
 

Features

Comprehensive commandlanguagefor the
Prime 50 Series systems.

iE ee
Allowsintelligence to be built into command
procedurefiles.

|
Uniform invocation of Command Procedure
Language (CPL) files and programs.

Transparentinterface to allow CPLfiles to be
invoked as background (phantom)or batchjobs.

a
Argument substitution into CPL files at run-time
(positional and position independent, with type
checking and default assignments).

 

22SeeSeeS
Local and global variables.

oe ae ae
Comprehensiveset of flow-of-control directives.

a
Over 35 standard commandfunctions for
expression evaluation, string manipulation,file
and terminalI/O,etc.

a
Interface to the PRIMOS® operating system
standard error and condition mechanisms.

a ——————
Debugfacility.

|= ee
Echo control.

Mlssle oo
Command expansionfacility.

 

 

 

 

PL/I Subset G

 

   
Pe

 

 

   
 

    
Pascal PRIMOS

BASIC/VM

CPL

RPGII

S

 

FORTRAN 77

 

 

FORTRAN 66
 

 

COBOL
    
Macro

Assembler
(PMA)



Description

Prime’s Command Procedure Language (CPL)
is a powerful programmingtool available as a
standard feature with the PRIMOS®operating
system.It is an extremely flexible high-level
language with PRIMOSoperating system com-
mandsasits basic statements. CPL allows
sequences of operating system commands
and CPL directives to be stored in a command
procedurefile that can be executed by specifying
the file name. CPL directives provide for the
passing of arguments into command procedure
files, for control of the statement execution order
within thefiles, and for error handling. CPL is
made up of twoparts, the language and the inter-
preter. The language allows users to write CPL
procedures including PRIMOS commands, CPL
directives, command functions and variable
expressions. The interpreter evaluates variables
and function calls and replaces them with their
correct values. It then interprets and acts upon
CPLdirectives. In addition, the interpreter passes
any resulting commandto the operating system
for execution.

Interactive Program Development

Prime's family of interactive systemsare well
suited to the program development environ-
ment. A comprehensiveset of high-level
languages sharing a commoncall interface
and an interactive Source -Level-Debuggeris
available. CPL provides an additional tool to
further enhance a programmer's produc-
tivity. Often used sequences of commands
such as compile, link and run sequences, and
application control sequencescan be stored in
CPLfiles and executed with a single command.
CPL's unique features, such as its compre-
hensive flow-of-control directives and thelarge
set of command functions, allow CPL to be used
as a programming language to write simple
general-purposetools useful to program
developers. These tools can be used within
other CPL procedures to provide more
powerfultools.

CPLfiles can be submitted without change to
be run in background modeor by Prime's batch
subsystem. They are very amenable to
interactive program development with
backgroundor batch production runs.

Application Control

Often it is desirable to store commandsin file
for later execution. For example, one might wish
to store a set of commandsfor controlof an
application to be run by a novice user, Instead of
the user typing a long list of complex commands,
CPL would allow a user to type a simple com-
mandto start the application running. Control of
the application and its program would be the
responsibility of CPL rather than the user. The
logic in the CPL file would make intelligent
decisions about which programs or commands to
run based on theresults of previous programs or
simple argumentsspecified by the user when the
file was run. Another use of CPL would befor the
control of batch jobs where execution is essen-
tially unattended and the user is not present to
make job control decisions.

Compatibility

CPLrunsonall Prime 50 Series systems,
ensuring complete upward and downward
compatibility amongall central processors.
Program migration is fully bidirectional. Users
can develop CPL procedures on any other system
supported by the PRIMOSoperating system and
run them on any other system supported by the
PRIMOSoperating system.

Capabilities

Invocation

CPL procedures are invoked exactly like other
user-program runfiles. A file naming convention
allows the PRIMOSoperating system to distin-
guish between program runfiles and CPL proce-
dures and take the appropriate action. CPL
procedurefiles can be installed in the command
directory and invoked simply by typing their
name.In this way they can be madeto look like
any other command. CPLfiles can be submitted,
without modification, to be run in background
modeor by Prime’s batch subsystem.

Variables

CPLprovides for both local and globalvariables.
Local variables exist only for the invocation of
the CPL procedure in which theyare defined.
Global variables are associated with a user and
exist until specifically deleted. (They even
survive logout.) Global variables can be read
and set by user programsas well as by CPL
procedures, thus providing a communication
mechanism between commandprocedures and
programs. In CPL,variables are referenced by
enclosing their name in '%' delimeters, eg:
% this_is_a_variable %.



 

Argument Substitution -

Arguments to be substituted into CPL proce-
dures at run-timecan be either positional
or position independent. CPL provides a
mechanism to assign default values to missing
arguments. Type checking allows CPL toverify
that a supplied argumentis of the correct type.
The ‘args’ directive is used to specify arguments
(see Example 1). (Note: all CPL directives are
preceded by a ‘'&’.)

Example 1;
&argsfile: tree = mydir; number; dec = 1.
This statement defines two arguments; ‘file’ and
‘number’, ‘File’ is a treenamewith a default value of
‘mydir’; ‘number’ is a decimal number with a default
value of 1.

‘Rest’ and ‘unclaimed’data typesare also
available when the user wants CPL to interpret
some arguments and take whateverelse is on the
commandlineasis.

Flow of Control

CPL flow of control statementsallow a user to
alter the normal sequential execution of a CPL
procedure. A ‘label’ directive identifies a state-
ment, and a ‘goto’ directive transfers control to
a labelled statement. Conditional execution is
provided by‘if...then...else’ and ‘select’ state-
ments. Manytypesof ‘do’ statements are avail-
able for statement grouping, iteration andlist
processing. ‘Call’ and ‘return’directives allow
transfer of control to an internal CPL routine,i.e.
a routine in the same CPL procedurefile. External
CPLprocedures can be invoked from within CPL
procedures. Recursion is permitted.
(See Examples 2, 3 and 4)

Example 2:
&if (expression) &then &goto label
&else &do

&end

Example 3:
&do &while (expr.)
&do &until (expr.)
&do a:=5 &to 10 &by 2
&do a:=6 &repeat %a% *2 &while (expr.}

Example 4:
&do a &list %list _ of _names%
This form sets ‘a’ in turn to each of the names from
%list _ of _names%.
This is useful for list processing,

Command Functions

Functionsare procedures which return results as
string values. Thesestring values are substituted
by CPLfor the function call in the original state-
ment. A method is available for users to define
their own functions. Over 35 standard functions
are available with CPL.
For example:
® Thefunction ‘calc’ evaluates expressions
containing the logical, arithmetic andrelational
operators. For convenience, CPL will allow a user
to omit an explicit call on ‘calc’ if it is clear from
the context that a ‘calc’ call is intended (see
Example 5). Other arithmetic functions provide
modulo and base conversion.

Example 5:
&if %variable% >5 &then &return.

®@ Thefollowing string functionsare available
for the manipulation of characterstrings: length,
substr, index, before, after, null, translate, trim,
quote, unquote, subst (see Example 6).

Example 6:
If %filename% is equal to the file SOURCE. PL1, then
the function [before %filename% . | will return the
result SOURCEand [length %filename%] will return
the result 10.

@ File system functionsare available to
determineif a file exists; to manipulate tree-
names; to implement wildcard facilities; and
to open, read and writefiles (see Example7).

Example 7:
&if [exists %filename%|
&then [open _ file %filename% -mode status].

If %filename% exists, then it will be openedfor
reading. The variable ‘status’ will indicate the
success or otherwise of the open.
B® Many miscellaneousfunctions are also
available. Examples include: date generation and
query andresponse(from terminal) functions.



 

Error Handling

A standarderror severity mechanism is supported
by the PRIMOSoperating system. Commands
return a severity code indicating ‘error’, ‘warning’
or ‘no error’, This can be explicitly tested with an
‘if’ directive (see Example 8).

Example 8:
&if %severity$% = 1 &then &call error_routine.

Alternatively, a ‘severity’ statement allows the
error-testing to be done automatically be CPL
after every PRIMOSoperating system command.
Whenever CPLdetectsthe specified severity
level, it performsthe specified action. Such action
can be to ignoretheerror,to fail, or to invoke a
CPL routine to handle the error (see Example 9).

Example9:
&severity Gerror &fail.

A ‘check’ directive instructs CPL to automati-
cally test the value of an expression after every
PRIMOSoperating system command and invoke
a specified CPL routine whenever the expression
evaluates true (see Example 10).

Example 10:
&check %A% >%B% S&routine name

Condition Mechanism

Thenotionof a ‘condition’ comes from the PL/I
language. It is an unusual or unexpected event
such as terminal break key depressed,or arith-
metic exception. The PRIMOSoperating system
Condition Mechanismprovidesa generalized
methodfor user programsto define and trap
conditions. CPL provides access to the Condition
Mechanism in PRIMOS.CPL directives are
available to define an on-unit (CPL routine to
be invoked whena specified condition occurs) and
to signal the occurenceof a condition. Users
are allowed to define their own conditions.

 

MiscellaneousFacilities

Subsystems and programsrun from within a CPL
procedure can take inputeither from the user's
terminal or from data within the CPLfile. A
debug facility is available for checking CPL
syntax (while suppressing execution of PRIMOS
operating system commands), for checking the
valueof selected variables during execution, and
for control of statement echoing. An expand
facility controls statement expansion. This
enables all PRIMOSoperating system com-
mandsto be passed to a pre-processor for
expansion before execution. Thisfacility
allowsa userto tailor his command
environmentto his individual taste.

PRIME and PRIMOSareregistered trademarks
of Prime Computer, Inc., Natick, Massachusetts.

®
PRIME Prime Computer,Inc.

Prime Park
Natick, Massachusetts 01760

Copyright © 1983, Prime Computer,Inc.All rights reserved.
Printed in the U.S.A.

The materials contained herein are summary in nature,
subject to change andintendedfor general information only.
Details and specifications regarding specific Prime Computer
software and equipmentare available in the appropriate
technical manuals, available through local sales

representatives.

2/83 PB1438-002


	1
	2
	3
	4

