
Des

a

PRINIOS

n y

luct
ait

THE PRIME OPERATING
SYSTEM
All Prime computer systems—from small, dedicated
systems using the Prime 100 central processor, to
large virtual memory Prime 500s that support dozens
of concurrent real-time, timeshared and queued tasks —
use a common, uniform operating system called
PRIMOS. Since each central processor provides a
different level of performance and functionality within
the Prime processor family, PRIMOS is implemented
in distinct but compatible levels to maximize the effec-
tiveness of a processor’s resources while minimizing
operating system overhead.

As illustrated, PRIMOS is currently offered on four
levels: PRIMOS II, III, 1V, and V. PRIMOS II provides
an interactive, single-user, disk operating system for
PRIME 100 and 200 central processors.

PRIMOS III uses the paged memory management
system of the Prime 300. It provides a virtual memory
disk operating system that can support 31 simultaneous
users.

PRIMOS IV optimizes the Prime 350 and Prime 400’s
high-speed computational ability and the Prime 400’s
exceptionally large memory capacity by integrating
interactive, batch and real-time supervisory services in
a single “embedded” operating system. The Prime 350
and Prime 400 feature segmented and paged virtual
memory with two megabyte and 32 megabyte address
spaces, respectively. Both support a 2K-byte bipolar
cache memory, and a disk capacity that can exceed
1.4 billion bytes (350) and 2.4 billion bytes (400).

PRIMOS V, available with the top-of-the-line Prime
500, includes all the features and capabilities of

PRIMOS IV on the Prime 400, plus assembly language
support for the Prime 500’s general register, 32-bit
architecture. Under PRIMOS V, decimal arithmetic,
character manipulation, and character editing instruc-
tions are directly executed with a combination of hard-
ware and firmware. On the Prime 350 and 400, these
instructions are automatically trapped to software
subroutines at run-time for emulation.

Large Virtual Memory Ends Most Program

Size Limitations
PRIMOS IV and V virtual memory management sys-
tems (a combination of segmentation and paging) make
it possible for the Prime 350, 400, and 500 to support
multiple concurrent processes each with a large
private virtual memory space, and a large virtual mem-
ory space that is automatically shared with all other
processes. PRIMOS IV and V support up to 63 con-
current interactive timeshared users on the Prime 400
and 500 at local or remote terminals. Furthermore,

virtual memory resources are available on systems with

as few as 192 bytes of main memory. PRIMOS IV and
V can automatically take advantage of additional in-
crements of main memory which can be added (up to
the maximum capacity of 8 million bytes on the 400
and 500) to minimize the paging demands of an ex-
panded virtual memory. This feature lets PRIMOS
maintain a consistently high level of system respon-
siveness when the number of processes running on the
system increases.

PRIMOS TERMINOLOGY

FILE—a named collection of data and/or code that is

created, manipulated, or deleted by PRIMOS File

Management System.

PHANTOM USER-— a process that is not connected
to an interactive user.

PHYSICAL ADDRESS SPACE — an array of real or
main memory space that can be a maximum 8 million
bytes long.

PROCEDURE—a subroutine referenced by the Prime
Procedure Call mechanism.

PROCESS — a separately scheduled entity. All pro-
grams of one user run under one process. Each process
has a full virtual address space. Only one process at a
time may actually be executing on the central
processor.

REENTRANT PROCEDURE — a procedure that can
be executed concurrently by several processes.

SEGMENT — a 128K-byte portion of virtual address
space. Access rights are assigned on a per-segment

basis. Calculations of segment number are usually
made by PRIMOS IV and V.

SHARED PROCEDURE —~a reentrant procedure that
is present only once in memory regardless of how
many processes are concurrently executing it.

TIMESHARED PROCESS —a process that gains use
of the central processor for a fixed time period.

USER—a person associated with an interactive

terminal.

VIRTUAL ADDRESS SPACE — the memory space

available to each process to run programs. Half of the
process’ virtual address space is unique or private to

that process, while the other half is common to or

shared by all processes.

Embedded Design Gives 20 Times Faster

Access |
PRIMOS IV and V are exceptionally responsive
because they depart from traditional designs in which
the operating system is a separate, self-contained body
of software operated by remote control through intri-
cate and time-consuming sequences of interrupts and
responses. Instead, PRIMOS IV and V provide direct
and immediate control because they are embedded

in the virtual address spaces of all processes. In fact,

PRIMOS IV and V are an integral part of each process.
The operating system responds immediately to all
commands from users of terminals, program calls to
the file system, library routines, and other shared

procedures. Users are able to access any operating
system resource in no more time than it takes for a user
program to call a subroutine, which is about 1/20
the access time of conventional operating systems.

Note that while operating system and processes share
common address spaces, a comprehensive, multi-ring
protection system completely protects the operating

system against improper access or accidental
modification.

Upward and Downward Compatibility

Protects Your Software Investment
Programs and data files can be created on one Prime
computer that can be used on any other larger Prime
computer without modification. This compatibility
among all systems holds true not only at the source
language level but at the object code and memory-
image level as well. Thus it is possible, for example,
to create a memory-image file on a Prime 300 con-
trolled by PRIMOS III or on a Prime 350 controlled by
PRIMOS IV that executes properly on any larger
Prime processor. Furthermore, FORTRAN, COBOL,

and PMA programs that run on a Prime 300 can be
recompiled to run on a Prime 350, 400, or 500 and

utilize their expanded capabilities or simply run as is
for a speed improvement. More significantly, the
reverse is also possible if the program fits within the
size limitation of the smaller system. Thus, a multi-

user Prime 350, 400, or 500 can be used as an ex-

tremely efficient and economical software development

system, creating programs and databases that can be
transferred directly to Prime systems.

There are many direct benefits of such upward and
downward compatibility. Obviously, a user’s program-
ming investment is preserved when upgrading to a

larger system. The development of software and the

communication among systems in a network of Prime

computers is streamlined. Additionally, it encourages
the establishment of programming and system design

standards that are completely transferable among

all Prime products.

Comprehensive System Integrity Features
Offer Complete Protection
A combination of hardware, firmware (micropro-
grammed logic), and software components within
PRIMOS IV and V monitors the complete hardware/
software system to assure the user that the hardware

is operating reliably and that processes being exe-
cuted are secure. System integrity is constantly moni-

tored by such features as main memory error correct-
ing codes (an optional feature that automatically
detects and corrects all single-bit memory errors) and
microverification (microprogrammed routines that
test the central processor’s logic and help determine
the cause of faulty operation). PRIMOS IV and V allow
the system operator to “lock out” 2K-byte pages of
main memory should errors be detected and reported
within the pages. The operating system also includes
file access integrity features such as forward and
backward pointers and built-in utilities to repair

damage or inconsistencies.

PRIMOS IV and V complement these integrity fea-
tures with a multi-level security system for all users,

programs, files, and the operating system itself. Cer-
tain security measures, such as the protection of the
operating system from users and other processes, are
automatic and unalterable by any user or program.

Prime’s Philosophy Is: Software First
PRIMOS was designed before the computers it oper-
ates. This unique software first design philosophy is
the key to Prime’s ability to offer a range of processor
performance and software functionality unmatched on
systems costing ten times more. Software first explains

why Prime alone offers upward and downward program

compatibility among all central processors. Software
first makes it possible to establish the uniform file
system used by all levels of PRIMOS, all language
translators, all utilities, and all libraries. Software first

is why Prime systems are so efficient: hardware fea-

tures have been designed specifically to optimize soft-
ware performance. In short, software first is the differ-

ence between buying a computer with some software
included, or buying a completely integrated software/
hardware system—from Prime.

WHAT PRIMOS IVAND V DO ~Without Being Asked
One of the key factors in evaluating an operating sys-
tem is not how it responds to user-initiated commands,
but what it does for the user automatically, without
being asked. These are the features that determine how
flexible and efficient the system is in managing basic
resources such as memory and disk file space, CPU
time, I/O devices, data communication, etc. These are

the implicit operating system functions that, if properly
designed and implemented, are totally transparent to
the user. Such transparency means major time savings
during interactive program development and at job
run time.

Implicit Functions
Time Scheduling. PRIMOS IV and V regulate the
amount of central processor time used by processes by
assigning time slices. The time slice, which is normally
set to a 1/3 second duration, represents the maximum
continuous time that the process may retain control of
the central processor. Time slices are allocated on a
priority basis with highly interactive processes receiv-
ing a higher priority and processor bound processes
a lower priority.

Memory Management. Associated with each process is
a large virtual address space. This address space is
organized, or mapped, as multiple segments, each
segment containing 64 2K-byte pages. The memory
management system tracks the location of all pages and
handles the physical movement, or swapping, of pages
between disk and main memory. Thus, the memory
management system automatically transfers the page

from the disk to the least recently used area of main
memory.

Procedure Data Sharing. In order to minimize paging
and thereby maximize system response time, any
number of processes can use the identical pages of a
shared procedure or data segment. For example, in a
multi-user environment, all users can share one copy of

the Editor instead of each user having to page-in a
separate copy. Shared procedures are reentrant so they
remain unaltered by the processes that use them.

Security. A combination of PRIMOS software and
Prime 350/400/500 hardware protects the operating
system from the processes using its services, protects
processes from each other, and enforces the access
privileges established for all shared procedures and
files. The security system automatically checks the
validity of service requests such as read, write,

and execute, and prevents such services from being
performed if pre-established access rules have not been
satisfied by these requests.

Disk Space Allocation. PRIMOS IV and V automatically
assign logical files to physical disk records. This fea-
ture permits a user to create file structures without
concern for the type of disk that stores the files or its
operating format and physical characteristics. The
operating system provides pointers on disk records to
ensure file integrity and simplify access to the next
record in a file.

I/O Handling. Built into PRIMOS IV and V are stand-
ardized resources for servicing interrupts, maintaining
status information, and controlling data transfers for
all Prime peripheral devices. These resources permit
a user to communicate with any peripheral device using
high-level call statements, after the user’s process
has either been attached to a device (e.g. magnetic tape
or printer), or to the files contained on a disk device.
A device such asa printer is shared among several users
by submitting files to a spool manager that queues the
files on a disk and schedules printing on a short/long
basis.

Data Communication. PRIMOS IV and V handle all
data communication between a Prime 350, 400, or 500

system, a wide variety of interactive terminals, other
Prime central processors, and several EDP mainframes.
PRIMOS IV and V communicate directly with most
currently available asynchronous ASCII terminals
operating at speeds up to 9,600 baud. Communication
with other Prime central processors is handled via in-
terprocessor controllers for locally connected pro-

cessors, or via high-speed synchronous lines using a
standard packet-switching host-access protocol (an
initial implementation of the CCITT X.25 international
standard). Remote Job Entry (RJE) communications
are supported by IBM 2780, IBM HASP, and CDC
200-UT protocols.

WHAP PRIMOS IVAND V DO .When Asked
The part of PRIMOS IV and V that is immediately
visible to a user contains the resources that respond

either to explicit user commands or procedure calls.
These resources provide economical and easily accessi-
ble services to all users in the amount they need, with-
out advance notification or the intervention of a central
operator. Additionally, an extensive list of commands

and calls can be used without a broad knowledge of the
inner workings of the operating system or central
processor. The major services provided by these
resources are described below.

Job Control
PRIMOS IV and V support up to 63 processes including
interactive users, phantom users, and RJE processes.

Interactive Users. As many as 63 interactive terminals
can be on-line concurrently. The system handles any
mix of direct-connected local terminals and modem-
interfaced remote terminals. Individual users have com-
plete freedom to use system resources as if they were
sole users. The user issues commands from a terminal
keyboard and gains immediate access to PRIMOS IV
and V’s resources, which include language translators,

editors, debugging aids, and a variety of file struc-
tures. Immediate interaction between the user and the
system is ideally suited for program development. The

user controls and handles exception conditions as
they occur instead of depending on a batch processor,
thus completing the job in minutes instead of hours
or even days. Interaction is what PRIMOS IV and V are
all about.

Phantom Users. A phantom user is a process that, once

initiated from a terminal, requires no further user

interaction or terminal output until it is completed.
The user can continue to initiate other phantom user
processes from the same terminal, use the terminal

interactively, or log it off the system. The operating
system treats phantom and interactive users the same
way, except that interactive users are given a higher
priority for time slices.

Queued Jobs. Some jobs, like disk-to-tape media con-
version, sorting, and report printing have turnaround
requirements that are less stringent than those of inter-

active and phantom users. Such processes can be

collected in a job queue and run on a first-in, first-out
(FIFO) basis under control of a job queue manager.

Executing the processes sequentially rather than con-
currently conserves time slices so the system can main-
tain a high level of response to interactive processes.

Remote Job Entry. A Prime 300, 350, 400, or 500

can act as an RJE system by emulating the protocols
used by the IBM 2780, IBM HASP, and CDC 200-UT.
When any is used as an RJE system, card equipment
can frequently be eliminated since programs and data

files can be created interactively and then queued on
a disk for direct transmission to a host mainframe.

Program Development
PRIMOS IV and V provide an extremely efficient
environment for interactive program development. Not
only do they assure fast response to all users, they
also offer each user access to a complete set of sophis-
ticated software development tools including state-of-
the-art COBOL, BASIC, and FORTRAN compilers,

RPG II, text editors, and utilities.

COBOL. Prime’s COBOL is an implementation of the
1974 ANSI standard. By adhering to this standard,
Prime provides an economical migration path for
current program libraries to be transferred to the
Prime 350, 400 or 500 from other systems with minimal

conversion.

RPG II. Prime provides an RPG II translator that is
functionally comparable to the one used with IBM’s
System 3, Model 10. However, when run under control

of PRIMOS IV and V, RPG II applications can easily
be expanded, using languages such as COBOL and
FORTRAN IV and the common file system, to exploit

PRIMOS IV and V’s interactive and timeshared
capabilities.

FORTRAN IV. Prime’s FORTRAN is 1966 ANSI-
compatible FORTRAN IV with extensions. It is pro-
cessed by a very efficient one-pass compiler that pro-
duces highly optimized code which rivals the efficiency
of hand-coded assembly language. As an indication of
the flexibility offered by Prime FORTRAN IV, note
that FORTRAN IV is the major systems programming
language used by Prime. In fact, over 70% of PRIMOS
IV and V is written in FORTRAN.

BASIC. Prime’s BASIC/VM Compiler supports three
modes of operation—conversational, queued, and

immediate, to satisfy the computational needs of a wide
range of Prime 350, 400, and 500 users. BASIC/ VM

shares the same file system used by all other Prime

language processors. A BASIC interpreter that runs on
all Prime processors 1s also available.

Macro Assembler. The Prime Macro Assembler (PMA)
is a free-form, symbolic programming system provid-
ing extensive macro facilities that simplify the crea-
tion and use of application-oriented commands. PMA
includes over 60 pseudo operations for such functions as
assembly control, listing and loader control, variable

definitions and storage allocation, program linking,

and addressing mode control.

File Management
The Prime File Management System provides both

implicit and explicit file management resources. The
implicit, or automatic, resources manage the allocation

of named files to physical address spaces in main and
disk memories. The explicit resources provide the file
access methods and interactive tools necessary to add,

modify, and delete files. PRIMOS IV and V support
the same file structure as PRIMOS II and III. Asa
result, program files and databases created under one

level of PRIMOS are directly transferable to any other
level, where they can be used without modification.

The full capabilities of the file system are available to
COBOL, FORTRAN, and PMA and can be used to

develop special file structures and access methods.
However, most users simply refer to files by name
which are then constructed and located by procedures
such as the editor, language translators, and keyed

index/direct access (KI/DA) method.

The file structure, as illustrated below, can be viewed

as a heirarchy or tree-structure containing specialized

file directories and data files.

Master File Directory. The Master File Directory

(MFD) is the highest level in the file structure. The file
system creates and maintains an MFD for a disk or a

user-specified portion of a disk. The MFD contains the
names and locations of user-file directories, segment
directories, and data files.

PRIMOS IV FILE STRUCTURE

PER DISK MEDIA

SEG-
DIR

’ “

| DATA UFD

|\

DATA

UFD

ACCESS TO RECORDS WITHIN A FILE

S [EQUENTIAL DIRECT
A |CCESS AICCESS
MJETHOD MJETHOD

DISK
ACCESS

[a

[|

User File Directory. User File Directories (UFD’s) are

usually associated with individual users and user

processes, and contain pointers to named data files and

additional file directories.

Segment Directory. A Segment Directory (SEGDIR)
is a file that contains pointers to subsidiary files. It
permits rapid access to large collections of data that
have an established order but variable size. Files are

accessed by simply indexing by pointer position

within a SEGDIR.

Sequential and Direct Access Methods. Files can be
constructed to permit access to their contents using
either a direct access method (DAM) or sequential
access method (SAM). By convention, all file directories
used by the operating system are structured as SAM
files. In SAM files, each record contains a pointer to

the next record in sequence, thereby reducing the
number of directory accesses needed to search the file.

DAM files, in contrast, store pointers to all records in

the first record of a file. SAM or DAM files may be of any
size that can be accommodated on the disk.

Keyed Index/Direct Access Method. KI/DA provides
a fast and versatile method for locating, adding, delet-
ing, and modifying items in any size data file. Up to
20 different key fields can be used to access a single

item. KI/DA’s shareable procedures use the SEGDIR
and DAM capabilities of the Prime file management
system to minimize the time required to locate an item.

Data Management
Prime’s Multiple Index Data Access System (MIDAS) is
a part of PRIMOS. It bridges the gap between the File
Management System (FMS) and the Database Manage-
ment System (DBMS). MIDAS files are directly
supportable under DBMS; this permits a controlled
migration from MIDAS to DBMS. MIDAS uses the
resources of FMS and, in particular, relies on KI/DA as

its access method. When combined with Prime’s Forms
Management System (FORMS), MIDAS becomes the

basis for the development of transaction-oriented
systems. MIDAS permits many users to access fixed-

or variable-length records with locks specified at the
data record to avoid concurrent usage conflicts. A
single program can sequentially and randomly access
a MIDAS file and do complete or partial file searches
based on any combination of up to 20 keys with dupli-
cates. Furthermore, each key can contain data in

any format (e.g., single- or double-precision floating
point, integer, ASCII, etc.) so conversion to a common

format is unnecessary. MIDAS interacts with users and,

by a series of questions and answers, describes,

creates, maintains, and manipulates large, structured

data files. MIDAS files are available via calls and
standard READ/WRITE statements to application
programs written in any of Prime’s languages on 300,
350, 400, and 500 central processors with at least

128K bytes of main memory.

APPLICATION IMPLIMENTER’S VIEW OF
THE INTERACTIVE COBOL DATA PROCESSING ENVIRONMENT

DATABASE MANAGEMENT SYSTEM

APPLICATION PROGRAMS

FORMS MANAGEMENT SYSTEM
(FORMS)

N

MIDAS
ADMINISTRATIVE

COMMAND
PROCESSOR

INTERACTIVE

SESSION

(MIDAS)

MULTIPLE INDEX DATA ACCESS SYSTEM

(DBMS)

APPLICATION SCHEMA FORMS SUBSCHEMA WITH DATA DATA DESCRIPTION DESCRIPTION TA DESCRIPTION MANIPULATION
LANGUAGE(ODL) oe LANGUAGE VANGUAGE LANGUAGE (FOL)

(DDL) (DDL)

SCHEMA HOST HOST FORMS
DDL SUBSCHEMA DML FDL

TRANSLATOR TRANSLATOR PREPROCESSOR TRANSL ATOR

SCHEMA / HOST
SCHEMA SUBSCHEMA FORMS FORMS SUBSCHEMA SOURCE RECTORY
OBJECT DIRECTORY OBJECT LANGUAGE OBJEC DIRECTOR

DATABASE L ANIGUAGE FORMS
MANAGER TRANSLATOR MANAGER

co FILE RUN :
MANAGEMENT UNIT TERMINAL TERMINALS

Database Management
MIDAS Prime’s Database Management System (DBMS) con-
ACCESS forms to the CODASYL standards and provides in-

MANAGER tegrated data that is accessible to all processes con-
currently (especially multiple users at interactive
terminals who are simultaneously updating and retriev-
ing common files). A Schema Data Description Lan-

MIDAS MIDAS guage (DDL) permits a global definition to be given to
OBJECT DIRECTORY the data of a business or institution. This means that

management and user departments can better under-
stand not only the data, but their relationships to it. The
view of the total database permitted to various classes
of applications and users is further defined by the use

of the COBOL and the FORTRAN subschema DDL.
Application programs are created using either COBOL
or FORTRAN high-level host languages and freely
intermixing COBOL or FORTRAN Data Manipulation
Language (DML) to reference the data.

Prime’s DBMS allows the application designer to be
independent of file structure concerns. Moreover,

it facilitates centralized control to assure that all users
operate on the same data, that the data has an identical

meaning to all departments, and that all accesses

are made securely. This is particularly helpful to busi-

nesses and institutions with complex data relationships
and changing information requirements.

Prime’s DBMS means reduced application program-
ming expenses and shorter development times.
Programmers concentrate on the logic of the application,
not the details of data manipulation and file design,
and sort/merge operations are significantly reduced.

Forms Management
Prime’s Forms Management System (FORMS) is a set
of software functions that are used to develop systems
for interactive, multi-terminal, transaction proces-

sing. FORMS permits forms to be designed for a
variety of CRT and hardcopy terminals using the Forms
Description Language (FDL) with easy-to-use state-
ments. Application programs are created using COBOL,
FORTRAN, or PMA with standard READ/WRITE

statements.

FORMS may be used separately or in conjunction with
DBMS. The application program is unbound from the
form’s description, the type of terminal, and the data-
base description until the program is run. This inde-
pendence is similar in philosophy to the DBMS’ facili-
ties and results in similar savings in programming
expense and time to develop new applications initially
and in response to changing requirements.

Networking
The reach of the Prime File Management System can
be extended to include files contained in other Prime
300, 350, 400, and 500 computers. This is accomplished

automatically by PRIMENET, Prime’s network soft-
ware. PRIMENET makes it possible for a user or
process on one Prime computer to access files on any
other Prime computer in a network, without concern for
any of the protocol details involved in managing the
data transfer. Thus, regardless of where afile is actually
located, PRIMENET makes it appear to the user that it
is within the system to which he is connected. In addi-
tion, PRIMENET supports a wide range of network
activities:

¢ A user can, with proper password identification, login
to any computer in a network from any terminal
in the network.

* Users can run their programs on a remote system by
logging into that system.

* Similarly, printed output can be spooled to a remote
system.

* Processes running concurrently on different SyS-
tems can communicate interactively with one another
via special transmit and receive calls.

* An operator at a system terminal can send messages
to a user on the local system or to all on-line
network users.

HOW PRIMOSTVAND V WORK
PRIMOS, in conjunction with key hardware features in

the Prime 350, 400, and 500 central processors, per-
forms four major functions: activity scheduling, memory
management, procedure sharing, and system
protection.

Activity Scheduling
PRIMOS IV and V automatically transfer the attention
of the central processor from one activity (or process)
to another with minimum overhead and complete pro-
tection. The key is a central processor feature called
Process Exchange. As illustrated, this feature is a hard-
ware dispatcher that manages the Ready List, anumber
of Wait Lists, Semaphores, and the Process Control
Blocks containing detailed control and status informa-
tion for each process.

Process Exchange. Exchanges are caused asynchro-
nously by hardware-generated interrupts, faults and
checks, and synchronously by a process executing
WAIT and NOTIFY instructions. These events
activate the dispatcher to re-order the lists and get
the highest priority process to run. This exchange takes
7 to 50 microseconds; without the hardware assist it
would take 200 to 500 microseconds. The dispatcher
also manages the processor’s live registers, permitting
sets of registers to be assigned to different processes.
This reduces the need to save and restore the register’s
contents and speeds the process exchange.

Ready List. The Ready List identifies all processes
that are ready to run. The list is ordered first by priori-
ties and then chronologically. The highest priority
process is the one running, the others are run in order of
their priority as they appear on the Ready List.

PROCESS EXCHANGE EXAMPLE

PROCESS A [LOW PRIORITY) PROCESS B(HIGH PRIORITY)

§

SEMAPHORE_] SEMAPHORE 2
{WORK FOR B TO DO) (8 HAS DONE IT)

EVENT READY LIST WAIT LIST COUNT WAIT LIST COUNT

A STARTS PCB B + - 0
(A RUNS &

i A NOTIFIES $1 PCB B

(B RUNS 8)

B NOTIFIES 52 -

B WAITS FOR 51 +] - 4

fh :

{A RUNS 8)

A WAITS FOR $2 PCBB +1 - 0
(A RUNS 3)

ACTIVITY SCHEDULING

READY LIST PCB's OF ALL PROCESSES

HIGHEST [_
PRIORITY

THIS ONE IS
RUNNING

LOWEST |_
PRIORITY

END OF
LIST

Semaphores and Wait Lists. Each event that can
cause an exchange is associated with a Semaphore (two
words in memory) that keeps a count of the number

of times the event has occurred without being serviced
by a process, or a pointer to the processes awaiting
the event (there is a Wait List for each Semaphore).
The processes on a Semaphore’s Wait List are ordered
and serviced similar to the Ready List. Semaphores
are associated with such events as: ‘wait for a 1/3 second
time slice,’ ‘disk read complete,’ and ‘character

received from a terminal.’

To schedule a timeshared process, for example, an
interrupt from the Real-Time Clock causes the hard-
ware to notify the waiting time-keeping process, which
awakens and exchanges run status with the previously

running timeshared process. Once the time-keeping

process begins running, it updates several counters

including the 1/3 second counter. If the 1/3-second
counter is full, indicating that 1/3 second has trans-

pired since it was last reset, the trmeshared process of
next highest priority exchanges its ready status with
the previous timeshared process through a series of

WAIT and NOTIFY instructions. The time-keeping
process now waits for the next Real-Time Clock inter-
rupt and the highest priority process awakens and

starts to run.

Memory Management
The user writes programs in any of Prime’s languages,
and is unaware of the memory management scheme
as long as no single subroutine exceeds 128K bytes

WAIT LISTS

TT] C24 4 PROCESSES
L —| SEMAPHORE ARE WAITING

FOR EVENT A

|_|

C20
L —{ SEMAPHORE QUIESCENT

C22 2 PROCESSES
L —| SEMAPHORE ARE WAITING

c FOR EVENT C

C=-2 EVENT D HAS

_| SEMAPHORE HAPPENED TWICE
D AND |S AWAITING

A PROCESS

(one segment). If the entire program occupies one seg-
ment or less, the user may instruct the language trans-

lators to generate memory reference code that is com-
patible with a smaller Prime central processor. For
larger programs, the user makes symbolic reference to

subroutines and data arrays. The translators and

loaders establish a correspondence between the sym-

bolic reference and a virtual address.

Virtual-to-Physical Address Translation. The virtual

address contains a segment number (one of 4,096),

a page number (64 2K-byte pages/segment), and a
word number (0 to 1,023; one 16 bit word = two

bytes). The virtual address is translated into a physical

address by a series of segment tables and page maps
stored in main memory (see illustration). To speed
translation, a Segment Table Lookaside Buffer (STLB)

is used to hold physical page addresses for fast access
by the processor. For a typical mix of operations, the
required address information will be in the STLB
more than 97% of the time and no overhead is added
to the memory cycle time.

Demand Paging. When a process references a page

that is not in main memory, a “missing page” fault

occurs and is serviced by PRIMOS IV and V.

PRIMOS IV and V then replace the least-recently-used
(LRU) page in memory with the referenced page. The

next ‘n’ LRU pages are also freed in anticipation of

subsequent demands. If the pages have been modi-

fied, they are first written back to disk before their

memory space is overwritten. This demand paging

algorithm has been designed to reduce the number of
disk accesses.

AUTOMATIC MEMORY MANAGEMENT SYSTEM

SEGMENT TABLE
LOOK-ASIDE BUFFER(STLB)

a HASHING

ALGORITHM

STLB ENTRY ©

PROCESS NO. SEGMENT NO.
12 |

CONTROL PHYSICAL PAGE ADDR.

9 | 12
FROM SDW
AND PAGE
MAP ENTRY

PROCESS
EXCHANGE

PROCESSY NO NO

7 WORD NO.

6 10

 SEGMENT VNO. PAGE
, MN

2 Jf« |
StS

ACTIVE PROCESS’
PROCESS CONTROL
BLOCK (PCB)

DESCRIPTOR TABLE ‘
ADDRESS REGISTERS ' a
(0 & 1 ARE COMMON i
TO ALL PROCESSES) —

1023

NOTE: DESCRIPTOR TABLES

OF SEGMENT
DESCRIPTOR
WORDS (SDW)

—— TRANSFERS

——D POINTS TO/CONTROL

IF IN STLB (>97%)
SEGMENT FAULT

IF NOTIN STLB(<3%)
IF SEGMENT HAS NOT BEEN
ASSIGNED , PRIMOS IZ WILL
DO THE ALLOCATION

Cache Memory. Two features of the central processor
speed the effective memory cycle time: cache memory
and interleaving. Cache memory is a high-speed bi-
polar 2 K-byte memory that retains the contents of the
most recent memory references and is addressed on
the basis of word number (the least significant 10 bits
of amemory address). When referencing memory, the
cache is interrogated first while the STLB is checked
for correspondence. If correspondence exists, the word
read from the cache is used; if not, the correspondence

is established and the word is read from main memory
and stored in the cache. When a word is written in main
memory, it is also written in the cache. On average,
more than 85% of memory references are found in the
cache, reducing the effective memory access time.

The access time is 80 nanoseconds from the cache and
600 nanoseconds from main memory.

Memory Interleaving. The processor interleaves
memory references to pairs of sequentially addressed
memory words. For example, if word 6 or 7 is read,
both 6 and 7 are fetched simultaneously and the cache
is updated. Interleaving speeds up sequential accesses

and increases the cache hit rate.

Procedure Sharing
PRIMOS IV and V users can write procedures (or sub-
routines) that can be shared by other users. They can
also use shareable procedures or databases that are

VIRTUAL
ADDRESS

 PHYSICAL_ADDRESS

WORD _NO.

12

PHYSICAL PAGE
ADDRESS

 CONTROL PHYSICAL PAGE

PAGE RESIDENT
PAGE REFERENCED
PAGE UNMODIFIED
(RESERVED)

part of PRIMOS or have been written by another user.
The Prime 350, 400, and 500 hardware, together with

PRIMOS servicing “fault” conditions, preserves the
integrity of the shared resource and controls the access
rights granted by its originator.

When a procedure is shared, it exists only once on
disk and, when active, only once in main memory

regardless of the number of processes using it. For
example, if several users are concurrently writing
source code with the Text Editor program, and one

user references a part (or a page) of the Editor that has
already been brought into memory for some other user,
that user is automatically linked to that same copy
rather than transferring another “private” copy from
disk into main memory.

For commonly used procedures, sharing greatly im-
proves memory utilization by reducing the number of
disk transfers required to bring in the program or
data referenced by a process but not found in main
memory (missing page faults). Sharing procedures
means PRIMOS is more responsive to its users.

Reentrance. For a procedure to be shared by con-
current processes (reentrant) and to be invoked by
itself (recursive), its “pure” parts (those that do not
change during execution) must be separated from
those parts that do. This separation has already been
done for PRIMOS IV and V’s shareable resources and

is done automatically by the COBOL and FORTRAN
translators when requested to do so by the user. Also
the Prime Macro Assembler (PMA) makes it easy for
the assembly language programmer to write and use

shared procedures.

Procedure Call. References to a shared procedure are
made either by user command (i.e., EDIT), by a lan-

guage CALL statement in COBOL or FORTRAN, ora
Procedure Call instruction in PMA. The language
translators automatically generate code and variable
areas that invoke and are compatible with the Prime
350, 400, and 500’s Procedure Call (PCL) mechanism.

PCL is a hardware function that does all the house-

keeping required to transfer control from one procedure
(or subroutine) to another.

PCL saves and restores the state of the calling proce-
dure and initializes the state of the called procedure.
It creates and maintains ‘stack’ areas for automatic
data, and argument variables and linkage areas for
static data. The PCL hardware performs these func-
tions many times faster than would software equiva-
lents. In addition, PCL guarantees that the access

rights are followed, a function that cannot be performed
by software. Thus, PCL and the concept of shared pro-
cedures makes PRIMOS IV and PRIMOS V respon-
sive and secure computing utilities.

Security
A combination of hardware and software creates a
secure timeshared computer utility. PRIMOS IV and V
protect the utility, its files, and its shared procedures
from unauthorized access. The Prime 350, 400, and

900 protect PRIMOS and users against unwanted
intrusions or alterations by other users.

Log-in Procedure Protects Against Unauthorized
Users. To gain access to the system, the user types a
LOGIN command in which he identifies himself. This
will activate a LOGIN program which cannot be de-
feated. The installation can optionally add to the
LOGIN program whatever security locks are deemed
necessary. The LOGIN program can activate account-
ing clocks that accumulate connect time, processor
time, and disk transfer time until the user logs out

(LOGOUT).

Passwords Protect User Files. The originator of a
UFD (User File Directory) can define two passwords
that must be satisfied when a user (or a process) tries
to gain access to a file listed in the directory. (ATTACH
UFDNAME PASSWORD.) One password is used by
the owner, the other by a non-owner. For each file

listed in the UFD, access rights can be defined by the

owner; one set for the owner and one set for the non-

owner. The rights granted depend on which password

was used, and they control read (and execute), write,
delete, and truncate accesses.

Segment Descriptor Words (SDW) Protect Shared
Procedures. When a procedure is made ready for exe-
cution (loaded), links are established to bind that
procedure to all other procedures referenced. To do
this the user must be able to ATTACH to the UFD
that lists the referenced procedures (as file names)
and be granted read access rights to the named files.
Although such rights may be denied one user by
another, all users can gain read access to the system
library (UFD LIB) and the command library
(UFD CMDNCO).

When the link is first established, the procedure is

assigned to a segment by PRIMOS. All subsequent
references to the procedure are linked to the same
segment. The segment is defined by a Segment
Descriptor Word (SDW) listed in a Discriptor Table.

The SDW contains the access rights granted by the
procedure’s owner to other users: read, write, execute,

and gate. PRIMOS creates the SDW and, because of
its unique privilege level, is the only process that can
modify or delete an SDW. These rights are auto-
matically transferred as a code to the Segment Table
Lookaside Buffer (STLB), where they are used to con-

trol every memory reference.

Central Processor Ring Structure Protects PRIMOS
From User. The SDW defines access rights for each
of three rings or levels of privilege: Ring 0 is the most
privileged which, by design, has all access rights and
the right to execute all instructions. Ring 3 is the least
privileged and does not have the right to execute those
instructions that can alter the system’s mode of opera-
tion (such as HALT). Ring 1 has access privileges
between those of Ring 0 and 3. PRIMOS IV and V
enjoy Ring 0 privileges; timeshared user processes,
Ring 3. The ring number is a part of each calculated
memory address.

The security provided by a ring structure can best be
explained when one considers that an address of an
instruction to be fetched may be defined for a different
ring than the address of the data (or arguments)
referenced by the instruction. For example, if a user’s
process (Ring 3) calls a shared procedure that is part
of PRIMOS (Ring 0), the procedure’s instructions are
associated with Ring 0 and the data, or arguments (in
stacks and linkage areas), with Ring 3. When such a
shared procedure is called (using Procedure Call),
reference is made to its Entry Control Block (ECB)
that contains information required to initialize the pro-
cedure and start it running. The ECB is located ina
segment whose SDW defines the access rights for a
Ring 3 caller. If gate rights have been granted, the
Procedure Call mechanism will strengthen the active
ring number from 3 to 0 and allow the Ring 0 proce-
dure to execute. Otherwise, a fault condition occurs

and the user’s process cannot execute the procedure.
This would happen for those procedures defined by
PRIMOS to be for its own use and not to be shared
by a user’s process

Weakening is an important function of the Procedure
Call mechanism. The maximum of the called and call
ing ring numbers is taken (max (0,3) = 3) and the
resulting weakened ring number is inserted into each
argument (or pointer) transferred by the Procedure
Call to the called procedure. When the called pro-
cedure is running and makes a reference to a memory
location pointed to by an argument, it is granted only

the weakened Ring 3 privileges defined by the
referenced SDW.

If a Ring 3 process references a location in the common
address space, it would be granted the Ring 3 privi-
leges previously defined by the ‘owner’ of the segment
(usually PRIMOS) and would be denied those rights
deemed by the owner to be unwise or harmful. Simi-
larly, if the called Ring 0 procedure references a
location in the private address space of the user’s
process, it would be granted only those privileges
defined by the user of Ring 3.

PRIMOS

The Prime 350, 400, and 500’s segmentation and ring
structure described above is the hardware that per-
mits PRIMOS IV and V to offer a shared computing
utility with complete and automatic access protection.

The user need only define access rights and passwords,

and then use passwords as required.

HOW PRIMOS IVANDV
ARE ORDERED
PRIMOS IV and V are priced software products. Each
may be ordered separately to run on suitable Prime
350, 400, or 500 configurations. Several of the soft-

ware sub-systems supported by PRIMOS IV and V
and described in this bulletin are priced separately

and are also supported by PRIMOS III on Prime 300s
with at least 128KB of main memory. Products that
must be ordered individually are the COBOL com-
piler, BASIC/VM, RPG translator, each of the RJE

emulators, and the PRIMENET network package.
For detailed ordering information and availability
schedules, please contact your local Prime Sales
Representative or Prime’s headquarters. Specifica-
tions may change as design improvements are
introduced.

PRIME:
PRIME Computer, Inc. 40 Walnut St., Wellesley Hills, MA 02181

Printed in U.S.A. NS007-017-1 Specifications subject to change without notice. © 1978, Prime Computer Inc., Wellesley Hills,, MA 02181

S
O
I
T

ad

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

