index subfiles and the data subfile. For example:

INDEX NO.? total

INDEX O: 3 440 WD. RECS, 3 1024 WD. RECS
2 SEGMENTS REQUIRED, 10 SEGMENTS ALIOCATED
INDEX 1: 3 440 WD. RECS, 3 1024 WD. RECS
2 SEGMENTS REQUIRED, 10 SEGMENTS ALIOCATED
INDEX 2: 3 440 WD. RECS, 3 1024 WD. REGCS
2 SEGMENTS REQUIRED, 10 SEGMENTS ALLOCATED
DATA : 2 440 WD. RECS, 1 1024 WD. RECS
1 SEGMENTS REQUIRED, 327 SEGMENTS ALILOCATED
TOTAL DISK RECORDS: 11 440 WD. RECS, 10 1024 WD. RECS
USAGE

USAGE reads the number of entries that were inserted and deleted since
the last MPACK. While COUNT reports the exact number of entries, USAGE
reports the number of entries since the last MPACK. USAGE operates
from the index description that MIDASPLUS routines maintain and
displays the following information:

e Data records indexed as of the last MPACK

e Data records added since the last MPACK

e Data records deleted since the last MPACK

e Total number of data records (entries) in the file

e The version of MIDASPLUS that last modified the file

Example:

FUNCTION? usage

INDEX? 1

ENTRIES INDEXED: 4
ENTRIES INSERTED: 0
ENTRIES DELETED: 0
TOTAL ENTRIES IN FILE: 4

IAST MODIFIED BY MIDASPLUS REV. 19.4

Second Edition 14-6

ADDITIONAL CREATK FUNCTIONS

VERSTION
VERSION displays the following information:

e The version of MPLUSLB (the MIDASPLUS library) used in building
the template

e The DAM file length (default 524288 words)
e The segment directory length (default 512 segments)
e Maximum segments (subfiles) allocated per index (default 10)
e The maximum number of indexes (including the primary index) that
can be defined for the file (default 18)
Example:

FUNCTION? version
[CREATK rev 19.4.0]

FILE CREATED BY MPLUSLB REV. 19.4

DEFAULT PARAMETERS FOR FILE

DAM FILE LENGTH 524288 WORDS

BASIC SEGMENT DIRECTORY LENGTH 512SBEGMENTS
MAXTMUM SEGMENTS PER INDEX 10

MAXIMUM NUMBER OF INDEXES 18

MODIFYING A TEMPLATE

The template modifying functions are:

e AID

e DATA

e EXTEND

e GET

e INITTALIZE

e MODIFY
Use DATA, EXTEND, and MODIFY only when it is necessary to inCrease
index subfile length or to change the data subfile length. You cannot

change key length or key type without recreating the file or the index
from the beginning.

14-7 Second Edition

MIDASPIUS USER'S GUIDE

Note

Except for GET and INITTALIZE, these options do not take effect
until you restructure the file with MPACK.

AID

ATD allows you to build a secondary index from MIDASPIUS data and
increase the number of secondary indexes in your file. Use the BANK
file created in Chapter 2, CREATING A MIDASPLUS FILE, as an example.
Assume that you want to add a third secondary index. Creating a third
index allows you to use the street address from the BANK file as a
search key. CREATK prompts you through the ADD function much as it did
when you created the initial template.

Remember, you can only define 17 secondary indexes per file. CREATK
gives you an error message if you try to create more than 17 secondary
indexes or if the secondary index already exists.

Since information is already present in the data subfile record (the
entire input record was written to the data subfile), you can tell
KBUILD to take the secondary index entries from the data subfile record
and add them to secondary index subfile 3. The following example shows
how to do this using a MIDASPLUS file that already contains data
entries.

K, creatk
[CREATK rev 19.4.0]

MINIMUM OPTIONS? yes

FILE NAME? bank
NEW FILE? no

FUNCTION? add
INDEX NO.? 3
DUPLICATE KEYS PERMITTED? yes

KEY TYPE: a

KEY SIZE = : b 16
SECONDARY DATA SIZE IN WORDS = : (CR)

INDEX NO.? (CR)
FUNCTION? g

0K, kbuild
[KBUIID rev 19.4.0]

Second Edition 14-8

ADDITIONAL CREATK FUNCTIONS

SECONDARIES ONLY? yes
USE MIDASPLUS DATA ENTRIES? yes

ENTER MIDASPIUS FILENAME: bank
SECONDARY KEY NUMBER: 3

ENTER STARTING CHARACTER POSITION: 45
SECONDARY KEY NUMBER: (CR)

IS FILE SORTED? no

ENTER 1OG/ERROR FILE NAME: (CR)

ENTER MILESTONE COUNT: 1

DEFERRING: 3
PROCESSING FROM: bank :
COUNT DATE TIME CPU MIN DISK MIN TOTAL T™ DIFF
0 01-28-85 14:48:35 0.000 0.000 0.000 0.000
1 01-28-85 14:48:35 0.002 0.001 0.002 0.002
2 01-28-85 14:48:35 0.002 0.001 0.003 0.001
3 01-28-85 14:48:35 0.003 0.001 0.003 0.001
4 01-28-85 14:48:35 0.003 0.001 0.004 0.001
FIRST BUILD/DEFER PASS COMPLETE.
4 (01-28-85 14:48:35 0.004 0.001 0.005 0.001
SORTING INDEX 3
COUNT DATE TIME CPU MIN DISK MIN TOTAL T™ DIFF
0O 01-28-85 14:48:35 0.000 0.000 0.000 0.000
SORT COMPLETE
4 01-28-85 14:48:36 0.008 0.004 0.012 0.012
BUILDING INDEX 3
COUNT DATE TIME CPU MIN DISK MIN TOTAL TM DIFF
0O 01-28-85 14:48:36 0.000 0.000 0.000 0.000
1 01-28-85 14:48:37 0.002 0.000 0.002 0.002
2 01-28-85 14:48:37 0.003 0.000 0.003 0.001
3 01-28-85 14:48:37 0.003 0.000 0.004 0.001
4 01-28-85 14:48:37 0.004 0.000 0.004 0.001
INDEX 3 BUILT
4 01-28-85 14:48:37 0.005 0.000 0.005 0.001

KBUTLD COMPLETE.

XK,

DATA

DATA changes the data size or record size in a MIDASPIUS file. Its
dialog is similar to the data subfile questions asked during template
creation. The new data size becomes effective after you pack the file.
(Use the DATA option of MPACK.) When MPACK is run on the modified
file, existing records in the file are truncated or padded with zeros
to make them compatible with the new data size.

14-9 Second Edition

MTDASPLUS USER'S GUIDE

After extending the MIDASPIUS file, use one of the methods listed on
Table 14-1 to add records to your file. You should make the file twice
as large as the size that you actually need. Doing this allows you to

meet the special requirements of ADD1S.

Table 14-1

Methods of Adding Records to a MIDASPLUS File

Method Action Advantage Restrictions
KBUILD Load a Accepts unsorted Only one user at a
sequential file files. time can use the
into a file; the file
MIDASPLUS file. must be empty.
PRIBLD Initially load a Loads records Input file must be
large file. quickly and sorted; the file
packs records must be empty; only
tight. one user at a time
can access a file.
ADDI$ Allow multiple Splits the index Occasionally you
users to add blocks and must use MPACK to
records to a leaves room for eliminate the
file. possible future excess disk space.
expansion.
EXTEND

EXTEND allows you to change the length of the segment subfiles and to
extend the length of the segment directory. Supply both the segment
directory length and the segment subfile (index) length.

If you enter a 0 or press the RETURN key, CREATK uses the default
values. The default subfile size is 1,073,471,824 words, which is the
maximum number allowed. This number is the limit to which a subfile
can grow before a new subfile is created. Fewer subfiles have the
advantage of fewer opens and closes, and thus, fewer file units are
used at run time. The minimum segment size is 185 (segments), which
reflects a file with only one segment allocated for the data subfile.
As the file grows, it uses up more segments.

Second Edition 14-10

ADDITIONAL CREATK FUNCTIONS

GET

The GET command performs up to three functions on variable-length
record files. First, GET always displays the sizes of the largest and
smallest records in the file. Second, if the file has no limits on
record sizes, GET sets the limits to the largest and smallest record
sizes. Third, if size limits are already set, GET may change them. If
the smallest record is smaller than the minimum size, the minimum size
changes to the smallest record’'s size. If the largest record is larger
than the maximum size, the maximum size changes to the largest record’s
size.

To discover the current size limits, use the PRINT command with the
DATA option and look for a line with the following format:

VIR MIN SIZE: <number> VIR MAX SIZE: <number>

If this line is absent, size limits are not set.
Example:
This example shows the use of the GET command, preceded and followed by
the use of the PRINT command. In using the PRINT command, the user is
looking for the line shown above, which indicates size limits are set.
The line is absent in the first use of PRINT.

FUNCTION? print

INDEX NO.? data

DATA SUBFILE:
FILE TYPE: KI # INDEXES: 1 # ENTRIES: 4.
ENTRY SIZE USER-SUPPLIED
PRIMARY KEY SIZE: 9 BYTES (5 WORDS)

Since no information on variable-length records appeared, the user
issues the GET command to set the minimum and maximum sizes for these
records.

FUNCTION? get
PLEASE WAIT WHILE FINDING THE ACTUAL MIN/MAX RECORD SIZE...

ACTUAL MIN RECORD SIZE: 37 ACTUAL MAX RECCRD SIZE: 41

The user reissues the PRINT command to check that size limits were set
to the actual largest and smallest record sizes:

FUNCTION? p

14-11 Second Edition

MIDASPLUS USER’'S GUILE

INDEX NO.? data

DATA SUBFILE:
FILE TYPE: KI # INDEXES: 1 # ENTRIES: 4.
ENTRY SIZE USER-SUPPLIED
VIR MIN SIZE: 37 VIR MAX SIZE: 41
PRIMARY KEY SIZE: 9 BYTES (5 WORDS)

GET is intended for files containing data. If you use GET on an empty
file, CREATIK displays:

FILE IS EMPTY; PLEASE USE COMMAND I[NITIALIZE] TO SET THE VIR
MIN/MAX SIZE.

INITIALIZE

The INITTALIZE command sets the minimum and maximum record sizes in a
variable-length record file that is empty. This command also lets you
expand these size limits before or after you load the file; you can
decrease the minimum record size or increase the maximum record size.
However, MIDASPLUS automatically expands size limits whenever you add a
record that is outside a defined limit. The exceeded limit becomes the
size of the new record.

Example 1:
The following example shows the use of INITIALIZE on a empty file.

FUNCTION? initialize

CURRENT MIN/MAX VALUES: 0 0]
SET VLR SIZE (MIN/MAX)? 25 39

Example 2:

To set or change either size limit, you must specify a minimum of at
least 1, and the maximum of at most 32,767. Both values must be
specified, even if you are only changing one. This example shows the
use of INITTALIZE on a file with a minimum size of 25 and and a maximum
size of 49. Desiring to increase the maximum to 51, the user begins by
simply entering 51; however, CREATK prompts the user for both sizes.

FUNCTION? i

CURRENT MIN/MAX VALUES: 25 49
SET VIR SIZE (MIN/MAX)? 51

SPECIFY THE MINIMUM AND MAXTMUM SIZE OF THE VIR.

CURRENT MIN/MAX VALUES: 25 49

Second Edition 14-12

ADDITIONAL CREATK FUNCTIONS

SET VIR SIZE (MIN/MAX)? 25 51

Remember, you can only change size limits by decreasing the minimum or
by increasing the maximum. Therefore, if the current limits are 10 and
100, and you enter 10 and 90 as the new limits, CREAIK displays:

MAX HAS NOT BEEN UPDATED

If you use the INITIALIZE command on a file that contains data but has
no size limits set, CREATK displays:

FILE NOT EMPTY; PLEASE USE COMMAND G[ET] TO SET THE ACTUAL
MIN/MAX SIZE.

To discover the current size 1limits, use the PRINT command with the
DATA option and look for a line with the following format:

VIR MIN SIZE: <number> VIR MAX SIZE: <number>

If this line is absent, size limits are not set.

MODIFY

MODIFY allows you to change the following parameters in an existing
MIDASPIUS file template:

e Index block length (only if you are using the extended options
path of CREATK)

e Secondary data size (see note below)

e Support for duplicate key occurrences

Notes

When secondary data size is modified for a particular index,
the existing secondary data entries are truncated or padded
with Os when the file is packed. This action ensures that all
of the secondary data entries in that index conform to the new
secondary data size.

If the index that you are trying to MODIFY does not exist, an
error message is displayed.

14-13 Second Edition

MIDASPIUS USER’'S GUIDE

THE EXTENDED OPTIONS PATH

Using the extended options path of CREATK, you can change, on a
per-file basis, some of the default file parameters that CREATK uses in
initializing MIDASPIUS files. You can also specify the size of an
index block at each index level in the index subfile. An index block
contains key entries that point to records in the data subfile. An
index subfile block entry includes

e A key value, user-supplied during data entry (file building)

e A three-word pointer to a data subfile record (in keyed index
files)

e A five-word pointer to a data subfile record (in direct access
files)

e Secondary data in secondary indexes (optional)

Defining Block Size

Vhen using minimum options, CREATK automatically supplies you with the
default space of 1024 words per block. It is strongly recommended that
you define the block space as 1024 words per block for extended options
also.

Block Size Specifications

You can change the block size at the first, second, and last index
levels (see Index Block Ievels below) with the extended options version
of CREATK. The minimum acceptable block size must be at least large
enough to hold 6 or 10 control words and 2 entries at that particular
level. The maximum and suggested block size is 1024 words.

The minimum required block size varies with the level. The last level
index block always has ten control words, while upper levels have 10
control words. CREATK checks to see if your proposed block size will
accommodate the minimum number of entries and control words, and lets
you know if the proposed block size is acceptable. For direct access
files, last level index blocks also contain entry numbers. For
secondary index subfiles that support the secondary data feature, last
level index blocks also contain secondary data.

Index Block Ievels

All of the entries in an index subfile are contained in blocks, and
each block is associated with an index level. When you first allocate
space for an index subfile, the subfile has only one index level called

Second Edition 14-14

ADDITIONAL CREATK FUNCTIONS

the last level. As the file becomes larger and more complex, more
index levels are created to help search efficiency. Blocks in these
index levels are collectively called upper level index blocks.
Multi-level indexing maximizes search and access efficiency.

EXTENDED OPTIONS DIALOG

To enter the extended options path of CREATK, answer NO to the MINIMUM
OPTIONS? prompt at the beginning of the CREATK dialog.

Prompt
MINIMUM OPTIONS?

FILE NAME?

NEW FILE?

DIRECT ACCESS?

DATA SUBFILE QUESTIONS
PRIMARY KEY TYPE:

PRIMARY KEY SIZE = :

DATA SIZE IN WORDS = :

14-15

Response
Enter NO.

Enter the name of the new file
to be created or the name of
the existing file to be
examined or modified.

Enter YES to create a new
tenplate.

Enter NO to get information
about an existing file
template.

Enter YES to create a direct
access file or NO to create a
keyed index file.

Enter one of the key codes
from the MIDASPILUS Key Types
Table to define the primary

key type.

Specify size as B nn where
is the number of bytes for
ASCIT key or the number
bits for a bit string key.

2 BIB

Specify size as W nn where
is the number of words for
ASCII key or the number of
words for a bit string key.

on
an

For fixed-length records,
enter the maximum length in
words of the data record in
the data subfile. Include the
key size in this figure for
COBOL files.

Second Edition

Second Edition

MIDASPIUS USER'S GUIDE

NUMBER OF ENTRIES TO ALLOCATE?

FIRST LEVEL INDEX BLOCK SIZE = ':

SECOND LEVEL INDEX BLOCK SIZE = :

LAST LEVEL INDEX BLOCK SIZE = :

SECONDARY INDEX

INDEX NO.?

DUPLICATE KEYS PERMITTED?

KEY TYPE:

KEY SIZE = :

14-16

For variable-length records,
either press RETURN, or enter
O, or enter O followed by a
value for the minimum record
size and a value for maximum
record size.

Enter the number of entries to
allocate for the data subfile.
(Asked only if you answered
YES to the DIRECT ACCESS?
prompt.)

It is recommended that you
enter 1024 (the default and
maximum size). See Defining
Block Size above if you wish
to enter another number.

Enter the same response as for
the first level index block.

Enter the same response as for
the first level index block.

Enter a number from 1 to 17 or
press the RETURN key if you do
not want secondary indexes.

Enter YES or NO. YES allows
the same secondary key value
to appear more than once in
the index.

Enter one of the following
codes (A, B, D, I, L, or S).
See Chapter 2, CREATING A
MIDASPLUS FILE.

Enter the size of the key in
words, bytes, or bits. Size
must be preceded by W and a
space for words or B and a
space for Dbytes or | Dbits.
(Asked only if A or B type key
is specified above.)

SECONDARY DATA SIZE IN WORDS = :

FIRST LEVEL INDEX BLOCK SIZE = :

SECOND LEVEL INDEX BILOCK SIZE = :

LAST LEVEL INDEX BLOCK SIZE = :

ADDITIONAL CREATK FUNCTIONS

For use with FORTRAN, enter
the number of words of
secondary data to be stored
with this secondary key.
(Optional)

For use with other languages,
enter O or press the RETURN

key.

Enter the desired number of
words per block as for primary
index. (See above.)

Enter the same response as for
first level index block.

Enter the same response as for
the first level index Dblock.

Note

The secondary index prompts repeat, enabling you to enter
information about each secondary index. To complete the CREATK
process, press the RETURN key at the INDEX NO? prompt.

Example:

CK, creatk
[CREATK rev 19.4.0]

MINIMUM OPTIONS? no

FILE NAME? extendbank
NEW FILE? yes
DIRECT ACCESS? yes

DATA SUBFILE QUESTIONS

PRIMARY KEY TYPE: a

PRIMARY KEY STZE = : b 9

DATA SIZE IN WORDS = : 44
NUMBER OF ENTRIES TO ALIOCATE? 10

FIRST LEVEL INDEX BLOCK SIZE = : 1024
SECOND LEVEL INDEX BLOCK SIZE = : 1024
ILAST LEVEL INDEX BLOCK SIZE = : 1024

SECONDARY INDEX

" INDEX NO.? 1

14-17 Second Edition

MTDASPLUS USER'S GUIDE

DUPLICATE KEYS PERMITTED? yes

KEY TYPE: a

KEY SIZE = : b 25
SECONDARY DATA SIZE IN WORDS = : (CR)

FIRST LEVEL INDEX BIOCK SIZE = : 1024
SECOND LEVEL INDEX BLOCK SIZE = : 1024
IAST LEVEL INDEX BLOCK SIZE = : 1024

INDEX NO.? 2
DUPLICATE KEYS PERMITTED? no

KEY TYPE: a

KEY SIZE = : b 10

SECONDARY DATA SIZE IN WORDS (CR)

FIRST LEVEL INDEX BIOCK SIZE = : 1024
SECOND LEVEL INDEX BIOCK SIZE = : 1024
LAST LEVEL INDEX BLOCK SIZE = : 1024

INDEX NO.? (CR)

SETTING FILE IOCK TO N READERS AND N WRITERS
XK,

Second Edition 14-18

Packing a
MIDASPLUS File

This chapter discusses the MPACK utility. MPACK performs the following
functions: recovers data record space that is marked for deletion,
increases file efficiency, unlocks records, and restructures index
subfiles.

When you delete an index subfile entry, MIDASPLUS automatically
recovers the space that the entry formerly occupied. When you delete
data subfile records, however, the records are marked for deletion, and
then physically removed when the MPACK utility is run.

Note
When making changes to the template structure with the AID,
DATA, EXTEND, or MODIFY options of CREATK, you must use MPACK

with the file after specifying the changes. The desired
changes do not take effect until MPACK is executed on the file.

FUNCTIONS AND OPTIONS OF MPACK

There are two separate modes of operation for the MPACK utility, the
UNIOCK mode and the MPACK mode. The UNLOCK mode unlocks locked data
records and the MPACK mode restructures the file. The functions of the
MPACK utility are:

e Reclaiming the space that "deleted" records occupy

15-1 Second Edition

MIDASPIUS USER'S GUIDE

e Packing of indexes to minimize disk space used

e Reordering the data subfile to match the order of primary index
subfile entries (complete file restructure)

e ILogging errors and milestones to keep tabs on errors and to
monitor the ongoing operation

e Unlocking any of the data records left locked on disk after a
program abort or failure

Milestone Reports

Using MPACK, you can open an error/log file to keep track of any errors
that occur during UNLOCK or MPACK. You can also record an optional
milestone status report for a given number of records. (The milestone
count is a user-specified number.) The milestone statistics include
date and time (in 24 hour format), CPU and disk time used, and the time
expired between the current milestone and the previous one.

UNLOCK Option

The UNLOCK option searches the data subfile entries looking for locked
records. The index subfiles are not touched during the UNLOCK option
path. Use the UNLOCK option to perform the following:

e Unlock all data records locked on disk.

e Print a total count of records that it unlocked.
Up to 8,000 record locks are recorded in main memory, and any locks in
excess of 8000 are recorded on disk. Locks recorded in main memory are
not kept across multiple executions of a program. Use record locks
only within a single execution of a program.
A lock that is recorded on disk remains in effect until the record is
updated or until MPACK cleans up the file. Ending a program and system
crashes do not unlock disk-recorded locks (that is, those record locks
in excess of the 8000 in main memory).

A record that is locked in main memory is released under the following
circumstances:

e The file containing the record is closed.
e The system crashes.
e MIDASPLUS is reshared and initialized on your system.

e The MPLUSCLUP command is issued (with no command line options).

Second Edition 15-2

PACKING A MIDASPLUS FILE

MPACK Mode

Selecting MPACK at the options prompt of the MPACK dialog puts you into
the restructure or MPACK mode. The MPACK mode lets you restructure one
or more index subfiles, all of the index and data subfiles, or the
entire file. During an index restructure operation, MPACK searches the
index subfile entries for entries that are marked for deletion or for
entries that are out of order. If any keys are out of order, MPACK
reports them to you, but does not reorder them. Secondary index
entries that point to data subfile entries marked for deletion are
deleted, freeing their space for new entries.

In a data subfile restructure, the entries are reordered to correspond
to the primary index order. Space occupied by deleted records is
reclaimed for use. Original data subfiles are copied to new packed
subfiles. At the end of the MPACK run, the original subfiles are
deleted and the new ones replace them. Always make sure that MPACK has
enough disk space to hold both the original file and the new copy.

The restructure options are: Index-number, ALL, and DATA.

Index-number Option: This option restructures the individual index
subfiles that you specify. However, if the index is corrupted or
incomplete, MPACK does not remedy the problem. In this case, use MDUMP
and then KBUILD on the file.

ALL Option: This option reclaims wasted space from all of the index
subfiles and unlocks all of the data records; it does not reclaim
space from data records marked for deletion.

DATA Option: This option restructures the data subfile and all
indexes.

Use the DATA option to restructure the entire file. Besides checking
and reordering the index subfile entries, the DATA option reorders the
data subfile entries to correspond to the order of key entries in the
primary index subfile. DATA also recovers subfile space occupied by
deleted data records. The data subfile is sorted by primary key, using
the key order in the primary index subfile. The DATA option makes
sequential file processing much faster and key searches more efficient.

If you specify the DATA option, MPACK asks if you want to overwrite the
existing file or meke a copy and work on it. To make sure that you
will always have a copy of the original file in case you need it,
answer NO to the OK TO OVERWRITE prompt. If you answer NO, MPACK asks
you to specify the mname of the file to which you want to write the
restructured file. The original file is left in its original state and
the changes are made to a copy of the file. If you accidentally
specify the name of an existing file, MPACK informs you that the
filename already exists.

15-3 Second Edition

MIDASPLUS USER’'S GUIDE

MPACK DIALOG

The MPACK dialog and the appropriate responses are shown below. Step

numbers are added for clarity.

Prompts

1. ENTER MIDASPLUS FILENAME

2. 'MPACK’ or 'UNLOCK’

3. ENTER LIST OF INDEXES,
ALL OR DATA:

4. X TO OVERWRITE FILE?

5. NEW FILENAME:

Second Edition

Responses

Enter the pathname of the existing
MIDASPLUS file.

Enter MPACK or UNLOCK. If MPACK,
make sure that you have enough
space to work on two copies of the
file. MPACK makes a copy of the
file in order to ensure recovery in
case of error or abnormal
termination.

If UNLOCK, the dialog continues at
prompt 6.

Enter index number(s) of index
subfiles to be packed. Separate
the numbers with commas or spaces.
Asked only if the MPACK response
was given to prompt 2. The dialog
continues at prompt 6.

Enter ALL to vrestructure all
indexes in the file and unlock all
data records. The dialog continues
at prompt 6.

Enter DATA to restructure the data
file and all indexes.

Answer YES or NO. (Asked only if
the DATA response was given to
prompt 3.)

NO = Your file is not overwritten
and you will have a copy of your
original file. This is the
recommended response.

YES = the file is restructured and
replaced. The dialog continues at
prompt 6.

Enter the name that you want MPACK
to give to the restructured file.
(Asked only if you answered NO to
prompt 4.) After packing the file,

154

PACKING A MIDASPLUS FILE

you have the original file intact
and a restructured version with the
newly specified filename. If you
enter the name of an existing file,
MPACK returns an error message.

6. ERR/LOG FILE? Specify an optional error/log
filename for errors and milestone
counts. Press the RETURN key if
you do not want an error log file.

7. MILESTONE COUNT? Enter the appropriate number of

records after which a milestone
report will be generated.

After prompt 7, the file is unlocked and restructured. You are
returned to PRIMOS command level.

ABNORMAI, TERMINATION OF MPACK

If MPACK aborts, the original file is left unchanged whether you are
working on the old file or a new copy of it. If you are restructuring
a copy of the file without overwriting it, the copy will have partially
built indexes and data subfiles. Delete this copy. If you are
overwriting an old file when an error or abort occurs, use the JUNK
option of KITDEL to delete all of the partially-used scratch space that
MPACK uses during restructuring.

MPACK Examples

The MPACK utility is used in the following two examples on the BANK
file that was accessed with BASIC/VM. The first example uses the ALL
option and the second example uses the DATA option. The USAGE option
of CREATK is used to show the impact that the MPACK utility has on the
BANK file.

15-5 Second Edition

MIDASPLUS USER'S GUIDE

Example 1: The ALL Option:

K, creatk
[CREATK rev 19.4.0]

MINTMUM OPTIONS? yes

FILE NAME? bank
NEW FILE? no

FUNCTION? u

INCEX? O

ENTRIES INDEXED: 0

ENTRIES INSERTED: 4
ENTRIES DELETED: 1

TOTAL ENTRIES IN FILE:

LAST MODIFIED BY MIDASPLUS REV.

FUNCTION? u

INDEX? 1

ENTRIES INDEXED: 0

ENTRIES INSERTED: 4
ENTRIES DELETED: 1

TOTAL ENTRIES IN FIIE:

LAST MODIFIED BY MIDASPLUS REV.

FUNCTION? u

INDEX? 2

ENTRIES INDEXED: 0
ENTRIES INSERTED: 4
ENTRIES DELETED: 1

TOTAL ENTRIES IN FILE:
IAST MODIFIED BY MIDASPLUS REV.
FUNCTION? q

X, m

[MPACK rev 19.4.0]

FILE NAME? bank

'MPACK’ OR 'UNLOCK': mpack

19.4

19.4

19.4

ENTER LIST OF INDEXES, ‘ALL’, OR '‘DATA’: all

ENTER I0OG/ERROR FILE NAME: (CR)

Second Edition

156

ENTER MILESTONE COUNT: 1

PACKTING A MIDASPLUS FILE

BEGINNING PRIMARY INDEX (INDEX O)

TIME
09:49:35
09:49:36
09:49:36
09:49:36

COUNT DATE
0O 05-06-85
1 05-06-85
2 05-06-85
3 05-06-85

INDEX O MPACK COMPLETE, 3.

3 05-06-85 09:49:36

BEGINNING SECONDARY INDEX 1
COUNT DATE TIME
05-06-85 09:49:36
05-06-85 (09:49:37
05-06-85 09:49:37
05-06-85 (09:49:37

QO +—~O

INDEX 1 MPACK COMPLETE 3.

3 05-06-85 09:49:37

BEGINNING SECONDARY INDEX 2
COUNT DATE
05-06-85
05-06-85
05-06-85
05-06-85
05-06-85

09:49:37
09:49:37
09:49:37
09:49:37
09:49:37

RO+~ O

INDEX 2 MPACK COMPLETE 3.

4 05-06-85 09:49:38
MPACK COMPLETE.

CK, creatk
[CREATK rev 19.4.0]

MINIMUM OPTIONS? yes

FILE NAME? bank
NEW FILE? no

FUNCTION? u

INDEX? O

ENTRIES TNDEXED: 3
ENTRIES INSERTED: 0
ENTRIES DELETED: 0
TOTAL ENTRIES IN FILE:

IAST MODIFIED BY MIDASPLUS REV.
FUNCTION? u

INDEX? 1

CPU MIN DI

TIME C

CPU MIN DISK MIN

0.000 0.000
0.002 0.001
0.002 0.001
0.003 0.001

ENTRIES INDEXED
0.004 0.001

PU MIN DISK MIN
0.000 0.000
0.002 0.001
0.002 0.001
0.003 0.001
0.004 0.001

ENTRIES INDEXED
0.005 0.001

3

19.4

15-¢7

TOTAL TM DIFF
0.000 0.000
0.006 0.006
0.007 0.001
0.008 0.001
0.009 0.002

TOTAL TM DIFF
0.000 0.000
0.003 0.003
0.003 0.001
0.004 0.001
0.006 0.002

TOTAL TM DIFF
0.000 0.000
0.003 0.003
0.004 0.001
0.004 0.001
0.005 0.001
0.007 0.002

Second Edition

MIDASPLUS USER’S GUIDE

ENTRIES INDEXED: 3
ENTRIES INSERTED: 0]
ENTRIES DELETED: 0
TOTAL ENTRIES IN FILE: 3

LAST MODIFIED BY MIDASPLUS REV. 19.4
FUNCTION? u

INDEX? 2

ENTRIES INDEXED: 3

ENTRIES INSERTED: 0
ENTRIES DELETED: 0

TOTAL ENTRIES IN FILE: 3
LAST MODIFIED BY MIDASPLUS REV. 19.4

FUNCTION? g

Example 2: The DATA Option

(K, creatk
[CREATK rev 19.4.0]

MINIMUM OPTIONS? yes

FILE NAME? bank
NEW FILE? no

FUNCTION? u

INDEX? O

ENTRIES INDEXED: 3
ENTRIES INSERTED: 4
ENTRIES DELETED: 0
TOTAL ENTRIES IN FILE: 7

LAST MODIFIED BY MIDASPLUS REV. 19.4

FUNCTION? u

INDEX? 1

ENTRIES INDEXED: 3
ENTRIES INSERTED: 4
ENTRIES DELETED: 0
TOTAL ENTRIES IN FILE: 7

Second Edition 15-8

PACKING A MIDASPLUS FILE

IAST MODIFIED BY MIDASPLUS REV. 19.4

FUNCTION? u

INDEX? 2

ENTRIES INDEXED: 3
ENTRIES INSERTED: 4
ENTRIES DELETED: 0
TOTAL ENTRIES IN FILE: 7

LAST MODIFIED BY MIDASPLUS REV. 19.4
FUNCTION? g

X,
[MPACK rev 19.4.0]

FILE NAME? bank

'MPACK’ OR ‘UNLOCK’: m

ENTER LIST OF INDEXES, ‘ALL’, OR 'DATA’': data
OK TO OVERWRITE THE FILE? no

ENTER NEW MIDASPLUS FILE NAME: newbank

ENTER LOG/ERROR FILE NAME: xout

ENTER MILESTONE COUNT: O

BEGINNING PRIMARY INDEX (INDEX O)

COUNT DATE TIME CPU MIN DISK MIN
0 05-06-85 10:24:42 0.000 0.000
INDEX O MPACK COMPLETE, 7. ENTRIES INDEXED
7 05-06-85 10:24:42 0.004 0.002
BEGINNING SECONDARY INDEX 1
COUNT DATE TIME CPU MIN DISK MIN
0 05-06-85 10:24:42 0.000 0.000
INDEX 1 MPACK COMPLETE 7. ENTRIES INDEXED
7 05-06-85 10:24:42 0.003 0.001
BEGINNING SECONDARY INDEX 2
COUNT DATE TIME CPU MIN DISK MIN
0O 05-068-85 10:24:42 0.000 0.000
INDEX 2 MPACK COMPLETE 7. ENTRIES INDEXED
7 05-06-85 10:24:42 0.003 0.000

MPACK COMPLETE.

K, creatk

[CREATK rev 19.4.0]
MINIMUM OPTIONS? yes

FILE NAME? xnewbank
NEW FILE? no

15-9

TOTAL TM DIFF
0.000 0.000

0.006 0.006
TOTAL T™M DIFF
0.000 0.000
0.004 0.004
TOTAL TM DIFF
0.000 0.000

0.003 0.003

Second Edition

MIDASPLUS USER'S GUIDE

FUNCTION? u

INDEX? O

ENTRIES INDEXED: 7

ENTRIES INSERTED: 0
ENTRIES DELETED: 0

TOTAL ENTRIES IN FILE: 7
LAST MODIFIED BY MIDASPLUS REV. 19.4
FUNCTION? u

INDEX? 1

ENTRIES INDEXED: 7

ENTRIES INSERTED: 0
ENTRIES DELETED: 0

TOTAL ENTRIES IN FILE: 7
LAST MODIFIED BY MIDASPLUS REV. 19.4
FUNCTION? u

INDEX? 2

ENTRIES INDEXED: 7

ENTRIES INSERTED: 0
ENTRIES DELETED: 0

TOTAL ENTRIES IN FILE: 7
LAST MODIFIED BY MIDASPLUS REV. 19.4

FUNCTION? g
X,

MPACK ERRCR MESSAGES

The following are MPACK error messages. If an error is fatal, MPACK
aborts after reporting it. A non-fatal error is a warning only and
does not harm the MPACK process.

Fatal Messages

e UNABLE TO REACH BOTTOM INDEX LEVEL
MPACK was unable to find a last level index block for an index. The

file is damaged. Use MDUMP to dump the data file into a sequential
disk file and use KBUILD to rebuild the file.

Second Edition 15-10

PACKING A MIDASPLUS FILE

e DATA SUBFILE FULL

This message may occur if MPACK is used to implement segment subfiles
or segment directories that are smaller than the default. Use the
EXTEND option of CREATK to enlarge the subfile size or segment
directory length.

e INDEX FULL

This message may occur if MPACK is wused to implement index blocks,
index subfiles, or segment directories that are smaller than the
default. There is no more room in the index subfile. Use the EXTEND
option of CREATK to enlarge the subfile size or segment directory
length.

e ABORTING MPACK

This message appears when a fatal error occurs. Use the JUNK option of
KITDEL to delete the scratch files created by MPACK, or if you are not
overwriting the old file, delete the new file.

e FILE IN USE

This file is not available for MPACK use. MPACK must have exclusive
access to the file. You are returned to PRIMOS.

Varning Messages

e INDEX SUBFILE DOES NOT EXIST

You supplied an index number that was not defined for this file.

e FILE AIRFADY EXTISTS —— TRY AGAIN

You specified the name of an existing file in response to ENTER NEW
MIDASPLUS FILE NAME? prompt of the DATA option path. MPACK does not
overwrite an existing file in this case. You must enter the name of a
non-existent file.

e INVALID KEY SEEN (IGNORED)

Akey is out of order in the index or the key is a duplicate and
duplicates are not allowed in the specified index.

15-11 Second Edition

MIDASPLUS USER'S GUIDE

e INVALID DIRECT ACCESS ENTRY NUMBER SEEN (IGNORED)

A record number is not greater than zero, or is not a whole number, or
is greater than the pre-allocated record number limit.

Second Edition 15-12

Installing and
Administering
MIDASPLUS

This chapter describes procedures for setting up and monitoring
MIDASPIUS. The following topics are discussed:

e Installing and sharing MIDASPLUS
e Initializing MIDASPLUS
e Using MSGCTL

e Networking MIDASPLUS

INSTALLING MIDASPIUS THE FIRST TIME

Depending on whether you have standard MIDASPIUS or execute-only
MIDASPIUS, you use one of two command files the first time you install
MIDASPIUS. For standard MIDASPLUS, type the following:

0O MIDASPLUS>MIDASPLUS. INITINSTALL. COMI
For execute-only MIDASPLUS, type the following:

00 MIDASPLUSEX>MIDASPLUSEX . INITTINSTALL. COMT
This command file creates the MIDASPLUS* directory and executes the
command file that installs the rest of MIDASPLUS. MIDASPLUS needs the

MIDASPLUS* directory for error logging. For more details, see SYSTEM
ERRCR IOGGING later in this chapter.

16-1 Second Edition

MIDASPLUS USER'S GUIDE

UPGRADING MIDASPLUS

Depending on whether you have standard MIDASPIUS or execute-only
MIDASPLUS, you use one of two command files to upgrade MIDASPLUS to the
current revision. For standard MIDASPLUS, type the following:

CO MIDASPLUS>MIDASPLUS. INSTALL. COMI
For execute-only MIDASPLUS, type the following:

OO0 MIDASPLUSEX>MTDASPLUSEX. INSTALL. COMIL

Both of the above commands copy MIDASPIUS 1libraries, programs, and
files to appropriate system directories.

SHARING MIDASPLUS

To execute the command file that shares and initializes standard or
execute-only MIDASPLUS, type the following:

OO SYSTEM>MIDASPLUS.SHARE.COMI

This command file shares appropriate segments and installs the sharable
MIDASPLUS library. You must run MIDASPLUS.SHARE.COMI each time the
system cold starts.

To automatically rTun this file at each system cold start, edit the
system initialization file (either CMDNCO>PRIMOS.COMI or CMDNCO>C_PRMO)
by adding the above command.

Once a Rev. 22.0 or higher version of MIDASPLUS is installed, you can
have as many MIDASPLUS processes running as PRIMOS allows. Previously,
the MIDASPLUS process limit was less than the PRIMOS limit. If you
attempt to use more processes than PRIMOS allows, MIDASPLUS still uses
the PRIMOS limit.

For further information on installing and sharing MIDASPLUS, see the
MIDASPLUS info file.

Second Edition 16-2

INSTALLING AND ADMINISTERING MIDASPLUS

MIDASPLUS COMPONENTS

MIDASPIUS comes with everything built and ready for installation.
MIDASPIUS includes a library of online and offline routines as well as
the following utilities:

e CREATK

e KBUILD

e KITIDEL

e MDUMP

e MPACK

e MPLUSCLUP

Note

The MIDASPLUS utilities need the private segments 4040 through
4046. Do not use these segments for any other purpose.

An R-mode library (KIDAIB) and a synonym library (VKDALB) provide
compatibility with previous MIDAS/MIDASPLUS releases.

If you want to use a MIDASPLUS configuration directive, create a file
called MPLUS.CONFIG in the directory SYSTEM, adding the configuration
directive to this file. Optional configuration directives are
discussed later in this chapter.

PROVIDING ACCESS TO MIDASPLUS

To use a utility on a MIDASPLUS file, the file must reside in an Access
Control List (ACL) directory. The next higher level directory must
also be an ACL directory. The utilities work in a passworded directory
only if there is no owner password on the current directory or on the
parent directory. For detailed information about ACLs, see the PRIMOS
User'’'s Guide.

16-3 Second Edition

MIDASPLUS USER'S GUIDE

Before a utility is allowed to access a MIDASPLUS file, the file's
RWIOCK is read and then changed to EXCLUSIVE. Users of MIDASPLUS
utilities need the following ACL rights:

Protect, Delete, Add, List, Use, Write (PDALUW) on the current
directory

List, Use (IU) on the parent directory

Tn addition to the above ACL rights, all MIDASPLUS users must have at
least Access, List, Use, Read, and Write (ALURW) access to MIDASPLUS*.
The System Administrator should be given ALL access to MIDASPLUS*. For
more details on MIDASPIUS*, see SYSTEM FERROR IOGGING later in this
chapter.

INITIALTZING MIDASPLUS

The IMIDASPLUS command, contained in the MIDASPLUS.SHARE.COMI comamnd
input file, initializes MIDASPLUS. The IMIDASPLUS command sets
configuration parameters, as specified in the MPLUS.CONFIG file, and
makes the appropriate initialization call to the MIDASPLUS library. If
MPLUS.CONFIG does not exist, IMIDASPLUS uses all system configuration
defaults to perform the initialization. For a list of available
configuration parameters, type the -HELP option when you execute the
SYSTEM>IMIDASPLUS command.

The configuration file contains MIDASPLUS configuration parameters as
standard text, stored one parameter per line. If IMIDASPLUS finds an
error with a configuration parameter, it prints an error message,
assumes the default, and continues initialization. If a parameter is
not specified, the default value is assumed.

It is possible to have more than one configuration file. You can tell
MIDASPLUS the location of the configuration file you want to use, by
specifying the file's pathname when you execute the IMIDASPLUS command.
If you do not specify a pathname, IMIDASPLUS uses the MPLUS.CONFIG file
in the current directory.

Second Edition 164

INSTALLING AND ADMINISTERING MIDASPLUS

- Configuration Parameters

The following paragraphs describe the configuration parameters. A
bullet (o) designates the default parameter.

SEMAPHCORE semaphore-number Specifies the PRIMOS semaphore. This
number is used for user
synchronization.

The default for semaphore-number is
-14.

print options on and off for
developer debugging. The default is
— off.

DEBUG low] Turns MIDASPLUS debug execution and

This parameter sets debug control on
a system-wide basis. You can call
MSGCTL to set DEBUG on a per-user
basis.

FUNITS maximum Specifies the maximum number of file

number of file units units per-user that MIDASPIUS will
use for its subfiles. (This number
does not include file units that are
used for main MIDASPIUS segment
directories.) The default is 256 and
the maximum is 512.

Do not make the value less than the
maximum number of MIDASPLUS segment
directories a user is likely to use
at once. In most cases, set this
value at least four times the desired
number. This allows four subfiles
per MIDASPIUS file to be open.

TIMEOUT seconds Specifies the number of seconds that
the user will wait for some internal
resource (locks or buffers) before
MIDASPIUS assumes that the system is
hung and aborts the current
operation.

Make the seconds argument a positive
integer that shows the maximum number
of seconds to wait for a resource.
If seconds 4is 2zero, then no timeout
occurs amd the user waits
indefinitely. The default value is
300 seconds (5 minutes).

16-5 Seqond Edition

MIDASPLUS USER’'S GUIDE

mm_m(ouo}

BUFFERS buffer—count

REMOTE_TRANSMIT { oN e

REMOTE, RECEIVE {

Second Edition

on.]

Specifies whether MIDASPLUS should
print error messages when fatal
errors occur. The default is ON.
This parameter sets the error print
control on a system-wide basis. A
call to MSGCTL allows PRINT_ERROR to
be controlled on a per-user basis.

If ON, MIDASPLUS prints the MIDASPLUS
error code for any type of fatal
error found. If a PRIMOS system call
error is found, the system error
nessage is also printed.

If OFF, no error codes are printed.

Specifies the number of internal file
buffers that MIDASPLUS will use. The
possible values of buffer-count are 2
through 64, with a default of 64.

It is recommended that you do not
change this parameter except on
systems with few MIDASPLUS users and
limited memory.

A low value uses less working-set,
but increases the number of system
I/0s and user wait time for a buffer.
A large value decreases the user wait
times, but uses more working-set.

Specifies whether MIDASPLUS can
access remote files.

If ON (default), allows processing of
outgoing requests to other network
nodes for access to MIDASPLUS files
on their system.

If OFF, does not allow outgoing
remote calls.

Specifies whether remote MIDASPLUS
can access local MIDASPLUS files.

If ON (default), allows other network
nodes to access MIDASPIUS files on
this system.

If OFF, denies remote incoming
requests.

16-6

INSTALLING AND ATMINISTERING MTDASPLUS

If ON (default), allows MIDASPLUS to
report the existence of duplicate key
entries. MIDASPLUS returns a value
of 1 in the returned status code
(word one of the user commnication
ARRAY) to indicate duplicates. The
parameter sets duplicate reporting
system-wide. Call MSGCTL to control
REPORT_DUPS on a per-user basis.

If OFF, it never returns a status
code of 1.

Sets the system-wide state for locked
record reporting. Call MSGCTL to
change REPORT IOCKED on a per-user
basis.

If ON, allows MIDASPLUS to report
that a record is locked on a read
operation (for example, FINDS,
NEXT$) .

If OFF (default), sets bit 5 of user
communication array word 13 to O,
regardless of the record’'s locked
status.

Specifies whether to save the file-
names of open MIDASPIUS files for use
by SPY.

If ON, saves the filenames of open
MIDASPIUS files. SPY wuses these
filenames when displaying which files
have record locks.

If OFF (default), filenames are not
saved.

If ON, user common information is
reinitialized at each new program
(command level) change.

If OFF, the user common information
is not reinitialized at each new
program change. This option is not
recommended because it allows
MIDASPLUS files to be closed without
updating the MIDASPILUS per-user and
system-shared information.

16-7 Second Edition

MIDASPLUS USER'S GUIDE

SYSIOG) ON If ON, MIDASPLUS creates daily logs

OFF o of system error messages. Set SYSLOG

to ON when you are experiencing

system problems; otherwise, the OFF

setting is preferable, since using

the error loggding mechanism can

adversely affect system performance.

If OFF, no new logs are created and

no errors are added to any existing

log. For more details, see SYSTEM

ERROR IOGGING later in this chapter.

;" SYSTRACE is generally intended to aid

USRCOM Prime Customer Service in diagnosing

UcA MIDASPIUS system problems. Since

BUFFERS adding this parameter may substan-

GDUCA tially degrade system performance,

BCB you should use it only when you are

SYSTRACE § IRLCOM } experiencing system problems. Using

FILOOM SYSTRACE has no effect unless SYSLOG

FS is also on. For more details, see

STK SYSTEM ERROR IOGGING later in this
CUR in this chapter.

CLPCOM
L AlL J You can use as many directives as you

wish, but you must separate them by
spaces and place them all on one
line.

Each time a system error occurs,
MIDASPLUS records in the error log a
specific internal MIDASPLUS data
structure for each directive you use.
The FMS directive records the System
Error Variable; the USRCOM directive

records miscellaneous USROOM
variables; UCA records the User
Communication Array (USROCOM) ;

BUFFERS records per-user buffer
information; GDUCA records the
GDATA$ user communication array; BCB
records the Buffer Control Block;
DRICOM records the Data Record
Locking common area; FILCOM records
File Common area; FS records the
File Table Structure; STK records
the MIDASPLUS stack; CUR records the
Current Operation Variables; CLPOOM
records the Cleanup Common Area. ALL
records all of the above.

Second Edition 16-8

INSTALLING AND ADMINISTERING MIDASPLUS

MSGCTL

MSGCTL is an online MIDASPLUS routine that allows you to control the
following on a per-user basis:

e Error message printing

e Debug mode

e Duplicate entry reporting

e Locked record reporting on read operations

The calling sequence of MSGCIL is:

CALL MSGCTL(key)

where key can have one of the octal values listed below:

Key Meaning
0 Error printing off
1 Error printing on
2 Debug mode on
4 Debug mode off
10 Duplicate reporting in status word on
20 Duplicate reporting in status word off
40 Locked record reporting in status word on
100 Locked record reporting in status word off

The key values are additive, and you may use multiple key values in the
same call. If you supply conflicting values, OFF takes priority over
ON.

To specify more than one key value in the same call, add the desired
values and use the sum as the key value. For example, a value of 5 (4
+ 1) turns the debug mode off and error printing on. Once you set a
condition, it remains in effect until you explicitly change it or exit
the application.

16-9 Second Edition

MIDASPIUS USER’'S GUIDE

Examples:
CALL MSGCTL(10) */ sets duplicate reporting on
CALL MSGCTL(2) */ sets debug mode on, leaves duplicate
*/ reporting on
CALI, MSGCTL(21) */ sets duplicate reporting off and error

¥/ printing on, leaves debug mode on

NETWORKING MIDASPLUS

MIDASPLUS allows each user to access up to 30 remote files on a network
assuming the following conditions are met:

e The disk on which the remote file exists is started up on the
local system via remote file access (RFA).

e MIDASPIUS is installed on both systems.

e You set MIDASPLUS configuration directives REMOTE TRANSMIT on
the local system and REMOTE RECEIVE on the remote system to ON.
If remote users need to access local files, the local system
should also have REMOTE RECEIVE set to ON.

When you use OPENM$ or NTFYM$ to open a remote file, MIDASPLUS realizes
that the file is remote and takes the appropriate action. Remote
access is transparent both to you and your application.

Later MIDASPIUS calls accessing that file are routed to the remote
system and processed by the NPX slave process on the remote system.
The NPX slave process returns the results to the local MIDASPLUS, which
returns them to the wuser. Because this occurs transparently, no
special user action is required.

Vhen the MPLUSCLUP command is issued with arguments, no cleanup
operations are performed on a remote system. If you need to clean up
an operation that performs remote access, run MPLUSCLUP on both the
local and the remote systems. Frequently, you will not know which
processes need to be cleaned up on the remote system. Enter MPLUSCLUP
—-ALL to solve this problem.

Note

The maximum record size for a remote file access is 8 K bytes.

Second Edition 16-10

INSTALLING AND ADMINISTERING MIDASPLUS

SYSTEM ERROR LOGGING

The error logging mechanism is an optional device that automatically
creates a system error log each day. A system error log is a file
containing all system error messages for one day. An error log file is
not provided when MIDASPIUS is installed. The log file is created when
a user attempts to write to the file. Activate the error logging
mechanism only when you are experiencing system problems, since using
this mechanism adversely affects performance.

The error logging mechanism creates a separate log for each day on
which at least one system error occurs. If for some reason an e€rror
message canmot be added to the current log, MIDASPLUS creates another
log to contain that error message only; no other errors are written to
this new log. If MIDASPIUS can neither write to the current log nor
create an individual error log, an error message is displayed at the
user’'s terminal.

while all kinds of system errors are logged, most of these errors are
either:

e Unexpected PRIMOS File Management System errors
e Network errors

e MIDASPIUS system errors

e Corrupted file errors

e Hard-coded file unit errors

e CONDITION errors

e IOCK errors

Following are some numbers and types of common MIDASPLUS errors that
may be logged when error logging is activated:

Error Numbers Error Types

20 - 23 Read/Write Errors
40 - 45 Internal Errors
51, 71, 85, 9R Miscellaneous Errors

For explanations of the above errors, see RUNTIME ERROR OODES in
Appendix B.

If a WARM START occurs when error logging is active, MIDASPLUS records
a warning message in the error log. Whether or not error logging is
active, this message appears on the supervisor terminal.

16-11 Second Edition

MIDASPIUS USER’'S GUIDE

Error ILog Directory and File Names

All system error logs are created in MIDASPLUS*, a new directory
created automatically the first time you install either Rev. 20.2 or a
higher revision of MIDASPLUS using the new initial installation file.
All MIDASPLUS users must have at least Access, List, Use, Read, and
Write (ALURW) access to MIDASPLUS*. The System Administrator should be
given ALL acccess to MIDASPLUS*.

The daily error logs use the naming format ERROR_IOG yymmdd, where
yymndd is the date of the log. The individual error logs, created when
MIDASPLUS cannot access the current log, use the naming format
ERROR_I10G USERxxx yymmdd mmsstt, where xxx is the wuser number and
yymdd_mmsstt is the date and time of the error.

Enabling Error Logging

If you are currently experiencing system problems, activate the error
logging mechanism by performing two consecutive steps:

1. Add the line SYSIOG ON to the MPLUS.CONFIG file.
2. Execute MIDASPLUS.SHARE.COMI or simply type R SYSTEM>IMIDASPLUS.

If you experience problems with error logging, check to see if the
MIDASPLUS* directory exists. If MIDASPLUS* does not exist, execute the
initial installation command file MIDASPLUS.INITINSTALL.COMI for
standard MIDASPIUS or MIDASPLUSEX.INITINSTAIL.COMI for execute-only
MIDASPIUS. The installation command file creates the MIDASPLUS*
directory needed for error logging and installs the rest of MIDASPLUS.
Vhen executing the command file, exclude other users from the system.

Error Log Inspection

The section Configuration Parameters earlier in this chapter also
describes SYSTRACE, a parameter primarily intended for use by your
Prime Customer Service Representative (CSR). The CSR will temporarily
add this directive while gathering information relevant to system
problems. Adding the SYSTRACE directive can degrade performance
substantially. Therefore, when the CSR is not assisting you, you may
prefer not to add this directive to MPLUS.CONFIG even if you have
SYSLOG ON.

Note

Because SYSTRACE provides information only for errors recorded
in the error log, SYSLOG must be set to ON when SYSTRACE is ON.
¥hen error logging is no longer necessary, set SYSIOG to OFF.
SYSTRACE need not be set to OFF, because it is automatically
ignored when SYSIOG is OFF.

Second Edition 16-12

Offline Create

Routines

This chapter discusses KX$CRE and KX$RFC which are user-callable,
offline routines that act as an alternative to CREATK. You will find
KX$CRE and KX$RFC helpful only if you need to create file templates or
read a file configuration from within your application. It is
recommended that you use command files that invoke CREATK rather than
using KX$CRE or KX$RFC.

KX$CRE

You can use KX$CRE to create a MIDASPLUS file from a program. It is
the same routine as that used by CREAIK.

KX$CRE Calling Sequence
KX$CRE's calling sequence is:

CALL KX$CRE (filnam,namlen,flags,alloc,pridef,secdef,errcod)

17-1 Second Edition

MIDASPIUS USER'S GUIDE

The arguments used in the above call and their data types are:

Argument Data Type Meaning

filnam INT*2 Pathname of +the file to be
opened, two characters per word.

namlen INT*2 Iength of filnam in characters.

flags INT*2 Global flags. See The Flags Argu-
ment below.

alloc REAL*4 Number of data records to pre-

allocate if direct access is enabled
for this file. Use this argument
only if M$DACC is set in flags. Set
this argument to O when creating a
keyed-index file.

pridef(6) INT*2 Definition array for the primary
index. See Table 17-1 and the
Pridef and Secdef Arrays section
below.

secdef(6,17) INT*2 Definition array for the 17
secondary indexes. Secdef(l...6,1)
contains the definition for second-
ary index 1, where 1 ranges from 1
to 17. See Table 17-1 and the
Pridef and Secdef Arrays section
below.

errcod(2) INT*2 Error code returned by MIDASPLUS.
If the error code in errcod(l) is O,
completion was successful.

Error code less than 5000 = a file
system error. KX$CRE tries to delete
the partially created file and
ignores any errors incurred in the
process.

Error code greater than or equal to
5000 = an error in the MIDASPLUS
file definition. Errcod(2) contains
an index number if applicable. See
Non-File System Error Codes below.

The Flags Argument: This argument indicates the file type and the
READ/WRITE lock setting of the file to be created in this call.

Second Edition 17-2

OFFLINE CREATE ROUTINES

The following keys set the flags argument:

Key Function

M$DACC Enables the file for direct access. Alloc
contains the initial number of records to
pre-allocate.

MENRNW Sets the file lock to n readers and n writers.

(You must use this key.)

The Pridef and Secdef Arrays: Assign values to pridef and secdef to
indicate the characteristics of the primary index and any secondary
indexes that will be included in the file template. Your program
passes these arrays to KX$CRE, which uses the information to build the
file template.

The six-element one-dimensional array pridef (1...6) contains the
necessary information to define the primary index. The two-dimensional
secdef array defines the secondary imndexes. Secdef(l...6,i) defines
secondary index "i". All of the elements in these arrays are INTEGER*2
data type.

Table 17-1 1lists the six elements of each array. Table 17-2 divides
the flags used for the first element in each of these arrays into three
groups. Group one defines special index subfile characteristics;
group two defines the key type; and group three tells whether the key
size is supplied in bits, bytes, or words.

Select one flag to define the key type and one flag to define the key
size. If you are building a secondary index that allows duplicates,
you must specify M$DUPP. Assign the flags to the first element of the
pridef or secdef array in the following manner:

SECDEF(1,1) = M$DUPP + M$ASTR + M$WORD

This defines an ASCII key that allows duplicates and has its length
defined in words. The actual length is supplied in secdef(2,1).

17-3 Second Edition

MTIDASPLUS USER'S GUIDE

Table 17-1

Pridef and Secdef Array Elements

Array Elements

Pridef Secdef

Description

(1)

(2)

(3

(4)

(8

(8

(1,1)

(2,1)

(3,1)

(4,1)

(5,1

(6,1)

Contains one or more flag values specifying
the key type and size. For secdef, it also
determines the duplicate status of the key.
See Table 17-2 for key-type flags.

States the primary key size in bits, bytes,
or words (pridef) or the secondary key size
in bits, bytes, or words (secdef). A O in
secdef indicates that the index does not
exist.

Data record size. Supply a O for variable-
length records.

Secondary data size. Supply a O if you do
not want this feature.

ILevel 1 block size. Supply a O to use the
default block size (1024 words).

Ievel 2 block size. Supply a O to use the
default block size (1024 words).

Last level block size. Supply a O to use
the default block size (1024 words).

Second Edition

174

OFFLINE CREATE ROUTINES

Table 17-2
Flags for pridef(1) and secdef(l)
Flag Type Flag Value Meaning
Index- M$DUPP Duplicates permitted for this key
specific (secondaries only)
Rey M$BSTR Bit string
Key M$SPFP Single-precision floating point
(REAL*4)
Key M$DPFP Double-precision floating point
(REAL*8)
Key M$SINT Short (16 bits) integer (INT*2)
Key M$LINT Iong (32 bits) integer (INT*4)
Rey M$ASTR ASCII string
Key size M$BIT Key length specified in bits
KRey size M$BYTE Key length specified in bytes
Key size M$WORD Key length specified in words

Non-File System Error Codes

Errors occurring durJ_ng the building of a template could originate in
the file system or in MIDASPLUS. Errors can result from invalid user
arguments or an internal MIDASPLUS problem. This section lists the
most common KX$CRE error codes.

e ME$BAS

Allocation size is invalid. The number specified in alloc was either
less than 1.0, not a whole number, or too big to allocate the number
passed in the user supplied alloc argument due to the default segment
directory and segment subfile lengths.

e MESEDS
Data size is invalid because the data size is negative; or the data
size specified in pridef(3) indicates variable-length data records, but

the file is configured for direct access, and thus requires
fixed-length data records.

17-5 Second Edition

MIDASPLUS USER'S GUIDE

e MES$BKS

Key size is invalid. For example, the key size is too big, the key
size is negative, or the primary key size is 0. (The limit is 16 words
except for ASCII strings, which may be up to 32 words.)

e ME$BKT

Key type is invalid.

e ME$EL1

Ievel 1 block size is invalid. The block size must be positive, not
larger than 1024 words, and must hold at least two index entries.

e ME$EI2

Level 2 block size is invalid.

e ME$BLI,

Last level block size is invalid. When building a secondary index,
this error may also occur when the secondary data size, secdef (3,i),
is too large (in comparison to the block size) to fit the mandatory two
entries per block.

e ME$NDA
No duplicates are allowed. You specified the flag M$DUPP in pridef(1).
Duplicates are never allowed for the primary key.

Note

All of the flags and codes listed above are defined in
SYSCOM>PARM.K. INS . FIN

KX$RFC

KX$RFC is a user-callable routine that returns the file configuration
of an already existing MIDASPLUS file.

Second Edition 176

OFFLINE CREATE ROUTINES

KX$RFC Calling Sequence

The KX$RFC calling sequence is:

CALL KX$RFC (filnam,namlen,flags,alloc,pridef,secdef,errcod)

The arguments, their meanings, and their data types follow:

User-Supplied Arguments

Argument Data Type - Meaning

filnam INT*2 The pathname of the MIDASPLUS file
whose configuration is to be
returned.

namlen INT*2 Iength of filnam in characters.

Arguments Returned by KX$RFC

Argument Data Type Meaning

flags INT*2 Global flags: M$DACC is returned for
direct access file; 0 for keyed-
index file.

alloc REAL*4 Number of data records pre-allocated

if direct aceess is enabled.
Otherwise 0.0 is returned.

pridef(6) INT*2 Definition array for the primary
index.
secdef(6,17) INT*2 Definition array for the 17

secondary indexes. Secdef(l...6,1)
contains the definition for
secondary index i.

errcod INT*2 Error code or O if no error.

KX$RFC's arguments are similar to KX$CRE's arguments. With the
exception of the differences listed below, refer to the previous KX$CRE
discussion for information about using KX$RFC's arguments.

17-7 Second Edition

MIDASPIUS USER'S GUIDE

KX$RFC Arguments

You do not supply the flags argument in a call to KX$RFC; a successful
call to the KX$RFC subroutine returns it. If the file is a direct
access file, the flag M$DACC is returned; otherwise, flags is returned
as 0.

Pridef and Secdef Flags: The flags returned on this call are:

Flags Meaning

M$BSTR, M$MSPFP, M$SINT, Possible settings for bits 1-4.
M$LINT, and M$ASTR

M$DUPP The settings for bit 6.

MBIT, MBYTE, Possible values of Dbits 6-7.

and M$WORD (KX$RFC does not usually return
M$WORD.)

Element secdef(2,i) is returned as O if there is no index i in this
file.

Errcod: Unlike KX$CRE, errcod is a one-word argument instead of a
two-word array. Error codes 1less than 5000 indicate file system
errors. ME$NMF, which means that the file is not a MIDASPLUS file, is
the only code returned greater than 5000. This code could occur for
the following reasons:

e The file is not a SAM segment directory.
e Segment subfile O (file descriptor subfile) does not exist.

e Segment subfile O does not contain the appropriate flags to
indicate that the file is a MIDASPIUS file.

Second Edition 17-8

Offline Build Routines

This chapter discusses the three offline file-building routines which
are PRIBLD, SECBLD, and BILD$R. In addition to using KBUILD and ADD1S$,
a MIDASPIUS file can be built with these offline building routines.
You can call these routines from any user program and use them to add
index and data subfile entries to keyed-index or direct access
MIDASPLUS files. Data entries can have fixed or variable length
records and can be sorted or unsorted. Because these routines do not
provide the concurrency controls of the other call interface routines,
they should be used as program alternatives to KBUILD only to initially
populate a file or to add many records at once to an already populated
file.

You can call these routines from any Prime-supported language. See the
appropriate user manual for information on calling external routines.
Note
When using the routines discussed in this chapter, place the

following files into your FORTRAN programs with $INSERT:

SYSCOM>PARM.K. INS.FIN
SYSCOM>ERRD. INS.FIN
SYSCOM>KEYS . INS.FIN

18-1 Second Edition

MIDASPLUS USER’'S GUIDE

GUIDELINES
Review the following guidelines before deciding which routines to use
for MIDASPLUS file-building.
PRIBLD: Use PRIBLD when all of the following conditions are true:
e You want to build a primary index and data subfile.
® Your data is sorted by primary key.

e The MIDASPLUS file that you are building does not contain any
entries. (See note below.)

e There will be no other users in the file when you are accessing
it.

SECBLD: Use SECBLD when all of the following are true:

e You are building one or more secondary index subfiles.
e Your input data is sorted on a secondary key field.

e The secondary index subfiles to be Dbuilt do not contain any
entries. (See note below.)

e There will be no other users in the file.

Make sure that the input data contains a copy of the primary key
associated with each particular secondary key that you want added to
the file. SECBLD locates the primary key entry in the index subfile so
that the secondary index entry can be added.

Note

If you try to rebuild an existing file that previously
contained entries, make sure that each index that you want to
build from sorted data is truly empty. Also make sure that the
index does not contain obsolete pointers to data subfile
entries that no longer exist. Use MPACK or KIDDEL to clean out
the index subfiles before trying to rebuild them with sorted
input data.

BILD$R: Use BILD$R when one or both of the following conditions occur:
e Your input data is not sorted by the index to be built.

e Your output (MIDASPLUS) file already contains entries in the
subfile to be built.

Second Edition 18-2

OFFLINE BUILD ROUTINES

Calls to PRIBLD, SECBLD, and BILD$R can be made from the same program
to build one MIDASPLUS file if you do not attempt to build the same
index subfile from both BILD$R and PRIBLD or SECBLD at the same time.

RESTRICTIONS

e Only one user at a time may call an offline routine to operate
on a file. Once one of these routines opens a file, no one else
can invoke any MIDASPIUS routine to work on that file. More
than one of these routines can, however, be called from the same
program to work on the same file as long as they do not access
the same index subfile concurrently. As a result, you can call
the file-building routines in the proper sequence to build an
entire file from a single program. The second routine to access
that subfile will report an error and will abort unless the
program provides an alternate return. (See the 1list of error
messages at the end of this chapter.)

e The offline routines check to see that they are not accessing
the same index subfile of a MIDASPIUS file simultaneously while
building it.

e Programs that use any of these routines to build a MIDASPLUS
file cannot be run at the same time as application programs that
access the same MIDASPLUS file using the online calls. If any
one of the file-building routines opens a MIDASPLUS file, other
users or processes cannot use the file for reading or writing.

e PRIBID, SECBLD, and BILD$R can only be used to build a single
MIDASPIUS (output) file. You cannot process more than one
output file at a time through any of these file-building
routines.

e Never use OPENM$, NTFYM$, or CLOSM$ with these routines.

e VWhen using PRIBLD, SECBID, or BILD$R, the file should be opened
with SRCH$$ or TSRC$$ rather than OPENM$ or NIFYM$.

EVENT SEQUENCE FLAG

PRIBID, SECBLD, and BILD$R use the same flag argument in their calling
sequence. This flag, called segflg in the argument list, is used as a
commmications tool between you and the routine. Use segflg to tell
the routine when to start and stop processing. The routine tells you
the state of the build operation. The argument can have one of the
four values shown in Table 18-1

When first calling one of these routines from a program to add an

entry, supply a flag value of O in the calling sequence. This is an
initialization request to the routine and tells the routine to start

18-3 Second Edition

MIDASPLUS USER'S GUIDE

processing the data that your program provided. When the first record
has been successfully processed, the routine sets the flag value to 1.
The flag remains set at 1 until the last entry is processed. Your
program should then issue a finalization request and set the event
sequence flag to 2. (This is done by making another call to the
routine in which seqflg has a value of 2. In the finalization request,
every other argument in the calling sequence, except for the unit and
altrtn and index arguments, is ignored, and may have a value of O.)
Use a finalization request to close the currently opened index subfile
before another index subfile can be opened. When the finalization
request is fulfilled, the routine will set the segqflg value to 3,
indicating that the particular subfile has been closed.

Table 18-1
Event Sequence Flag Values

Value Explanation

0 You set the value to zero as an initialization
request. This signals the routine that the
first record of input data is to be processed.

1 The routine sets the value to 1 after the first
record has been processed. It remains set at 1
until you set it to 2.

2 You set the value to 2 as a finalization
request. The wvalue is passed to the routine
after the last entry in input data has been
processed. If more than one index subfile is
open, make a separate finalization request for
each index.

3 The routine sets this value to indicate that
finalization is complete. The routine sets the
flag to 3 to acknowledge the closing of each
index.

Since you can use these routines again for another index, you can reset
seqflg to O to restart the rebuild process for a new index subfile.

Second Edition 184

OFFLINE BUTLD ROUTINES

General Use of Sequence Flag: The following is a generalized example
of how the event sequence flag is used:

C INITIALIZATION REQUEST
SEQFIG = O

C SET UP ARGUMENTS FOR CAIL

CALL routine-name (SEQFLG, arguméents........)

C FINISH UP

C MAKE COMPLETION REQUEST
SEQFLG =2 /*REQUEST TO CLOSE SUBFILES
CALL routine-name (SEQFLG, arguments........)

Error Handling

The use of flags to pass error status codes between the main program
and the routines it calls is recommended. Errors are then handled
through a normal return to the calling program. The flag is checked
and an action is taken, usually by an on-unit (PL/I) or other exception
handler.

You can write errors that occur during the file-building process to a
disk file instead of having them appear at your terminal. You can call
KX$TIM to record milestones in a similar manner. (KX$TIM is discussed
in Appendix F, OTHER MIDASPLUS OFFLINE ROUTINES.)

PRIBLD

The PRIBID routine builds a primary index subfile and adds the
corresponding data records to the data subfile. The input file must be
sorted in primary key sequence and the MIDASPLUS (output) file must be
empty. PRIBLD cannot add sorted primary key entries to an index
subfile that already contains values. If the primary index is not
enpty, use BILDSR.

If PRIBID adds a variable-length record that is outside a record size

limit, MIDASPLUS automatically resets that 1limit to the size of the
record.

18-5 Second Edition

MIDASPLUS USER'S GUIDE

PRIBLD Calling Sequence

PRIBID's calling sequence is:
CALL PRIBID (seqflg, primkey, data, dlength, funit, altrtn, danum)

The arguments for PRIBLD are described below.

Argument Data Type Definition

seqflg INT*2 The event sequence flag. See Table
18-1.

primkey INT*2 A numeric variable or a

one—-dimensional array, which can be an
integer or real number, depending on
the key type. It contains the primary
key value to use on this call.

data INT*2 A one—dimensional array containing the
data to be added. If dlength is zero,
data may also be zero.

dlength INT*2 The length of data in words. If
dlength is less than the record size
originally defined for fixed-length
record files, the entry written to the
MIDASPIUS file will be padded
with O's. Excess data is ignored.
For variable-length records, specify
the exact length of the record being

added.

funit INT*2 The file unit on which the MIDASPLUS
file is opened.

altrtn INT*2 The number of a statement in the

program to be used as an alternate
return. If you supply O for the
altrtn argument, control returns to
PRIMOS if an error occurs.

danum REAL*4 The entry number for direct access
files. If the indicated entry slot is
already occupied, the entry is added
to the end of the data subfile.
Specify a 0 for this argument if the
MIDASPIUS file being built is a
keyed-index file.

Second Edition 186

OFFLINE BUILD ROUTINES

SECBLD

The SECBLD routine builds secondary index subfiles from input data that
is sorted in secondary key sequence. The index subfile being built
must not contain any entries before SECBLD is called. Include a coOpy
of the primary key as one of the arguments in the call. This step
allows SECBLD to meke the appropriate connections between the data
subfile entries already in the file and the secondary index entries
being added.

When making calls to SECBLD in a program, avoid making calls to BILD$R
that attempt to open the same secondary index subfile. If BILD$R

already has the secondary index subfile open when SECBID is called,
SECBLD returns the error message:

CAN'T USE SECBLD AND BILD$R SIMULTANEOUSLY

SECBLD Calling Sequence

The calling sequence of SECBLD is:
CALL SECELD (seqflg,seckey,pkey,index,secdat,sdsiz, funit,altrtn)

There are no special arguments for direct access files. The data
entries have already been added and the record numbers do not need to
be supplied in order to add secondary index entries. The complete
argument list is given below. All arguments are INTEGER*Z data type.

Argument Definition

seqflg The event sequence flag, described in Table 18-1.

seckey The secondary key value to be added to the index
subfile.

" pkey The primary key value that references the same
record as seckey.

index The secondary index subfile number being built

during this call to SECELD.

secdat The secondary data to be stored in this index
entry. This applies only to indexes for which the
secondary data feature was chosen during index
definition. Specify 0O if you do not want to add
any secondary data for this index.

18-7 Second Edition

MIDASPLUS USER’'S GUIDE

sdsiz The size in words of the secondary data supplied in
this call. Specify a O if you supplied O for the
previous argument.

funit The file unit on which the MIDASPLUS file is open.

altrtn The alternate return in the calling program to
which control is passed if an error occurs. If
specified as O, the program will abort and return
to PRIMOS command level.

BILD$R

You can use BILD$R to build the primary index subfile and data subfile,
as well as any or all of the secondary index subfiles associated with a
particular MIDASPIUS file. BILD$R processes both sorted and unsorted
data. It adds entries to files that already contain index entries in
primary and/or secondary subfiles and also works on empty MIDASPLUS
files.

If BILD$R adds a variable-length record that is outside a record size
limit, MIDASPIUS automatically resets that 1limit to the size of the
record.

Do not make calls to BILD$R while calling PRIBLD or SECBLD for the same
index. If you make simultaneous calls without an alternmate return, the
calling program aborts.

BILD$R Calling Sequence

The BILD$R calling sequence is:
CALL BIID$R (seqflg,key,pbuf,bufsiz,danum,index, funit,altrtn)

The arguments for BILD$R are described below.

Argument Data Type Definition

seqflg INT*2 The event sequence flag. See Table
18-1 above.

key INT*2 The primary or secondary key value to

be added on this call.

Second Edition 18-8

OFFLINE BUILD ROUTINES

pbuf INT*2 The data subfile entry if you are
adding a secondary index entry.

The primary key that references the
same data record as the secondary key
entry being added if you are adding a
secondary index entry. If you are
using secondary data, place it in
pouf, immediately following the
primary key value.

bufsiz INT*2 The size of pbuf in words. See Note
below.
danum REAL*4 The record entry number for direct

access files. Specify a O for this
argument if the MIDASPIUS file Dbeing
built is a keyed-index file, or if you
are adding a secondary index entry.

index INT*2 The number of the index subfile being
built on this call to BILD$R. (Supply
0 if building the primary index.)

funit INT*2 The file unit number on which the
MIDASPLUS file is opened.

altrtn INT*2 The alternate return in the calling
program to which control is passed if
an error occurs. If specified as O,
an error causes the program to abort
and returns you to PFRIMOS command
level.

Note

When adding a primary index entry, the bufsiz argument is
ignored unless the file contains variable length records. 1In
this case, bufsiz represents the length of only the data
record. When adding a secondary index entry, bufsiz represents
the length of the primary key plus optional secondary data.

OFFLINE ROUTINE EXAMPLE

Suppose that an airline has a file containing flight number, origin,
destination, departure time, and arrival time information. Each record
has several fields containing this information, but there are no keys
by which the file can be searched. Assume that the airline desires to
search on a key that is a combination of several fields, for example
flight number, origin, and destination and that the airline decides to
put this information into a MIDASPLUS file. The flight number, origin,

18-9 Second Edition

MIDASPIUS USER'S GUIDE

and destination fields are concatenated to form the primary key, and
the date, departure time, and arrival time fields become secondary keys
in the MIDASPLUS file. Since KBUILD cannot handle concatenated keys,
the offline file-building routines are used to build the MIDASPLUS
file. The original sequential disk file is used for input, and it is
listed below, along with the CREATK session in which the template was
created. Since some of the fields in the input file are sorted and
others are not, the sample program uses all three file-building
routines.

The Input File: The sequential input file SCHEDULE has 8 fields:

195 BOS LOG NWK EWR 02/04/85 12:00 13:00
205 BOS LOG NYC JFK 02/04/85 12:15 12:50
305 BOS LOG NYC LGA 02/04/85 12:30 13:10
696 CHI ORD WOR WOR 02/04/85 10:45 12:15
106 NWK EWR ORL ORL 02/05/85 08:40 11:55
749 NYC LGA CHI ORD 02/05/85 16:00 18:30
650 WOR WOR BOS LOG 02/06/85 12:45 13:15

The origin and date fields are the only fields are in sorted order.

The MIDASPLYIS Template: The MIDASPLUS file, called FLIGHTS, has four
keys which are defined in the following CREATK session:

X, creatk
[CREATK rev 19.4.0]

MINIMUM OPTIONS? yes
FILE NAME? flights
NEW FILE? yes

DIRECT ACCESS? no
DATA SUBFILE QUESTIONS

PRIMARY KEY TYPE: a

PRIMARY KEY SIZE = : b 9

DATA SIZEINWORDS=}:)gQ
SECONDARY INDEX

INDEX NO.? 1

DUPLICATE KEYS PERMITTED? yes

KEY TYPE: a

KEY SIZE = : b 5
SECONDARY DATA SIZE IN WORDS = : (CR)

Second Edition 18-10

OFFLINE BUILD ROUTINES

INDEX NO.? 2

DUPLICATE KEYS PERMITTED? yes

KEY TYPE: a

KEY SIZE = : b 5

SECONDARY DATA SIZE IN WORDS = : (CR)
INDEX NO.? 3

DUPLICATE KEYS PERMITTED? yes

KEY TYPE: a

KEY SIZE = : b 5
SECONDARY DATA SIZE IN WORDS = : (CR)

INDEX NO.? (CR)

SETTING FILE IOCK TO N READERS AND N WRITERS

The ATRLINE Program: The program that builds the FLIGHTS file from the
data in SCHEDULE is:

STATC18.1 OFFLINE ROUTINE PROGRAM. CHAPTER 18

c ATRLINE PROGRAM
6
C THIS PROGRAM BUILDS A MIDASPLUS FILE FROM A SBEQUENTIAL DISK FILE
C USING THE OFFLINE ROUTINES PRIBLD, SECELD AND BILDSR.
C THE PRIMARY KEY IS MADE UP OF THREE FIELDS FROM
6] THE INPUT FILE AND IS THUS A CONCATENATED KEY.
C
INTEGER*2 FILNAM(40), /* FILE NAME BUFFER
+ IFUNIT, /* INPUT FILE FUNIT
+ MFUNIT, /* MIDASPLUS OUTPUT FILE FUNIT
+ PSQFLG, /* PRIBLD'S SBEQFLG
+ SSQFLG, /* SECELD'S SEQFLG
+ BSQFLG(2), /* BILD$R'S SBQFIG’'S
+ INPREC(20), /* INPUT REOORD BUFFER
+ PRIKEY(S), /* PRIMARY KEY BUFFER
+ SECKEY(3), /* SECONDARY KEY BUFFER
+ CHRPOS(2), /* POSITICN & SIZE ARRAY FOR TSRC$$
+ ERROCOD, /* ERROR OODE
+ I
C
$INSERT SYSCOM>KEYS.INS.FTN
C

$INSERT SYSCOM>ERRD.INS.FIN

C

$INSERT SYSCOM>PARM.K.INS.FIN

C

Cc

C---INPUT AND OPEN THE INPUT FILE
Cc

18-11 Second Edition

MIDASPLUS USER'S GUIDE

5 CALL TNOUA ('ENTER INPUT FILE NAME: ', 23)
READ (1, 10) FILNAM
10 FORMAT (40A2)

CHRPOS(1) = O

CHRPOS(2) = 80

IFUNIT = O

CALL TSRC$$ (K$READ + K$GETU,

+ FILNAM, IFUNIT, CHRPOS, I, ERRCOD)

IF (ERRCOD .EQ. E$FNTF) GOTO 5
IF (ERRCOD .NE. O) GOTO 9000
CALL ATTDEV (IFUNIT, 7, IFUNIT, 80) /* TELL IOCS ABOUT DISK FILE & UNIT

C
C-——INPUT AND OPEN THE MIDASPLUS OUTPUT FILE.
c
C NOTICE THAT (1) IT IS OPENED FOR READING AND WRITING (K$RDWR), AND
C (2) WE DO NOT (!) CALL NTFYM$ CR OPENMS$/CLOSM$
C
20 CALI, TNOUA (‘'ENTER MIDASPIUS OUTPUT FILE NAME: ', 34)
READ (1, 10) FILNAM
CHRPOS(1) = O
CHRPOS(2) = 80
MFUNIT = O
CALIL TSRC$$ (K$SRDWR + K$GETU,
+ FIINAM, MFUNIT, CHRPOS, I, ERRCOD)
IF (ERRCOD .BQ. ES$FNTF) GOTO 20
IF (ERRCOD .NE. 0) GOTO 9000
C
C-——INIT SEQFIG'S
C
PSQFLG = O /* PRIBLD SBQFLG FOR INDEX O
SSQFIG = O /* SECELD SEQFLG FOR INDEX 1
BSQFIG(1) = O /* BILD$R SEQFLG FOR INDEX 2
BSQFLG(2) = O /* BILD$R SEQFLG FOR INCEX 3
C

C——-MAIN 1OOP TO READ A RECCRD FROM THE INPUT FILE AND MAKE

C THE APPROPRIATE CALLS TO FRIELD, SECELD, AND BILD$R TO ADD THE DATA
C RECORD AND VARIOUS ENTRIES.

C

100 READ (IFUNIT, 110, END = 500) INPREC /* READ THE INPUT RECORD
110 FORMAT (20A2)

c
C..... BUILD THE PRIMARY KEY -
C A CONCATENATION OF THE ORIGIN, DESTINATION, & FLIGHT NUMBER.
c
PRIKEY(1) = INPREC(3)
PRIKEY(2) = LT (INPREC(4), 8) + RS (INPREC(7), 8)
PRIKEY(3) = LS (INPREC(7), 8) + RS (INPREC(8), 8)
PRIKEY(4) = INPREC(1)
PRIKEY(5) = LT (INPREC(2), 8)
c
CALL PRIBID (PSQFLG, PRIKEY, /* ADD THE PRIMARY KEY + DATA RECCRD
+ INPREC, 20, MFUNIT, O, O)
c
C...... ATD SECONDARY KEY 1 - THE DATE.
C SINCE IT IS SCORTED, WE USE SECELD.
C ALSO, SINCE IT IS WORD ALIGNED, WE DON'T HAVE TO MOVE THE
o] KEY TO THE BUFFER 'SECKEY'.
c
CALL, SECBLD (SSQFLG, INPREC(1l),
+ PRIKEY, 1, O, O, MFUNIT, O)
o]
C..... ATD SECONDARY KEY 2 - THE DEPARTURE TIME.
C IT IS UNSORTED, SO WE CALL BILD$R AND IS UNALIGNED, SO
C WE MOVE IT TEMPORARILY TO THE BUFFER 'SECKEY'.
o]

Second Edition 18-12

OFFLINE BUILD ROUTINES

= LS (INPREC(15), 8) + RS (INPREC(16), 8)
SECKEY(2) = LS (INPREC(18), 8) + RS (INPREC(17), 8)

c SECKEY(3) = LS (INPREC(17), 8)
CALL BILD$R (BSQFLG(1), /* NOTE BSQFLG(1) IS FOR INDEX 2.
c + SECKEY, PRIKEY, O, 0, 2, MFUNIT, 0)
C..... ATD SECONDARY KEY 3 - THE ARRIVAL TIME.
c THIS FOLLOWS THE SAME PATTERN OF MOVING THE KEY AND
C CALLING BILD$R AS WE DID WITH SECONDARY KEY # 2.
C
SECKEY(1) = LS (INPREC(18), 8) + RS (INPREC(19), 8)
SECKEY(2) = LS (INPREC(19), 8) + RS (INPREC(20), 8)
SECKEY(3) = 1S (INPREC(20), 8)
C .
CALL BILD$R (BSQFLG(2), /* NOTE BSQFLG(2) IS FOR INDEX 3)
+ SECKEY, PRIKEY, O, 0, 3, MFUNIT, O)
C
GOTO 100 /* 1LOOP ON READING & ALDING ENTRIES
c
C——-INPUT FILE IS EXHAUSTED.
c SET THE SEQUENCE FLAG TO ‘2’ AND MAKE A FINAL CALL TO THE
C APPROPRIATE ROUTINE FOR EACH INDEX BEING BUILT; THEN CLOSE
C THE INPUT AND OUTPUT FILES.
C
500 PSQFIG = 2
CAIL PRIELD (PSQFLG, O, O, O, MFUNIT, O, O) /* FINALIZE PRIMARY KEY
C
SSQFIG = 2
CALL SECEID (SSQFLG, O, O, 1, O, O, MFUNIT, O) /* FINALIZE SECONDARY KEY 1
c
BSQFIG(1) = 2
CAILL BILD$R (BSQFLG(1), O, 0, O, O, 2, MFUNIT, O) /* FINALIZE SEC. KEY 2
o]
BSQFIG(R) = 2
CALI, BILD$R (BSQFIG(2), 0, O, O, O, 3, MFUNIT, O) /* FINALIZE SEC. KEY 3
C
CALL SRCH$$ (K$CLOS, O, O, IFUNIT, I, ERRCOD) /* CLOSE INPUT FILE
TF (ERRCOD .NE. O) GOTO 9000
c
CAII, SRCH$S (K$CLOS, O, O, MFUNIT, I, ERROOD) /* CLOSE MIDASPLUS OUTPUT FILE
TIF (ERROCC .NE. 0) GOTO 9000
c
CALL EXIT /* EXIT TO PRIMOS
c
C——-ERROR HANDLER
C TAKES THE BRUTE FORCE APPROACH OF CLOSING INPUT & OUTPUT FILES,
c IGNORING ANY ERRCRS ENCOUNTERED, & EXITING WITH A CALL TO ERRFRS.
c
9000 CALL SRCH$$ (K$CLOS, O, O, IFUNIT, I, I) /* CLOSE INPUT FILE
c
CALIL SRCH$$ (K$CIOS, O, O, MFUNIT, I, I) /* CLOSE MIDASPLUS OUTPUT FILE
c
CAII, ERRPR$ (K$NRTN, 'EXAMPLE’, 6, O, 0)
C

END

18-13 Second Edition

MIDASPLUS USER'S GUILE

Sample Output: When the program is run, the user enters the name of
the input and output MIDASPLUS files. For example:

K, resume airline
ENTER INPUT FILE NAME: schedule
ENTER MIDASPLUS OUTPUT FILE NAME: flights

PRIMARY INDEX AND DATA

SECONDARY INDEX 1

Index O: Entries indexed: 7
Index 1: Entries indexed:

Index 2: Entries indexed:

Index 3: Entries indexed:

N RNEN]

PRIBLD, SECBLD, AND BILD$R ERROR MESSAGES

This section lists the PRIBLD, SECBLD, and BILD$R error messages. If
you get one of the following error messages, you can call the routine
to finish building the index (set SEQFIG to 2). Your file will be
built except for the problem that the error code noted. SECBLD and
BILD$R replace the symbols ## (used in the error messages below) with a
secondary index number.

If a file system error occurs, (an error not listed below) your file
may be damaged. If this happens, use KIDDEL to zero your file. Try to
figure out what happened and try again.

e Can’'t Use PRIBID and BILD$R Simultaneously

You added one or more entries to the primary index with BILD$R and then
called PRIBLD. Simultaneous access to the primary index subfile is not
allowed. Either continue adding entries or finish building index O
with the appropriate calls to BILD$R, but not PRIBID.

e TIllegal SEQFLG
e Index ##: Illegal SEQFLG

If either one of the two above messages appears, the value of seqflg is
incorrect. The first call to the routine to add an entry must have a
seqflg of O, which the routine returns as a 1. ILater calls to the
routine to add additional entries must continue to have a seqflg of 1.
The final call to the routine to finish building index O for that
MIDASPIUS file must have a seqflg of 2, which the routine returns as 3.

Second Edition 18-14

OFFLINE BUILD ROUTINES

e Not a Valid MIDASPLUS File

e Index ##: Not a Valid MIDASPLUS File

The first time that the routine is called to add an entry (segflg = 0)
to the primary or secondary index of a MIDASPIUS file, the routine
calls KX$RFC to verify that the file is a valid MIDASPLUS file and to
gather certain configuration data needed to build the file.

e Index O: Index Block Size Greater Than Maximum Default

e Index ##: Index Block Size Greater Than Maximum Default

The above two messages indicate that a fatal error may have occurred on
the first call to the routine that adds an entry to a file created with

the extended options path. The index block size was defined as larger
than the default block size of 1024 words. Recreate the file.

e Key Sequence Error
The key provided in the current call is less than or equal to the key

provided in the previous call to PRIBLD.
e Index O: +O.nnnnnnn E+nn Invalid Direct Access Entry Number

This error occurs during direct access file processing only. It can
happen for one of three reasons:

1. The record number supplied was less than zero.

2. The record number supplied was not a whole number.

3. The supplied number exceeds the number of entries preallocated
by CREATK. You may have changed this number with CREATK
without performing MPACK on the file to effect the change. Use
MPACK against the file before restarting.

e Data Subfile Full

e TIndex O: Data Subfile Full

If either one of the above two messages appears, no more entries may be
added to the data subfile and therefore to the primary index. Call the
routine to finish the primary index (with segflg = 2) with the entries
already added.

e , Index ##: Does Not Exist

The indicated index is either an invalid index number or does not exist

18-15 Second Edition

MIDASPLUS USER'S GUIDE

in the MIDASPLUS file. Either go back, ADD the index with CREAIK, and
try again, or remove all references to this index from the program.

e Index ##: Can't Use SECBLD and BILD$R Simultaneously

You may have added one or more entries to this index with BILD$R and
have now called SECBID to add an entry to it. You may continue adding
entries or finish building this index with the appropriate calls to
BILD$R, but not to SECBLD.

° Index ##: Not Zeroed

The index cannot contain any entries if you are trying to use PRIBLD or
SECBID to build it. Use KIDDEL to =zero this index or to zero the
entire file.

e Index ##: Key Sequence Error

The supplied key is less than the key supplied in the last call to the
routine for this index, or the secondary key is a duplicate of the
secondary key supplied in the last call to the routine for this index,
and the index does not allow duplicates.

e Index ##: Can’'t Find Primary Key in File

The routine was unable to find the key value supplied for the pbuf or
the pkey argument. The primary index subfile does not contain this
value.

o Index ##: Index Full

No more entries may be added to this particular secondary index, but
you may still call the routine (set seqflg to 2) to finish this index.

e Index ##: Can’'t Use BILD$R and PRIBLD/SECBLD Simultaneously

This can happen when you have added one or more entries to this index
with PRIBLD or SECBLD and then call BILD$R to add an entry to the same
index. You can either continue adding entries or make the appropriate
calls to either PRIBLD or SECBLD (but not to BILD$R) to finish building
this index.

e Index O: Direct Access File - Index of -1 and Entry # Required for
Primary Key

You attempted to build the primary index of a direct access file. Use
an index number of -1 (not 0); supply a REAL*4 entry number in danum.

Second Edition 18-16

Glossary

ADD
A CREATK option that allows you to add a secondary index subfile
and a key to an existing MIDASPLUS template.

awaken
A condition that notifies you that an event has occurred.

BILD$R
A MIDASPLUS routine that builds the primary index subfile and data
subfile, as well as any or all of the secondary index subfiles
associated with a particular MIDASPLUS file.

COBOL status code
Two-digit number that either indicates that a COBOL operation was
successful or describes a condition or problem.

communications array
An array that stores the following: the current record’s address,
the current position in the index subfile, a status code for the
operation, the word number of the located entry in the index
subfile, and the data record address.

COUNT
A CREATK option that counts the number of entries currently in a
file.

CREATK

A MIDASPLUS utility that creates a template to describe a MIDASPLUS
file and allocates space for it.

A-1 Second Edition

MIDASPLUS USER’'S GUIDE

DATA
1. A CREATK option that changes the data record length and the
number of records allocated for a file.

2. The information that is to be writtem to the data subfile.
3. An MPACK option that restructures an entire file.

data file
Records that can be referenced through an index subfile by
specifying a key value.

DELETE :
A KTDDEL option that gets rid of an entire index subfile.

dialog
A series of prompts that direct you to supply information to the
utility.

direct access
A file access method based on record numbers. Each record in the
data subfile is given a unique record number. To access a
particular record, you must give MIDASPLUS a record number.

DIRECT files
MIDASPIUS direct access files in VREG.

duplicate key
More than one secondary key having the same value.

EXTEND
A CREATK option that changes the number of segments per segment
directory and words per segment subfile.

extended options dialog
A CREATK dialog with which you supply index block size parameters
in place of the minimum options default parameters to build a
template.

flag
A switch with a bit value of either on or off that specifies the
options for a call.

funit
The file unit on which the MIDASPIUS file is open.

getbuffs
The number of times that it was necessary to get a buffer.

Second Edition A-2

GLOSSARY

getunit
The number of times that it was necessary to get a file unit.

IMTDASPLUS
A command, contained in the MIDASPLUS.SHARE.COMI cominput file,
that initializes MIDASPLUS.

Junk files
The work files that are left over from an aborted MPACK run.

KBUILD
A MIDASPLUS utility that adds records to a MIDASPLUS file.

keyed-index access
A file access method based on glvn_ng MIDASPIUS a primary or
secondary key value and waiting for MIDASPIUS to return the
appropriate record.

KITDEL
A MIDASPILUS utility that deletes an entire MIDASPLUS file or
selected indexes of files.

KX$CRE
A user-callable routine that creates a MIDASPIUS file from a
program. It is an alternative to CREATK.

KX$RFC
A user—callable routine that returns the file configuration of an
already existing MIDASPLUS file.

MDUMP
A MIDASPIUS utility that dumps a MIDASPLUS file into a sequential
disk file.

MIDASERR
A BASIC/VM feature that prints BASIC/VM error codes for MIDASPLUS.

MIDASPLUS
The Enhanced Multiple Index Data Access System that is a collection
of subroutines and interactive utilities that constructs, accesses,
and maintains keyed data files.

MTDASPLUS . INSTALL. COMI
A command input file that places all of the MIDASPLUS files in the
appropriate system directories.

MTDASPLUS . SHARE . COMT
A command input file that shares and initializes MIDASPIUS on the

system.
minimum options dialog

A CREATK dialog that supplies default parameters for creating a
template.

A-3 Second Edition

MIDASPLUS USER'S GUIDE

MODIFY
A CREATK option that allows you to change the support of duplicate
keys and changes secondary data size.

MPACK
1. A MIDASPLUS utility that recovers data record space that is
marked for deletion, increases file efficiency, unlocks
records, and restructures index subfiles.

2. The MPACK option that puts you into MPACK Restructure Mode and
lets you restructure index subfiles or an entire file.

MPLUSCLUP
A MIDASPIUS utility that cleans up files and subfiles, releases
locks held in memory, and cleans up/reinitializes per-user
information.

MSGCTL
An online MIDASPLUS routine that allows you to control the
following on a per-user basis: error message printing, debug mode,
duplicate entry reporting, and locked record reporting on read
operations.

partial search
A keyed-index access method that uses the left-most substring of
the full key value.

PRIBLD
A MIDASPLUS routine that builds a primary index subfile and adds
the corresponding data records to the data subfile.

primary key
A key that must contain a unique value for each record in the data
file.

PRINT
A CREATK option that describes each index subfile and the data -
subfile in terms of segments allocated, index capacity, key type,
key size, and the number of index levels for the subfile.

populate
The process of adding data to a MIDASPLUS file.

RELATIVE files
MIDASPLUS direct access files in COBOL.

SECBLD
A MIDASPLUS routine that builds secondary index subfiles from input
data that is sorted in primary key sequence.

secondary data
Data that is stored in the secondary index subfile. Since you
cannot access secondary data in the same way as ordinary data from -
the data subfile, the use of secondary is not recommended.

Second Edition A4

GLOSSARY

secondary key
A key that is not required to have a unique value for each record
in the data file, used for alternative searches. There may be as
many as 17 secondary keys per MIDASPLUS file record.

SIZE
A CREATK option that estimates the number of segments and disk
records required for a hypothetical number of entries.

snooze
A condition that causes you to wait until a particular event
occurs. Used by the SPY utility.

sorted files
Input files that are arranged in ascending order by primary and/or

secondary key.

SPY
A MIDASPIUS utility that monitors the following information: data
record locks taken, system-wide statistics on performance and use
of the system, system-wide configurable parameters, and
user—specific configurable parameters.

template
A structural definition of a MIDASPLUS file consisting of all of
the index subfiles needed for key value storage.

USAGE
A CREATK option that provides information on the total number of
entries in the file, the number of entries indexed, the number of
entries deleted, and the number of entries inserted since the last
MPACK.

UNLOCK

An MPACK option that unlocks all records locked on disk and prints
a total count of unlocked records.

unsorted files
Input files that are not arranged in any particular order.

variable-length record file
A file containing records that vary in size; each record uses only
the disk space it needs to contain the data.

VIR file
See variable-length record file

VERSION
A CREATK option that displays the revision stamp of the MIDASPLUS
version under which a file was created.

word
16 bits.

A-5 Second Edition

MIDASPIUS USER'S GUIDE

ZERO
A KITDEL option that deletes the entries an wunused space in an
index subfile. A zeroed out file looks exactly like the file's
initial template created with CREATK.

Second Edition A6

Error Messages

This appendix lists the error messages for the MIDASPLUS utilities and
offline routines, MIDASPLUS runtime error codes, and the COBOL status
codes.

KBUILD ERROR MESSAGES

The following are KBUILD runtime error messages. If an error is fatal,
KBUILD aborts after reporting it. Although files are sometimes damaged
in fatal errors, the files are usually still usable. A non-fatal error
is a warning only and does not harm the KBUILD process. The record
that causes the warning message, however, is not added to the file.

e UNABLE TO REACH BOTTOM INDEX LEVEL

The last level index block could not be located; file is damaged.
(Fatal)

e FILE IN USE

The file is not available for KBUILD use. KBUILD must have exclusive
access to the file. You are returned to PRIMOS. (Fatal)

B-1 Second Edition

MIDASPLUS USER'S GUIDE

e INDEX O FULL —- INPUT TERMINATED

If the maximum number of entries in primary index is exceeded, KBUILD
aborts. (Fatal, but file is still okay)

e INDEX index-no FULL —— NO MORE ENTRIES WILL BE ADDED TO IT

If the maximum number of entries in the secondary index is exceeded,
KBUILD aborts. Building of other indexes continues. (Fatal, but file
is still okay)

e INDEX O FULL —- REMAINING RECORDS WILL BE DELETED

Data records are added to the subfile first, in the order read in from
the input file. Then the primary index entries are added, in sorted
order, to point to them. KBUILD ran out of room in the primary index
when trying to add entries to point to those already in the data
subfile. KBUIID is forced to set the delete bit on in data subfile
entries whose primary keys do not fit in the primary index. (Fatal,
but file is still okay)

e INVALID DIRECT ACCESS ENTRY NUMBER -- RECORD NOT ATDIDED

The user-supplied direct access record number is an ASCII string, but
it is not legitimate if it contains non-numeric characters. Also, the
entry number may be less than or equal to O, may not be a whole number
or may exceed the number of records allocated. (Non-fatal)

e INVALID OUTPUT DATA RECORD LENGTH —- RECORD NOT ADDED

The output record length is an invalid ASCII string (that is, it
contains non-numeric characters). Also, the size specified might
exceed the input record size. (Non-fatal)

e THIS INDEX IS NOT EMPTY. EITHER ZERO THE INDEX OR DO NOT SPECIFY
THIS KEY AS SORTED.

KBUILD cannot add sorted data entries to any index subfile that already
contains entries. Do not specify the sorted option during the KBUILD
dialog. (Non-fatal)

e CAN'T FIND PRIMARY KEY IN INDEX —- RECORD NOT ADDED

This error occurs when adding secondary index entries to an already

populated file. The primary key value that you supplied in the input
file was not found in the primary index. (Non-fatal)

Second Edition B-2

ER:OR MESSAGES

e INDEX O: INVALID KEY —— RECORD NOT ADDED

This error could occur if the input file is sorted and an entry was out
of order, or if a duplicate key value appeared for an index that does
not allow duplicates. (Non-fatal)

0
° INDEX{ }KEYSHQUEI\ICEERROR——RECORDNOI‘ADDED
index-no:

A duplicate value was discovered for the primary key or for a secondary
key that does not allow duplicates. (Non-fatal)

MDUMP STATUS AND DESCRIPTIVE MESSAGES

MDUMP produces a series of messages describing the status of the dump
and the format of its output file. These messages are displayed at
your terminal. If you specify a log/error file, all messSages are also
written to this file. This section describes the dump and the messages
that are normally produced.

When you finish the dialog, MDUMP uses your responses to plan the
format of the dump file. As it processes, MDUMP produces one message
for each field appearing in the output file and tells you what is in
each word of an output record. The following is a list of possible
messages. (The first three messages always appear.)

1. FORMAT OF MDUMP DUMP FILE: pathname of dump file

2. DUMP FROM MIDASPLUS FILE: pathname of MIDASPLUS file

3. RECORDS ARE record length WORDS LONG WRITTEN IN format_name
FORMAT

Record_length = length (in words) of the entire MDUMP output
record.

Format_name = BINARY, COBOL, FINBIN, RPG, or TEXT.

4A. THE DATA PORTION OCCUPIES WORDS 1 THRU x

4B. THE DATA PORTION IS VARTABLE AND OCCUPIES WORDS 1 THRU X
These messages appear only if you are dumping data records.
Message 4A appears if the dump file is a text file, and
message 4B appears for all other types of dump files. X is
the last word that the data occupies.

5A. THE DATA LENGTH IS SPECIFIED AS A ASCII STRING IN BYTES x THRU
y

B-3 Second Edition

MIDASPLUS USER'S GUIDE

5B.

THE DATA LENGTH IS SPECIFIED AS A BINARY STRING IN WORD z

These messages appear only if you are dumping variable-length
records. Message O5A appears if the dump file is a text file.
X is the starting byte and y is the ending byte of the data

length.

Message 5B appears for non-text dump files. "BINARY STRING"
refers to a single-word INTEGER*R integer. 2Z is the word that
contains the data length.

Data length is the length of the data record in the MIDASPLUS
file before any padding occurs in the dump. You can use this
information to tell the difference between blanks that are
part of the data and blanks that pad variable -length records.

THE DIRECT ACCESS RECORD NUMBER IS SPECIFIED AS A ASCII STRING
IN BYTES x THRU y

THE DIRECT ACCESS RECORD NUMBER IS SPECIFIED AS A BINARY
STRING IN WORDS z THRU w

These messages occur only if you are dumping direct access
records in order of DATA or primary key. Message GA appears
if the dump file is a text file. x is the starting byte and w
is the ending byte of the direct access record number.

Message 6B appears for non-text dump files. BINARY STRING
refers to a two-word REAL*4 floating point number. 2z is the
starting word and w is the ending word of the direct access
record number.

If you dump a direct access file by a secondary key or do not
dump the data records, the record numbers do not appear in the
output file.

THE PRIMARY KEY (INDEX O) IS A key_type KEY IN BYTES x THRU y

This message occurs only if you dump the primary key.
Key type is the data type of the key as you defined it in the
CREATIK session that created the MIDASPIUS file. X is the
starting byte and y is the ending byte of the primary key.

THE INDEX w KEY IS A key_type KEY IN BYTES x THRU y

This message occurs only if you dump a secondary key.
Rey type is the data type of the key as you defined it in the
CREAIK session that created the MIDASPLUS file. w refers to
the index number. x is the starting byte and y is the ending

byte of the secondary key.

Second Edition B4

ERROR MESSAGES

MDUMP ERRCR MESSAGES

When MDUMP dumps a file, errors that it finds are reported along with
the milestone statistics. The following are MDUMP's error messages and
their meanings:

e BAD DATA RECORD POINTER - IGNORED

MDUMP found a bad data record pointer in the MIDASPIUS file. The dump
continues.

e BAD INDEX BLOCK OR INDEX BLOCK POINTER

MDUMP found an incorrect index block or index block pointer in the
MIDASPLUS file. The dump halts.

e UNABLE TO REACH BOTTOM INDEX LEVEL

MDUMP found an incorrect index block or index block pointer before
dumping any records. The dump does not occur.

e INDEX BLOCK SIZE GREATER THAN MAXIMUM DEFAULT

MDUMP found an index block larger than the maximum default size. The
dump halts.

KITDEL ERROR MESSAGES

e FIILE IN USE

The file is not available for KIDDEL use. KITDEL must have exclusive
access to the file. You are returned to PRIMOS.

SPY ERRORS

Internal system errors and user input errors are the only kind of
errors that can occur during the execution of SPY. Internal system
errors are fatal. User input errors can usually be trapped since only
specific input choices are allowed.

If you make a detectable error when entering a menu option, you are
given two more chances to emter a valid choice and then SPY stops. If
an out of range or otherwise detectable invalid entry is made for user
number or filename, you are given two more chances before SPY gives up.

B-5 Second Edition

MIDASPLUS USER'S GUIDE

If you request that SPY report the number of locks on a file and the
SPY_FNAMES configuration is off (the default), the following error
message occurs.

The SPY_FNAMES configuration is OFF for MIDASPLUS. SPY cannot
display locks by FILENAME. See your System Administrator if
you wish to have the SPY _FNAMES configuration changed. Hit
RETURN to Continue.

See Chapter 16, INSTALLING AND ADMINISTERING MIDASPLUS, for additional
information about SPY_FNAMES and the configurations.

MPACK ERROR MESSAGES

The following are MPACK error messages. If an error is fatal, MPACK
aborts after reporting it. A non-fatal error is a warning only and
does not harm the MPACK process.

Fatal Messages

e UNABLE TO REACH BOTTOM INDEX LEVEL

MPACK was unable to find a last level index block for an index. The
file is damaged. Use MDUMP to dump the data file into a sequential
disk file and use KBUIILD to rebuild the file.

e DATA SUBFILE FULL

This message may occur if MPACK is used to implement segment subfiles
or segment directories that are smaller than the default. Use the
EXTEND option of CREAIK to enlarge the subfile size or segment
directory length.

e INDEX FULL

This message may occur if MPACK is used to implement index subfiles or
segment directories that are smaller than the default. There is no
more room in the index subfile. Use the EXTEND option of CREATK to
enlarge the subfile size or segment directory length.

e ABCRTING MPACK

This message appears when a fatal error occurs. Use the JUNK option of

KITDEL to delete the scratch files created by MPACK, or if you are not
overwriting the old file, delete the new file.

Second Edition B-6

ERROR MESSAGES

e FILE IN USE

This file is not available for MPACK use. MPACK must have exclusive
access to the file. You are returned to PRIMOS.

Warning Messages

e INDEX SUBFILE DOES NOT EXIST

You supplied an index number that was not defined for this file.

e FILE ALREADY EXISTS —— TRY AGAIN

You specified the name of an existing file in response toO ENTER NEW
MIDASPIUS FILE NAME? prompt of the DATA option path. MPACK does not
overwrite an existing file in this case. You must enter the name of a
non-existent file.

e INVALID KEY SEEN (IGNORED)

Akey is out of order in the index or the key is a duplicate and
duplicates are not allowed in the specified index.

e INVALID DIRECT ACCESS ENTRY NUMBER SEEN (IGNORED)

A record number is not greater than zero, or is not a whole number, oOr
is greater than the pre-allocated record number limit.

KXCRE ERROR MESSAGES

Errors occurring during the building of a template could originate in
the file system or in MIDASPLUS. Errors can result from invalid user
arguments or an internal MIDASPLUS problem. This section lists the
most common KX$CRE error codes.

e ME$BAS
Allocation size is invalid. The number specified in alloc was either
less than 1.0, not a whole number, or too big to allocate the number

passed in the user supplied alloc argument due to the default segment
directory and segment subfile lengths.

B-7 Second Edition

MIDASPLUS USER'S GUIDE

e ME$BDS

Data size is invalid because the data size is negative; or the data
size specified in pridef(3) indicates variable-length data records, but
the file is configured for direct access, and thus requires
fixed-length data records.

e MES$BKS

Key size is invalid. For example, the key size is too big, the key
size is negative, or the primary key size is 0. (The limit is 16 words
except for ASCII strings, which may be up to 32 words.)

e MES$BKT

Key type is invalid.

e MES$BL1

Level 1 block size is invalid. The block size must be positive, not
larger than 1024 words, and must hold at least two index entries.

e ME$BI2

Ievel 2 block size is invalid.

e ME$BLL

Last level block size is invalid. When building a secondary index,
this error may also occur when the secondary data size, secdef (3,1i),
is too large (in comparison to the block size) to fit the mandatory two
entries per block.

e ME$NDA

No duplicates are allowed. You specified the flag M$DUPP in pridef(1l).
Duplicates are never allowed for the primary key.

PRIBLD, SECBLD, AND BILD$R ERROR MESSAGES

This section lists the PRIBLD, SECBLD, and BILD$R error messages. If
you get one of the following error messages, you can call the routine
to finish building the index (set seqflg to 2). Your file will be
built except for the problem that the error code noted. SECBID and
BILD$R replace the symbols ## (used in the error messages below) with a
secondary index number.

Second Edition B-8

ERROR MESSAGES

If a file system error occurs, (an error not listed below) your file
may be damaged. 1f this happens, use KITDEL to zero your file. Try to
figure out what happened and try again.

e Can’t Use PRIBLD arnd BILD$R Simultaneously

You added one or more entries to the primary index with BILD$R and then
called PRIBID. Simultaneous access to the primary index subfile is not
allowed. Either continue adding entries or finish building index O
with the appropriate calls to BILD$R, but not PRIBLD.

o Tllegal SEQFIG
e Index ##: Illegal SEQFIG

If either one of the two above messages appears, the value of seqflg is
incorrect. The first call to the routine to add an entry must have a
seqflg of O, which the routine returns as a 1. ILater calls to the
routine to add additional entries must continue to have a seqflg of 1.
The final call to the routine to finish building index O for that
MIDASPLUS file must have a seqflg of 2, which the routine returns as a
3.

e Not a Valid MIDASPLUS File

° Index ##: Not a Valid MIDASPLUS File

The first time that the routine is called to add an entry (segflg = O)
to the primary or secondary index of a MIDASPLUS file, the routine
calls KX$RFC to verify that the file is a valid MIDASPLUS file and toO
gather certain configuration data needed to build the file.

e Index 0: Index Block Size Greater Than Maximum Default

e Index ##: Index Block Size Greater Than Maximum Default

The above two messages indicate that a fatal error may have occurred on
the first call to the routine that adds an entry to a file created with

the extended options path. The index block size was defined as larger
than the default block size of 1024 words. Recreate the file.

e Key Sequence Error

The key provided in the current call is less than or equal to the key
provided in the previous call to PRIBLD.

B-9 Second Edition

MIDASPLUS USER'S GUIDE

e Index O: +0.nnnnnnn E+nn Invalid Direct Access Entry Number

This error occurs during direct access file processing only. It can
happen for one of three reasons:

1. The record number supplied was less than zero.
2. The record number supplied was not a whole number.

3. The supplied number exceeds the number of entries preallocated
by CREATK. You may have changed this number with CREATK
without performing MPACK on the file to effect the change. Use
MPACK against the file before restarting.

e Data Subfile Full
e Index O: Data Subfile Full

If either one of the above two messages appears, no more entries may be
added to the data subfile and therefore to the primary index. Call the
routine to finish the primary index (with seqflg = 2) with the entries
already added.

) Index ##: Does Not Exist

The indicated index is either an invalid index number or does not exist
in the MIDASPIUS file. Either go back, ADD the index with CREATK, and
try again, or remove all references to this index from the program.

e Index ##: Can’'t Use SECBLD and BILD$R Simultaneously

You may have added one or more entries to this index with BILD$R and
have now called SECBLD to add an entry to it. You may continue adding
entries or finish building this index with the appropriate calls to
BILD$R, but not to SECBLD.

e Index ##: Not Zeroed

The index cannot contain any entries if you are trying to use PRIBLD or
SECEID to build it. Use KIDDEL to =2zero this index or to zero the
entire file.

e Index ##: Key Sequence Error

The supplied key is less than the key supplied in the last call to the
routine for this index, or the secondary key is a duplicate of the

secondary key supplied in the last call to the routine for this index,
and the index does not allow duplicates.

Second Edition B-10

ERRCR MESSAGES

e Index ##: Can’'t Find Primary Key in File

The routine was unable to find the key value supplied for the pbuf or
pkey argument. The primary index subfile does not contain this value.

° Index ##: Index Full

No more entries may be added to this particular secondary index, but
you may still call the routine (set seqflg to 2) to finish this index.

e TIndex ##: Can’'t Use BILD$R and PRIBLD/SECBLD Simultaneously

This can happen when you have added one or more entries to this index
with PRIBID or SECBLD and then call BILD$R to add an entry to the same
index. You can either continue adding entries or make the appropriate
calls to either PRIBLD or SECELD (but not to BILD$R) to finish building
this index.

e Index 0: Direct Access File - Index of -1 and Entry # Required for
Primary Key

You attempted to build the primary index of a direct access file. Use
an index number of -1 (not 0); supply a REAL*4 entry number in danum.

B-11 Second Edition

MIDASPIUS USER'S GUIDE

RUNTIME ERROR CODES

The following is a list and explanation of the MIDASPLUS runtime error
codes. The error codes are returned directly to you unless error traps
are included in your program. If an error is not listed, check
Apperdix C, PRIMOS ERRCR MESSAGES. If you are using COBOL, check to
see if the error is a MIDASPLUS error or a file status error. (COBOL
status codes are listed later in this appendix.)

Miscellaneous Error Codes

Code Explanation
1 Duplicates exist for the current key.
7 The sought-after entry does not exist in the file.
10 Locking was requested on a record that is already

locked. COBOL status code is 90. Check your ACLS
and make sure that the READ/WRITE 1locks are set
correctly. The record might not be locked; you
could lack the necessary ACLS.

11 The data record does not have the locked bit set
when it should. This happens when a user attempts
an update without first locking the record.

12 Duplicate keys are not allowed.

13 An unrecoverable concurrency error has occurred.
For example, another user deleted your current
entry.

19 The disk is full.

READ/WRITE Error Codes

Error codes in the 20 range are usually READ/WRITE errors. Try to do a
LOGPRT which creates a LOGLST. This will tell you if there are any
unrecoverable errors on disk or memory parity errors. (See the System
Operator’s Guide for additional information about LOGPRT.) The problem
could be a hardware problem.

Make sure that the CREATK template is the same size as the FD in (COBOL
or the buffer size in FORTRAN.

Second Edition B-12

ERROR MESSAGES

Code Explanation
20 An error was encountered while writing a record or
index block.
21 An error was encountered while reading a data

record or index block. When using FORTRAN, it is
necessary to use K$GETU rather than hard-coded file
units so that MIDASPLUS can monitor the file units
that are open.

22 A file system error was encountered while
attempting to get a file unit or the internal file
unit table is full. When using FORTRAN, it 1is
necessary to use K$GETU rather than hard-coded file
units so that MIDASPLUS can monitor the file units
that are open.

23 The unit is not open as a segment directory.

28 You attempted to write to a read-only file.

Programming Error Codes

Error codes in the 30 range are usually programming errors: for
example, reading past the end of a file. Check your program if you
receive an error code in this range.

Code Explanation

30 You did not ask for the array to be returned when
it must be returned. Set FL$RET in flags on the
call.

31 The array must be supplied but was not. Set the
flag FL$USE.

32 You supplied a bad length (for example an invalid
record length) or the index supplied is invalid.

33 You supplied an invalid array.

34 The use of NEXT$ is not allowed in direct access
files.

35 You cannot do an indexed add to a direct access
file.

36 You set FL$USE in flags but the current array

involved a different index from the one that you
supplied in this call.

B-13 Second Edition

MIDASPLUS USER'S GUIDE

Internal Error Codes

Error codes in the 40 range are usually internal errors. If you
receive a 40 or 41 error message, run MPLUSCLUP -ALL from the
supervisor terminal. See Chapter 12, CLEANING UP A MIDASPLUS FILE. If
the problem persists, reshare MIDASPLUS.

If you receive a 42-46 error, there are corrupted pointers in the file.
Run MPACK with the DATA option. See Chapter 15, PACKING A MIDASPLUS
FILE. If the problem persists run MDUMP and KBUILD to restructure the
file.

Code Explanation

40 Fatal internal error.

41 Timeout occurred while waiting for buffers.

42 There is no offspring pointer or no next block

found. The index tree is corrupted.

44 You attempted to access an indexed file as direct
access or the file is direct access and the entry
was not found.

45 Not a valid index block.

46 Not a wvalid data record.

Additional Miscellaneous Error Codes

Code Explanation
51 Invalid index pointer in index entry. For example,

segment number is O.

71 An error occurred while attempting to delete an
entry from a direct access file.

85 The index or data subfiles are full. Use the
EXTEND option of CREATK to extend the subfile.
Increase the subfile in a multiple of 512,000. Use
MPACK with the DATA option on the file after the
EXTEND to restructure the indexes and the data
subfiles.

o9 Network error.

Second Edition B-14

10001

10002
10003
10004

10005
10006
10007
10008

10009

ERROR MESSAGES

You supplied an invalid parameter on an OPEN or
CLOSE.

The MIDASPIUS internal tables are full.
Not a segment directory.

Fatal internal error. Contact Prime Customer
Service.

Error opening remote file.

Maximum number of configured users exceeded.
File in use by MIDASPLUS.

File in use by MIDASPLUS utility.

Exceeding maximum number of remote files in CLOSE
time.

B-15 Second Edition

MTDASPIUS USER'S GUIDE

COBOL: STATUS CODES

The following section lists the COBOL status codes and the equivalent
MIDASPLUS error codes and states whether the status codes appear with
INDEXED (I) and/or RELATIVE (R) files.

Status MIDASPLUS File Interpretation
Code Code Type
00 Successful completion of the
operation.
10 7 I,R -The end of file was reached on a

READ operation. The file pointer is
positioned past the logical end of
the file.

perd 12 I,R An attempt was made to perform a
WRITE or REWRITE that would create a
duplicate primary key entry.
Duplicate primary key values are
illegal.

23 7 I,R The record was not found on an
unsuccessful key search. There is
no record in the file with this key
value.

30 19/20 I,R An error parity such as quota
exceeded or disk full.

€0 10 I, R The record is already locked.
Another user or process has already
locked this record for update.

o1 11 I, R The record is not locked. A REWRITE
operation was attempted without
first locking the record with a READ
operation.

R 12 I An attempt was made to add a
duplicate secondary key value to a
secondary index subfile that does
not permit duplicates.

93 30-33 I The indexes referred to in the
program do not match those defined
during template creation.

o 13 I, R A MIDASPLUS concurrency error. The
command attempted to operate on a
record that another user just
deleted.

Second Edition B-16

95

32

20/21

35

ERROR MESSAGES

A record length was supplied for the
file that does not match the record
size assigned to the file during
template creation.

A record number was supplied larger
than the number that CREATK
allocated.

An attempt was made to do an indexed
add to a direct access file.
Entries cannot be added to a
RELATIVE file even if it is opened
for INDEX access.

Any MIDASPLUS system error (greater
than 40) that cannot be handled at
the program level.

B-17 Second Edition

PRIMOS Error
Messages

This appendix defines PRIMOS error messages and codes. See the
Subroutine Reference Guide for additional information.

/* ERRD.INS.PLP, PRIMOS>INSERT, PRIMOS GROUP, 02/13/85
MNEMONIC CODES FOR FILE SYSTEM (PL1)
Copyright (c¢) 1982, Prime Computer, Inc., Natick, MA 01760 */

/***/

/* x/
/* */
/* CODE DEFINITIONS x/
/* */
/* */
E$EOF BY 00001, /* END OF FILE PE *x/
E$BOF BY 00002, /* BEGINNING OF FILE PG */
E$UNOP BY 00003, /* UNIT NOT OPEN PD,SD */
E$UTUS BY 00004, /* UNIT IN USE SI */
E$FIUS BY 00005, /* FILE IN USE ST x/
E$BPAR BY 00008, /* BAD PARAMETER SA */
E$SNATT BY 00007, /* NO UFD ATTACHED SL, AL */
E$FDFL, BY 00008, /* UFD FULL SK x/
E$TKFL, BY 00009, /* DISK FULL DJ */
e$disk full

9, /* alias to E$IKFL */
E$NRIT BY 00010, /* NO RIGHT SX */
E$FDEL, BY 00011, /* FILE OPEN ON DELETE SD */
E$NTUD BY 00012, /* NOT A UFD AR x/
E$NTSD BY 00013, /* NOT A SEGDIR —_ */
E$DIRE BY 00014, /* IS A DIRECTORY —_ */

c-1 Secord Edition

MIDASPLUS USER'S GUIDE

E$FNTF BY 00015,
ES$FNTS BY 00016,
E$BNAM BY 00017,
E$EXST BY 00018,
E$DNTE BY 00019,
E$SHUT BY 00020,
E$DISK BY 00021,
E$EDAM BY 00022,
ES$PIRM BY 00023,

/¥
/¥
/¥
/*
/*
/¥
/*
/*
/%

(FILE) NOT FOUND

(FILE) NOT FOUND IN SEGDIR
ILLEGAL NAME

AILREADY EXTSTS

DIRECTORY NOT EMPTY

BAD SHUTDN (FAM ONLY)

DISK I/O ERRCR

BAD DAM FILE (FAM ONLY)
PTR MISMATCH (FAM ONLY)

e$rec_hdr ptr mismatch

by 23’
E$BPAS BY 00024,
E$BCOD BY 00025,
E$BTRN BY 00026,
E$OLDP BY 00027,
E$BKEY BY 00028,
E$BUNT BY 00029,
E$BSUN BY 00030,
E$SUNO BY 00031,
ESNMLG BY 00032,
E$SDER BY 00033,

E$BUFD BY 00034,
E$BFTS BY 00035,
E$FITB BY 00036,
E$NULL BY 00037,
E$IREM BY 00038,
E$DVIU BY 00039,
E$RLIN BY 00040,
E$FULIU BY 00041,
E$DNS BY 00042,
E$TMUL BY 00043,
E$FBST BY 00044,
E$BSGN BY 00045,
E$FIFC BY 00046,
E$TMRU BY 00047,
E$NASS BY 00048,
E$BFSV BY 00049,
E$SEMO BY 00050,
E$NTIM BY 00051,
E$FABT BY 00052,
E$FONC BY 00053,
E$NPHA BY 00054,
E$ROOM BY 00055,
E$WIPR BY 00056,
E$ITRE BY 00057,
E$FAMU BY 00058,
E$TMUS BY 00059,
E$NCOM BY 00060,
E$NFLT BY 00061,
E$STKF BY 00082,
E$STKS BY 00063,
E$NOON BY 00064,
E$CRWL BY 00065,
E$CROV BY 00066,

Second Edition

/*
/*
/*
/*
/*
/*
/¥
/¥
/*
/*
/¥
/*
/¥
/*
/*
/*
/*
/*
/*
/*
/*
/¥
/*
/%
/*
/*
/*
/*
/*
/*
/¥
/*
/¥
/¥
/¥
/*
/%
/¥
/¥
/*
/*
/*
/*
/*

alias to E$PIRM

BAD PASSWORD (FAM ONLY)
BAD CODE IN ERRVEC
BAD TRUNCATE OF SEGDIR
OLD PARTITION

BAD KEY

BAD UNIT NUMBER

BAD SEGDIR UNIT
SRGDIR UNIT NOT OPEN
NAME TOO LONG

SEGDIR ERROR

BAD UFD
BUFFER TOO SMALL

FILE TOO BIG

(NULL MESSAGE)

TLI, REMOTE REF

DEVICE IN USE
REMOTE LINE DOWN

ALL REMOTE UNITS IN USE
DEVICE NOT STARTED
TOO MANY UFD LEVELS
FAM - BAD STARTUP

BAD SEGMENT NUMBER
INVALID FAM FUNCTION CODE
MAX REMOTE USERS EXCEEDED
DEVICE NOT ASSIGNED
BAD FAM SVC

SEM OVERFLOW

NO TIMER

FAM ABORT

FAM OP NOT COMPLETE

NO PHANTOMS AVATLABLE
NO ROOM

DISK WRITE-PROTECTED
TLIEGAIL, TREENAME
FAM IN USE

MAX USERS EXCEEDED
NULI, COMLINE
NO_FAULT FR

BAD STACK FORMAT

BAD STACK ON SIGNAL
NO ON UNIT FOR CONDITION
BAD CRAWLOUT

STACK OVFLO DURING CRAWLOUT

c-2

E:

3RFH I NRBE

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

E$CRUN

:

RERARRARIARIA RN R R AR R R R RAR

E$RCHR
E$NEXP
E$BARG
E$CSOV
E$NOSG
E$TRCL
E$NIMC
E$TINAV
E$DATT
E$BDAT
E$BLEN
E$BDEV
E$QLEX
E$NBUF
E$INWT
E$NINP
E$DFD

E$DNC

E$SICM
E$SBCF
E$VKRL
E$VIA

E$VICA
E$VIF

E$VFR

E$VFP

E$VPFC
E$VNFC
E$VPEF
E$VIRC
E$IVCM
E$DNCT
E$BNWD
E$SGIU
E$NESG
E$SDUP
E$IVWN
E$WAIN
E$NMVS
E$NMTS
E$NDAM
E$NOVA
E$NECS
E$NRCV
E$UNRV
E$UBSY
E$UDEF
E$UATR
E$PRTL
E$NSUC
E$NROB
E$NETE

00074,

00080,

00091,

00098

00094,

00095,

00096,
00097,
00098,
00099,

00100,

00101,

00102,
00103,
00104,
00105,
00108,
00107,
00108,
001089,
00110,
00111,
00112,
00113,
00114,
00115,
001186,
00117,
00118,
00119,
00120,

/*
/¥
/¥
/*
/*
/*
/*
/*
/*
/*
/%
/*
/*
/¥
/*
/*
/*
/%
/*
/*
/%
/*
/ *
/*
/*
/%
/%
/*
/¥
/*
/*
/*
/¥
/¥
/*
/*
/*
/¥
/*
/*
/¥
/*
/*
/¥
/*
/*
/*
/*
/¥
/¥
/¥
/*
/*
/*

PRIMOS ERRCR MESSAGES

CRAWLOUT UNWIND FATL — */
BAD COMMAND FORMAT — */
RESERVED CHARACTER — */
CANNOT EXIT TO COMMAND PROC —- */
BAD COMMAND ARG — */
CONC STACK OVERFLOW — */
SEGMENT DOES NOT EXIST — */
TRUNCATED COMMAND LINE — */
NO SMIC IMC CHANNELS — */
DEVICE NOT AVAITABLE DPTX */
DEVICE NOT ATTACHED — */
BAD DATA — * /
BAD LENGTH — */
BAD DEVICE NUMBER — * /
QUEUE LENGTH EXCEEDED — * /
NO BUFFER SPACE - */
INPUT WAITING — */
NO INPUT AVAILAELE — */
DEVICE FORCIBLY DETACHED — */
DPTX NOT CONFIGURED - */
TLLEGAL, 3270 COMMAND —_— * /
BAD 'FROM’' DEVICE — */
KBD LOCKED — * /
INVALID ATD BYTE — * /
INVALID CURSCR ADDRESS — */
INVALID FIELD —— */
FIELD — * /
FIELD PROHIBITED — */
PROTECTED FIELD CHECK — * /
NUMERIC FIELD CHECK _— */
PAST END OF FIELD - */
INVALTD READ MOD CHAR — */
INVALTD COMMAND — * /
DEVICE NOT CONNECTED - */
BAD NO. OF WORDS — */
SEGMENT IN USE - */
NOT ENOUGH SEGMENTS (VINIT$) — */
DUPLICATE SEGMENTS (VINIT$) — * /
INVALID WINDOW NUMBER — * /
WINDOW ALREADY INITTATED - */
NO MORE VMFA SEGMENTS -— * /
NO MORE TEMP SEGMENTS — */
NOT A DAM FILE — */
NOT OPEN FOR VMFA — * /
NOT ENOUGH CONTIGUOUS SEGMENTS * /
REQUIRES RECEIVE ENABLED — * /
USER NOT RECEIVING NOW _— * /
USER BUSY, PLEASE WAIT — * /
USER UNABLE TO RECEIVE MESSAGES * /
UNKNOWN ADIRESSEE — */
OPERATION PARTIAILY BIOCKED —- */
OPERATION UNSUCCESSFUL — * /
NO ROOM IN OUTPUT BUFFER — */
NETWORK ERROR ENCOUNTERED — * /

C-3

Second Edition

MIDASPLUS USER'S GUILE

E$SHDN BY 00121, /*
E$UNOD BY 00122, /*
ESNDAT BY 00123, /*
E$ENGD BY 00124, /*
E$PHNA BY 00125, /*
E$IWST BY 00126, /*
E$BKFP BY 00127, /*
E$BPRH BY 00128, /*
E$ABTI BY 00129, /*
E$ILFF BY 00130, /*
E$TMED BY 00131, /*
E$DANC BY 00132, /*
E$NENB BY 00133, /*
E$NSIA BY 00134, /*
E$PNTF BY 00135, /*
E$SVAL BY 00136, /*
E$IEDI BY 00137, /*
E$WMST BY 00138, /*
E$INSK BY 00139, /*
E$RSNU BY 00140, /*
E$S18E BY 00141,
/*

DISK HAS BEEN SHUT DOWN FS
UNKNOWN NODE NAME (PRIMENET)

NO DATA FOUND —=
ENQUED ONLY —
PROTOCOL, HANDLER NOT AVATL. DPTX
E$INWT ENABLED BY CONFIG DPTX
RAD KEY FOR THIS PROTOCOL DPTX
BAD PROTOCOL HANDLER (TAT) DPIX
I/0 ABORT IN PROGRESS DPTX
ILLEGAL DPTX FILE FORMAT DPTX
TOO MANY EMULATE DEVICES DPTX
DPTX ALREADY CONFIGURED DPTX
REMOTE MODE NOT ENABLED NPX
NO NPX' SLAVE AVAILABLE ——
PROCEDURE NOT FOUND R$CALL
SLAVE VALIDATTON ERROR R$CALL
I/0 error or device interrupt (GPPI)
Warm start happened (GPPI)

A pio instruction did not skip (GPPI)
REMOTE SYSTEM NOT UP R$CALL

/* New error codes for REV 19 begin here:

/*

E$NFQB BY 00142, /*
E$MXQB BY 00143, /*
e$max_quota,_exceeded

by 143, /*
E$NOQD BY 00144, /*
E$QEXC BY 00145, /*
E$IMFD BY 00146, /*
E$NACL BY 00147, /*
E$PNAC BY 00148, /*
ESNTFD BY 00149, /*
E$TIACL BY 00150, /*
E$NCAT BY 00151, /*
E$IRNA BY 00152, /*
ESCPMF BY 00153, /*
E$ACBG BY 00154, /*
E$SACNF BY 00155, /*
E$IRNF BY 00156, /*
E$BACL BY 00157, /*
E$BVER BY 00158, /*
E$NINF BY 00159, /*
E$CATF BY 00160, /*
ESAIRF BY 00161, /*
E$NVAL BY 00162, /*
E$IOGO BY 00163, /*
ESNUTP BY 00164, /*
E$UTAR BY 00165, /*
E$UNIU BY 00166, /*
E$NFUT BY 00167, /*
E$UAHU BY 00168, /*
E$PANF BY 00169, /*

Second Edition

NO FREE QUOTA BLOCKS -
MAXTMUM QUOTA EXCEEDED -

alias to ESMXQB

NOT A QUOTA DISK (RUN VFIXRAT)
SETTING QUOTA BELOW EXISTING USAGE
Operation illegal on MFD

Not an ACL directory

Parent not an ACL directory

Not a file or directory

Entry is an ACL

Not an access category

Like reference not available
Category protects MFD

ACL too big

Access category not found

Like reference not found

BAD ACL

BAD VERSION

NO INFORMATION

Access category found (Ac$rvt)
ACL directory found (Ac$rvt)
Validation error (nlogin)

Logout (code for fatal$)

No unit table available. (PHANT$)
Unit table already returned. (UTDALC)
Unit table not in use. (RTUTBL)
No free unit table. (GTUTBL)

User already has unit table. (UTALOC)
Priority ACL not found.

c4

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

PRIMOS ERRCR MESSAGES

E$MISA BY 00170, /* Missing argument to command. */
E$SCCM BY 00171, /* Supervisor terminal command only. */
E$BRPA BY 00172, /* Bad remote password R$CALL */
E$DINS BY 00173, /* Date and time not set yet. */
E$SPND BY 00174, /* REMOTE PROCEDURE CALL STILL PENDING */
E$BCFG BY 00175, /* NETWORK CONFIGURATION MISMATCH */
E$BMOD BY 00176, /* Illegal access mode (AC$SET) *x/
E$BID BY 00177, /* Illegal identifier (AC$SET) */
E$ST19 BY 00178, /* Operation illegal on pre-19 disk x/

E$CTPR BY 00179, /* Object is category-protected (Ac$chg) */
E$DFPR BY 00180, /* Object is default-protected (Ac$chg) */

E$DLPR BY 00181, /* File is delete-protected (Fil$dl) x/
E$BLUE BY 00182, /* Bad LUBTL entry (F$10) *x/
E$NDFD BY 00183, /* No driver for device (F$10) x/
E$WFT BY 00184, /* Wrong file type (F$10) x/
E$FIMM BY 00185, /* Format/data mismatch (F$10) X/
E$FER BY 00186, /* Bad format (F$10) X/
E$BDV BY 00187, /* Bad dope vector (F$10) x/
E$BFOV BY 00188, /* F$IOBF overflow (F$10) */

E$NFAS BY 00189, /* Top-level dir not found or inaccessible*/
E$APND BY 00190, /* Asynchronous procedure still pending */

E$BVCC BY 00191, /* Bad virtual circuit clearing */
E$RESF BY 00192, /* Improper access to a restricted file */
E$MNPX BY 00193, /* Illegal multiple hops in NPX. */
E$SYNT BY 00194, /* SYNTanx error x/
E$USTR BY 00195, /* Unterminated STRing */
E$WNS BY 00196, /* Wrong Number of Subscripts */
E$IREQ BY 00197, /* Integer REQuired */
E$VNG BY 00198, /* Variable Not in namelist Group */
E$SOR BY 00199, /* Subscript Out of Range */
E$TMVV BY 00200, /* Too Many Values for Variable */
E$ESV BY 00201, /* Expected String Value */
E$VABS BY 00202, /* Variable Array Bounds or Size */
E$BCIC BY 00203, /* Bad Compiler Library Call */
E$NSB BY 00204, /* NSB tape was detected */
E$WSLV BY 00205, /* Slave’'s ID mismatch */
E$VOGC BY 00208, /* The virtual circuit got cleared. */
E$MSIV BY 00207, /* Exceeds max number of slaves per user */
E$IDNF BY 00208, /* Slave’'s ID not found */
E$NACC BY 00209, /* Not accessible */
E$UIMA BY 00210, /* Not Enough IMA channels */
E$UDMC BY 00211, /* Not Enough DMC channels */
E$BLEF BY 00212, /* Bad tape record length and EOF x/
E$BLET BY 00213, /* Bad tape record length and EOT */
E$AISZ BY 00214, /* Allocate request too small */
E$FRER BY 00215, /* Free request with invalid pointer x/
E$HPER BY 00216, /* User storage heap is corrupted */
E$EPFT BY 00217, /* Invalid EPF type */
E$EPFS BY 00218, /* Invalid EPF search type */
E$ILID BY 00219, /* Invalid EPF LID linkage descriptor */
E$ILTE BY 00220, /* Invlaid EPF LTE linkage descriptor */
E$ECEB BY 00221, /* Exceeding command environment breadth */
E$EPFL BY 00222, /* EPF file exceeds file size limit */
E$NTA BY 00223, /* EPF file not active for this user x/

C-5 Second Edition

MIDASPLUS USER'S GUIDE

E$SWPS BY 00224, /* EPF file suspended within program session *

E$SWPR BY 00225, /* EPF file suspended within this process */

E$ADCM BY 00226, /* System administrator command ONLY */
ESUAFU BY 00227, /* Unable to allocate file unit */
e$unable_to_allocate file unit

by 00227, /* alias to E$UAFU */
E$FIDC BY 00228, /* File inconsistent data count */
e$file inconsistent data_count

by 00228, /* alias to e$fidc */

e$indl by 00229, /* alias to e$insufficient_dam level */
e$insufficient dam levels
by 00229, /* Not enough dam index levels as needed */

e$peof by 00230, /* alias to e$past EOF */
e$past_EOF

by 00230, /* Past End Of File */
E$N231 by 00231, /* Error code 23l. */
E$N232 by 00232, /* Error code 232. */
E$NR233 by 00233, /* Error code 233. */
E$N234 by 00234, /* Error code 234. */
E$N235 by 00235, /* Error code 235. */
E$N236 by 00236, /* Error code 236. */
E$N237 by 00237, /* Error code 237. */
E$N238 by 00238, /* Error code 238. */
E$RSHD by 00239, /* Remote disk has been shut down. */
E$N240 by 00240, /* No paging device defined. */
e$nrfc by 00241, /* Specified reverse flow control on. */
e$N242 by 00242, /* Error code 242 */
e$N243 by 00243, /* Error code 243 x/
e$N44 by 00244, /* Error code 244 */
e$aele by 00245, /* Attempt to execute non-executable library *

/

E$LAST BY 00245; /* THIS ***MUST*** BE. LAST — */
/¥ */
/* The value of E$LAST must equal the last error code. x/
/* */

/**/

Second Edition Cc-6

Using Prime

Customer Service

This appendix lists the information that Prime’'s Customer Service
Department needs in order to help you diagnose errors with MIDASPLUS.
Please consult Appendix B, ERROR MESSAGES, and Appendix C, PRIMOS ERROR
MESSAGES, before calling Customer Service. If it is necessary to
contact Customer Service, please be prepared to answer the following

questions:

e VWhat revision of PRIMOS are you using?

e Is there anything non-standard (for example, upgrades or
patches) about your system?

e VWhat revision, including fix release, of MIDASPLUS are you
using?

e How did you respond to the questions in the CREAIK dialog?

e How did you build your file? (KBUILD, AID1$, or offline
routines?)

e Is the application a single-user or a multiple-user application?

e Is the file local or remote?

e VWhat language is the application written in?

e What MIDASPLUS utilities have been used on the file during the

last successful run?

D-1 Second Edition

Concurrency Issues

This appendix discusses the special considerations for writing
application programs that allow concurrent access to data records
within a MIDASPIUS file. These considerations include the necessary
programming procedures that the application programmer must code to
handle concurrency problems when reading, updating, and deleting
records from a MIDSAPLUS file that is open by multiple updaters.

IOCKED RECORDS

Locking a record during an update process ensures that only one wuser
can update a record at one time. Otherwise, updates are inconsistent
and data integrity is lost. It is the responsibility of the
application programmer to code a procedure to handle locked record
conditions.

E-1 Second Edition

MIDASPLUS USER'S GUIDE

Example:

Assume that two users (User-A and User-B) have a file (MASTER) open for
update (reading and writing). The MASTER file contains customer
records with Primary keys ranging from 1000 to 9999. The application
program is written in COBOL. See Figure E-1.

MASTER

Customer-1000
Customer-1001
Customer-1002
Customer-1003
Customer-1004
Customer-1005
Customer-2000
Customer-2001
Customer-2002
Customer-2003

Concurrency Issues
MASTER File

Figure E-1

Second Edition E-2

CONCURRENCY ISSUES

When User-A and User-B open the file for update (INPUT-OUTPUT) and both
users attempt to access the same record (Customer-1002) the following
occurs:

Time User-A User-B Comments

1 Read Customer-1002 — User-A retrieves
Customer-1002 and
locks the record.

2 Process Data Read Customer-1002 User-B gets an
‘ error code 10 (or

COBOL 90) indica-

ting that the

record is locked.

User-B cannot read

the record at

this time and must

retry.
3 Rewrite Customer-1002 —= After the update
process within

MIDASPIUS is com—-
pleted, the re-
cord is released.

4 Read Customer-1002 Since User-A has
released the re-
cord lock, User-B
is now able to
read and update
the record. User-B
now has the
the record locked.

It is important to note that if User-B had opened the file for read
only, then User-B could have read the locked record.

When you use the MIDASPLUS interface to COBOL, the following sequence
of MIDASPIUS calls are executed.

CALL IOCK$ Finds and locks a record. The routine
I0CK$ cannot access &a record that is
already locked.

CALL UPDAT$ Updates and unlocks the record. This

routine can also be used to unlock a
record without an actual update.

E-3 Second Edition

MIDASPLUS USER'S GUIDE

It is up to the programmer to code a routine within the application to
handle locked record: conditions. For example:

READ MASTER-FILE INTO CUSTOMER-RECORD
INVALTD KEY PERFORM ERROR-RTN THRU
ERROR-RTN-EXTIT.

ERRCR-RTIN.
IF FILE-STATUS = 90 CALL 'SLEEP$’' USING SLEEP-TIME

DELETED RECORDS

Locked records can be deleted by another user. When writing
applications to delete and update records concurrently, make sure that
the record is read and locked before deleting it. This ensures that
any user attempting to update the record will get a locked record
status code of 10 or COBOL 90. If the record is not read prior to the
delete, the following may occur assuming that both User-A and User-B
opened the file for input and output:

Time User-A User-B Comments
1 Read record User-B reads and
Customer-1002 locks the record.
2 Deletes record User-A deletes the
Customer-1002 locked record.

without first
retrieving the
record to lock
it.

3 Rewrite record User-B is unable
Customer-1002 to rewrite the
record and re-
ceives a MIDASPLUS
status code of 11
(COBOL 91).

A status code of 13 (COBOL 94) may occur when one user deletes a record
that another user is attempting to access. The second user may lose
his/her position in the file which results in this concurrency error.

Second Edition E4

OONCURRENCY ISSUES

When any error condition occurs during an attempt to access a record,
the file's position may become undefined. Therefore, it may be
necessary for the program to reestablish the positioning the file
before attempting another access.

COBOL SEQUENTIAL ACCESS

When sequentially accessing a MIDASPLUS file to update and delete
records in a concurrent update mode, there are additional programming
considerations that must be taken.

Consider the following program:
SELECT MASTER-FILE ASSIGN TO PFMS

ORGANIZATION IS INDEXED
ACCESS MODE IS SEQUENTIAL (or DYNAMIC)

FD MASTER-FILE

OPEN I-O MASTER-FILE
START MASTER-FIIE.....
READ-RECORD-PARA.

READ MASTER-FILE NEXT RECORD INTO MASTER-RECORD
AT END GO TO EOJ-RIN.

REWRITE MASTER-RECORD INVALID KEY PERFORM ERROR-RIN.

GO TO READ-RECCORD-PARA.

When multiple users are running the above program to access the same
file, several unanticipated error conditions may occur.

For example, the syntax specification for this particular format of the
READ statement does not allow for an INVALID KEY clause. If another
user already has a record locked while this READ statement is
attempting to retrieve a record, the program will abort with a
MIDASPIUS status code 10 or COBOL 90. In order to trap the locked
record status, the application programmer must code a DECLARATIVES
section to enable the program to test the file status code that
MIDASPLUS returns.

Since this is a sequential read, any error condition that MIDASPLUS

returns results in an undefined position in the file. It is imperative
that the application programmer ensure that the program reposition

E-5 Second Edition

MIDASPLUS USER'S GUIDE

itself in the file wusing the START statement. In the above example,
the program should return to the START statement when any recoverable
error condition is encountered during a read-next operation. Accessing
a record by full primary key will also reestablish the position in the
file.

Example:

PROCEDURE DIVISION.
DECLARATIVES SECTION.

MATN-PARA.
OPEN I-O MASTER-FILE.

START-PARA.
START MASTER-FIIE.......

READ-RECORD-PARA.

READ MASTER-FILE NEXT RECORD AT END GO TO EOJ-RIN.
IF FILE-STATUS = 90 GO TO START-PARA.

REWRITE MASTER-RECORD INVALID KEY PERFORM ERROR-RTN.
GO TO READ-RECORD-PARA.

HARD-CODED FILE UNITS

Since MIDASPLUS manages file units for each user, the use of hard-coded
file units can cause MIDASPLUS files to become corrupted beyond repair.
For example, MIDASPLUS maintains a table that contains entries for each
file unit with corresponding file names or subfile numbers. Since a
MIDASPLUS file contains many subfiles, you are not aware that MIDASPLUS
is opening subfiles on other file units. If MIDASPLUS already has a
subfile opened on file unit 122, and a user program attempts to open
another file on wunit 122 using TSRC$$, the subfile will be closed
without notifying MIDASPLUS. MIDASPLUS will access information on file
unit 122 which is incorrect and subsequently damage the file open on
unit 122 (which may be another MIDASPIUS file). In addition, MIDASPLUS
may use information in the subfile on unit 122 to access or update
information in another subfile.

Besides possibly corrupting the MIDASPIUS file, hard-coded file units
may cause the following error conditions to occur:

NOT A VALID MIDASPLUS FILE
UNIT NOT OPEN
Error code 21.

Second Edition E-6

CONCURRENCY ISSUES

MIDASPIUS also uses the internal file unit table to efficiently manage
units assigned to MIDASPLUS files. If the user has many MIDASPLUS
files open at one time and the pool of available file units for
MIDASPLUS has been exhausted, MIDASPLUS closes a file unit and uses
that file unit to open another MIDASPLUS file. When the program
requires use of a file unit that MIDASPLUS has closed and assigned to
another file, MIDASPIUS may reopen the file on another previously
assigned file unit. Managing the file units is dependent on the number
of file units configured in the MIDASPIUS configuration file. See
Appendix I, FILE UNIT MANAGEMENT, for additional information about
hard-coded files.

CONCURRENCY RULES

Always be very careful when coding programs that will be used by
miltiple users to access the same files. Some basic rules are:

1. Always check error codes and design the program to take
appropriate action when recoverable error conditions are
encountered.

2. Be careful when deleting records in a concurrent access mode of
operation since another user can delete a locked record. When
possible, design the application to delete records in batch or
exclusive update mode.

3. Because the CBL compiler does not allow the INVALID KEY clause
on a READ NEXT statement, use a DECLARATIVE section to trap
error conditions when sequentially accessing a file in
multi-user mode.

4. When an error occurs on a sequential read (READ NEXT), the
program’s position in the file becomes undefined and a
subsequent READ NEXT generates an end-of-file error.

5. When using the MIDASPLUS call interface (ADD1$, FIND$, etc.)
always use OPENM$ and CLOSM$ to open and close files.

6. When using the MIDASPLUS call interface, never use hard—coded
file units. Always use K$GETU to ensure that MIDASPLUS
properly manages file units. Use K$GETU regardless of file

type.

7. When using either the COBOL interface or the library routines,
do not open a file multiple times in a program. Always make
sure that files are closed when the program is terminated.

8. It is also very important to make sure MPLUSCLUP is invoked
when a program terminates abmormally. This ensures that
MIDASPLUS closes all file units and releases all file locks
held by the users.

E-7 Second Edition

Other MIDASPLUS
| Offline Routines

ERROPN and KX$TIM are only for FORTRAN users who use offline routines.
This appendix discusses ERROPN and KX$TIM.

ERROPN
ERROPN is a routine used to open a logging file to record errors and

milestone statistics. KBUIID uses ERROPN to open and name an
error/logfile. The calling sequence for ERROPN is:

CALL ERROPN (funit)

Funit is the INT*2 file unit on which the error/logging file will be
opened. It is returned as O if no file was opened.

F-1 Second Edition

MIDASPIUS USER'S GUIDE

Using the Routine

ERROPN prompts you with
ENTER LOG/ERROR FILE NAME:

to ask you for the error/logging file. If you press the RETURN key or
blank line, funit is set to O and ERROPN returns you to your program.
If you enter a valid pathname, a new SAM file is created if necessary,
opened for writing on the PRIMOS file unit returned in funit (via the
key K$GETU), and truncated. If an error occurs on the open call, you
are asked to enter another pathname. The truncate operation makes sure
that the file is empty, in case the indicated file already exists. If
an error occurs on the truncate operation, it is noted with the
message: “"COULDN'T TRUNCATE LOG/ERROR FILE" and ERROPN returns.

The file unit number (funit) on which the error/logging file is opened
is stored in an internal common area called /ERRFIL/. If any of the
offline routines generates an error message, or if KX$TIM is called to
print a milestone, the error message or the milestone is sent to the
error/log file opened on /ERRFIL/ as well as to the terminal.

/ERRFIL/ only remembers the last error/logging file opened and does not
notice that you may have closed the file in the meantime. Errors
occurring from attempts to write to this file are interpreted as a sign
that the file has been closed and are ignored.

KX$TIM

KX$TIM is a wuser-callable routine that displays milestone statistics
(including CPU, disk, and wall clock time elapsed since the last
milestone) for the offline file-building routines PRIBID, SECBLD, and
BILD$R. These milestones are displayed at the terminal. If ERROPN was
called to open an error/log file, these statistics are written to the
error/log file. KBUILD uses KX$TIM to generate milestones.

Its calling sequence is:

CALL KX$TIM (numrec, optmsg, msglen)

numrec Indicates the number of records processed for
this milestone (INT*4). Special case values of
0O and -1 make it possible to generate headers
and so forth. See Using the Routine below.

optmsg User-supplied if desired (INT*2). If supplied,
the length of the optional message, in words,
must be passed in msglen.

Second Edition F-2

OTHER MIDASPLUS OFFLINE ROUTINES

msglen The length of the optional optmsg, in
msglen
characters (INT*2). Set it to O if there is no
optional message.

Using the Routine

If there is an optional message, it is printed to the terminal and to
the optional error/logging file. A milestone, consisting of numrec,
date and time, number of CPU minutes used since the last call to
KX$TIM, number of disk I/O minutes used since the last call to KX$TIM,
total CPU and disk time used so far, and the difference in the total
since the last call, is printed in a similar fashion.

If numrec has a value of 0, all counters are initialized to O and a
header is printed out before the milestone line. By using a numrec
value of -1, a milestone of O without a header or initialization can be
generated.

F-3 Second Edition

The Call Interface
with C

This appendix demonstrates how C programmers can access a MIDASPLUS
file through subroutine calls in the MIDASPLUS library. You should
have an in-depth understanding of MIDASPLUS before attempting to code
in this manner.

When using the callable interface, always use OPENM$ and CLOSM$ to open
and close MIDASPIUS files rather than using PRIMOS file routines such
as SRCH$$ and TSRCH$$. The program should never contain hard-coded
file units when you are opening a MIDASPLUS file. Always use K$GETU to
allow PRIMOS to select the next available file unit, regardless of the
file type.

C does not support the alternate return argument. When handling errors
in C programs, use a O for the alternate return argument and check the
communications array after the call.

MIDASPLUS routines that do not support a communications array argument
(for example, PRIBLD) terminate the program with an error message if
you use O instead of an alternate error return. MIDASPIUS routines
that support the commmnications array and classify errors as fatal and
nonfatal (for example ADD1$) terminate if a fatal error occurs and you
use O instead of an alternate return.

G-1 Second Edition

MIDASPLUS USER'S GUIDE

To handle the above error situation from C, use an interlude routine
written in another language that provides the alternate error. The
following is an example of an interlude routine written in FORTRAN for
ADD1$: '

SUBROUTINE ADD1$C(FUNIT,BUFFER,KEY, ARRAY, FLAGS, FATAL, INDEX,
* FILENO, PLENTH, KEYINT)
INTEGER FATAL
CALI, ADD1$(FUNIT,BUFFER,KEY,ARRAY,FIAGS, $1, INDEX,
* FILENO, PLENTH,KEYLNT)
FATAL = O
RETURN
1 FATAL = 1
RETURN
END

CALLABLE INTERFACE EXAMPLE

The following C program reads data from the MIDASPIUS file that was
created in Chapter 2.

/* This is a C program that opens an indexed file, */
/* reads a record, and displays it. */
/* IT MUST BE COMPILED WITH -NEWFORTRAN */
#include "syscom>parm.k.ins.cc" /* MIDASPLUS flag velues */
#include "syscom-keys.ins.cc" /* Primos I/O keys */
#include «stdio.h» /* needed for getchar */
main()

{
/* Deta structures: */
fortran closm$(), find$(), operm$();
short int funit, i, status, routine, buffer(43];
short int arrayl[14];
¢har choice;
static struct thekey
{char onel9];
}; /*end struct*/
static struct thekey findkey;

Second Edition G2

—

THE CALL INTERFACE WITH C

/* START EXECUTION: */

/* Open file: */
openm$((short) k$rdwr+k$getu, "bank", 4, funit, status);
if (status != 0)

abort();
/* Ask for key to be entered from terminal: */
choice = 'Y’; /* next while is repeated as long as choice is yes */

while ((choice == 'Y’) | (choice == ‘y’))
{printf("ENTER KEY VALUE (9 NUMBERS): \n");
i=0;

while (i «=8)
{findkey.oneli] = getchar();
1++;
} /* end while */

/* Read and display sequential record: */

find$(funit,
buffer,
findkey,
array,
(short) FL$RET,
(long) O, /* ALTRTN — no use in C but
must be long */
0, /* search on primary key */
o, /* obsolete for MIDASPLUS */
o, /* return all data */
0); /* full key */
/* check error code in array: */
if (arrayl0] == 0); /* do nothing, O is normal */
else
if (arraylO] == 7) /* key not found */
printf("THERE IS NO RECORD WITH THIS KEY\n");
else
{printf("ERROR —— ASK FOR HELP\n");
abort();

} /* end else */

/* display what is returned in buffer: */
printf("%s\n", buffer);
printf("\n");
printf("DO YOU WANT TO CONTINUE? Y or N:\n");
i= 0O;
getchar(); /* throw away last CR */
choice = getchar();
getchar(); /* throw away last CR */
} /* erd while for choice*/

/* Close file: */
closm$(funit, status);
if (status == 0)
printf ("NORMAL END OF RUN ");
else
printf ("STATUS IS", "%d\n", status);

} /* end program */

G-3 Second Edition

MIDASPLUS USER'S GUIDE

(K, cc sample.cc -newfortran

[cC Rev. 21.0 Copyright (c) Prime Computer, Inc. 1986)
00 Errors and 00 Warnings detected in 85 lines and 646 include lines.

K, bind

[BIND Rev. 21.0 Copyright (c) 1985, Prime Computer, Inc.]

: load sample

: 11 ¢ 1ib

: 11 mpluslb

BIND COMPLETE

: file

CK, resume sample

MIDASPLUS User initialized.
CLEANUP of O items complete.
ENTER KEY VALUE (9 NUMBERS):
189264289

189264289murray, paul

DO YOU WANT TO CONTINUE? Y or N:

%NTERKEYVAHJE (9 NUMBERS):

276503889
27650388%harper, anne

DO YOU WANT TO CONTINUE? Y or N:

n
NORMAL, END OF RUN CK,

Second Edition

mc28374646123 orchard rd manchester

chk412389112 washington stnewton

nh03102

ma02159

The Call Interface

with Pascal

This appendix demonstrates how Pascal programmers can access a
MIDASPLUS file through subroutine calls in the MIDASPLUS library. You
should have an in-depth understanding of MIDASPLUS before attempting to
code in this manner.

When using the callable interface, always use OPENM$ and CLOSM$ to open
and close MIDASPIUS files rather than using PRIMOS file routines such
as SRCH$$ and TSRCH$$. The program should never contain hard-coded
file units when you are opening a MIDASPLUS file. Always use K$GETU to
allow PRIMOS to select the next available file unit, regardless of the
file type.

Pascal does not support the alternate return argument. VWhen handling
errors in Pascal programs, use a O for the alternate return argument
and check the communications array after the call.

MIDASPIUS routines that do not support a communications array argument
(for example, PRIBLD) terminate the program with an error message if
you use O instead of an alternate error return. MIDASPLUS routines
that support the communications array and classify errors as fatal and
nonfatal (for example AID1$) terminate if a fatal error occurs and you
use O is instead of an alternate return.

H-1 Second Edition

MIDASPLUS USER'S GUITE

To handle the above error situation from Pascal, use an interlude
routine written in another language that provides the alternate error.
The following is an example of an interlude routine written in FORTRAN
for ADD1$: '

SUBROUTINE AID1$P(FUNIT,BUFFER,KEY,ARRAY,FLAGS, FATAL, INDEX,
* FILENO, PLENTH,KEYLNT)
INTEGER FATAL
CALL ADD1$(FUNIT,BUFFER,KEY,ARRAY,FLAGS, $1, INDEX,
* FILENO, PLENTH,KEYLNT)
FATAL = O
RETURN
1 FATAL =1
RETURN
END

CALTABLE INTERFACE EXAMPLE WITH PASCAL

The following Pascal program reads data from the MIDASPLUS file that
was created in Chapter 2.

progran customer(bank, input,output);

{This Pascal program opens a MIDASPLUS file, reads a record,
and displays it.}

const
%include 'SYSCOM>PARM.K.INS.PASCAL';
%include ‘SYSCOM>KEYS.INS.PASCAL';

type
chartype = packed array [1..88] of char; {for the buffer in FIND$}
inttype = array [1..14] of integer; {for the commnications array}
stringl = packed array [1l..4] of char; {for pathname in OPENM$}
string2 = packed array [1..9] of char; {for key in FIND$}

var
bank : text;

funit, flags, altrtn, index, bufsiz, keysiz : integer;
filno : integer;
buffer : chartype;
key : stringa;
arrayl : inttype;
pathname : stringl;
namlen : integer;
k : integer;
status : integer;
primkey : string2;
done : boolean;
ans : char;

Second Edition H-2

THE CALL INTERFACE WITH PASCAL

procedure FIND$(var funit : integer; var buffer : chartype;
var key :@ string2; var arrayl : inttype;
var flags, altrtn, index, filno, bufsiz,
keysiz : integer); extern;

procedure OPENM$(var k : integer; var pathname : stringl;
var namlen : integer; var funit : integer;
var status : integer); extern;

procedure CLOSM$(var funit : integer; var status : integer); extern;

procedure print(buff : chartype); {to write the buffer returned from f
ind} :
var x : integer;
begin
for x := 1 to 88 do

in
write(buff(x]);
end;
writeln;
end;

begin
{First open the BANK file}
k := K$GETU+K$RDWR;
pathname := 'bank’;
namlen := 4;
OPENM$(k, pathname, namlen, funit, status);

done := false;

{Main loop}
while not done do
begin
writeln('Enter the primary key (9 digits): ');
readln(primkey) ;

{This section assigns values to the parameters of the procedure call FI
ND$ }
{funit - assigned by OPENMS$}
{buffer-empty character string}
key := primkey; {primary key of an existing entry}
arrayl[1l] := 0; {flags sequential access}

flags := O; {set it to zero}
altrtn := O; {Pascal doesn’'t support alternate
return statements}
index := 0; {use the primary key}
filno := O; {file no. obsolete, set to zero}
bufsiz := O; {the complete buffer; length of the record}
keysiz := O; {zero means use the whole key}

H-3 Second Edition

MIDASPLUS USER'S GUIDE

{Find the record with primery key PRIMKEY}
FIND$(funit, buffer, key, arrayl, flags, altrtn, index,
filno, bufsiz, keysiz);

if arrayll[l] = 7 then
writeln(’'There is no record with this key.’)
else
{Print the record to the terminal}
print(buffer);
writeln('Do you want to continue?’);
readln(ans);
if (ans = 'n’) or (ans = 'N’') then
done := true; .
end; {while}
{Close the file.}
CLOSM$ (funit, status);
end.

(K, pascal customer

[PASCAL Rev. 21.0 Copyright (c¢) 1986 Prime Computer, Inc.]

0000 ERRORS [PASCAL Rev. 21.0]

(K, bind

[BIND Rev. 21.0 Copyright (c) 1985, Prime Computer, Inc.]

: load customer

: 1i paslib

¢ 11 mpluslb

11

BIND COMPLETE

: file

CK, resurme custaomer

Enter the primary key (9 digits):

276503889

27650388%harper, anne chk412389112 washington stnewton
ma02159 .

Do you want to continue?

%nter the primary key (9 digits):
123456789

There is no record with this key.
Do you want to continue?

%nter the primary key (9 digits):

189264289

180264289murray, paul me28374646123 orchard rd manchester
nh03102 _

Do you want to continue?

n

X,

Second Edition H4

File Unit Management

This appendix describes problems that occur when hard-coded file units
are used. Since MIDASPIUS multiplexes file units for all open
MIDASPIUS files, using hard-coded file units in application code will
probably corrupt the MIDASPLUS internal file unit table and eventually
damage MIDASPIUS files used by an application. The following
conditions signal the corruption of the MIDASPIUS internal file unit
table: MIDASPLUS error codes 21, 23, 40, and 45 and error messages
such as UNIT NOT OPEN and NOT A SEGDIR.

MIDASPLUS FILE UNIT UTILIZATION

Since a MIDASPIUS file uses PRIMOS segment directories, a single
MIDASPIUS file may be made up of many individual segment directory
subfiles. Consequently, an application can require many PRIMOS file
units. (

For example, if a MIDASPLUS file has one primary key and five secondary
keys, the file requires a minimum of 8 subfiles and 9 PRIMOS file
units. One file unit is required for the segment directory and one
file unit is required for each index subfile. These requirenents
result in 6 PRIMOS units for the indexes, and at least one file unit
for the data subfile (subfile 185).

MIDASPLUS maintains an internal file unit table which is allocated on a
per user basis. The purpose of this table is to enable MIDASPLUS to
keep a record of the file units that are in use by active MIDASPLUS
files and subfiles.

I-1 Second Edition

MIDASPLUS USER'S GUIDE

The funits parameter in the MPLUS.CONFIG file defines the per user file
unit table size. IMIDASPLUS initializes the MIDASPLUS configuration at
system startup or when MIDASPLUS is reshared. The following diagram

shows the structure of a MIDASPLUS file unit table.

Index | xxunit
l=segdir

write | Remote
1=write|}l=remote

file unit

Subfile #
O=segdir

Second Edition

—_—

FILE UNIT MANAGEMENT

When an application calls MIDASPLUS to open a MIDASPLUS file with one
primary and 5 secondary keys, the per-user file unit table locks like
the following (assume that the funits parameter is set to 10):

Index | xxunit | write | Remote | file unit | Subfile # | Link
l=segdir|l=write|l=remote O=segdir

128

127

126

125 1 0 0 125 0] 124
124 0 0 0 124 1 123
123 0 0 0 123 11 122
122 0 0 0 122 _l 121
121 0 0 0 121 31 120
120 0 0 0 120 41 119
119 0 0 0] 119 51 118
118 0 0] 0 118 185 0

Second Edition

MIDASPIUS USER'S GUIDE

If the same application opens a second MIDASPLUS file with a primary
key and 2 secondary keys, the MIDASPIUS file unit table is updated as

follows:
Index | xxunit | write | Remote | file unit | Subfile # | Link
l=segdir|l=write}l=remote O=segdir

128
127
126
125 1 0 0 125 0 124
124 0 0] 0 124 1 123
123 o) 0 0 123 11 122
122 0 0 0] 122 21 121
121 0 0] 0 121 31 120
120 0 0 0 120 41 119
119 0 0 0 119 51 118
118 0 0 0 118 185 0
117 1 0 0 117 0 116
116 0 0] 0 116 1 ?

MIDASPIUS has now exhausted the number of file unit entries allowed
the funits configuration parameter.
additional file units, and MIDASPLUS will close units 124,

by

Since MIDASPLUS requires three

123,

and

122. Note that MIDASPLUS never reuses the unit or the table entry that
the segment directory occupies.

Second Edition

I4

FILE UNIT MANAGEMENT

When MIDASPIUS opens the second file, the unit table appears as
follows:

Index | xxunit | write | Remote | file unit | Subfile # | Link
l=segdir|l=write|l=remote O=segdir
128
127
126
125 1 0 0 125 0 121
124 0 0 0 124 11 123
123 0 0 0 123 21 122
122 0 0 0 122 185 0
121 0 0 0 121 31 120
120 0 0 0 120 41 119
119 0 0 0 119 51 118
118 0 0 0 118 185 0
117 1 0 0 117 0 116
116 0 0 0 116 1 124

By following the links for the second file, MIDASPLUS knows that this
second file currently has units 117 (segment directory), 116, 124, 123,
and 122. MIDASPIUS also knows that the first file is no longer using
units 124, 123, and 122 since they are no longer on the chain
associated with the segment directory at entry 125. This file is
currently using units 125 (segment directory), 121, 120, 119, 118. The
subfiles previously associated with entries 124, 123, and 122 have been
closed and the corresponding unit number and table entries have been
assigned to the second file.

When the application requires the use of subfiles 11, 21, and 31 of the
first MIDASPLUS file, MIDASPLUS closes the appropriate units, removes
them from the table, rebuilds the links, enters new units/subfiles into
the table, and reestablishes the appropriate links.

I-5 Second Edition

MIDASPIUS USER’'S GUIDE

POTENTTAL PROBLEMS

Consider the impact when the application in the previous example calls
TSRC$$ to open a SAM file on hard-coded unit 120. (The first thing
that TSRC$$ does before opening the file on unit 120 is to close unit
120.) Since MIDASPIUS was not notified that the file unit was closed
(TSRC$$ is a PRIMOS routine and does not notify MIDASPIUS of any
requests to open or close files), MIDASPLUS continued functioning as if
subfile 41 was still using unit 120. If MIDASPLUS requires data from
subfile 41, MIDASPLUS reads from the file that TSRC$$ opened on unit
120. As a result, MIDASPLUS recognizes inconsistent data structures
and will probably abort the program. Possible errors include errors
21, 23, and 40. Before MIDASPLUS recognizes that the data structures
are inconsistent, MIDASPLUS may use the data from unit 120 to wupdate
another MIDASPIUS file. If the application opens a SAM file on unit
120 for writing and MIDASPLUS attempts to update subfile 41, the actual
updates are written to the file that was opened on unit 120. Since
subfile 41 is not updated, inconsistencies occur in the MIDASPIUS file
between the indexes and the data.

Additional problems occur if application programs do not check error
codes on calls to SRCH$$, TSRCH$$, and OPENM$$. If PRIMOS returns an
error condition on calls to open a file, and the error condition is
ignored, the file unit parameter is not reset. The file unit parameter
remains set to the previous value which will be used in subsequent
calls to MIDASPLUS. As a result, MIDASPLUS may perform I/O using file
units which are undefined and may be already in use by other MIDASPLUS
files. In order to avoid problems, use the flag K$GETU instead of hard
coding your file units and check the status code from any PRIMOS or
MIDASPLUS routine that an application calls.

Second Edition I-6

- INDEX

A

Access Control List,
MIDASPLUS*, 16-4

16-3

Access mode statements,

PL/I statement, 8-5
Access modes,

COBOL, 6-18
Access Operations, 4-1
Access Path Statements, 6-10
Accessing,

Locked Record, COBOL, 6-14

MIDASPLUS, 1-2
ACL directory, 16-3

AD,
BASIC/VM, <7-7, 7-8

CREATK, 2-12, 14-8, 14-9
ADD CREATK,

function summary, 14-1
ADD1$ routine,

arguments, 5-19, 5-20

calling sequence, 5-18

Index

ADD1$ routine (continued)
flags, 5-21
index values,
keyed-index adds,

5-19
5-18
Adding data records,
COBOL, 6-21

FORTRAN, 5-21

VRPG, 9-9

Adding secondary index entries,
5-22

Administering MIDASPLUS,
introduction, 16-1

ALTERNATE RECORD KEY, 6-4

Alternatives to KBUILD,

Argument listing,

3-22

ATD1$, 5-19, 5-20

CIOSM$, 5-14

FIND$, 5-26

NTFYM$, 5-15, 5-16

OPENM$, 5-13
Arguments,

optional, 5-11

Second Edition

- MIDASPLUS USER'S GUILE

Array format, ©5-3
direct access, 5-3
keyed-index, 5-3

AT END clause, 6-11

Awaken, 13-5

B

BASIC/VM interface,
ATD statement, -7, 7-8
CLOSE statement, 74
DEFINE FILE statement, 7-3
error handling, 74
introduction, -1
language dependencies, 7-1,

7-2

locking and unlocking records,
7-3

MIDASERR, f7-5

ON ERRCR statement, 74

POSITION statement, 7-5, 7-6

READ statement, -9, 7-10

REMOVE statement, 7-13

REWRITE statement, 76

summary, 1-6
summary of access statements,
7-2

UPDATE statement, 7-12

Beginning key of reference,
9-22, 9-24

BILD$R,
arguments, 18-8, 18-9
calling sequence, 18-8
error messages, 18-14 to
18-16, B-8 to B-11
introduction, 18-2, 18-8

BINARY, 3-3
BIND,
CBIJ ’ 6_8
Fre, 5-9
FIN, 5-8

Second Edition X2

Block size,
defining, 14-14
specifications, 14-14

Buffer Management, 13-3

Building a MIDASPILUS file (See
KBUILD)

c

C,
introduction, G-1
using an interlude routine,
G2

C_PRMO system, 16-2

Call interface with C, G4
introduction, G-1
using an interlude routine,
G2

Call interface with Pascal,
introduction, H-1
using an interlude routine,
H-2

Calling sequence, general
(FORTRAN), 5-10

CREL,
BIND, 6-3

CBL compiler, 6-1

Chained Files (VRPG),
definition, 9-7
errors, 9-12

Cleaning up a MIDASPLUS file
(See MPLUSCLUP)

CLOSE statement,
BASIC/VM, 74
COBOL, 6-11
RETATIVE file, 6-30

CLOSM$ routine,
arguments, 5-14
calling sequence, 5-14

COBOL interface,
access modes, 6-18
adding records, 6-2l1
changing search indexes,
declaring RELATIVE KEY,
file type, 3-3
introduction, 6-1
introduction to direct access,

6-20
6-28

6-28
keyed reads, 6-19
partial key access, 6-20
reading duplicates, 6-20

sequential access, E-5
sequential reads, 6-18
summary, 1-6

COBOL: Statements,
AT END clause,
CLOSE, 6-11
DELETE, 6-22, 6-23
INVALID KEY clause, 6-12
OPEN, 6-9
REWRITE, 6-22
SELECT (REIATIVE file),
START, 6-15
USE AFTER, 6-13
WRITE, 6-21

6-11

6-29

OOBOL Status Codes, B-16, B-17

Command files, 16-1, 16-2

Communications array, 5-2

Compiling and loading,
CBL, 6-3

Fr?, 5-9

FTN, 5-8

PL/I, 8-3

VRPG, 92, 9-3
Components of MIDASPLUS, 16-3
Concurrency,

errors (VRPG), 9-12
introduction, E-1
locked records, E-1
rules, E-7

Configuration,
display, 136
paraneters, 16-5 to 16-8

Configuration parameters, 16-5

to 16-8

Continuation lines, 9-23, 9-24

COUNT (CREATK), 2-12, 14-2
Creating a file, 2-1

(See also CREATK)

from PL/I, 8-3

CREATK, 2-1

ATD option, 2-12, 14-8

and Variable-length record
file, 2-5

block size specifications,
14-14

COUNT option,

DATA option,

defining block size,

dialogs, 2-1, 22

direct access dialog (minimum
options), 2-9

exanine an existing template,
14-1

explanation of options, 2-12

EXTEND option, 2-12, 14-10

extended options dialog,
14-14, 14-15

FILE option, 2-12

FILE READ/WRITE locks, &-3

2-12, 142, 14-3
2-12, 14-5, 149
14-14

FUNCTION prompt, 14-1
GET option, 2-13

HELP option, 2-13

index block levels, 14-14
INITIALIZE option, 2-13

keyed access dialog (minimum
options), 2-6

MODIFY option, 2-13, 14-13

optional features, 2-11

PRINT option, 2-13, 14-2, 14-3
QUIT option, 2-13

sample file, 24

SIZE option, 2-13, 14-5, 146
USAGE option, 2-13, 14-6
VERSION option, 2-14, 14-7

Current file position,
VRPG, ©9-8

Current record,
FORTRAN, 5-11
PL/I, 8-5
VRPG, ©9-8

Second Edition

MIDASPLUS USER'S GUIDE

Customer Service, D-1

D
DATA (CREATK), 2-11, 14-10

DATA DIVISION Requirements,
CBL compiler, 6-7

Data file, 1-2
Declaring data size (PL/I), 8-%
DEFINE FILE statement, 7-3, 74

Defining an INDEXED MIDASPLUS
file (COBOL), 64

DELET$ routine,

arguments, 5-45, 546

calling sequence, 5-46

deleting duplicates, 5-46

deleting secondary index
entries, 5-46

direct access, 546

locating record to delete,
5-46

removing a record and all keys,
546

DELETE statement,
COBOL, 6-22, 6-23
PL/I, 8-15
REIATIVE file, 6-34

DELETED RECORDS, E—4

Deleting,
MIDASPLUS file, (See also
KITDEL)
records (VRPG), 9-10
secondary index entries, 546

Demand Files (VRPG), 9-7

Dialog,
CREATK, 2-6 to 2-11
extended options, 2-1, 14-14
t0 14-16
guidelines, 2-2
KBUILD, 3-9 to 3-11
KIIDEL, 11-2

Second Edition X4

Dialog (continued)
MDUMP, 104, 10-5
minimum options, 2-1
MPACK, 154, 15-5

Direct access,
array format, 5-3
DELET$ routine, 546
Dialog (Minimum Options), 2-9
file structure, 4-3
FORTRAN, 5-2
LOCK$ routine, 540
overview, 14, 4-2, 4-3, 5-23
VRPAG, 9-20

Directory protection, 16-3
MIDASPLUS*, 164

Disk space, saving, 2-5

Duplicates,
deleting (FORTRAN), 5-46
retrieving (FORTRAN), 5-35

DYNAMTIC Access Mode, 6-19

E

ERROPN,
calling sequence, F-1
introduction, F-1
using the routine, F-2

Error handling,
BASIC/VM, 74
COBOL, 6-11
offline build routines, 18-5
VRPG, ©9-11

Error log, system,

configuration parameters, 16-7
purpose, 16-11

UFD, 186-12

Error messages,
BIID$R, 18-14 to 18-16, B-8 to

B-11

KBUILD, 3-22 to 3-24, B-1 to
B-3

KIDDEL, 11-3, B-5

KX$CRE, B-7

MDUMP, 10-7, 10-8, B-5

Error messages (continued)

MPACK, 15-10, 15-11, B-6, B-7

PRIBID, 18-14 to 18-16, B-8 to
B-11

SECBLD, B-8 to B-1l

SPY, B-5, B-6

Error reporting, KBUILD, 3-8
Event sequence flag, 18-3 to
18-5
Examining a file (CREATK), 14-2
Execute-only MIDASPLUS, 1-5
description, 1-5
installation, 16-1
EXTEND (CREATK), 2-11, 14-10
Extended options dialog,
14-14 to 14-16

2-1,

F

F77,

BIND, 5-9

FILE (CREATK), =2-11

File access methods, 14
direct, 14
keyed-index, 14

File addition specifications,
VRPG, 9-6

File Description,
format in CBL, 6-8

File designation restrictions,
VRPG, 9-6

File key, 2-3
FILE POSITION, (COBOL), 6-14
FILE READ/WRITE Locks, 2-3

FILE SECTION, 6-7

File Specification Statement,
9-22

File type specification (VRPG),
9-5

File unit management,
hard-coded files,
introduction, I-1
potential problems, I-6

I-1 to I-5

FILE-CONTROL requirements, 6-5

FIND$ routine,
arguments, 5-206
array, 5-29
calling sequence, 5-R5
direct access, 5-30
flags, 5-27

retrieval options, 5-28

specifying an index, 5-25
FL$BIT flag, 527, 5-33
FLSFST flag, 5-27, 5-33
FL$KEY flag, 5-21, 5-27, 5-R9,

5-33, 543
FL$NXT flag, 5-27, 5-33
FL$PIN flag, 5-27, 5-33
FL$PRE flag, 5-33
FL$RET flag, 5-21, 5-27, 5-33
FL$SEC flag, 5-27, 5-33
FL$UKY flag, 5-27, 5-29, 5-33
FL$UIK flag, 543
FL$USE flag, 5-21, 5-27, 5-33,
543
Flags,

default setting, 5-8

for ATD1$, 5-21

for FIND$, 5-27

for NEXT$, 5-33

for UPDAT$ routine, 543

introduction, 54, 5-5

meanings, 5-6, 5-7

Second Edition

MIDASPLUS USER'S GUIDE

Flags (continued)

names, 5-6, 5-7
OFF, 5-8

ON, 5-8

settings, 5-6, 5-7

Fork system calls, PRIMIX, 4-3

FORTRAN interface, 1-5, 5-1
adding data record, 5-21
adding secondary index entries,

5-22
BIND, 5-8, 5-9
communications array, 5-2
current record, 5-1
direct access, 5-2
direct access array format,

5-3
flags, 5-4 to 5-7
general calling sequence, 5-10
$INSERT Mnemonics, 54
introduction, 5-1
optional arguments, 5-11
record locking, 5-10
redundant primary keys, 5-21
subroutines, 5-9, 5-10
summary, 1-5

FORTRAN routines,
ATD1$, 5-17, 5-19 to 5-22
CLOSM$, 5-14
DELET$, 5-45, 546
FIND$, 5-25 to 5-30
GDATA$, 5-35 to 5-37
I0CK$, 5-37 to 540
NEXT$, 5-31 to 5-35
NIFYM$, 5-15, 5-18
OPENM$, 5-12, 5-13
UPDAT$, 5-41 to 543

FIN,

BIND, 5-8
FINBIN, 3-3
Function Call, 13-5

FUNCTION prompt (CREATK), 14-1

Second Edition X-6

‘ Index block levels,

G -

GDATA$ routine,
arguments, 5-36
calling sequence,

General calling sequence
(FORTRAN), 5-10

5-35

GET (CREATK), 2-13

H
Hard-coded files, E-6, E-7, I-1

to I-5 N
HELP (CREATK), 2-13

I

IBM System/34 functionality,
9-30
IMIDASPLUS, 16-3
Imperative-statement, 6-11
14-14, 14-15

INDEXED files (COBOL), 6-1

INITIALIZE (CREATK), 2-13
Initializing MIDASPIUS, 164
Input files,

introduction, 3-2
location of keys, 34
multiple files, 34
record compatibility, 34
rules, 3-3

sort requirements, 36
sorted, 3-5

$INSERT Mnemonics, 54
Installing MIDASPLUS, 16-1

Interlude routine, G2 —

Internal Error Codes, B-14
INVALID KEY clause, 6-12
K
KBUILD,
adding secondary index entries,
alzgznaxives to, 3-22

building direct access files,
3-19

dialog,

error messages,
B-1 to B-3

error reporting, 3-8

input files, 32, 3-3

introduction, 3-1

milestone reporting, 3-8, 39

supported input file types,

3-9 to 3-11
3-22 to 324,

3-3
variable-length record files,
3-6
Key errors (PL/I), 8-18
Key fields, 12
Key option, 8-10
Key types, 22
Key values,
specifying, 5-28

Keyed Access Dialog (Minimum
Options), 2-6

Keyed reads,
COBOL, 6-19
PL/I, 8-11

Keyed-index,
access, 14
adds (FORTRAN),
array format,

5-3

5-19
5-3

KEYFROM option,

Keys,
KEYTO option,

8-7
1-2

8-10

X7

KIDAILB, 16-3
KITDEL,
dialog, 11-2
error nmessages,
introduction,

11-3, B-5
11-1

KX$CRE,
arguments, 172
calling sequence, 17-1
error codes, 1v-5, 17-6, B-7
flags arguments, 17-2, 17-3
introduction, 17-1

KX$RFC,
arguments,
calling sequence,
introduction, 17-6
pridef and secdef flags,
user—supplied arguments,

17-7, 17-8
17-7

17-8
17-7

KX$TIM,
calling sequence,
introduction, F-2
using the routine,

F-2

F-3

L
lLanguage Access, 4-2

Language Dependencies (COBOL),

6-2
Language group summary, 1-5, 1-6
lLayout of a BANK file, 24
Loading records (VREG), 9-10

Locating the record to delete,
5-46

Location of keys, 34

I0CK$ routine,

arguments,
array values,

5-38, 5-39
5-39, 540

calling sequence, 5-37
direct access, 540
specifying a key, 5-39

Second Edition

MIDASPIUS USER'S GUIDE

Locked records, E-1
PL/I, 8-21

M

MDUMP,

dialog, 104, 10-5

error messages, 10-7, 10-8,
B-5

introduction, 10-1

options, 10-1, 10-2

sequential dump file, 10-3

status and descriptive
ressages, 10-5 to 10-7, B-3,
B4

MIDASERR (BASIC/VM), 7-5
MIDASPLUS* UFD, 16-1
MIDASPLUS . INITINSTALL.COMI, 16-1
MIDASPLUS.SHARE.COMI, 16-2

MIDASPLUSEX . INITINSTAILL. COMT,
16-1

Milestone reporting,
10-7

3-8, 3-9,

Minimum options dialog, 2-1

Miscellaneous Error Codes, B-12,
B-14, B-15

MODIFY (CREATK), 2-13, 14-13

Monitoring a MIDASPLUS file (See

SPY)
MPACK,
abnormal termination, 15-5
dialog, 154, 15-5

error messages, 15-10 to
15-12, B-6, B-7

functions and options, 15-1,
15-2

introduction, 15-1

milestone reports, 15-2

MPACK mode, 15-3

UNLOCK, 15-2

Second Edition X-8

- Networking MIDASPLUS,

MPACK mode,

ALL option, 15-3

DATA option, 15-3

index-number option, 15-3
MPLUS.CONFIG, 16-3, 164
MPLUSCLUP,

introduction, 12-1

options, 12-2

remote cleanup, 12-2

MSGCTL, 16-9

Multiple input files, 3-4

N
16-10

NEXT$ routine,
arguments, 5-32
array settings, 5-34
buffer size, 5-33
calling sequence, 5-31
flags, 5-33

NPX slave, 16-10

NTFYM$ routine,
arguments, 5-15, 5-16
calling sequence, 5-15

Y

Offline build routines,
BILD$R, 18-2, 18-8, 18-9
error handling, 18-6
error messages, 18-14 to 18-16
event sequence flag, 18-3,

184, 186
guidelines, 18-2
introduction, 18-1
PRIBID, 18-2, 18-5, 186
restrictions, 18-3
SECELD, 18-2, 186, 18-7

Offline create routines,
introduction, 17-1
KX$CRE, 17-1 to 17-6
KX$RFC, 17-6 to 17-8

ON ERROR statement, 74

ONKEY function,

Open Modes,

OPEN statement,
COBOL, INDEXED file,
COBOL, REIATIVE file,

8-19

6-9

6-30
6-9

Opening and closing MIDASPLUS
files, 5-11

OPENM$ routine,
arguments, 5-13

calling sequence,
keys, 5-12

Optional CREAIK Features,

5-13

2-11

P

Partial key access,
COBOL, 6-20
FIND$, 5-28

Pascal,
introduction, H-1
using an interlude routine,
H-2

PL/I Interface,
access mode statements,
accessing CREATK, 8-17
BIND, 8-3
combining DCL and OPEN,
conversion, 8-2
creating a MIDASPLUS file,
current record, 8-5
declaring data size, 8-7
DELETE and the current record,

8-6

8-5

84

8-3

DELETE statement, 8-15
error trapping, 8-19
File I/O concepts, 8-5

"initial current record, 8-6

introduction, 8-1

X-9

PL/I Interface (continued)
keyed reads, 8-11
KEYFROM option, 8-7
language limitations,
locked errors, 8-21
locked records, 8-6
OPEN statement, 8-4
record errors, 8-21
REWRITE KEY option,
REWRITE statement,
sequential reads,
summary, 1-6
WRITE statement,

8-2

8-14
8-13
8-11

8_'6 [8"‘7

Positioning the file,
VRPG, 9-8

PRIBLD,
arguments,
calling , 18-5
error messages, 18-14 to

18-16, B-8 to B-11
introduction, 18-2, 18-5

18-6

pridef, 17-3 to 17-5

PRIMIX, 4-3

PRIMOS error messages, C-1 to

C-6
PRIMOS.COMI file, 162

PRINT (CREATK),
144

2-13, 14-2 to

Process Waits, 13-5

Programming Error Codes, B-13

Q

QUIT (CREATK), 2-13
R

RAF, 97

Second Edition

MIDASPIUS USER'S GUIDE

RANDOM file,
keyed reads, 6-33
reading current record, 6-33

Read errors (VRPG), 9-12

READ statement,
COBOL (INDEXED) file, 6-17 to
6-20
COBOL (RELATIVE) file, 6-32
PL/I, 8-10

READ/WRITE Error Codes, B-12,
B-13

Reading a File,
COBOL, 6-17 to 6-20
duplicates (COBOL), 6-20
FORTRAN, 5-24
key values (PL/I), 8-12
PL/I, 8-9
records, VRPG, 9-8

Record compatibility, 34
Record errors (PL/I), 8-21
RECORD KEY, 64

Record locking,
COBOL, 6-14
FORTRAN, 5-10

Record Locks, 13-6
display, 13-2

Records,
adding (VRPG), 9-9
adding to a MIDASPLUS file,
14-10
deleting, 9-10
loading, 9-10
updating, 9-10

Redundant primary keys, 5-21

RELATIVE file,
accessing, 6-30
adding records, 6-31
DELETE statement, 6-34
opening and closing, 6-30
READ statement, 6-32
REWRITE statement, 6-33, 6-34

Second Edition X-10

RELATIVE file (continued)
sequential read, 6-32
WRITE statement, 6-31, 6-32

RELATIVE KEY, declaring, 6-28
Remote cleanup, 12-2

REMOVE statement,
BASIC/VM, 7-13

REPORTING PROBLEMS, D-1
Retrieval Options (FIND$), 5-28
Return code values, 5-24
Rewrite KEY option, 8-14

REWRITE statement,
BASIC/VM, 7-6
COBOL, 6-22
INDEXED file, 6-33
PL/I, 8-13
RELATIVE file, 6-34

RPG, 3-3

Runtime error codes,
internal, B-14
miscellaneous, B-12, B-14,

B-15
programming, B-13
READ/WRITE, B-12, B-13

8
Semple MIDASPLUS file, 1-3, 24

SECBLD,
arguments, 18-7
calling sequence, 18-7
error messages, 18-14 to
18-16, B-8 to B-11
introduction, 18-2, 18-7

secdef, 17-3 to 17-5
Secordary data, 2-7, 2-10

Secondary index entries,
deleting, 546

SELECT statement,

ALTERNATE RECORD KEY clause,
6-7

defining in a RELATIVE file,
6-29

FILE STATUS clause, 6-7

format for INDEXED file, 6-5

RECORD KEY clause, 6-6

SEQFLG (See Event sequence flag)

SEQUENTIAL ACCESS, E-5
Sequential Access Mode, 6-18

Sequential Dump File (MDUMP),
10-3

Sequential reads,
COBOL, 6-18
PL/I, 8-11

Sequential record retrieval,
5-34

SETLL, 9-7

SHARE.COMTI, 16-2

Sharing MIDASPIUS, 16-2

SIZE (CREATK), 2-13, 14-5, 14-6
Snooze, 13-5, 136

Sorted input files, 3-5

Specification Statements,

summary, 9-1
SPY,
Awaken, 13-5

configuration display, 13-6

error messages, 13-13, B-5,
B-6

function call, 13-5

introduction, 13-1

Keys of locked records display,
13-12

main menu, 13-2

per-user configuration, 13-13

process waits, 13-5

product information, 13-3

record locks, 13-2, 136

X-11

SPY (continued)
Snooze, 13-5, 136
statistics display, 13-3
subfile to fileunit
translation, 134
system configuration, 13-7
user interface, 13-1
START statement, 6-15, 6-16

Statement fields,
VRPG, 9-5

Static on-unit, 12-1
STATISTICS DISPLAY, 13-3

Status and descriptive messages,
MDUMP, 10-5 to 10-7, B-3, B4

Status codes, B-16, B-17

Storing primary keys in record
(PL/T), 8-9

Subfile to Fileunit Translation,
134

Subroutines, 5-10
Summary of COBOL statements, 64
SYSCOM>KEYS.INS.FIN, 54

SYSCOM>KEYS.INS.PL1, 54

SYSCOM>PARM.K.INS.FIN, 5-4
SYSCOM>PARM.K.INS.PL1, 54
System Configuration, 13-7

System error log, 16-11

T

Template,

examine, 14-1
function of, 14
introduction, 14
modifying, 14-7

Second Edition

MIDASPLUS USER’'S GUIDE

v
Unit Utilization, I-1
UNLOCK (MPACK), 15-2

UPDAT$ routine,
arguments, 5-42

array, 541
calling sequence, 541
flags, 543

uniock only, 5-41

Updating records,
FORTRAN, 5-37
VRPG, 9-10

USAGE (CREATK), 2-13, 14-6

USE AFTER Statement, 6-13

v

Variable-length record files,

36

and ATID1$, 5-17

and BIID$R, 18-9

and PRIBLD, 18-5

building, 3-6

changing size limits, 2-5,
14-11

checking size limits, 2-5,
144

creating, 2-5

maintaining, 2-85

setting size limits, 2-5,
14-12

VERSION (CREATK), 2-14, 14-%7

VKDALB, 16-3

VIRs (See Variable-length record

files)

Second Edition

VRPG interface,

accessing primary or secondary
files, 9-7

adding records, 9-9

alternate file processing,
9-30 to 9-32

beginning key of reference,
9-22, 9-24

BIND, 9-2, 9-3

chain errors, 9-12

chained files, 9-7

concurrency errors, 9-12

continuation lines, 9-23, 9-24

current file position, 9-8

current record, ©9-8

DELETE, 9-10, 9-19

demand files, 9-7

direct access, 9-20

error handling, ©9-11

file addition specifications,
9-6

file descriptive
specifications, 9-3

file designation restrictions,
9-6

file type specification, 9-5

IBM System/34 functionality,
9-30

introduction, ©9-1

language—dependent features,
9-2

load, 9-10, 9-14

multiple key processing, 9-20,
9-22 to 9-30

positioning the file, 9-8

RAF, 9O-7

random reads, 9-9

read errors, 9-12

reading records, 9-8

record locked error, 9-11

sequential reads, 9-9

SETLL, 9-7
Specification Statement
summary, 9-1
statement fields, 9-5
summary, 1-6

updating records, 9-10

Word, 2-2, 26

INDEX

WRITE statement,
COBOL, 6-21
PL/I, -8-%

X-13 Second Edition

S

SURVEYS

READER RESPONSE FORM

MIDASPLUS User's Guide
DOC9244-2LA

Your feedback will help us continue to improve the quality, accuracy, and organization of
our publications.

1. How do you rate this document for overall usefulness?

O excellent O very good O good O fair O poor

2. What features of this manual did you fir;d most useful?

3. What faults or errors in this manual gave you problems?

4. How does this manual compare to equivalent manuals produced by other computer

companies?
O Much better D Slightly better O About the same
O Much worse O Slightly worse O Can't judge

5. Which other companies’ manuals have you read?

Name: Position:

Company:
Address:

Postal Code:

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL

Postage will be paid by:

Prime.

Attention: Technical Publications
Bldg 21
Prime Park, Natick, Ma. 01760

{

READER RESPONSE FORM

MIDASPLUS User's Guide
DOCS244-2LA

Your feedback will help us continue to improve the quality, accuracy, and organization of
our publications.

1. How do you rate this document for overall usefulness?

O excellent O very good O good O fair O poor -

2. What features of this manual did you find most useful?

3. What faults or errors in this manual gave you problems?

4. How does this manual compare to equivalent manuals produced by other computer

companies?
O Much better O Slightly better O About the same
O Much worse O Slightly worse O Can't judge

5. Which other companies’ manuals have you read?
p

Name: Position:

Company:
Address:

Postal Code:

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL

Postage will be paid by:

Prime.

Attention: Technical Publications
Bldg 21
Prime Park, Natick, Ma. 01760

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

READER RESPONSE FORM

MIDASPLUS User's Guide
DOCS244-2LA

Your feedback will help us continue to improve the quality, accuracy, and organization of
our publications.

1. How do you rate this document for overall usefulness?
O excellent O very good 0O good O fair Q poor

2. What features of this manual did you find most useful?

3. What faults or errors in this manual gave you problems?

4, How does this manual compare to equivalent manuals produced by other computer

companies?
O Much better O Slightly better O About the same
O Much worse O Slightly worse O Can't judge

5. Which other companies’ manuals have you read?

Name: Position:

Company:
Address:

Postal Code:

11 ==

NECESSARY

IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL

Postage will be paid by:

Prime.

Attention: Technical Publications
Bldg 21
Prime Park, Natick, Ma. 01760

LRI

Doc3244-21LH

—

	Front cover
	Title page
	ii
	iii
	iv
	v
	vi
	vii
	viii
	ix
	x
	xi
	xii
	xiii
	xiv
	xv
	xvi
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	4-1
	4-2
	4-3
	4-4
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	9-20
	9-21
	9-22
	9-23
	9-24
	9-25
	9-26
	9-27
	9-28
	9-29
	9-30
	9-31
	9-32
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	10-8
	10-9
	10-10
	11-1
	11-2
	11-3
	11-4
	11-5
	11-6
	12-1
	12-2
	13-1
	13-2
	13-3
	13-4
	13-5
	13-6
	13-7
	13-8
	13-9
	13-10
	13-11
	13-12
	13-13
	13-14
	14-1
	14-2
	14-3
	14-4
	14-5
	14-6
	14-7
	14-8
	14-9
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	15-1
	15-2
	15-3
	15-4
	15-5
	15-6
	15-7
	15-8
	15-9
	15-10
	15-11
	15-12
	16-1
	16-2
	16-3
	16-4
	16-5
	16-6
	16-7
	16-8
	16-9
	16-10
	16-11
	16-12
	17-1
	17-2
	17-3
	17-4
	17-5
	17-6
	17-7
	17-8
	18-1
	18-2
	18-3
	18-4
	18-5
	18-6
	18-7
	18-8
	18-9
	18-10
	18-11
	18-12
	18-13
	18-14
	18-15
	18-16
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	B-9
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	D-1
	D-2
	E-1
	E-2
	E-3
	E-4
	E-5
	E-6
	E-7
	E-8
	F-1
	F-2
	F-3
	F-4
	G-1
	G-2
	G-3
	G-4
	H-1
	H-2
	H-3
	H-4
	I-1
	I-2
	I-3
	I-4
	I-5
	I-6
	Index-1
	Index-2
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8
	X-9
	X-10
	X-11
	X-12
	X-13
	X-14
	Survey-1
	Survey-2
	Survey-3
	Survey-4
	Survey-5
	Survey-6
	Survey-7
	Survey-8
	Back cover

