Prime Computer, Inc.

DOC3060-192P

System Architecture
Reference Guide

Revision 19.2

System Architecture
Reference Guide

DOC3060-192

Third Edition

by

Martha August, Alice L.andy,
and Marilyn Hammond

This guide documents the software operation of the Prime Computer and
its supporting systems and utilities as implemented at Master Disk
Revision Level 19.2 (Rev. 19.2).

Prime Computer, Inc.
500 Old Connecticut Path
Framingham, Massachusetts 01701

COPYRIGHT INFORMATION

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer
Corporation. Prime Computer Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license,

Copyright © 1983 by
Prime Computer, Incorporated
500 01d Connecticut Path
Framingham, Massachusetts 01701

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.
PRIMENET, RINGNET, Prime INFORMATION, PRIMACS, MIDASPLUS, Electronic

Design Management System, EIMS, PRIMEWAY, and THE PROGRAMMER'S
QOMPANION are trademarks of Prime Computer, Inc.

HOW TO ORDER TECHNICAL DOCUMENTS

U.S., Customers Prime Employees
Software Distribution Communications Services
Prime Computer, Inc. MS 15-13, Prime Park
1 New York Ave, Natick, MA 01760
Framingham, MA 01701 (617) 655-8000 X4837

(617) 879-2960 X2053

Customers Outside U.S.

Contact your local Prime
subsidiary or distributor.

ii

PRINTING HISTORY

System Architecture Reference Guide

Edition Date Number Software Release
First Edition April 1979 IDR3060 n/a
Second Edition April 1981 PDR3060-182 18.2
Third Edition July 1983 DOC3060-192 19.2

SUGGESTION BOX

All correspondence on suggested changes to this document should be
directed to:

Alice Landy

Technical Publications Department
Prime Computer, Inc.

500 01d Connecticut Path
Framingham, Massachusetts 01701

iii

ABQUT THIS BOOK
1 SYSTEM OVERVIEW

Single-stream Architecture
Dual-stream Implementation
Special Features of the 9950

2 PHYSICAL AND VIRTUAL MEMORY

Physical Memory
Virtual Memory
Summary

3 ADDRESSING

Introduction

Units

Components of a Virtual Address
Components of an Instruction
Forming an Address

Addressing Modes

Summary of Addressing Modes
Address Traps

Summary

4 MEMORY MANAGEMENT

The Virtual Address

Memory Management Data Structures
Accessing the STIB and Cache
Paging

Summary

Contents

1-1
1-6
1-8

2-2
2-4
2-7

3-1
3-1
3-2
3-5
3-6
3-9
3-11
3-27
3-30

5 RESTRICTED INSTRUCTIONS AND CONTROL INFORMATION

Other System Data Structures
Restricted Instructions
Summary

5-1
5-11
5-13

6 DATATYPES

Fixed-point Data 6-1
Floating-point Numbers 6-19
Decimal Data 6-33
Character Strings 6-39
Queues 6-42
Summary of Datatypes and

Applicable Instructions 6—-47
Summary 6-50

7 ALTERING SEQUENTIAL FLOW

Branch and Skip Instructions 7-1
Jump Instructions 7-6
Sumary 7-6

8 STACKS AND PROCEDURE CALLS

Definition of Terms 8-1
Stacks and Stack Management 8-2
Entry Control Blocks 8-5
Indirect Pointers 8-6
Gate Access 8-7
Making a Procedure Call 8-7
The ARGT Instruction 8-14
The PRTN Instruction 8-15

9 PROCESS EXCHANGE ON SINGLE-STREAM PROCESSORS

Introduction 9-1
Elements of the PXM 9-1
Process Control Blocks 9-2
Ready List 9-2
Wait Lists 9-7
PXM Instructions 9-9
Dispatcher 9-14
Register Files 9-14
Process Interval Timer 9-21
Dispatcher Operation 9-23
Fetch Cycle Traps 9-27
Summary 9-27

10 PROCESS EXCHANGE ON THE 850

Instruction Stream Units 10-1
850 Process Exchange Elements 10-2
Dispatcher Operation 10-11
Summary 10-13

vi

11

12

13

14

INTERRUPTS, FAULTS, CHECKS, AND TRAPS

Breaks 11-1
Interrupts 11-3
Faults 11-6
Checks 11-17
Traps 11-29
Interval Clock 11-37
Summary 11-38
INPUT/OUTPUT
Programmed I/0 12-2
Mx 12-5
S, R, AND V MODE INSTRUCTION DICTIONARY
Introduction 13-1
Instructions 13-7
I MODE INSTRUCTION DICTIONARY
Introduction 14-1
Instructions 14-7
APPENDIXES
Power—up A-1

vii

About
This Book

Prime's 50 Series family is a sophisticated group of totally compatible
supermini computers. Its members are the Prime:

e 2250

e 250-II

e 550-II

e 750

e 850

e 9950
The 50 Series systems embody an advanced 32-bit architecture that
grants the user the ability to perform complex tasks efficiently and

quickly. This document describes the 50 Series architecture from a
functional point of view.

NOTES TO THE READER

Several groups of people will find this document useful: engineers,
programmers, designers, and technicians, To read this book, you should
have a basic understanding of computers, but not necessarily of Prime
computers, Prime stresses a high degree of compatibility across its
product line; therefore, you can apply much of the information
contained in this book to other Prime machines, as well as to the 50
Series machines.

ix

ORGANIZATION OF THIS GUIDE

Because this quide stresses the functional aspects of the 50 Series
processors, the topics are organized according to function. Chapter 1
presents a general overview, Chapters 2 through 12 each describe one
aspect of the system, beginning with memory configuration and
addressing and ending with the I/0O system. Each chapter builds on the
information contained in the previous one. Chapters 1 through 12 may
be summarized as follows:
o Chapter 1: Overview of the 50 Series systems

e Chapter 2: Confiquration of the 50 Series physical and virtual
memory

e Chapter 3: Virtual addressing, modes and formats, and address
traps

e Chapter 4: Memory management

o Chapter 5: Control data structures and restricted instructions

e Chapter 6: Datatypes supported on the 50 Series systems

e Chapter 7: Branch instructions and the stack

e Chapter 8: Procedure calls, the stack, and argument transfers

e Chapter 9: Single-stream process exchange

e Chapter 10: Dual-stream (850) process exchange

e Chapter 11: Interrupts, faults, checks, and traps

e Chapter 12: The 1/0 system (IMA, IMC, IMT, and DMQ)
Throughout these chapters are 1lists of Prime assembly language
instructions that pertain to the topics under discussion. These lists
briefly define the instructions' actions and show how they relate to
the topics, In addition to these lists, Chapters 13 and 14 contain
detailed information about each instruction — name, format, mnemonic,
and required operands -—— and a complete description of each of the
instruction's actions. These chapters are summarized as follows:

e Chapter 13: Instructions executable in S, R, and V mode

e Chapter 14: Instructions executable in I mode

Bppendix A discusses system power-up and the initialization of
registers.

System Overview

The CPUs of all 50 Series systems share a common architecture and one
operating system. This commonality is what makes the 50 Series a line
of completely upward- and downward-compatible systems. The
implementation of the common architecture, however, is slightly
different for each member, allowing the 50 Series systems to address a
wide variety of user needs as well as remain compatible. The first
part of this chapter explores the single-stream CPU implemented on the
2250, 250-II, 550-II, and 750. The second part discusses the
dual-stream 850 CPU. The third part discusses Prime's newest CPU, the
9950,

SINGLE-STREAM ARCHITECTURE

The CPU can be divided into four major units. The first three of these
are implemented on all single-stream members of the 50 Series family:

e Cache memory
e Control store
e Processor execution unit
The fourth, the instruction preprocessor unit, is a feature of the 750

and 850 systems, It serves as a speedup mechanism to process
instructions at a greater speed.

Figure 1-1 diagrams this architecture.

1-1 Third Edition

DOC3060-192

3 ous b3
A

>

Processor <
execution unit

r———"==—77
| !
I Instruction
| preprocessor* Il > Control store
|
e
Cache

g Memory bus g

* =750 and 850 only

Block Diagram of Single-processor Architecture
Figure 1-1

Third Edition 1-2

SYSTEM OVERVIEW

Cache and STI.B

The 50 Series uses a virtually addressed, write-through cache. Each of
the cache entries contains the contents of and additionmal information
about two bytes (2250, 250-I1I, and 550-II) or four bytes (750, 850, and
9950) of recently accessed physical memory. If the contents of a
specified location can be found in the cache, the system saves a great
deal of time: it takes only 80 nanoseconds to access a cache entry, a
vast improvement over the approximately 600 nanoseconds needed to
access physical memory. The time saved can be spent performing other
operations rather than waiting for a memory reference to complete.

To speed up the virtual to physical address translation, the STIB
(Segmentation Table Lookaside Buffer) contains the results of the Jast
64 translations (128 translations on the 9950). Since programs tend to
reference the same set of locations during their execution, the system
can perform a translation once, store the result in the STLB, and then
have it for reference the next time the user specifies the same
location. Since the STIB has a much faster access time than physical
memory does, referencing it saves translation time as well as access
time,

See Chapter 4, Memory Management, for more information about cache,
STLB, and address translation.

The Control Store Unit

To speed up execution, the 50 Series systems implement many functions,
such as procedure calls, in hardware and firmware. (Procedure calls
are explained in Chapter 8.) The firmware that governs instruction
execution is contained in the control store ROM. Each 50 Series system
can support up to 64 Kbytes of firmware address space. The exception
is the 9950, which uses a loadable control store of 50 Kbytes of RAM.

The Processor Execution Unit

This unit performs the computation required during instruction
execution. Elements of the processor execution unit include:

® Integer arithmetic logic unit (ALU)
e Decimal ALU

e Floating point unit

® Register file

® Program counter

1-3 Third Edition

DOC3060-192

Figure 1-2 shows an expanded block diagram of the processor execution
unit.

ALUs: The integer arithmetic logic unit (ALU) performs the desired
operation on the user's two's complement data. In a similar fashion,
the decimal ALU and the flcating-point unit handle decimal and
floating-point operations, respectively. These units can perform tests
and checks as well as arithmetic operations.

Register File: The register file contains four sets of registers.
Each set contains 32 32-bit registers. Two of these are user register
sets that contain information about a process and about the system as
the process sees it. These user register sets contain information
about the general registers a process can use, addresses of fault
handlers, contents of system registers, and other useful information.,

One of the remaining register sets contains microcode scratch and
system status registers. The fourth set contains direct memory access
(DMA) channels to speed I/0 operations. (See Chapter 12.)

The 9950 has eight register sets: four sets of user registers, three
sets of mircrocode scratch registers, and one set of direct memory
access registers.

Program Counter: The program counter contains the address of the next
instruction to be executed.

The Instruction Preprocessor Unit

The 750 has a special instruction preprocessor unit, designed to speed
up execution by processing information about instructions before
execution. While the processor execution unit is performing an add or
similar operation for instruction n, the instruction preprocessor is
working on the next two instructions. It is decoding instruction ntl,
calculating its address, and determining what registers, if any, are to
be accessed. It is also fetching instruction nt2 from the cache so
that it can be decoded when instruction n+l begins to execute. This
means that, in most cases, when the processor execution unit finishes
one operation, the instruction preprocessor unit has already done the
calculations necessary to allow the execution unit to perform the next
instruction without delay.

Third Edition 1-4

Floating point unit

Program counter

ALU

SYSTEM OVERVIEW

STLB

*= 550-I1, 750, 850, and 9950 only.

Processor Execution Unit
Figure 1-2

Register file

Third Edition

DOC3060-192

DOAL-STREAM TMPLEMENTATION

The 850 system implements a dual-stream version of the common 50 Series
architecture. The system's dual-stream nature enables it to provide
60-80% more service than the 750. Figure 1-3 shows a block diagram of
the 850 dual-stream architecture.

Instruction Stream Units

The 850 contains two instruction stream units (ISUs), each of which is
similar in capabilities to a 750 CPU. Each ISU executes an independent
stream of instructions simultaneously, synchronized by a stream
synchronization unit (SSU). (See below.) BEach ISU is responsible for:

e Full instruction decode.

e Effective address calculation,

e Instruction execution.

e Calculating data for the anticipated next instruction.
The four blocks shown in each ISU contain the same elements and perform
the same functions as those described in the first part of this
chapter.
Note that the two ISUs share one copy of the operating system. PRIMOS
is reentrant and can run on either ISU (as can any user program), SO
duplicate copies are not needed. System actions are also simplified,

since there is no need to check for or handle discrepancies caused by
different versions of the operating system.

Stream Synchronization Unit

The primary task of the SSU is to prevent improper information from
being loaded into the cache of either ISU. It does this by maintaining
a list of the contents of both caches. When data is written into
either cache, the SSU detects it and invalidates the contents of the
appropriate entry in its list of cache contents. This means that the
SSU always knows which cache locations contain current information and
which do not.

When a cache location in one of the ISUs contains information that is
out-of-date, the SSU notifies that ISU of the discrepancy. That ISU
invalidates the stale entry, thus forcing a memory read to the current
information the next time that location is referenced.

Third Edition 1-6

SYSTEM OVERVIEW

snq AJOWa

2 nsl

Jojuow
g2 8yoen ayoeq L 8yoe)
2uun 1 hun
w._m“_wm 1088800id8.d UOIBIILNLILIOD » 10ss8201da.d | 8l0}s
104ue) uonInIsy| nsi-ew) uonoNIsUY| |onuod
1 ,
Zuun 21604 1 jun
uoNNI9xXa Buiziuoiyouhs > uonndexe
108S800.d o/l 108880014
nss L NSI
. 4

snq o/}

Third Edition

Figure 1-3
1-7

Dual-stream Architecture

DOC3060-192

In addition to synchronizing cache references, the SSU also coordinates
references to memory and system handlers. The two ISUs share one main
memory, one operating system, and one copy of several system handlers,
To ensure that these resources are used effectively and efficiently,
the SSU contains four locks. The process exchande lock aids the
process exchange mechanism (see Chapter 10) to transfer control
smoothly between processes on both ISUs. The queue lock controls
situations in which simultaneously executing queue instructions (one on
each ISU) are vying for access to a single queue. It ensures that both
instructions get access, but that neither one interrupts or interferes
with the other. The check lock allows only one ISU to signal a check
at a time, thus guaranteeing that the single set of check handlers
services all checks. The fourth lock, the mutual exclusion lock, can
be used by software to prevent both 1ISUs from trying to access a
particular procedure or piece of data at the same time,

Diagnostic operations and communications between ISUs are also handled
through the SSU. The former feature aids in system monitoring and
testing; the latter enhances the 850's ability to execute independent
instruction streams without high system overhead.

SPECIAL FEATURES OF THE 9950

Although the 9950 follows the general architecture of the 50 Series, as
shown in the previous discussions, it contains several features
designed for outstanding performance. These include:

® ECL design. The 9950 uses emitter coupled logic (ECL) for swift
execution of instructions. Memory parts using ECL are about
50-60% faster than those made of TTL or NMOS; all other ECL
parts are twice as fast, on the average, as their Schottky
counterparts.

o Dedicated backplane. To minimize delay when instructions flow
from one system unit to another, each of the five PC boards that
make up the 9950 processor is assigned a specific slot in the
CPU chassis.,

® Pipeline. The 9950 uses a pipeline technique for executing
instructions in parallel, thus speeding up instruction execution
considerably. The pipeline is explained in the next section.

e Branch cache. The 9950 uses a memory called the branch cache to
record and predict the target address for jump and branch
instructions. The branch cache contains 256 entries.

Third Edition 1-8

SYSTEM OVERVIEW

Because the 9950 executes instructions in parallel, it might
begin to execute instructions down an incorrect path, following
a branch, before it had determined the correct branch address.
If this occurs, the processor must flush the pipeline of all
instructions from the wrong branch path, and then must begin
execution down the correct branch path. This sequence of steps
causes a delay.

To minimize the chance of such an occurrence, the 9950 branch
cache contains information about the branches that have
previously occurred in the program. The processor uses this
information to determine which branch was most recently taken
for each conditional instruction. The 9950 then assumes that
the same branch will be taken this time. If the prediction is
wrong, the processor adds a new entry in the cache, specifying
the correct branch for future use.

e Envirommental sensors. These are explained in the final section
of this chapter.

The 9950 Pipeline

The execution of each 9950 instruction is divided into ten stages, as
shown in Table 1-1. Each stage takes 40 nanoseconds to complete. This
is called the beat rate of the system.

The 9950 executes instructions in parallel, This means that the
processor does not have to complete the entire ten-stage sequence for
one instruction before it can begin executing the next. Rather,
instructions are processed somewhat like cars in a factory assembly
line. The cars travel past a number of specialized stations. At each
station a specific operation takes place. Then the car moves on.
After a certain length of time the next car arrives at the same station
where the same operation occurs.,

The 9950 ten-stage pipeline processes instructions in a similar
fashion, After every other 40-nanosecond beat, a new instruction
arrives at a station, and that station's operation is performed on it.

Using the pipeline in this fashion, the 9950 executes Stages 1 and 2 of
the first instruction. When it begins on Stage 3 of the first
instruction, it can also begin Stage 1 of the second instruction,
Likewise, when it begins Stage 3 of the second instruction, it can also
begin Stage 1 of the third, and so on. This means that the pipeline
can begin a new instruction every other beat.

The rate of instruction flow through the pipeline is determined by the
processor's use of system elements at each stage, As shown in Table
1-1, Stages 2 and 7 both use the cache, and Stages 7 and 10 both use
the register file, When two instructions in the pipeline request the
same element at the same time, a conflict occurs. Starting a new
instruction every other beat minimizes this type of conflict.

1-9 Third Edition

DOC3060-192

When there are no conflicts in the pipeline, simple instructions
complete execution every 80 nanoseconds. Some instructions, however,
require more than 80 nanoseconds to complete execution. When this
occurs, the pipeline holds up operations on the subsequent instructions
until it has completed the extra operation for the first instruction.
During the holdup, the processor still forms ocontrol store addresses
and fetches microcode words, but it performs no prefetch or effective
address calculations.

Flushing the Pipeline

If an instruction stores data into the stream of instructions that
follows it, the 9950 pipeline may have to be flushed before further
calculations take place. S and R mode store instructions automatically
flush the pipeline; therefore, no further actions are required and
performance is reduced substantially. V and I mode store instructions,
however, do not automatically flush the pipe. Either an E64V (V mode)
or an E32I (I mode) instruction will perform the flush.

Prime systems are designed for pure procedure, All
translator—generated code avoids storing into the instruction stream.

UPS and Envirommental Sensing Support on the 9950

The 9950 has a diagnostic processor system that supports inputs from
the UPS (uninterruptable power supply) system and envirornmental
sensors, These allow the 9950 to be brought to an orderly shutdown in
the event of an overtemperature or a main AC power loss with messages
appearing on the supervisor terminal. In order to conserve power, the
diagnostic processor does not accept typed commands during system
shutdown or while the UPS is active.

UPS Support: The UPS uses two signals, UPS active and UPS battery low.
UPS active means that main AC power has been interrupted. The low
battery condition means that 5 or 6 minutes remain before system power
is lost.

When the UPS is powering the entire system, including peripherals, and
a battery low condition occurs, the diagnostic processor sends a
processor check to the CPU (as explained in Chapter 11), and waits for
a CPU halt or for up to 5 minutes before powering down the system,

When a UPS active condition occurs and the UPS is powering only the
CPU, memory, and diagnostic processor, the diagnostic processor sends a
power failure signal to the processor, causing the processor to log the
power failure condition and then halt.

Third Edition 1-10

SYSTEM OVERVIEW

Table 1-1
Stages in the 9950 Instruction Execution Pipeline

Stage | Action

Send the contents of the lookahead program
register to the memory address register.

Read the next instruction from the cache.

Start decoding the address of the next
instruction.

Read the contents of the base and index
registers.

|

|

[

|

|

|

|

I

I

|

| Form the effective address and the

I control store address.

I

| Send the contents of the effective address
| register to the memory address register and
[fetch the contents of the next microword.
I
|
I
I
I
I
I
I
|

Read the operand from the cache and register
file,

Execution, phase 1 (ALU).

Execution, phase 2. (Transfer results to RS.)

Store the results of the operation.

1-11 Third Edition

DOC3060-192

When the UPS condition changes from active to inactive, it implies
that AC power has returned. The diagnostic processor initiates a
warm start to the CPU provided that the operator keyed an AWARMON
command at the supervisor terminal before main AC power loss.
Otherwise, the diagnostic processor initiates a master clear and
enters control panel mode.

Envirommental Sensing Support: There are three envirommental
sensors: a cabilnet overtemperature sensor, a processor board
overtemperature sensor, and an air flow sensor that detects
failures in the cabinet blowers. The cabinet temperature and
airflow sensors are warning indicators; the processor board sensor
is a critical indicator.

When the cabinet temperature is too high or the airflow sensor
detects a failure in the cabinet blowers, the diagnostic processor
initiates an orderly system shutdown by sending the processor an
appropriate envirommental check code (explained in Chapter 11) that
initiates the PRIMOS system shutdown. The diagnostic processor
waits for a CPU halted message or for a specified timeout (10
minutes for cabinet overtemperature, 1 minute for air blower
failure)., If an air blower failure occurs while there is more than
1 minute to timeout, the timeout is set to 1 minute.

When an overtemperature condition is detected on the processor

board, the diagnostic processor initiates an immediate system
powerdown that includes powering down the processor.,

Third Edition 1-12

Physical and Virtual

Memory

The 50 Series processors are virtual memory systems. This means that a
very large, protected, virtual address space is available to each user
who is logged onto the system. This virtual address space is supported
by a much smaller physical address space invisible to the user.

Virtual memory has several advantages. To the user logged onto the
system, there appears to be an address space of almost unlimited size,
which can support very large applications without using overlays. This
address space is protected against unauthorized accesses in hardware,
To the system owner, a virtual memory scheme provides the ease of use
of a large memory at the cost of a much smaller amount of hardware.

The three key parts to a virtual memory scheme are physical memory,
virtual memory, and a manager to control the virtual memory scheme.
The manager 1s the operating system, PRIMOS, and its attendant hardware
and firmware support. This chapter describes the characteristics of
the 50 Series physical and virtual memory, and shows how PRIMDS
coordinates the 50 Series virtual memory scheme. It also describes
some of the hardware protection mechanisms implemented in the 50 Series
virtual memory.

2-1 Third Edition

DOC3060-192

PHYSICAL MEMORY

Physical memory encompasses all hardware parts of the system used to
store large blocks of information. There are three types of physical
memory:

e Cache

e Main memory

e Disk

Figure 2-1 shows the relationship between the three elements of
physical memory.

|

|

|
/’+‘”\
({

Y
Disk\s N

up to 8 600-megabytes
disk drives

Main memory
up to 8 megabytes

Cache
up to 3 kilobytes

Elements of Physical Memory
Figure 2-1

Third Edition 2-2

PHYSICAL AND VIRTUAL MEMORY

Cache

The cache is a data buffer that stores copies of the information
contained in the most frequently referenced memory locations. Its size
varies from system to system as shown in Table 2-1, During program
execution, this buffer is used to speed up memory references.

Since cache is a form of very high speed memory, it takes only 80
nanoseconds to access data stored there. In contrast, it takes about
600 nanoseconds to access data stored in main memory. This difference
in access times makes it very advantageous to access cache whenever
possible,

Three factors determine how often the cache contains the correct data
(known as the cache hit rate):

e The size of the cache (2-32 Kbytes)

e The information fetch rate (16-64 bits, depending on the system
and the amount of memory interleaving)

e Locality of reference (the tendency of a program to execute
within a small part of itself at any time)

The 50 Series cache hit rate varies from system to system. See Table
2-1 for details,

Table 2-1
Cache Sizes and Hit Rates

System | Cache Size| Hit Rate

I l
[I
| 2250 | 2 Kbytes | 85% |
| 250-II | 2 Kbytes | 85% I
550-II	8 Kbytes	90%
750	16 Kbytes	95%
850	32 Kbytes	95%
9950	16 Kbytes	95% l

Main Memory

The 50 Series main memory is high speed MOS with error checking and
correction built in to correct single bit errors and detect double bit
errors. The memory is packaged on boards in units of 512 Kbytes or 1
Moyte. (The 9950 allows up to 2 Mbytes per board in units of 64K RAM
chips. Since the 9950 can contain up to eight memory boards, it can
have up to 16 Mbytes of main memory.)

2-3 Third Edition

DOC3060-192

All systems use two-way interleaving. This doubles the amount of data
that can be fetched with one operation. Thus, it speeds up memory
references and makes more efficient use of the I/O bus.

On the 9950, interleaving takes place within each memory board, On all
other systems, interleaving is done between pairs of boards. In this
type of interleaving, consecutive physical locations are placed on
alternate memory boards; when a reference to memory is made, the
system fetches the same location on each board. Systems with an odd
number of memory boards use interleaving for all but the odd board.

Main memory is divided into units called pages. Each page is 2 Kbytes
in size. The pages subdivide main memory 1into uniform pieces that
PRIMOS can manage conveniently and efficiently. Since all pages are
the same size, PRIMOS can reply to all requests for space in the same
way, regardless of who or what makes the request. 1In addition, disk
records (called virtual pages) are the same 2 Kbytes in size, so
transfers between main memory and disk are simplified. Chapter 4,
Memory Management, describes other advantages of pages.

Disk

Disks provide storage for all of virtual memory. Either the system or
the user can access any of this information at any time (given the
proper access rights). When accessed, a copy of the information is
moved from disk to main memory. The Paging section in Chapter 4
describes how the information is moved.

VIRTUAL MEMORY

Virtual memory is divided into units called segments. FEach segment can
contain up to 128 Kbytes. Segments are virtual units, not physical
ones, that aid both the user and the system in organizing their virtual
address spaces and the information contained there. For example, the
user can organize program code in one segment and program data in a
second one. Segments make it possible to allow extra room in a program
for variable length data structures, such as arrays whose dimensions
can change each time the program runs. They also allow the user to
build modular programs, one module to a segment, PRIMDS uses segments
in a similar way to organize its own code into modules.

The virtual address space of each user contains 4096 segments. These
are subdivided into four groups of 1024 each. The segments are
subdivided to make address translation and segment sharing easier.
(See Shared and Unshared Segments, below, and Chapter 4, Memory

Management.,)

Third Edition 2-4

PHYSICAL AND VIRTUAL MEMORY

Shared and Unshared Segments

In the Prime virtual memory scheme (diagrammed in Figure 2-2), each
user address space of 4096 segments is divided into shared and unshared
space. The first 2048 segments are shared with all other users. This
allows the operating system, shared libraries, and shared subsystems to

be seen by all users.

The second 2048 segments are private, containing information unique to
each user. This means that if two users reference segment 4000, they
are specifying completely different locations.

This arrangement of shared and unshared segments means that there is no
possibility of one wuser's private space conflicting with that of
another user, It also means that only one copy of PRIMOS and the
shared system software need be maintained, and thus reduces memory use.
Moreover, it means that PRIMOS is embedded in the virtual address space
of each user and is directly accessible via a normal procedure call,
(See Chapter 8, Stacks and Procedure Calls.) No interrupts, special
supervisor calls, or system traps are necessary when the user accesses
PRIMOS or any utility, library, or subsystem residing in shared space.

Private
User-2's
2048 segments.

Shared
by all users

2048 segments for
Primos, shared libraries
and subroutines.

Private
user-1s
2048 segments.

Private
user-n's
2048 segments.

50 Series Virtual Memory Space
Figure 2-2

2-5 Third Edition

DOC3060-192

Protection Rings

Designating shared and unshared segments is not the only form of
protection available to the 50 Series virtual memory. Three hardware
implemented rings provide a simple, unbreakable form of security that
checks each memory reference for its right to access the specified part
of memory.

The rings represent levels of protection. Ring 0 represents the
highest level of protection and grants the greatest number of
privileges. The kernel of PRIMOS runs under Ring 0 protection, which
means that its segments cannot be accessed by the user except through
protected entry points, and that it has read, write, and execute
privileges to all segments. PRIMOS can access any information in the
system, invoke special routines, and so on.

Users run under Ring 3 protection, which means that they cannot
arbitrarily access Ring 0 routines or items contained in the private
segments of other users' address spaces. Each segment under Ring 3
protection may have a different combination of read, write, and execute
access rights.

Ring 1 provides privileges less powerful than those of Ring 0 but more
powerful than those of Ring 3.

m
Inward Call

Inward Call

Inward Call

Outward Calls

Protection Rings
Figure 2-3

Third Edition 2-6

PHYSICAL AND VIRTUAL MEMORY

Rings provide a simple, effective way to protect critical parts of the
system. Without them, a Ring 3 procedure could directly access any
Ring 0 procedure, which could potentially corrupt system operation.
Screening out such references protects the integrity of the entire
system.

See Chapter 4, Memory Management, for information about how rings
govern the virtual-to-physical address translation to prevent invalid
accesses,

Segmentation Table Lookaside Buffer

Virtual memory has its counterpart of the cache, the STIB. The system
uses this buffer with the cache to reduce the time needed to access
information. Where a cache entry contains information about a recently
accessed physical memory location, an STIB entry contains the
information the system needs to find the physical location from the
virtual address the user specified. Each entry also specifies the
protection attributes associated with the location. Chapter 4
describes more about how the STIB is used.

SUMMARY

This chapter described the configuration of the 50 Series physical and
virtual memories. Chapter 3, Addressing, shows how to form a virtual
address that references a location within the virtual address space.
Chapter 4, Memory Management, shows how the 50 Series systems use the
virtual address and the virtual-to-physical address translation process
to integrate virtual and physical memory.

2-7 Third Edition

Addressing

INTRODUCTION

The 50 Series processors support several kinds of addressing: direct
addressing, indexed addressing, indirect addressing, and indirect
indexed addressing. They also support several modes of addressing,
each with its own uses and benefits. This chapter:

® Provides an overview of virtual addressing and of effective
address calculation.

e Explains how effective address calculation is done for each type
of addressing, and what registers are involved.

e Explains the various modes of addressing.

® Provides summaries of instruction forms for each type of
addressing in each mode.

UNITS

The basic units of information are bits, bytes, halfwords, and words.
A byte contains eight bits. One halfword contains two bytes; the bits
are labelled from 1 (most significant bit) to 16 (least significant
bit). A word centains four bytes. The bits are labelled from 1 to 32,

Memory is measured in bytes, The 50 Series physical memory size can be
up to 16 Mbytes; the virtual address space contains 512 Mbytes.

3-1 Third Edition

DOC3060-192

COMFONENTS OF A VIRTUAL ADDRESS

A virtual address refers to a unique location in a user's virtual
address space. The location is characterized by three elements: a
ring number, a segment number, and an offset within that segment. (All
offsets are relative to the first location within a segment, and are
expressed in units of halfwords.) The format of a virtual address is
shown in Figure 3-1,

When an instruction makes a memory reference, it provides information
from which the virtual address can be calculated. This is frequently
referred to as calculating the effective address. Depending on the
type of instruction, the information can be provided in several
different formats, and the calculation done in various ways. This
section explains the various ways in which the ring number, segment
number, and offset can be specified. It also explains the use of the
indirect bit. The section, Forming an Address, explains how each of
the four types of addressing uses these components to calculate the
effective address.

Ring Number

Ring numbers are found in the program counter, in the base register,
and within indirect addresses. When an effective address is
calculated, the highest numbered ring referenced in any of these
locations is chosen as the ring field for the effective address. (For
more information on rings, and on the process of calculating ring
numbers, see Chapter 4.)

Segment Number

The segment number is generally provided in one of three ways:

e If the instruction contains a base register field, the segment
number is found in the specified base register.

e If the instruction does not contain a base register field, the
segment number is found in the program counter.

e In indirect addressing, the segment number field contains the
segment number.

Base Registers: There are four base registers available for use in
address calculation:

e The procedure base register (PB)

e The stack base register (SB)

Third Edition 3-2

ADDRESSING

e The link base register (IB)

e The auxiliary base register (XB)

All of these are 32-bit registers. Their format is shown in Figure
3_10

1 23 4 5 16 17 32

| 0 IRING|] O | SEGMENT | OFFSET |

Bits | Name | Description

Must be 0. (See the F bit in
the section on Calculating
Indirect Pointers, in
Chapter 8, for the
explanation of this.)

Ring Specifies the ring number.

the section on Calculating
Indirect Pointers, in
Chapter 8, for the
explanation of this.)

I
I
|
|
I
|
I
|
I
I
|
I
I
|
I

Segment | Specifies the segment number.,
[

17-32 | Offset

[
I
I
|
I
I
|
— | Must be 0. (See the E bit in
I
I
I
|
I
|
I
I

Specifies the offset value.

Format of Virtual Addresses and Base Registers
Figure 3-1

The PB contains the address of the currently active procedure, It is
unique among the four base registers because its offset is always 0.

The program counter always contains a trusted copy of the segment
number in the PB. ‘Therefore, an instruction that contains no base
register field uses the same segment number as one that specifies the
PB.

3-3 Third Edition

DOC3060-192

SB contains the starting address of the stack for the currently active
stack frame., IB contains the starting address of a save area for
static variables, such as an entry control block. (See Chapter 8.) XB
usually contains a temporary pointer, such as that to a FORTRAN common
block, These three registers usually have non-zero offsets., Thus,
they supply not only the segment number but also an offset address
relative to that number.

Offset

The offset portion of an effective address is supplied by one or more
of the following components:

e Displacement: a 16-bit number given explicitly within the
instruction,

@ Base register: if the base register is SB, IB, or XB, it will
contain an offset to be added to the displacement given within
the instruction.

e Index register: if an index register is used, then the contents
of that index register are to be added to whatever other offset
has been calculated.

@ Indirect address: if indirect addressing is used, the indirect
address will contain the offset.

In summary, an offset can be calculated in any of the following ways:
e Displacement
e Displacement + offset from BR
e Displacement + index register
e Displacement + offset from BR + index register
e Indirect address
e Indirect address + index register

The instruction format tells the processor which method to use.

Third Edition 3-4

ADDRESSING

(QOMPFONENTS OF AN INSTRUCTION

Instruction Format

Figure 3-2 diagrams a typical instruction format. Thus, it shows how
all the fields described in this chapter fit together into a single
instruction.

1 2 3 67 11 12 13 14 15 16 17 32

|l T | X|0OP [11000 | Y | OP | BR | DISP |
| Bits | Mnem | Name | Description [
‘ 1 | I | Indirect bit | Specifies indirect addressing. }
: 2 : X { Index field : Specifies use of an index register. :
{ 3-6 } oP I Opcode : Specifies the operation to perform. :
: 7-11 : —_— : —_ = Specifies instruction format. {
{ 12 : Y I Index field I Specifies use of an index register, l
{ 15-16 : BR : Base register : Specifies the base register to use. :
: 13-14 : opP } Opcode I Specifies the operation to perform. :
} 17-32 : DISP : Displacement ‘ Specifies a 16-bit offset. =

Format of a Typical Instruction (V Mode, Long)
Figure 3-2

Indirect Bit

An instruction may contain an indirect bit. If this bit is 1, it
signifies that the address being calculated is an indirect address. If
this bit is 0, the address is a direct address. (Indirect addresses
are explained under Forming an Address, later in this chapter.)

3-5 Third Edition

DOC3060-192

Index Register Field

An instruction may specify two index registers by using the X and Y
fields. Each of these fields is one bit long. These fields are
encoded with the I field to specify indexing. (See Table 3-6 for the
encoding.) If an index register is specified, then the contents of
that index register are added to whatever other offset has been

calculated.

Base Register Field

The base register field of an instruction may contain one of the
following four values:

Value Base Register

00 PB (Procedure Base)
01 SB (Stack Base)

10 IB (Link Base)

11 XB (Auxiliary Base)

The value tells the processor which base register to check for the
correct segment number (and, perhaps, offset).

Displacement

The displacement field contains a 16-bit number representing an offset
within a segment. As the section on Qffset explained, the value given
by the displacement may either stand alone or have other values added
to it to provide the actual offset for the effective address,

FORMING AN ADDRESS

The processor uses the contents of the fields in a memory reference
instruction to select which of the four types of address formations to
use:

e Direct

o Indexed

e Indirect

o Indirect indexed

Third Edition 3-6

ADDRESSING

Direct Addressing

In direct addressing, the processor forms the effective address by
adding the contents of the base register to the displacement,

Indexed Addressing

The processor adds the contents of the base register, index register,
and displacement to produce the effective address.

S, R, and V mode instructions that contain 1101 in bits 3-6 cannot

specify indexing. See the tables at the end of this chapter for
specific information.

Indirect Addressing

Short Form Indirection: Depending on the addressing mode, indirect
addressing takes one of two forms. In the first, the processor treats
the displacement as the address of a location in the procedure segment.
The processor uses the contents of the addressed location as the
effective address. This is called short form, or 16-bit, indirection.

Some addressing modes allow more than one level of indirection., (See
the 16S, 325, and 32R sections at the end of this chapter.) 1In these
cases, the processor uses the displacement as the address of some
location in the address space. If this addressed location contains
another indirect address, then the processor uses these contents as the
address of another location in memory. This indirection chain is
followed until one addressed 1location does not contain an indirect
address; these contents are called the result of the chain. The
processor uses the result of the chain as the effective address.

The tables at the end of this chapter specify the number of levels of
indirection supported by each addressing mode.

Long Form Indirection: In long form indirect addressing, the
instruction points to a location in memory that contains a 32-bit (or,
more rarely, 48-bit) pointer. These long pointers contain not only
addresses but also 2 or 3 bits that provide additional information.

Figure 3-3 shows the format of those pointers. The bits of special
interest are the extension bit (or E bit), the fault bit (or F bit),
and the bit number field.,

3-7 Third Edition

DOC3060-192

The functions of these three fields are as follows:

F bit If F =1, a pointer fault is generated when this
indirect address is used, (See Chapter 11 for
information on pointer faults.)

E bit If E = 0, the pointer is a 32-bit pointer. If E =1,
the pointer is a 48-bit pointer. (Throughout the
rest of the chapter, discussions will assume that the
32-bit format is being used.)

Bit number Permits you to specify (or point to) a particular bit
within an address offset.

1 2 3 45 16 17 32

| F| RING | E | SEGMENT | OFFSET |

Indirect Pointer Format, Long Form (32-bit)
(E is always 0.)

1 2 3 4 5 16 17 32 33 36 37 48

| F | RING | E | SEGMENT | OFFSET | BIT# | RESERVED |

Indirect Pointer Format, Long Form (48-bit)
(E is always 1.)

—— — — — — — — — ———— — — — — — —
— —— s —— — ey, — — — —— — —— — —— — —

Pointer Formats for Long Form Indirection
Figure 3-3

Indirect Indexed Addressing

This type of addressing takes one of two forms: indirect preindexed,
or indirect postindexed.

When calculating a preindexed indirect address, the processor adds the
value of the index register to the contents of the base register and
displacement and uses the sum as an indirect address., It resolves any
indirection chain and uses the result of the chain (or the indirect
address itself, if there was no chain to follow) as the effective
address.

Third Edition 3-8

ADDRESSTING

When calculating a postindexed indirect address, the processor adds the
contents of the base register and displacement and uses the result as
an indirect address. It resolves any indirection chain, then adds the
result of the chain (or the indirect address itself, if there was no
chain to follow) to the contents of the specified index register to
form the effective address.

ADDRESSING MODES

The first part of this chapter described several ways to specify an
address with information contained within an instruction. Once the
processor calculates the effective address, it can reference whatever
information is ocontained in the location specified by the effective
address. This section describes the ways to specify an address in an
instruction and how the processor forms the effective address.

The 50 Series processors support four modes of addressing, each of
which forms addresses differently. Depending on the program and
personal preference, one or two of these modes may be more useful than
another., The three most important modes are:

e V, or virtual

e I, or general register

® R, or relative

The fourth mode — S, or sectored, mode — is supported for historical
reasons.

V_Mode

V mode performs short and 1long operations and has a wide variety of
registers to use. A short (halfword) instruction in this mode can
reference the first 256 locations of both the stack and link, as well
as the 224 locations on either side of the current location in the
procedure segment., A long (word) V mode instruction can directly
reference all locations in four segments. Indirect addressing can
reference all locations in up to 4096 128-Kbyte segments.

I Mode

When referencing memory, I mode is similar to 32-bit V mode. The
difference is that I mode short operations reference 8 32-bit general
purpose registers for use as index registers, accumulators, counters,
or the like, I mode long operations have the same referencing power as
V mode long operations. They can also use five additional index
registers and immediate forms.

3-9 Third Edition

DOC3060-192

R Mode

A sector is a block of 512 (1000 octal) contiguous memory locations.
Sector 0 starts on location 0 and ends on location '777; Sector 1
begins on location '1000 and ends on location '1777; and so on.

An R mode instruction can reference any location in Sector 0, as well
as a group of locations relative to the current value of the program
counter, When the sector bit (S) in an R mode instruction is 0, the
instruction can only reference locations in Sector 0. When S is 1, the
instruction references locations relative to the current value of the
program counter, The range of these-relative locations is PC - '360 to
PC + '377, inclusive.

Note that an R mode instruction that specifies a location in the range
PC - '361 to PC - '400, inclusive, selects a special addressing code,

such as stack register., These special codes are explained in more
detail in Tables 3-6 and 3-7.

S Mode

Like R mode instructions, S mode instructions contain a sector bit.
When S is 0, references are to Sector 0. When S is 1, however,

references are only to those locations within the sector containing the
instruction.

Note that S mode is a holdover from early Prime machines that were

based on the Honeywell 316 and 516 minicomputers. When operating in S
mode, the 50 Series processors act exactly as these early machines do.

Third Edition 3-10

SUMMARY OF ADDRESSING MODES

ADDRESSING

The fiqures and tables in the rest of this chapter present summaries of

each addressing mode.

all the modes.

Table 3-1

Summary of Addressing Modes

Table 3-1 summarizes useful information about

Mode | Address | Addressing Range |# Index| Indirection |

| Length | | Regs | Levels l

|

16S direct | 14 bits | 1024 halfwords I One | }
| I I

16S indirect | 14 bits | 16K halfwords | One | Multiple |

I I | | |

32S direct | 15 bits | 1024 halfwords | One | }
I | | I

32S indirect | 15 bits | 32K halfwords | One | Multiple |

| [| I |

32R direct | 15 bits | 1008 halfwords | One | ‘
| | I I

32R indirect | 15 bits | 32K halfwords | One | Multiple |

[[[I |

64R direct | 16 bits | 1008 halfwords | One | |

| | I | I

64R indirect | 16 bits | 64K halfwords | One | One |

I | | | I

64V short | 16 bits | 64K halfwords: | One | One |

i | +256 SB relative | [|

| | +256 LB relative | [|

| | +/-256 PC relative| | [

[| +512 PB absolute | [|

| | I | I

64V long | 28 bits | 4 segments* } ™wo | One {
I [[

64V indirect | 28 bits | 4096 segments* | Two | One |

I I | I |

321 long | 28 bits | 4 Segments¥* | Seven | One |

| I [I |

321 indirect | 28 bits | 4096 segments* | Seven | One |

* All segments contain 128 Kbytes.

3-11

Third Edition

DOC3060-192

64V Mode Short Form

1 2 3 6 7 8 16

I 1X) opPp | S| DISPLACEMENT |

Instruction Format

l ADDRESS |

Indirect Pointer Format

64V Mode Formats, Short Form
Figure 3-4

Table 3-2
64V Mode Short Form Summary

| T 1 X | S | Disp | Inst Type | Form of EA | Example [
I I
|01 0] 0| 0-'7@ | Direct | LDA ADR | REG I
| | | | '10-'377 | Direct [| SB+D |
| | I | '400-'777 | Directe@@ | | LB+D I
0111 0] 0-'7@ | Indexed | LDA ADR,1 | RBEG, if I
[I I | | DtX<'7;@ |
I I | | | SB+D+X, if |
[N I | | | DiX>'7@ |
| [| | '10-'377 | Indexed | | SB+D+X |
| | [| '400-'777 | Indexed@@ | | LB+DHX |
1101 0| 0-'7@ | Indirect | LDA ADR,* | I(REG) I
| I | | '10-'777 | Indirect | | I(PB+D) I
1111 0] 0-'77 | Indirect, | LDA ADR,1* | I(REG), if |
| | | | |preindexed | | D+X<'7;@ |
[TR A I I | I(PB+D+X), |
[I I I | | if D¥X>'7@|
[| | '10-'77 | Indirect, | LDA ADR,1* | I(PB+D+X) |
[T R I |preindexed | | |
| | | | '100-'777 | Indirect, | LDA ADR,*1 | I(PB+D)+X |
[I |postindexed| | [
| 01 0] 1 ['-340-"4377| Direct | LDA ADR | PC4D I
] 01 1] 1]'-340-"+377] Indexed | LDA ADR,1 | PCH+DHX |
| 1]101] 1 |'-340-'+377| Indirect | LDA ADR,* | I(PC+D) [
| 1111 1]'-340-"+377| Indirect, { LDA ADR,1* { I (PCH+DHX) =
[

| |preindexed

Third Edition) 3-12

ADDRESSTNG

Notes to Table 3-2

@ This table assumes segmented mode (bit 14 of the modals =
1) . For nonsegmented mode, the displacement range is 0-'37,
rather than 0-'7. This means that the range '10-'377
changes to '40-'377 in nonsegmented mode. The range
'400-'777 remains unchanged.

@@ In these address forms, the displacement offsets the
contents of LB by '400 (bit 8=1)., To compensate for this,
set the contents of IB to the current value of the 1link
frame minus '400. For example, if the segment number in LB
is '4002 and the word number in the displacement is '177400,
the offset of '400 gives the location of the link frame as
segment number '4002, word number 0.

This mode allows one level of indexing, and one of indirection.

REG refers to a location in the register file. See Address
Traps at the end of this chapter.

The instructions STX, FLX, DFLX, LDX, LDY, STY, and JSX do not
do indexing. 'The effective address is formed as if bit 2 = 0.

3-13 Third Edition

DOC3060~-192

64V Mode, Long Form and Indirect Form

1 2 3 6 7 111213 14151617 32

[T | X|OP | 11000 | Y | XX | BR | DISP |

Instruction Format

1 2 3 4 5 16 17 32

| F | RING | 0 | SEGMENT | OFFSET [

32-bit Indirect Pointer Format

1 2 3 45 16 17 32 33 36 37 48

| F | RING | 1 | SEGMENT | OFFSET | BIT# | RESERVED |

48-bit Indirect Pointer Format¥*

— —— — —— — — —— ——— — — —— —— — — — —— — —

*

This indirect format is used only by a few instructions;
most use the 32-bit form.

64V Mode Formats, Long Form and Indirect Form
Figure 3-5

Third Edition 3-14

Table 3-3
64V Mode Long Form, Indirect Summary

ADDRESSING

——- e — —— — — — — — — — — — — ot it . et e et e et S S s S s it e, ‘et et

I | X]Y | BR | Instruction Type | Example | Form of EA
01l 0] 0] 00 | Direct | LDA ADR | PB/D
I | | 01 | I | SB+D
1 110 | I | LB4D
[111 | I | XB+D
0l 0] 1] 00| Indexed by Y | LDA ADR,Y | PB/D+Y
A R B) | | SB4D+Y
[| | 10 | | | IB4+D+Y
I I | 11 | I | XB+D+Y
0111 0] 00 | Indexed by X | LDA ADR,X | PB/DHX
| | | o1 | | | SB+DHX
[| 10 | I | LB+DHX
[11| | | XB+DHX
011 1] 00| Indirect | LDA ADR,* | I(PB/D)
| l | 01 | | | I(SB+D)
[| 110 | | | I(LB+D)
| I | 11 | I | I(XB+D)
110 0] 00 | Preindexed by Y | LDA ADR,Y,* | I(PB/D+Y)
| | | 01 | I | I(SB+D+Y)
I I | 10 | [| I(ILB+D+Y)
I | | 11 | I | I(XB+D+Y)
1101 1] 00| Postindexed by Y | LDA ADR,*Y | I(PB/D)+Y
| I | 01 | I | I(SB+D)+Y
I I | 10 | I | I(LB+D)+Y
[1 |11 | | | I(XB+D)+Y
11110 00 | Preindexed by X | LDA ADR,X,* | I(PB/D+X)
[| 01 | I | I(SB+D+X)
[| 10 | | | I(LB+DHX)
[[11 | | | I(XB+D+X)
11 1] 1] 00| Postindexed by X | LDA ADR,*X | I(PB/D)+X
I | | 01 | | | I(SB+D)+X
[N I (I I | I(IB4D)+X
[I | 11 | I | I(XB+D)+X

Notes to Table 3-3

The processor performs X and Y indexing and 32-bit word

(inter—-segment) indirection.

PB/D indicates that the displacement is relative to the origin
of PB. PB specifies the segment number (the offset must be 0);
the displacement specifies the offset,

All displacements are within the range 0-'177777.

3-15

Third Edition

DOC3060-192

The instructions STX, FLX, DFLX, LDX, LDY, STY, and JSX do not
do indexing., The effective address is formed as shown in Table
3-4. Bit 2, the X bit, is used as part of the opcode in these
instructions.

Table 3-4
Address Formation for Nonindexing Instructions

| T | X | Y| 400, 250-11,| 750, 850] 9950 |
| | | | 550-II, 2250] | [
| |
0] 0] 0	*Direct	Direct	Direct	
0	l 0]1]	IndexbyY	Direct	Direct
0111 0	*Direct	Direct	Direct	
011111 I(A+X) | I(Aa) | Direct |
1110 0] TI(A+Y) | I(a) [I(@) |
110111 *I(n) I I(a) | I(A) |
1 11] 0] I(AHX) | I(a) | I(A) |
212111 *I(a) | 1(8) | I(A) [

Notes to Table 3-4

* These modes should be used to ensure consistent behavior
aCross processors.

The symbol A in Table 3-4 represents the value calculated from

the base register (PB, SB, IB, or XB) and displacement in the
instruction.

Third Edition 3-16

ADDRESSING

Immediate Type 3 (Floating Point)**, ***

321 Mode

| I
l 1 6 7 9 10 11 12 14 15 16 17 32 I
l | OP | DR | ™ | SR | BR | DISPLACEMENT | }
: Instruction Format* ||
| |
| 1 2 3 435 16 17 32 |
I| | F | RING | O | SEGMENT | OFFSET | I
: Indirect Pointer Format :
: :
| 1 16 17 32 |
: | SEQOND HALF OF INSTRUCTION | ZEROES | I
‘ Immediate Type 1** =
| |
[1 16 17 32 |
: | SIGN EXTENSION | SEQOND HALF OF INSTRUCTION | :
{ Immediate Type 2%* :
| |
| 1 89 56 57 64 |
:l | BITS 17-24 | ZEROES | BITS 25-32 | i
| |

321 Mode Formats
Figure 3-6

Notes to Figure 3-6

* T™ represents the tag modifier, which specifies the type of
register to use.

** The instruction itself specifies the type of immediate to
use, When the instruction executes, the processor forms
the immediate in the appropriate form and stores it
intermally for use in the operation. The three formats

3-17 Third Edition

DOC3060-192

shown in Figure 3-6 represent the value that is stored
internally.

*** Bits 1-8 of Immediate Type 3 are formed from bits 17-24 of
the I mode instruction., Similarly, bits 57-64 are formed
from bits 25-32 of the I mode instruction.

Table 3-5
321 Mode Summary

| ™ | SR | BR | Instruction Type | EA |
I l
| 3] 0 | = | Indirect | (D+B)* [
31>	= Indirect postindexed	(D+B)*+S		
21 0	= Indirect	(D+B)*		
21 >	=] Indirect preindexed	(D+B+S)*		
1	0	-	Direct	DB
1] >	-] Indexed	D+B+S		
0] 0-7	O	Register-to-register	—-	
0] 0	1	Inmediate type 1	—	
01>	1	Immediate type 2	—	
0 O	2	Immediate type 3	— I	
0] 1	2	Floating register	—	
]		source (FRO)	—	
0	2	2	Undefined; generates	—
			UII (unimplemented	——
[instruction) fault	—	
0] 3	2	Floating register	——	
	I	source (FR1)	— I	
0] 4-7	2	Undefined; generates	— [
I I I	UII fault	— I		
0] —	3	Undefined; generates	— I	
I I I | UII fault | — I

Note to Table 3-5

Displacements are within the range 0 to '177777, inclusive,

Third Edition 3-18

ADDRESSING

32R Mode

1 2 3 6 7 8 16

| T 1 X | Oop | S | DISPLACEMENT |

Short Instruction Format

1 2 3 6 7 1213 1415 16

| I 1X]| op | 110000 | Oop | CB |

16-bit Long Instruction Format

1 2 3 6 7 1213 1415 16 17 32

| I | X] Op | 110000 | op | CB | DISP |

32-bit Long Instruction Format

1 2 16

[I | ADDRESS [

Indirect Pointer Format

1 2 16

[0| ADDRESS [

Final Effective Address Format#*

— ———— — — — — — — — —— — — . o " — — — — — — — — — —— — — —t St ot i T ot e s S, ety S,
— ——— — —— — — — — — — — — —— — ——— — —— — — — ——— — — e} — — ——— . o s, sy e

32R Mode Formats
Figure 3-7

3-19 Third Edition

DOC3060-192

Table 3-6
32R Mode Summary

| I]X | S | CB | Displacement | Instruction Type |Form of EA]|
[

0] O0]O0] —] 0to '777 | Direct | 0/D |
o110 — 1] 0to'777 | Indexed | 0/D+X |
121010 —1]0to '777 | Indirect | 1(0/D) |
[1]11]0] — 1] 0to'77 | Indirect, preindexed | I(0/D+X) |
[1121] 0] —1 '100 to'777 | Indirect, postindexed | I(0/D)+X |
| 0] 0] 1] — |'"-360 to '+377| Direct | P+D |
] 0] 1] 1] — |"-360 to "+377| Indexed | P+D+X |
1] 0]1] — |"360 to "+377| Indirect | T(P+D) |
11111 — |'"-360 to '+377| Indirect postindexed | I(P+D)+X |
[0 O121]2 | _— | @Postincrement | sp |
lol111]2 | _ | @Postincrement, indirect,| I(SP)+X |
| N B I I postindexed [|
]110]111] 2 | —— | @Postincrement, indirect | I(SP) |
o] O0]11]3 | — | #Predecrement | SpP-1 [
ol 11113 | e | #Predecrement, indirect, | I(SP-1)+X|
[I I I postindexed I |
l12101113 | _ | #Predecrement, indirect | I(SP-1) |
l 0] 0|10 | Oto '177777 | *Direct, long reach | D |
[011]1]0 | O0to '177777 | *Indexed, long reach | DX |
1101210 | Oto '177777 | *Indirect, long reach | I(D) I
| 11111110 | O0to '177777 | *Indirect, preindexed, | I(DHX) |
[N I | long reach I |
1211112 | O0to'177777 | *Indirect, postindexed, | I(D)+X |
I N I I long reach I I
0] 0111 | Oto '177777 | *Direct, stack relative | D+SP |
0] 12111 [Oto'177777 | *Indexed, stack relative | D+SP+X |
[11011111 | O0to '177777 | *Indirect, stack relative| I(D+SP) |
1111111 | 0to '177777 | *Indirect, preindexed | I(D+SP+X) |
[I I [I stack relative [|
211113 [Oto'177777 | *Indirect, postindexed | I(D+SP)+X|
| | | | | | stack relative | |
Third Edition 3-20

ADDRESSTNG

Note to Figure 3-7

The final form of an effective address in 32R mode is only 15
bits wide. Special hardware logic exists to truncate the
effective address to this length. The program counter,
however, is a full 16 bits wide. Multilevel indirection is a
feature of 32R mode.

Notes to Table 3-6

* These instruction types use the 32-bit long format shown in
Figure 3-7,.

@ These instruction types use the 16-bit long format shown in
Figure 3-7. They also increment the contents of SPby 1
during EA formation.

These instruction types use the 16-bit long format shown in
Figure 3-7. They also decrement the contents of SP by 1
during EA formation.

For all instruction types listed above, address traps can occur
when any part of the EA formation results in an address in the
range 0-'7 (segmented mode) or 0-'37 (unsegmented mode). See
the end of this chapter for more information.

The processor performs one level of indexing and multiple
levels of indirection.

0/D indicates that the displacement is within Sector 0; P+4D,
within the current sector.

(B represents the class bits of the instruction.

The instructions STX, FLX, JDX, JIX, LDX, and JSX do not do
indexing. The processor treats the X bit as a 0 to determine
what addressing mode to use. For example, if one of these
instructions specifies I, X, S, and (B as 0113, the processor
interprets it as 0013,

3-21 Third Edition

DOC3060-192

64R Mode

1 23 6 7 8 16

| I | X] oPp |s| DISP |

Short Instruction Format

1 23 6 7 1213 1415 16

I 1X] op | 110000 | OP | CB |

16-bit Long Instruction Format

1 23 6 7 1213 1415 16 17 32

[T 1X]| op | 110000 | op | CB | DISP |

32-bit Long Instruction Format

| ADDRESS l

Indirect Pointer Format#*

— — — — — —— — — — — — — —— — — — — — — — — ——— — — — — —— —

*Only a single level of indirection is possible in 64R mode.

64R Mode Formats
Figure 3-8

Third Edition 3-22

Table 3-7
64R Mode Summary

ADDRESSING

| I 1X | S | CB | Displacement | Instruction Type |Form of EA|
I
0] O] O — 1] 0to '777 | Direct | 0/D [
l0l1]0]—10to'777 | Indexed | 0/D+X [
|1 1010 —10to'777 | Indirect | I1(0/D) |
[111]0] —10to"'77 | Indirect, preindexed | I(0/DHX) |
1110 — 1 '"100 to'777 | Indirect, postindexed | T(0/D)+X |
0] 01| — |'-360 to "+377] Direct | P+D |
0Ol 1] 1] — ['-360 to "+377| Indexed | P+DHX |
]11 0] 1] — |'"360 to '+377| Indirect | I(P+D) |
|21 1] 1] — ["360 to '+377| Indirect postindexed | I(P+D)+X |
lojlo]l1]2 | o | @Postincrement | sp |
ol 111412 | — | @Postincrement, indirect,| I(SP)+X |
[I I [[| postindexed [|
1101112 | — | @Postincrement, indirect | I(SP) |
ol o013 | _— | #Predecrement | SP-1 |
lol1111]3 | _— | #Predecrement, indirect, | I(SP-1)+X|
[R B | | postindexed f |
1101113 | —_— | #Predecrement, indirect | I(SP-1) |
]O1 01110 | Oto'177777 | *Direct, long reach | D |
[0111110 | Oto '177777 | *Indexed, long reach | DX |
11012110 | O0to '177777 | *Indirect, long reach | 1(D) [
1111110 | Oto '177777 | *Indirect, preindexed, | I(D+X) |
1 I | long reach I I
1111112 | 0to'177777 | *Indirect, postindexed, | I(D)¥X |
| A I I long reach | I
0] 0111 | O0to '177777 | *Direct, stack relative | D+SP |
0111211 | 0to'177777 | *Indexed, stack relative | D+SP+X |
1101111 | 0to '177777 | *Indirect, stack relative| I(D+SP) |
11111111 [O0to'177777 | *Indirect, preindexed | I(D+SP+X)]
[I B I I stack relative | [
1111113 | O0to '177777 | *Indirect, postindexed | I(D+SP)+X|
[R I | I stack relative [|
3-23 Third Edition

DOC3060-192

Notes to Table 3-7

For all the instruction types listed in Table 3-7, address
traps can occur when any part of the EA formation results in an
address in the range O0-'7 (segmented mode) or 0-'37
(unsegmented mode). See the end of this chapter for more
information.

* These instruction types use the 32-bit long format shown in
Figure 3-8.

@ These instruction types use the 16-bit long format shown in
Figure 3-8. They also increment the contents of SP by 1
during EA formation.

The processor performs one level of indexing and multiple
levels of indirection,

0/D indicates that the displacement is within Sector 0; P4D,
within the current sector.

(B represents the class bits of the instruction.,

The instructions STX, FLX, JDX, JIX, LDX, and JSX do not do
indexing. The processor treats the X bit as a 0 to determine
what addressing mode to use. For example, if one of these
instructions specifies I, X, S, and (B as 0113, the processor
interprets it as 0013,

Third Edition 3-24

ADIRESSTING

16S Mode

1 2 3 6 7 8 16

I | X] oP | S| DISPLACEMENT [

Instruction Format

1 2 3 16

| X | ADDRESS l

Indirect Pointer Format

1 2 3 16

o

| 0] ADDRESS [

-

Finmal Effective Address Format

16S Mode Formats
Figure 3-9

Note to Figure 3-9

The final form of effective addresses in S mode are only 14
bits wide. Special hardware logic exists to truncate the
effective address to this 1length. The program counter,
however, is a full 16 bits wide.

Table 3-8
16S Mode Summary

| I 1 X 1|8 | Disp | Instruction Type | Example |EA Form |
| |
l 0] 0] 0] 0-'777 | Direct | LDA ADR | 0/D |
|l 0l 0] 1] 0-'777 | Direct | LDA ADR | C/D I
lol1j0] 0-'777 | Indexed | LDA ADR,1 | O/DX |
ol 1)1 0-'777 | Indexed | LDA ADR,1 | C/D+X |
110 0] 0-'777 | Indirect | LDA ADR,* | I(0/D) |
frT1 0012 | O0='777 | Indirect | LDA ADR,* | I(C/D) |
1112101 0-'777 | Indirect preindexed | LDA ADR,1* | I(D+X) |
121 1|1 0-'777 | Indirect preindexed | LDA ADR,1* | I(D+X) |

3-25 Third Edition

DOC3060-192

Notes to Table 3-8

The processor performs indexing before resolving each level of
indirection.

This mode allows multiple levels of both indexing and
indirection.

The instructions, IDX and STX, cannot do indexing. 'The
effective address is formed as if bit 2 = 0,

0/D indicates that the displacement is within Sector 0; C/D,
within the current sector.

32S Mode

1 2 3 6 7 8 16

I]X] oPp | s | DISPLACEMENT |

Instruction Format

1 2 16

ADDRESS |

Indirect Pointer Format

1 2 16

| 0| ADDRESS |

Final Effective Address Format

(2}

32S Mode Formats
Figure 3-10

Note to Figure 3-10

The final form of effective addresses in S mode are only 15
bits wide. Special hardware 1logic exists to truncate the
effective address to this length. The program counter,
however, is a full 16 bits wide.

Third Edition 3-26

ADDRESSTNG

Table 3-9
32S Mode Summary

| I |1 X]S | Disp | Instruction Type | Example |[EA Form |
l l
o] 0] 0} 0-'777 | Direct | LDA ADR | 0/D |
loj o011 0-'777 | Direct | LDA ADR | C/D |
0] 1] 0] 0-'777 | Indexed | LDA ADR,1 | O/D#X |
[0l 111 0-'777 | Indexed | LDA ADR,1 | C/D+X |
12 10]0] 0-'777 | Indirect | LDA ADR,* | I(0/D) |
|1 1011 1] 0-'777 | Indirect | LDA ADR,* | I(C/D) |
l111]10] 0-'77 | Indirect preindexed | LDA ADR,1* | I(D+X) |
[1111 0] '100-'777 | Indirect postindexed | LDA ADR,*1 | I(D)+X |
11111 0-'777 | Indirect postindexed | LDA ADR,*1 | I(D)+X |

Notes to Table 3-9

The processor performs indexing before resolving each level of
indirection.

This mode allows one level of indexing, and multiple levels of
indirection.

The instructions, IDX and STX, cannot do indexing. The
effective address is formed as if bit 2 = 0.

ADDRESS TRAPS

Several of the summaries in the last section specified special cases of
EA formation when the address was within a particular range. This
range of addresses corresponds to registers within the current user
register set in the register file. (See Chapter 9.) In segmented
mode, this range is '0 to '7; in nonsegmented mode, '0 to '37. Note
that this range of addresses for segmented and nonsegmented modes is
referred to as the ATR, or address trap range, throughout this section.

The registers within the user register set contain information, such as
general, base, floating-point, and index registers, and system status
and control information. Each time any part of the EA formation
generates an address within the ATR, an address trap aborts any read or
write to a memory location and instead references the specific
register.

Table 3-10 summarizes when address traps occur for all modes of
addressing and instruction types.

3-27 Third Edition

DOC3060-192

Table 3-10
Address Trap Information

| Mode | Inst Type | Action I

16S,	Memory	Address trap occurs if the EA falls
328,	reference	within the ATR. The format or length
32R,		of the instruction has no bearing.
64R	I I	
I	I I	
	Generic	Address traps never occur.
I		
	Generic AP	Address traps do not occur when the I
		processor is fetching the address [
		pointer,
I	I I	
64V	Two~word	Address traps never occur,
[memory	
I	reference	
I I		
	Short	See Table 3-11. I
[format	
I I		
	16-bit	Address traps occur if the EA falls [
	indirect	within the ATR..
	I	
	32-bit	Address traps never occur. I
	indirect	{
I I I

| 32I | All types | Address traps never occur. [

When bits 17-32 of the program counter contain a value within the ATR
and the processor is reading an instruction, an address trap always
occurs, The only exception to this is if the machine is operating in
321 mode.

When the processor executes short format instructions in 64V mode,
address traps can occur during operand fetches or indirect fetches.
Table 3-11 1lists the conditions that must be present for an address
trap to occur.

Third Edition 3-28

ADIRESSING

Table 3-11

Address Trap Action for Short Format
Instructions, 64V Mode

| D

Action

'0 to '7
'10 to '37

'40 to '377
-'340 to +'377

= o0 ool X
o HO ool Wl

o OO oo

——— — e — e e e, ———— e . ———— — e —

From ATR to '37

'400 to '777
-'340 to +'377

' to '777

H +H o
o o +

-'340 to +'377

-

'0 to '777

I
I
I
I
I
I
I
I
I
I
I
I
I
|
|
|
I
|
I
|
I
I
I
I
I
I
| ='340 to +'377
I

|
|
I
I

'0 through ATR|

I
I
|
|
71
I
I
I
I
I
I
I
I
|
I
I
I
I
I
I

Takes address trap.

Takes address trap only if
segmentation is off.

Cannot take address trap.

Takes address trap if EA (D+RP) is
within the ATR.

Takes address trap if DX is
within the ATR. If DX is
outside the ATR, the EA is
SB(seg #) | DX (850, 750, 9950)
or SB(seg #) | D+X+SB(word #)
(all other V mode Machines).

Cannot take address trap; EA is
SB+D+X (P750, P850, 9950).

All other machines
take address trap if DX is
within the ATR.

Cannot take address trap.

Takes address trap if EA (D+X+RP)
is within the ATR.

Takes address trap if D is
within the ATR.*

Takes address trap if EA
((RP+D)) is within the ATR.*

Takes address trap if D<'100 and
DX is within the ATR.*

Takes address trap if EA (D+RP)
is within the ATR.*

Note to Table 3-11

The indirect address also takes an address trap if EA is within

the ATR.

3-29 Third Edition

DOC3060-192

If an instruction specifies a write operation that could potentially
cause an address trap, the instruction loads the data to be written
into a temporary register. If a trap occurs, the routine aborts the
memory write, It loads the specified register file location with the
contents of the temporary register.

If the instruction specifies a read operation that causes an address
trap, the trap routine aborts the memory read and fetches the contents
of a register file location. It loads this value into the cache to
save it, The trap routine loads it into the area specified in the
instruction from the cache location.

Table 3-12 shows the address trap locations and the registers to which
they correspond, For more information on the register file, see
Chapter 9.

SUMMARY

The fields of a memory reference instruction specify information used
to form an effective address. These fields specify which information
is to be used in the formation, how the formation is to be done,
and — in conjunction with the rest of the program — the addressing
mode under which the address is to be formed. Depending on the
segmentation mode and the EA formation, addresses can reference
registers within the current user register file as well as memory
locations.

Third Edition 3-30

Table 3-12

Address Trap/Register File Correspondence
| AT | S, R Modes | V Mode [
|

| '0 | X | X |
| 'T | A | A, LH |
| '2 | B | LL [
| '3 | S | Y I
| '4 | FAC bits 1-16 | FAC bits 1-16 |
| 'S | FAC bits 17-32 | FAC bits 17-32 |
| '6 | FP exponent | FP exponent I
| 7 | PC, LSBs | PC, LSBs |
| '10* | DIAR3H | DTAR3H |
| '11* | FCODEH | FOODEH [
['12* | FADDRL | FADDRL [
| '13* | | [
| '14* | | SBH |
| '15% | | SBL |
['16* | | LBH |
| '17* | | LBL [
'20*	DMA cell '20H	DMA cell '20H
'21*	DMA cell '20L.	DMA cell '20L
'22*%	DMA cell '22H	DMA cell '22H
'23*%	DMA cell '22L.	DMA cell '22L
'24%	DMA cell '24H	DMA cell '24H
'25%	DMA cell '24L	DMA cell '24L
'26*	DMA cell '"26H	DMA cell '26H
'27*	DMA cell '26L.	DMA cell '26L
'30%	DMA cell '30H	DMA cell '30H
'31*	DMA cell '30L.	DMA cell '30L
'32*%	DMA cell '32H	DMA cell '32H
'33*	DMA cell '32L.	DMA cell '32L
'34*	DMA cell '34H	DMA cell '34H
'35%	DMA cell '34L.	DMA cell '34L
'36*	DMA cell '36H	DMA cell '36H
'37*	DMA cell '36L	DMA cell '36L

Note to Table 3-12

* These correspond to user register file

locations only in nonsegmented mode.

3-31

ADIRESSING

Third Edition

Memory Management

The last chapter showed how the 50 Series systems use information
contained in an instruction to form a virtual address. This address
specifies a location in the virtual address space, which may or may not
correspond to a location currently loaded in physical memory. This
means that the processor must find some way to convert the virtual
address into something that can address a physical memory location, and
must then search physical memory for that location. This chapter
describes how the processor uses a virtual address to address memory,
and describes the data structures (registers and tables) that
facilitate the reference.

THE VIRTUAL ADDRESS

A virtual address is a reflection of the segmented virtual address
space the user sees. A physical address, similarly, must reflect the
pages that make up physical memory. How does the processor make the
transition from a segment-oriented address to a page-oriented one? The
virtual address (diagrammed in Figure 4-1) is the starting point. (As
this figure shows, the page number and DTAR are generally transparent
to the user. They are seen only by the mapping hardware.)

4-1 Third Edition

DOC3060~-192

1 23 4 5 16 17 32

| 0 | RING | 0 | SEGMENT | OFFSET |

Virtual Address Format

l1 23 4 5 l6 17 22 23 32

| 0| RING | 0 | DTAR and SEGMENT # | PAGE # | OFFSET # |

Virtual Address Format as Seen by
the Mapping Hardware

Figure 4-1

The steps the processor takes to convert this virtual address into a
physical address are:

1.

3.

Check the STLB and the cache. If both of these contain the
correct information, the reference can be completed. If not,
go on to the next step.

Translate the virtual address into a physical address. During
the translation, identify if the virtual page containing the
information is currently loaded into main memory. If it is,
load the physical page address (the result of the translation)
into the STIB and retry the access. If main memory does not
contain the page, go on to the next step.

Find the correct virtual page on disk and move it into main
memory. After the virtual page 1s loaded into a physical page,
the reference is retried.

The first task is completely performed in hardware; the second, by a
microcode routine. A software page fault handler performs all aspects

of paging.

Third Edition 4-2

MEMORY MANAGEMENT

MEMORY MANAGEMENT DATA STRUCTURES

All three of the steps in the memory reference operation use several
data structures to maintain needed information:

e Segmentation table lookaside buffer (STLB)

e Cache

® Descriptor table address registers (DTARS)

® Segment descriptor tables (SDTs)

e Page map tables (PMI's), for 9950 only

e Hardware page map tables (HMAPs), for other 50 Series systems
e Logical page map tables (LMAPs), for other 50 Series systems
e Memory map table (MMAP)

Table 4-1 shows the steps in which each structure is used.

Table 4-1
Use of Memory Management Data Structures

| Structure | When Used [
: STLB = STLB/cache access, address translation I|
: Cache : STILB/cache access, address translation :
: DTARS I STIB/cache access, address translation {
: SDWs l Address translation :
‘ PMT's : Address translation, paging (9950 only):
: HMAPS 1 Address translation, paging {
| [(other 50 Series systems) |
I LMAPs = Address translation, paging I
| [(other 50 Series systems) |
: MMAP II Paging :

4-3 Third Edition

DOC3060~192

The STLB

The STIB contains 128 entries on the 9950 and 64 entries on other 50
Each STIB entry specifies one virtual address and one
Since each entry specifies a physical page
address, each STILB entry is valid for a 2-Kbyte block (one page) of

Series systems,

physical page address.

physical memory locations.

STIB entry.

1234

6 7

9 10 21 22 33 34 45%

IVIMIS| RING 1 | RING 3 |PROC ID| SEG | PHYS AIR |

*46 for 9950, which has a 13-bit PHYS AIR field

Figure 4-2 describes the format of each

2
@

Mnem

| Description

-

N

w

T
=)

Iy
©

10-21

22-33

(V8]
T
o
(%))

*

RING 1

RING 3

PROC ID

SEG

PHYS AR

Valid bit. Indicates if the
STLB contains valid data.

Modified bit. Specifies if
the physical page has been
modified since its contents
were loaded from disk.

Shared bit. Indicates if this
entry represents a location
in shared or unshared memory.

|

I

I

|

I

I

I

[

|

I

I

I

| Specifies the Ring 1 access
| rights that are to govern
| the reference.

l

| Specifies the Ring 3 access
l
I
I
I
I
I
I
I
|
I
I
I

rights that are to govern the
reference,

Specifies the process ID for
the process making the
reference to memory.

Specifies the segment number
from the virtual address.

Specifies the physical page
address (from translation).

I
|
|
|
|
I
I
|
|
I
I
I
|
|
|
I
I
I
|
I
I
|
|
I
I
|
|
I
|
I
|

*34-46

Third Edition

for 9950

Figure 4-2

STLB Entry Format

4-4

MEMORY MANAGEMENT

The processor uses a hashing algorithm to access the STIB. Ten bits
from the virtual address are used in the hashing algorithm, as shown in
Table 4-2. This table also identifies the names that will be used for
these bits in the explanation of the algorithm.

Table 4-2
Bits Used in the Hashing Algorithm

| Bits | Name I
Bits 5-6 of the virtual address. DTAR Bit 1
These specify one of the four and

DTARS. DTAR Bit 2
Bits 15-16 of the virtual address. Seg Bit 9

| | |
| | [
| | |
I | [
l | |
| These are the two least significant | and |
| I |
l | |
I | |
| | |
l l |

bits of the segment field. Seg Bit 10
Bits 17-22 of the virtual address. Page Bit 1
These are all of the bits in the through
page field. Page Bit 6

The hashing algorithm exclusively ORs pairs of these bits to form a
6-bit or 7-bit address into the STIB (a 7-bit address for the 9950, a
6-bit address for other 50 Series systems). Figure 4-3 shows how the
bits are ORed to form the address for the 9950 and for other 50 Series
systems.

4-5 Third Edition

DOC3060-192

Page Bit 1 ——|

XOR |— STIB Address Bit 1
DTAR Bit 1 ——|
Page Bit 2 —-|

XOR |— STIB Address Bit 2
DTAR Bit 2 ——|
Page Bit 3 ————— STIB Address Bit 3
Seg Bit 10 ——— STLB Address Bit 4
Page Bit 4 ———|

XOR |— STLB Address Bit 5
Seqg Bit 9 ——|
Page Bit 5 ———— STIB Address Bit 6
Page Bit 6 ——————— STLB Address Bit 7

Hashing Algorithm for the 9950 STLB
Figure 4-3a

Page Bit 1 ——|

XOR |— STIB Address Bit 1
DTAR Bit 1 —|
Page Bit 2 ——|

XOR |— STIB Address Bit 2
DTAR Bit 2 ——|
Page Bit 3 ——|

XOR |— STIB Address Bit 3
Seg Bit 10 ——|
Page Bit 4 -———|

XOR |— STIB Address Bit 4
Seg Bit 9 ——|
Page Bit 5 —————— STIB Address Bit 5
Page Bit 6 ———— STLB Address Bit 6

I
|
I
|
I
I
I
I
I
I
I
I
|
|
I
I
I
|
I
I

Third Edition

Hashing Algorithm for the STLB of Other
50 Series Machines

Figure 4-3b

4-6

MEMORY MANAGEMENT

Cache

Like the STIB, the cache specifies the number of the physical page that
ocontains the desired physical location. In addition, it contains the
contents of that physical location. Figure 4-4 describes the format of
each cache entry.

1 12 1 16

| PHYSICAL PAGE NUMBER | DATA |

I450, 250-II, 550-II Cache Entry Format

1 12 1 32

| PHYSICAL PAGE NUMBER | DATA |

750, 850, Cache Entry Format

1 13 1 32

| PHYSICAL PAGE NUMBER | DATA [

9950 Cache Entry Format

| Bits | Mnem | Description |
I I
1-12	PHYSICAL	Specifies the number of the
or	PAGE	physical page that contains
1-13	NUMBER	the specified location. This
		is the cache index.
I	I	
1-16	DATA	Contains a ocopy of the
or		contents of a location in
1-32		physical memory.

Cache Entry Format
Figure 4-4

4-7 Third Edition

DOC3060-192

DTARS

As described in Chapter 2, the 50 Series virtual address space is
divided into four groups of 1024 segments each, Each group is
referenced through a descriptor table address register (DTAR)
associated with it. The public (shared) segments are referenced
through DTARO and DTAR1; the private (unshared) segments, through
DIAR2 and DIAR3. Figure 4-5 shows the format of the DTARs.

1 1011 16 17 18 32

| SIZE | A | = | B |

Bits | Mnem | Description

I I
[[
| 1-10 | SIZE | Specifies 1024 minus the size of the |
| | | segment table. ‘
I I I

| 11-16 | A | Bits 1-6 of the segment descriptor |
[[| table physical address. |
I I | |
| 17 | — | Must have the same value as bit 18, |
| I | I
| 1832 | B | Bits 7-21 of the segment descriptor |
| | I l

table physical address.

DITAR Format
Figure 4-5

Third Edition 4-8

MEMORY MANAGEMENT

Segment Descriptor Tables

Each of the four DIARs described above points to a segment descriptor
table (SDT). These SDT's contain from 0 to 1024 32-bit entries called
segment descriptor words (SDWs). Each SDW describes one segment, The
table must begin on an even word boundary, and must not cross a segment
boundary. It must also be located in the first 8 Moytes of physical
memory, since the DIAR can specify only a 22-bit address. The format
of the SIWs is shown in Figure 4-6.

1 16 17 18 20 21 23 24 26 27 32
| PHYSICAL ADDRESS | F | Al | — | A3 | PHYSICAL ADDRESS |
Bits | Mnem | Description

1-16 | PHYSICAL | Bits 7-22 of an HMAP's physical starting

See bits 18-20 for a 1list of the
available access codes.
[I
27-32 | PHYSICAL | Bits 1-6 of an HMAP's physical starting
| ADDRESS | address.

I I
| | |
| | ADDRESS | address. Bits 17-22 of this address |
| | | must be 0. =
[I |

| 17 | F | Fault bit, |
| I [|
| 18-20 | Al | Specifies the access rights for Ring 1: |
I I I I
I I | 000 = no access |
[| | 001 = gate |
I I | 010 = read access [
| [| 011 = read, write access |
| I | 100 = reserved I
| [| 101 = reserved |
| I | 110 = read, execute access l
| | | 111 = read, write, execute access |
| [[I
| 21-23 | —— | Reserved. I
I | I |
| 24-26 | A3 | Specifies the access rights for Ring 3. |
| I I I
I I | I
I |
| |
| l

Segment Descriptor Word Format
Figure 4-6

4-9 Third Edition

DOC3060-192

Hardware Page Map Tables

Bits 1-16 and 27-32 of each SDW contain the starting address of a
hardware page map table (HMAP), Each table contains 64 16-bit entries,
each of which contains information about one virtual page. An HMAP
cannot cross a '200000 (65,536) boundary. Figure 4-7 shows the format
of each HMAP entry.

1 2 3 45 16

| R | U | M| S | PAGE ADDRESS |

address of an LMAP entry. (See
Paging, below.)

| Bits | Mnem | Name | Description |
I |
1	R	Resident	Indicates if the page resides in
		Bit	physical memory. 1 indicates
	[residency.	
I I I I			
[2 [U	Used Bit	Hardware sets U to 1 when a page	
I		is used. :	
I I I |

| 3 | M | Modified | Hardware resets M to 0 when a |
I I | Bit | page is modified. I
I | I | |
| 4 | S | Shared | Inhibits use of cache. I
I | | Bit | I
| I I | I
| 5-16 | PAGE | Page | Specifies high-order 12 bits of |
| | ADDRESS | Address | physical page address, or the |
I | I | |
I | I | I

Hardware Page Map Table Entry Format
Figure 4-7

Third Edition 4-10

MEMORY MANAGEMENT

Logical Page Map Tables

As mentioned earlier, each HMAP has a logical page map table (LMAP)
associated with it. Each HMAP entry specifies either the physical
address of a page in memory, or, if that page is not currently loaded
in main memory, the address of an entry in the HMAP's associated LMAP,
This LMAP entry specifies the disk address of the page. Figure 4-8
shows the format of each LMAP entry.

1 2 3 4 5 16

| LOCK | COPY | ALT | DISK RECORD ADDRESS |

| Bits | Mnem | Name | Description |
I I
| 1-2 | LOCK | Locked | If 00, the page is not locked into |
I [| Bits | memory. If 0l, the page is locked |
| | I | into memory. I
I | | | I
| 3 | oopy | Copy Bit | If 0, a copy of this page already |
| [I | exists on disk. If 1, no such copy |
| l | | exists. {
I I [I

| 4 | ALT | Altermate | Contains 1 if the page fault |
| | | Paging | handler should use another paging |
| | | Device [device. [
I I I I [
| 5-16 | DISK | Disk | Specifies the address of the page |
| | REQORD | Record | on disk (to the nearest 8-page |
I | ADDRESS | Address | Dblock). |

LMAP Entry Format
Figure 4-8

Bits 1-2 of the LMAP entry are lock bits. These bits can be set to
ensure that the associated page always remains in main memory and is
not mapping tables, I/O buffers, or some of the data structures
described in this chapter. By locking these contents into main memory,
the processor can always be sure to access the correct data and
complete vital operations when it cannot stop to handle a page fault.

4-11 Third Edition

DOC3060-192

Page Map Tables

Bits 1-16 and 27-32 of each SDW contain the starting address of a page
map table (PMT). These tables contain 64 32-bit entries, each of which
contains information about one page.
'200000 (65,536) boundary.

map table entry.

1 2

3 4 5

16 17 19 20 32

[R |1 U | M| S | SOFIWARE | 000 | PAGE ADDRESS |

A page map table cannot cross a
Figure 4-9 shows the format of each page

| Bits | Mnem | Name | Description

I

[I I I

[1 [R | Resident | Indicates if the page resides in
[| | Bit | physical memory. 1 indicates
I | I | residency.

l I | I

| 2 | U | Used bit | Hardware sets U to 1 when a page
I | | | is used.

| | I I

[3 | M | Modified | Hardware resets M to 0 when a page
I | | Bit | is modified.

I I | I

[4 | S | Shared | Inhibits use of cache.

I : : Bit {

l

| 5-16 | SOFIWARE | Software | Reserved for software use.

I I I |

[17-19 | — | —— | Must be zero.

| | | l

| 20-32 | PHYSICAL | Physical | Specifies high-order 13 bits of a
| | ADDRESS | Address | physical page address.

PMT Entry Format (for 9950 only)

Third Edition

Figure 4-9

4-12

MEMORY MANAGEMENT

Memory Mag

Each entry of the memory map table (MMAP) describes one physical page
and tells whether it is already in use, is available for use, or does
not exist, The first two descriptions, page in use and page is
available, are self-explanatory. The last, page does not exist,
indicates that the system is not currently accessing this page. This
means that the system can still run even if part of physical memory has
a problem or does not exist. Figure 4-10 shows the format of each MMAP
entry.

1 16 17 32

| PAGE STATUS | |

Bits | Mnem | Name | Description

I I
| I
1-16	PAGE	Page	Contains a two's complement integer:
	STATUS	Status	
			n<0: Page is not to be used
I [((does not exist). I			
I			n=0: Page is available. I
] n>0: Page is in use; n is a	
		I pointer to the HMAP entry	
		I for that page. {	
I | I I

| 17-32 | —— | Unused | Reserved for future use. |

MMAP Entry Format
Figure 4-10

ACCESSING THE STLB AND CACHE

As described in Chapter 2, the STIB and the cache are high—speed
buffers. If these buffers contain valid information for the process
making a reference to a piece of data, the processor can access them in
very little time instead of having to make a long memory access.

The hardware accesses both the STIB and the cache in parallel to speed
up the reference. A slightly different set of actions is performed,
depending on whether the operation is a read or a write. Refer to
Figures 4-11 and 4-12 when reading the text in these sections.

4-13 Third Edition

DOC3060-192

Read Memory Access

As shown in Figure 4-11, the hardware performs three tasks in parallel:
it references the STIB, references the cache, and validates the
reference's access rights. The priority among these three tasks is
also illustrated in the figure: the leftmost task (checking STLB
entry) has a higher priority than the access check, and the access
check has a higher priority than the cache entry stage. This means
that if a problem arises in the STIB entry stage, that is solved first;
then the whole access is retried from the beginning. The text in this
section describes the access according to this priority.

Step 1. Accessing an STLB Entry

The hashing algorithm described above uses bits from the virtual
address to choose an STIB entry. To make sure that this entry contains
valid data, the hardware checks the entry's valid bit. If it contains
1, the entry is valid; 0, invalid. The hardware must also check that
the process ID in the STIB entry is identical to that of the process
making the reference, This is done only if the segment number
specified in the wvirtual address is greater than or equal to
'4000 — that is, if the segment specified is an unshared segment. If
these conditions are met, the STLB entry contains valid data and can be
used,

If the conditions are not met, the STIB needs to be loaded with the
correct data. Therefore, the address translation microcode is invoked.
(See Address Translation, below.) Assuming no page faults occur, the
new translation is loaded into the STLB entry, and the used bit in that
entry is set to 1. The reference is then retried from the beginning.

Step 2. Choosing an Access Field

If the STLB entry contains valid data, the hardware must determine what
access rights should govern the reference. This requires two steps:
first, isolating the ring number that specifies what access field to
use; and second, using the access field contents to determine whether
the reference is valid or not. Note that STIB entries for segment 0
have no ring field entry and can be accessed only by Ring 0.

To isolate the ring number, the processor weakens the ring number
contained within the program ocounter by logically ORing it with the
ring number contained in the effective address. This screens out all
invalid references to lower-numbered rings (inward references), but
allows references to higher-numbered rings (outward references) to be
made,

This screening process makes sure that the access rights of the

referencing procedure are weaker than those of the referenced
procedure. If this were not done, then a Ring 3 procedure could call a

Third Edition 4-14

Proper
access?

. Start memo
Find page Access and read dag
map entry fault into cache

re':?g:n . YES Set Used bit Y

n in STLB entry
Invoke page Load STLB
fault handler entry

Yoy

~40,000 usecs

<.001%

4 ysecs 1.2 usecs

S5-1% 14.5%

Read Memory Access
Figure 4-11

4-15

MEMORY MANAGEMENT

Use data
from cache

'

.08 usecs

85%

Third Edition

DOC3060~-192

Ring 0 procedure, which in turn could call several procedures for which
the Ring 3 procedure had no access rights. Screening out such
references protects the integrity of the entire system.

Once the EA ring number has been weakened, the processor uses the
weakened ring number to select an access field., If the ring number is
00, the hardware assumes that the reference has unlimited access and no
further access checking is done. If the ring number is 01 or 11, the
hardware uses the Ring 1 or Ring 3 access fields, respectively, in the
STLB entry as the access field., If the ring number is 10, undefined
results occur.

The access fields in the STILB entry specify the operations that
references using this entry can legitimately perform. Table 4-3 lists
the values these fields can contain and their meanings.

Table 4-3
Access Field Values and Their Meanings

Value | Description

| |
l |
| 000 | No access I
| 001 | Gate (See Chapter 8.) [
| 010 | Read access |
| 011 | Read, write access [
100	Reserved
101	Reserved
110	Read, execute access
111	Read, write, execute access

The hardware checks the operation specified in the instruction, making
the reference against the selected access field to ensure that the
operation is valid. For example, if the instruction specifies a read
operation and the selected access field allows reads, then the read
operation is valid. If, however, the instruction specifies a write and
the access field allows only reads, then the operation is invalid. In
the first case, the processor performs the valid operation and program
execution continues. In the latter case, an access fault occurs and
control transfers to the access fault handler. See Chapter 11 for more
information about faults.

A reference must have read access to perform either a write or an
execute operation. If an instruction specifies either a write or an
execute and the access field does not allow reads, an access fault
occurs,

Third Edition 4-16

MEMORY MANAGEMENT

Step 3. Accessing the Cache

If the access check is successful, the hardware references the cache.
To do this, the hardware must form an address that references an entry
in the cache index, which in turn specifies an entry in the cache data.
The cache index address is formed in one of two ways, depending on the
processor.

For the 2250, 250-II and earlier Prime systems, the hardware uses bits
23-32 in the virtual address as an address of an entry in the cache
index. These bits are the 10-bit offset field.

For the I450 and the 550-I1I, the hardware uses bits 21-32 of the
virtual address as an address of an entry in the cache index; the 750,
850, and 9950 use bits 20-32 of the virtual address. These are the
least significant two or three bits of the page field and the 10-bit
offset field, Note that the extra two or three bits create a virtually
mapped cache. See Mapped I/0 in Chapter 12 for information about how
the MBIO bits in the IOTIB reconstruct this virtual mapping.

When the hardware has an address, it uses it to select an entry, j, in
the cache index. Entry j contains a physical page address, which the
hardware compares to the physical page address specified in the STIB
entry. If the page numbers are the same, then the jth entry in the
cache data area contains the contents of the desired physical location.
These contents are used in the specified operation.

If the page numbers are not the same, the hardware must read the data
in the specified physical location into the cache., It starts memory,
reads the data into the cache, and then retries the access from the
beginning.

Step 4. Timing Considerations

Figure 4-11 1lists the time taken by each step of the read memory
access, These figures are based on a 1 MIP machine., The figure also
notes the percentage of times each step is likely to occur. As shown,
the cache and STLB contain the needed information 85% of the time, and
so the access requires only 80 nanoseconds. In addition, even though a
page fault requires 40,000 microseconds it occurs very rarely (on the
order of 10 per second). The other three steps occur the majority of
the time, and give the system an average read memory access time of
.24~.26 microseconds.

Write Memory Access

Figure 4-12 describes the general stages that occur in a write memory
access., Note that the hardware references the STIB, validates the
reference's access rights, and checks the STIB modified bit in
parallel. However, the access validation takes precedence over

4-17 Third Edition

DOC3060-192

checking the modified bit, and the STLB entry access takes precedence
over the access validation. This means that if problems occur in one
of the stages with higher precedence, the problem is corrected and the
access is retried from the beginning even if no problems occur with
other stages.

Stage 1. Accessing the STLB

The hardware uses the hashing algorithm described above to select an
STIB entry. The entry is validated in the same way as that described
in the Read Memory Access section.

Stage 2. Checking the Access Rights

This stage is identical to that described in the Read Memory Access
section above.

Stage 3. Checking the STLB Modified Bit

If the STLB entry is valid and if the reference has the proper access,
the hardware checks the STIB entry's modified bit, If this bit
contains 1, the page has been modified since this STIB entry was last
used. This means that hardware must reload the STIB entry via the
address translation mechanism. Once the new translation is loaded into
the STIB entry, the reference is retried from the beginning.

If the STLB entry's modified bit is 0, then the entry contains valid
data. The hardware forms the address of a cache entry (see Accessing
the Cache, above), starts memory, and writes the ocontents of the
referenced location into that cache entry.

Stage 4. Timing Considerations

Figure 4-12 lists the time each step of the write memory access takes.
These figures are based on a 1 MIP machine. The figure also notes the
percentage of times each step is likely to occur., As shown, the STIB
contains the needed information 35-64% of the time, depending on
whether the accesses are overlapped or not. In the case of overlapped
transfers, the system's average write access time is about .22
microseconds; for transfers that are not overlapped, the average time
is about .32 microseconds.

Third Edition 4-18

A ¥
STLB
YES entry YES
modified
?
Translate Translate
address address
A
\J
Page
resident Mark page Mark page
” as Used as Moditied
4 Y
Invoke page Load STLB Reload
fault handler entry STLB entry
3 v . Y B v
33000 usecs 4 usecs 4 usecs
004% 1% 1%

Write Memory Access

Figure 4-12

4-19

MEMORY MANAGEMENT

Start memory
and write ——3
into cache

.B usecs
(not overlapped)
35%
.28 psecs
(overlapped)
64%

Third Edition

DOC3060-192

Address Translation

When the STIB does not contain information about the virtual-to-
physical translation, a microcoded part of PRIMOS (called the address
translation mechanism, or ATM) must perform the translation. The
DIARs, the segment descriptor tables, and the hardware page map tables
allow the ATM to make the correct reference.

When reading the detailed description of the translation process, refer
to Figures 4-13a and 4-13b. Figqure 4-13a depicts address translation
on the 9950; Figure 4-13b, address translation on other 50 Series
systems. The numbers labelling the discussion match the numbers on the
diagram.

1. Interpreting the Virtual Address

The virtual address derived from the information ocontained in an
instruction is a 30-bit quantity. When the translation occurs, the
virtual address is interpreted as shown in Figure 4-1. Bits 2-3
contain protection information and will be described in the next
chapter. Bits 5-16 contain a segment number; bits 17-22, a page
number; and bits 23-32, an offset. The AT looks at bits 5-6 first,
since they specify one of the four DIARs. The ATM references the
specified DTAR.

2. Referencing the DTAR

The specified DTAR contains the address of a segment descriptor table,
as well as the size of the table. The AT uses the contents of bits
11-32 of the DIAR to form the starting address of the SDT.

3. Validating the Segment Number

After forming the table's starting address, the ATM uses bits 7-16 of
the virtual address as an offset into the table. It first compares the
segment number contained in these bits to bits 1-10 of the DIAR to
check if the virtual address specifies an invalid segment. If the
segnent number 1is greater than the maximum allowable table size, the
segnent number is invalid and a segment fault occurs (segment number
too large). If the segment number is less than or equal to the maximum
allowable table size, the segment number is valid and the AT adds the
segment number to the starting address of the SDI. The sum specifies
an entry, n, in the SDT.

Third Edition 4-20

MEMORY MANAGEMENT

ﬂ 19810 Tu< abey m>c&

€2

}

vL €1

®

L

ssaippe
jeaisAyd
jeuly

Tn<w>:aﬂ 0 _EsEm_ s | winlu|*—

[A

& 61

9l

®

S

v € Z |

Jaquinu
abed sn|d
ssalppe
Bunueys
s|qey

W Anug

ssaippy Bullels

-
alqe) .Ilr

—

dew abey _

wyshug | ey [oo [uv | 4 4pvshua |-

ze

L 9z vz €T

®

Lz oz

8L LL 9t L
Jaquinu

abed sn|d
ssaippe
Bunieys

a|qel

®

N Mas
a)qey jo
Hejs 0} sjuiod
-
42198l —
10)dlIosaqg
juawbag HHE
gZ e L9}

A

®
[Fe [=

2€8L L 9LiLoL L

g Hvlia

Zyvia

L HvYl1a

eHvia

1 1l

— 19S1H0 _ # obeyg _* Eoanm_ P _ m:_m—aq

[4

€2 zz 4 9 5
$SaIppYy [eNMIA

v €

z

L

Address Translation on the 9950

Figure 4-13a

Third Edition

4-21

DOC3060-192

4. Referencing the Spr

Entry n in the SDT' contains a segment fault bit, access information
(see next chapter), and the address of a hardware page map table
(HMAP)., The ATM checks bit 17, the fault bit, for an invalid segment.
If F contains a 1, the segment is invalid or an HMAP is missing, and a
segment fault occurs. If F contains a 0, the segment is valid and the
ATM uses bits 1-16 and 27-32 of entry n as the starting address of an
HMAP. The ATM adds the contents of bits 17-22 of the virtual address
to the starting address in order to specify an entry (entry m) in the
HMAP.

In the 9950, the AT™M adds twice the value of bits 17-22 of the virtual

address to reference the correct entry in a 640-element entry page map
table,

5. Checking Page Status

Bits 1-4 of entry m contain status information about a page of memory.
When the entry is obtained from memory, the ATM examines the used (U)
bit, If the content is 1, the page is assumed to be resident (R
bit=1). 1If the U bit content is 0, the resident (R) bit is examined.
If R contains 1, the page is resident but unused; the ATM sets the U
bit in the PMI/HMAP entry and loads the translation into the STIB. If
R contains 0, the page is not resident and a page fault occurs.
(Chapter 11 contains more information about faults.) This ordering of
the examination of the U and R bits maximizes the speed of the ATM,

Note

The combination of R=0 and U=1 is 1illegal and will cause
undefined results.

6. Forming the Address and Loading the STILB

After determining that no page fault exists, the 9950 A™ combines the
physical page address contained in bits 20-32 of the PMT entry with
bits 23-32 of the virtual address to form a 23-bit physical address.
The ATM for all other 50 Series systems combines the physical page
address contained in bits 5-16 of the HMAP entry with bits 23-32 of the
virtual address to form a 22-bit physical address. This is the final
physical address, The AT loads this address, plus its associated
access information, into the STIB. The translation process for any
address has to be done only the first time that location is referenced,
because after that the STLB contains the translated value.

Third Edition 4-22

_ 198410 _.._u< abey m>ﬂ_ ssalppe

jeaisAyd

€2

A

MEMORY MANAGEMENT

Pl €1 1 leuiy

®

T<m>£_w_:_:_|_l

9L S v €& ¢

Jsaquinu
® abed snid
ssalppe
Bun.els

W Anug

s|qe)

sselppy buiuels

—L ——

N Mas

a|qe} Jo
}11e)s 0} sjuiog

d s|qel = ——
10ydliasa
EoEmwm Eﬂn

ez 1z

4

®@

L9 L

€ dvila

cdvia

E0D

2€8L LL 9L L O

I °Hv1iQ

odviqQ

a|qe. dew abe

1aeL d |pvshua | ev [oo [v | 4 4pv shud |e«—

F4 Le 92 2 €2 tZ20Z 8L L9 i

Jjaquinu

abed sn|d

® ssaippe

Bunaels

a|qel

®

1

T e

r 19SHO _ # abeg _*Emanw— 0 _ Buiy E

Z€

€ 2z FA. 8 S v €
SSaJppY |enlIA

4

8

Third Edition

Address Translation on Other 50 Series Machines
Fiqure 4-13b
4-23

DOC3060-192

PAGING

When a requested page is not in main memory, a page fault occurs.
Often, a page must be moved out of main memory and onto disk so that
the new page can be loaded in. The software page fault handler uses
three tables to move out a page, if necessary, and load in the
requested page: the memory map table, and either the page map table
(for 9950) or the hardware page map table and the logical page map
table (for all other 50 Series systems).

Refer to Figure 4-15 when reading the text in this section.

Step 1. Locating the Page on Disk

The first thing the page fault handler must do is locate the specified
page on the disk., it uses the virtual address to reference an SDT
entry (see Address Translation, above), which contains the starting
address of a PMT/HMAP. This starting address and the contents of the
virtual address page field allow the handler to reference an HMAP
entry.

The HMAP specifies the starting address of an LMAP, The virtual page
field contents are used as an offset into this table to reference an
LMAP entry. Bits 5-16 of the LMAP entry specify a paging device index.
This index points to a block of eight pages on the disk. (PMI bits
5-16 perform a similar function; they are reserved for software use.)

To choose one of the eight pages in this block, the handler uses the
three least significant bits of the virtual address page field. The
resulting address of the page on disk is shown in Figure 4-14.

1 12 13 15

| PAGING DEVICE INDEX | VIRTUAL ADDRESS BITS 20-22 |

Disk Page Address
Figure 4-14

Third Edition 4-24

MEMORY MANAGEMENT

Step 2. Allocating a Page in Physical Memory

Before the handler can locad the page from disk into main memory, it
must find a place to put it. It checks MMAP for an available page. If
there are no available pages, it uses a first in, not used, first out
algorithm to choose a page to move out of main memory. (With periodic
polling, this algorithm gives an effective simulation of a first in,
first out algorithm. It also provides many of the same benefits as a
least recently used algorithm.)

Each PMI/HMAP entry contains a used bit (U) that specifies whether the
page the entry identifies has been used since the last page fault
occurred., If U contains 0, the page has not been used; if U contains
1, the page has been used. The page fault handler checks the used bits
and identifies the first available page whose U is 0. This algorithm
assures the handler that the page to be moved out of memory is not one
currently being used by another process.

The handler can be configured to use the LRU algorithm to check for
more than one currently available page. When this is done, the handler
identifies several least recently used pages (default is 3) and
prepares to move them out of main memory. ‘This is called prepaging
(also known as paging ahead or anticipatory clearance). It can speed
up processor execution by paging out several pages during one page
fault. Wwhen the next page fault occurs, the handler has only to load
the disk page into main memory without first having to clear a space
for the page.

Step 3. Saving the 0ld Page Contents

After the handler identifies available physical pages, it must choose a
page to page out, and must determine whether or not it must store the
old page contents on disk before loading in the new information. The
PMT/HMAP entry aids in this task.

Bit 2 of the PMI'/HMAP entry specifies whether this page has been used
since this entry was last reset. If the page has not been used, then
the handler can move it out without adversely affecting any running
processes. If it has been used, the handler should locate another page
to move out, since some process is likely to be using this page.

When the handler chooses a used page to page out, it checks bit 3 of
the PMT/HMAP entry to determine if the page's contents have been
modified since they were moved into main memory. If the old contents
have not been modified (bit 3 contains 1), the handler can load in the
new contents immediately. If the old contents have been modified (bit
3 contains 0), the handler must save a copy of them on disk before
loading in the new data.

4-25 Third Edition

DOC3060-192

Use virtual address
to reference
an HMAP entry

Y

Use HMAP entry
to reference
an LMAP entry

v

Use LMAP entry and
bits 20-22 of

virtual address

as disk address

Page
available

A

Goonto
next disk page

Save old page
contents on
disk

Load disk page
into memory.
Update data
structures.

Third Edition

Paging
Fiqure 4-15

4-26

MEMORY MANAGEMENT

Like the LRJ algorithm, the HMAP entries save the system processing
time by limiting the number of disk accesses necessary to page in new
information. By checking the entries periodically and tracking how
they change, the handler determines the best page to swap out of main
memory.

Step 4. Loading the Available Page

Once the handler has a physical page available, it loads a copy of the
disk page into the physical page. After the copy, the handler updates
the affected entries in the SDW, HMAP, IMAP, and MMAP.

SUMMARY

This chapter described how a 50 Series system uses a virtual address to
locate information in physical memory. The cache and STLB provide
rapid means of locating commonly referenced information without
requiring memory access. When these buffers do not contain the desired
information, PRIMDS can translate the user's virtual address into a
physical one through the use of specialized data structures and
algorithms, The software page fault handler ensures that information
currently on disk is moved in a controlled fashion into main memory
when it is needed.

4-27 Third Edition

Restricted Instructions
and Control
Information

The previous three chapters have described physical and virtual memory,
how they are manipulated, and the data structures used in their
manipulation., These data structures, like many parts of PRIMOS, are
essential to system operation and so are protected against use by the
casual user. However, a set of restricted instructions is available
for situations that require manipulation of these and other system
structures.

Restricted instructions can be executed in Ring 0, and many of them
perform system functions, such as purging an STIB entry. Others
manipulate some of the other system data structures, such as the keys
register or the sense switches. This chapter describes some of these
other data structures, especially the keys and modals, and 1lists the
restricted instructions and describes what they do. For more detailed
information about these instructions, refer to the appropriate entries
in Chapters 13 and 14.

OTHER SYSTEM DATA STRUCTURES

There are other data structures the system uses:
® Modals
® Keys

e CBIT, LINK, and condition code bits

5-1 Third Edition

DOC3060-192

Modals

The 16-bit register called the modals contains information about the
state of the processor. This register specifies information needed by
the hardware and the operating system, such as the type of process
control the system uses and which user register set is currently
active. (See Chapter 10.) Note that this register is directly
accessible only in V and I modes.

Figure 5-1 shows the normal setting of the modals that PRIMDS uses.

Figure 5-2 shows the format of the modals. Table 5-1 1lists the
instructions that modify the modals.

1 89 1112 16

| 11000000 | CRS | 11111 |

Normal Modals Setting
Figure 5-1

Third Edition 5-2

1 2

RESTRICTED INSTRUCTIONS

89 11 12 13 1415 16

| E| Vv | 000000 | CRS | MIO | PXM | S | MCM |

Mnem |

Description

MIO

PXM

MCM

Enable interrupts:
0 = interrupts disabled
1 = interrupts enabled

nn

Vectored interrupt mode:
0 = standard interrupt mode
1 = vectored interrupt mode

Must be zero.

Specifies the current register set.
Only the PXM can alter these bits.
(See Chapter 8.)

Specifies the current mode of I/0:
0 = unmapped mode
1 = mapped mode

Process exchange enable/disable:
0 = process exchange disabled
1 = process exchange enabled

Specifies the mode of segmentation:
0 = no segmentation
1 = segmentation

Machine check mode:
00 = no reporting
01 = report only uncorrected memory
parity errors
10 = report only unrecovered errors
11 = report all errors

See Chapter 10 for more information.

e e et — — . — — i — — — — ——— — | —— e, e o e, e ettt S . s . o it

Modals Format
(V and I Modes Only)

Figure 5-2

5-3 Third Edition

DOC3060-192

Table 5-1
Modals Instructions

| Mnem | Name | Modes | Description |
I |
| EMCM | Enter Machine | S,R,V,I| Enters machine check mode. [
| | Check Mode | | |
| | I [[
| ENB | Enable | S,R,V,I| Sets bit 1 of the modals to 1. |
| | Interrupts | i |
I I | | |
| ESIM | Enter Standard | S,R,V | Resets bit 2 of the modals to 0.]|
| | Interrupt Mode | I |
| I | I [
| EVIM | Enter Vectored | S,R,V | Sets bit 2 of the modals to 1. |
[| Interrupt Mode | | I
I | | I |
| INH | Inhibit | S,R,V,I| Resets bit 1 of the modals to 0.]|
| | Interrupts l I I
| I I | |
| LM(M | Leave Machine | S,R,V,I| Leaves machine check mode. |
| | Check Mode I I I
I I I I |
| LPSW | Load Program | V,I | Loads the PSW with the contents |
I | Status Word | | of a location in memory. I
		I	
RMC	Reset Machine	S,R,V,I	Resets bits 15-16 of the modals
	Check Flag to 0		to 0 and inhibits interrupts
			for the next instruction.
Keys

The other 16-bit register, the keys, describes the currently running
process and the procedure that process is executing. The keys contain
status information (such as the mode of addressing currently enabled)
and specify fault handling information. Figure 5-3 shows the format of
the keys for S and R modes; Figure 5-4 shows the format for V and I
modes. Table 5-2 lists the instructions that modify the keys.

Never modify the keys or modals with the STLR instruction; use only
the instructions listed in Tables 5-1 and 5-2. In addition, never use
LPSW to change bits 15-16 of the keys or bits 9-11 of the modals. For
more information, refer to individual instruction descriptions in
Chapters 13 and 14.

Third Edition 5-4

1

2

3

RESTRICTED INSTRUCTIONS

4 6 7 8 9

16

[CBIT | DBL | — | MODE | FEX | IEX | VISIBLE SHIFT QOUNT |

Mnem

| Description

DBL

MODE

IEX

VISIBLE
SHIFT

Reflects arithmetic conditions of
some instructions.

Reflects arithmetic mode:
0 = single precision
1 = double precision

Reserved for future use.

000
001
010
011
100
101
110
111

16S
328
64R
32R
321
unused
64V
unused

handler on error
1 = set BIT to 1 only on error

Integer exception enable/disable:
1 = set BIT to 1 only on error

handler on error

Bottam half of the floating-point
exponent.

Specifies the current mode of addressing:

Floating-point exception enable/disable:
0 = set BIT to 1 and invoke fault

0 = set BIT to 1 and invoke fault

Keys Format, S and R Modes
Figure 5-3

Third Edition

DOC3060-192

1 23 4 6 7 8 9 10 11 12 13 14 15 16

|CBIT|O|LINK| MODE |FEX|IEX| LT| BEQ|DEX| ASCII-8 |RND|P850|IN]| SD]|

Bits | Mnem | Description

Reflects arithmetic conditions of
some instructions.
Must be zero,
LINK Reflects arithmetic conditions of
some instructions.
MODE Specifies the current mode of addressing:
000 = 16S
001 = 32S
010 = 64R
011 = 32R
100 = 321
101 = unused
110 = 64V
111 = unused

o

[L I 1

0 = set CBIT to 1 and invoke
fault handler on error
1 = set GBIT to 1 only on error
IEX Integer exception enable/disable:
0 = set GBIT to 1 only on error
1l = set CBIT to 1 and invoke

fault handler on error

1

Less Than condition code:
1 reflects a less than 0 condition.

LT

Equal To condition code:
1 reflects an equal to 0 condition.
DEX Decimal exception enable/disable:
0
1

set CBIT to 1 only on error
set GBIT to 1 and invoke
fault handler on error

wou

I
|
I
|
I
|
|
I
|
|
|
|
I
|
I
I
|
FEX | Floating-point exception enable/disable:
|
|
|
I
I
I
I
I
I
|
I
I
|
I
I
I
|
|
I

Keys Format, V and I Modes
Figure 5-4

Third Edition 5-6

RESTRICTED INSTRUCTIONS

Description

13

14

15

16

ASCII character representation:
specifies whether 7-bit or 8-bit ASCII
characters are to be used.

0 = most significant bit of characters
is 1 (8-bit format)

1 = most significant bit of characters
is 0 (7-bit format)

Used on 9950 only.

Disregarded on other machines.

Floating—point round: specifies the form
of rounding to use in floating-point
operations.

0 = no rounding
1 = rounding
Used on 9950 only.

P850 bit: used by the P850 processor.

In dispatcher: specifies if the current
process associated with the register
is in the dispatcher.

0 = process is in the dispatcher
1 = process is not in the dispatcher
Only the PXM alters this bit.

Save done bit: specifies if PXM has saved
values of current register set.
0 = save must be done before this
register set can be used
save has been done and this
register set is available
Only the PXM alters this bit,

1

Keys Format, V and I Modes
Figure 5-4 (continued)

5-7 Third Edition

DOC3060-192

Table 5-2
Keys Instructions

| Mnem | Name | Modes | Description |
I |
| DBL. | Enter Double | S,R | Sets bit 2 in the keys to 1. |
[| Precision l | |
I | Mode I I I
| E16S | Enter 16S | S,R,V,I | Sets bits 4-6 of the keys |
| | Mode | | to 000. |
| E32I | Enter 32I | S,R,V,I | Sets bits 4-6 of the keys l
| | Mode [| to 100. |
| E32S | Enter 32S | S,R,V,I | Sets bits 4-6 of the keys |
| | Mode | I to 001. I
| E32R | Enter 32R | S;R,V,I | Sets bits 4-6 of the keys I
| | Mode I | to 011. I
| E64R | Enter 64R | S,R,V,I | Sets bits 4-6 of the keys |
| | Mode I [to 010. |
| E64V | Enter 64V | S/R,V,I | Sets bits 4-6 of the keys I
I | Mode I | to 1l0. I
| INK | Input Keys | S,R,I | Reads the keys into the |
I | | | specified register. I
| OTK | Output | S;R,I | Loads the keys with the |
| | Keys [| contents of the specified |
| | Mode I | register. I
| RGB | Reset BIT | S,R,V,I | Sets the value of (BIT in I
| | I | the keys to 0. |
| SCA | Load Shift | S,R | Loads bits 9-16 of the keys |
| | Count into A | | into bits 9-16 of A. I
| SCB | Set CBIT | S;R,V,I | Sets the value of CBIT in |
I I I | the keys to 1. l
| SGL. | Enter Single | S,R | Sets bit 2 in the keys to 0. |
| | Precision | I I
I | Mode | | I
| LPSW | Load PSW | V, I | Loads new data into the [
| | | | keys, modals, and program |
I | I | counter. |
| TAK | Transfer A | S,R,V | Transfers the contents of A |
[| to Keys | | into the keys. I
| TKA | Transfer | S,R,V | Transfers the contents of |
| | Keys to A | | the keys into A. |
Third Edition 5-8

RESTRICTED INSTRUCTIONS

CBIT, LINK, and the Condition Codes

Some of the bits in the keys merit extra discussion. Bit 1, BIT, and
bit 2, LINK, are set by many instructions to indicate conditions under
which the instruction completed execution. Several instructions
performing arithmetic operations, for example, set BIT to 1 to
indicate that the operation has resulted in an overflow (result too
large to fit in the specified number of bits). Others set LINK to 1 to
reflect a carry out condition. Still others set BIT to indicate a
fault condition. The instruction entries in Chapters 13 and 14 state
how each instruction affects the values of these bits.

Also note that bits 9-10 of the keys contain the condition codes. Many
arithmetic, branch, skip, jump, and other instructions set these bits
to indicate the result of a test (result is less than 0, for example),
to indicate whether a value is positive or negative, and so on. Other
instructions use the condition code values as Boolean values. The
instruction entries in Chapters 13 and 14 also describe how an
instruction affects the state of these bits.

I shows whether or not a 16- or 32-bit result is equal to 0. LT
contains the extended sign for arithmetic and comparison operations.
The extended sign is the sign of the result as if the operation had
been done on a machine of infinite precision; thus, LT shows the
correct sign of the result despite any overflow. For logic operations,
LT reflects the sign of the result. Table 5-3 shows condition code
interpretation for comparison, arithmetic, and logic operations.

5-9 Third Edition

DOC3060-192

Table 5-3

Interpretation of Condition Codes

negative number is
added to itself.
(CBIT is set to 1
as well, to

| LT, BQ | I I

| Values | Comparison | Arithmetic | Logic

I

| 00 | Register > 0 | Signed result > 0 | Result <> 0,

| | Register > EA | Unsigned result <> 0 | High-order bit =
| | Reg 1 > Reg 2 | [

I + . t

] 01 | Register =0 | Result =0 | Result = 0,

| | Register = EA | | High-order bit =
| | Reg 1 = Reg 2 | |

I t } 4

| 10 | Register < 0 | Result =0 | Result & 0,

| | Register < EA | | High-order bit =
| | Reg 1 < Reg 2 | I

I t } +

| 11 | Not working | Possible if largest Not working

| | |

I I I

I | |

| | |

I I I

indicate overflow.)

Third Edition

5-10

RESTRICTED INSTRUCTIONS

RESTRICTED INSTRUCTIONS

Table 5-3 lists the restricted instructions and briefly describes
their actions. Refer to Chapters 13 and 14 for more information about
these instructions.

Table 5-3
Restricted Instructions

| Mnem | Name | Modes | Description {
|

| CAI | Clear Active | S,R,V,I | Clears the currently active |
| | Interrupt | | interrupt. |
| EI0O | Execute I/O0 | V,I | Executes an effective address I
I | | | as an I/0 instruction. |
EMOM	Enter Machine	S,R,V,I	Enters machine check mode.
	Check Mode [l		
ENB	Enable	S/R,V,I	Enables interrupts so that
	Interrupts I	devices can request service.	
ESIM	Enter Standard	S,R,V,I	All interrupts use location '63
	Interrupt Mode		to reach the interrupt handler.
EVIM	Enter Vectored	S,R,V,I	Services interrupts according to
	Interrupt Mode		their priority on the I/O bus.
HLT	Halt	S,R,V,I	Halts the processor.
INA	Input to A	S,R	Loads data from the specified [
[device into A.
INBC	Interrupt	V,I	Notifies during the interrupt
[Notify		code. Uses LIFO queuing.
I	I	Clears the currently active	
	l	interrupt.	
INBN	Interrupt	Vv, I	Notifies during the interrupt
	Notify		code. Uses LIFO queuing.
			Does not clear the currently
	[active interrupt.	
INEC	Interrupt	v, I	Notifies during the interrupt
	Notify		code. Uses FIFO queuing.
	[Clears the currently active [
I I	interrupt.		
INEN	Interrupt	v, I	Notifies during the interrupt [
	Notify		code. Uses FIFO queuing. [
I			Does not clear the currently
[[[active interrupt. [
INH	Inhibit	S,R,V,I	Disables interrupts so that
	Interrupts		devices cannot request service.
IRTC	Interrupt	v, 1	Returns control from an interrupt
	Return		and clears the currently
			active interrupt.
IRTN	Interrupt	V, I	Returns control from an interrupt
	Return		and does not clear the currently
I l I I I

active interrupt.

5-11 Third Edition

DOC3060-192

Table 5-3 (continued)
Restricted Instructions

page in the translation
lookaside buffer.

| Mnem | Name | Modes | Description

|

| ITLB | Invalidate | v, I | Invalidates the STLB entry

| | STLB Entry | | specified by L.

| LIOT | Load I/O B | V,I | Loads an entry in the IOTLB.

| LM(M | Leave Machine | S,R,V,I | Leaves machine check mode.

I | Check Mode | |

| LPID | Load Process | V,I | Loads the process ID contained in
| | ID | | A into RPID.

| LPSW | Load PSW | V, I | Loads new values into the program
| |] | counter, keys, and modals.

| MDRS | Memory | v, I | Reads the memory syndrome bits.

| | Diagnostic I I

| | Read Syndrome | |

[| Bits | |

| | Pulse l [

| MDWC | Memory | VvV, I | Writes the control register.

I | Diagnostic | [

| | Write Control |]

| | Register | |

| NFYE | Notify End of | V,I | Notifies on the specified

| | Queue | | semaphore. Uses LIFO queuing.
| | | | Does not clear the currently

| | | | active interrupt.

| NFYB | Notify Head | V,I | Notifies on the specified

| | of Queue [| semaphore. Uses FIFO queuing.
| [I | Does not clear the currently

| | | | active interrupt.

| OCP | Output Control| S,R | Sends a control pulse to a device.
| OTA | Output from A | S,R | Transfers data from A to the

| | | | specified device.

| PTLB | Purge TLB | v, I | Purges either an entry or a

| I | |

| I | I

—— . — — —— — — — — — —— — — — —— — — — — et e e et et i, e e S e, s

Third Edition 5-12

RESTRICTED INSTRUCTIONS

Table 5-3 (continued)

Restricted Instructions

| Mnem | Name | Modes | Description |
I |
| RMC | Clear Machine | S,R | Clears the machine check flag. I
| | Check I l l
| RTS | Reset Time | vV, I | Resets the value of the interval |
[| Slice l | timer. I
SKS	Skip on	S,R	When the specified condition is
	Satisfied		satisfied, the specified device
	Condition [responds ready and the	
			instruction skips the next word.
SNR	Skip on Sense	S,R,V	Skips the next word if the
I	Switch Reset		specified sense switch is off.
SNS	Skip on Sense	S,R,V	Skips the next word if the [
	Switch Set		specified sense switch is on.
SR1,	Skip on Sense	S,R	Skips the next word if the
SR2,	Switch Reset		specified sense switch is off.
SR3,			
SR4	l	[
sS1,	Skip on Sense	S,R	Skips the next word if the I
[882,	Switch Set		specified sense switch is on. [
ss3,	l I I		
ss4	I I I		
SSR	skiponany	S,R,V	Skips the next word if any of the
	Sense Switch		sense switches are off. [
	Reset	I	
ssS	skipon Any	S,R,V	Skips the next word if any of the
	Sense Switch		sense switches are on.
	set	l I	
STPM	Store	V,I	Stores the CPU model number and
	Processor		microcode revision number [
	Model Number		into memory.
VIRY	Verify	S,R,V,I	Executes the verify routine.
WAIT	Wait	V, I	Waits until the specified
	I	semaphore is notified.	
SUMMARY

This chapter described more of the system registers and data structures

that aid in controlling system operation.

The next chapter, Datatypes,

presents the data representations and formats supported on the 50

Series processors.

manipulate the various types of data.

5-13

It also 1lists the instructions you can use to

Third Edition

Datatypes

The 50 Series systems support several data representations, These
representations fall into the major groups:

e Fixed-point data

e Floating-point numbers
e Decimal integers

o Character strings

® Queues

This chapter describes each of these data representations, and the
operations and instructions available to manipulate each type.

Throughout the rest of this book, R is used to indicate a 32-bit I mode
general register, while r indicates bits 1-16 of a 32-bit I mode
general register, In addition, A and B represent S and R mode 16-bit
registers; L and E represent V mode 32-bit registers.

FIXED-POINT DATA

Fixed-point data can be a logical value, a signed or unsigned integer,
or an address., Addresses are treated as unsigned integers.

6-1 Third Edition

DOC3060-192

Logical Values

A logical value is a 16— or 32-bit value that is interpreted as a
string of bits, Table 6-1 lists the instructions that perform logical
operations, such as OR and AND. Note that the 50 Series processors
treats each bit in a bit string separately: the value of one bit does
not affect the value of another.

There are several instructions available that test logical values and
perform an action depending on the result of the test, Chapter 7
discusses these instructions.

Table 6-1
Logic Instructions

| Mnem | Name | Modes | Description |
| |
| ANA | AND to A | S,R,V | Logically ANDs the contents of A and |
[| | | the contents of a memory location. |
ANL.	AND Long	v	Logically ANDs the contents of L and
	I	the contents of a memory location.	
MA	Complement A	S,R,V	Forms the one's complement of the
l l I	contents of A, I		
CMH	Complement	I	Forms the one's complement of the
	Halfword		contents of r.
MR	Complement	I	Forms the one's complement of the
	Fullword		contents of R.
ERA	Exclusive OR	S,R,V	Exclusively CRs the contents of A and
I	to A		the contents of a memory location.
ERL	Exclusive OR	V	Exclusively ORs the contents of L and
l	Long I	the contents of a memory location.	
N	AND Fullword	I	Logically ANDs the contents of R and
			the contents of a memory location.
NH	AND Halfword	I	Logically ANDs the contents of r and
			the contents of a memory location.
O	OR Fullword	I	Logically ORs the contents of R and
			the contents of a memory location.
OH	OR Halfword	I	Logically (Rs the contents of r and
	[the contents of a memory location,	
ORA	Inclusive OR	V	Logically CRs the contents of A and
	to A		the contents of a memory location,
X	Exclusive OR	I	Exclusively ORs the contents of R and
[Fullword		the contents of a memory location,
XH	Exclusive OR	I	Exclusively ORs the contents of r and
	Halfword		the contents of a memory location.

Third Edition 6-2

DATATYPES

Signed Integers

Depending on the addressing mode, there are a variety of signed integer
formats to use. Each is based on a magnitude field that represents a
two's complement value. Figure 6-1 shows the formats and data sizes
available for each addressing mode.

| Size | Modes| Format ll
|

| | [1 16 I
| 16 bits | S,R, | I
| | v,I | | MAGNTTUDE [I
| I I I
I | I I
| [| 1 32 |
| 32 bits | V,I | I
[I || MAGNITUDE | |
I I I I
[| | |
| I | 1 64 |
| 64 bits | V,I | |
I | || MAGNTTUDE I
| I I I
I | I I
I | [1 16 17 18 32 I
| 31 bits | S,R | I
| i | | MAGNTTUDE | 0 | MAGNTTUDE | :
| | |

Signed Integer Formats
Figure 6-1

Unsigned Integers

Unsigned integers can be 16, 32, or 64 bits long. Regardless of length
or addressing mode, all of the bits in the unsigned integer represent
the magnitude of the number.

Most operations work for both signed and unsigned numbers. Special
unsigned support is provided only for those magnitude branch
instructions that allow results to be evaluated as unsigned integers.
Multiply and divide instructions do not work correctly for unsigned
integers.

Table 6-2 1lists the instructions that operate on signed and unsigned
integers.

6-3 Third Edition

DOC3060-192

Table 6-2
Integer Arithmetic Instructions

| Mnem | Name | Modes | Description

|

| A | Add | I | Adds the 32-bit contents of a memory
| | Fullword | | location to the contents of R.

| Al1A [Add 1 toA | S,R,V | Adds one to the contents of A.
| A2A | Add 2 to A | S,R,V | Adds two to the contents of A.
| ACA | Add BIT | S,R,V | Adds the value of (BIT to the
| | to A | | contents of A,
| ADD | Add | S,R,V | Adds the contents of a 16-bit
| | I | memory location to the 16-bit
I | l | contents of A.
| ADL. | AddLong | V | Adds the 32-bit contents of a memory
| | | | location to the 32-bit contents
I l l | of L.
| ADIL | AdALINK | V | Adds the value of LINK to the
I | to L l | contents of L.
| ADLR | AGd LINK | I | Adds the value of LINK to the
| | to R | | contents of R.
| BH | Add | I | Adds the 16-bit contents of a memory
| | Halfword | | location to the contents of r.
| C | Compare | I | Compares the contents of R to the
| | Fullword | | contents of a memory location and
[[[| sets the condition codes to
| [[| reflect the result of the compare,
| CH | Compare | I | Compares the contents of r to the
I | Halfword | | contents of a memory location and
| | | | sets the condition codes to
| | | | reflect the result of the compare.
| CHS | Change | I | Complements bit 1 of R.
| | Sign I I
| CHS | Change | S,R,V | Complements bit 1 of A.
l | Sign l l
| CsA | Copy Sign | S,R,V | Sets (BIT to the value of bit 1
| | of A l | in A, then sets bit 1 of A to 0.
| CSR | Copy Sign | | Copies bit 1 of R into CBIT and
| | | | resets bit 1 of R to 0.
| D | Divide | I | Divides the 64-bit contents of R
| | Fullword | | and R+l by the 32-bit contents
| | | | of of a memory location.
| DAD | Double Add | S,R | Adds the 31-bit contents of a
| | | | memory location to the 31-bit
| | | | contents of A and B.
| DH | Divide | I | Divides the 32-bit contents of R
l | Halfword | | by the 16-bit contents of a memory
| I | | location.
| DHL | Decrement | I | Decrements r by 1 and stores the
| | c by 1 I | results in r,
| DH2 | Decrement | I | Decrements r by 2 and stores the
| | £ by 2 | | results in r.

Third Edition 6-4

Table 6-2 (continued)
Integer Arithmetic Instructions

DATATYPES

memory location to get a 32-bit

Mnem | Name | Modes | Description |
|

DIV | Divide | S,R | Divides the 31-bit contents of A |
| | | and B by the 16-bit contents |

| | | of a memory location, I

DIV | Divide | v | Divides the 32-bit contents of L |
I | | by the 16-bit contents of a |

I I | memory location. |

DM | Decrement | I | Decrements the contents of the [
| Memory | | specified memory location by 1. [

| Fullword | I |

DMH | Decrement | I | Decrements the contents of the |
| Memory | | specified memory location by 1. I

| Halfword | | I

DRl | Decrement | I | Decrements R by 1 and stores the |
| Rby 1 | | result in r. l

DR2 | Decrement | I | Decrements R by 2 and stores the |
| R by 2 | | result in r. I

DSB | Double | s,R | Subtracts the 31-bit contents of a |
| Subtract | | memory location from the 31-bit [

I | | contents of A and B. |

VL. | Divide | Vv | Divides the 64-bit contents of E I
| Long l | and L by the 32-bit contents [

| | | of a memory location. I

IHl | Increment | I | Increments r by 1 and stores the |
| r by 1 | | result in r. I

IH2 | Increment | I | Increments r by 2 and stores the |
| £ by 2 I | result in r. I

IM | Increment | I | Increments the contents of the |
| Memory I | specified memory location by 1. |

| Fullword | I |

IMH | Increment | I | Increments the contents of the |
| Memory | | specified memory location by 1. |

| Halfword | | I

IRl | Increment | I | Increments R by 1 and stores the I
| Rby 1 | | result in R. I

IR2 | Increment | I | Increments R by 2 and stores the |
| R by 2 I | result in R. l

M | Multiply | I | Multiplies the 32-bit contents of R |
| Fullword | | by the 32-bit contents of a |

| | | memory location to get a 64-bit I

I | | result. |

MH | Multiply | I | Multiplies the 16-bit contents of r |
| Halfword | | by the 16-bit contents of a i

I | I I

I I I I

result,

Third Edition

DOC3060~-192

Table 6-2 (continued)
Integer Arithmetic Instructions

| Mnem | Name | Modes | Description

I

| MPLL, | Multiply |V | Multiplies the 32-bit contents

I | Long | | of L by the 32-bit contents

| [| | of a memory location to get a

I I [| 64-bit result.

| MPY | Multiply | S,R | Multiplies the 16-bit contents

I | | | of A by the 16-bit contents

I | | | of a memory location to get a

[I I | 31-bit result.

| MPY | Multiply |V | Multiplies the 16-bit contents

I | I | of A by the 16-bit contents

I | I | of a memory location to get a

I I I | 32-bit result.

| MPY | Multiply | I | Multiplies the 16-bit contents of r
| | | | by the 16-bit contents of a

| [| | memory location to get a 32-bit

I I I | result.

| NRM | Normalize | S,R | Normalizes the contents of A and B,
| PID | Position | S,R | Converts the 16-bit integer in A to
[| for | | to a 31-bit integer in A and B,

| | Integer | [

| | Divide I I

| PID | Position | I | Converts the 32-bit integer in R to
| | for | | to a 64-bit integer in R and R+l.
| | Integer I |

[| Divide | I

| PIDA | Position |V | Converts the 16-bit integer in A to
| | for | | to a 31-bit integer in L.

| | Integer | |

I | Divide | |

| PIDH | Position | I | Converts the 16-bit integer in r

| | for | | to a 32-bit integer in R.

| | Integer | |

I | Divide I I

| PIDL | Position |V | Converts the 32-bit integer in L to
| | for | | to a 64-bit integer in L and E,

| | Integer | [

I | Divide I I

| PIM | Position | S,R | Converts the 31-bit integer in A

| | After | | and B to a 16-bit integer in A.

| | Integer | |

I | Multiply | |

| PIM | Position | I | Converts the 64-bit integer in R

| | After | | and R+l to a 32-bit integer in R.
[| Integer I I

| | Multiply | I

Third Edition

6-6

Table 6-2 (continued)
Integer Arithmetic Instructions

DATATYPES

Mnem | Name | Modes | Description |
|
PIMA | Position | V | Converts the 32-bit integer in L]
| After | | toa 16-bit integer in A. |
| Integer | | |
| Multiply | | I
PIMH | Position | I | Converts the 32-bit integer in R |
| for [| to a 16-bit integer in r. |
| Integer | | |
| Multiply | | I
PIML | Position | V | Converts the 64-bit integer in L |
| After | | and E to a 32-bit integer in L. |
| Integer |] |
| Multiply | l [
| Long I | I
S1A | Subtract II S,R,V l| Subtracts 1 from the contents of A. }
| Fram A

S2A | Subtract 2 | S,R,V | Subtracts 2 from the contents of A, |
| From A I l I
S | Subtract | I | Subtracts the 32-bit contents of a |
| Fullword | | memory location from the 32-bit [
| | | contents of R. |
SBL | Subtract |V | Subtracts the 32-bit contents of a |
| Long I | memory location from the 32-bit |
| I | contents of L. |
SH | Subtract | I | Subtracts the 16-bit contents of a |
| Halfword | | memory location from the 16-bit |
I I | contents of r. |
SSM | Set sign | S,R,V | Sets bit 1 of A to 1. I
| Minus l l |
SSM | Set sign | I | Sets bit 1 of R to 1. |
| Minus | I |
SSP | Set Sign | S,R,V | Sets bit 1 of A to 0. I
| Plus | | [
SSP | Set Sign | I | Sets bit 1 of R to 0. I
| Plus I | |
SUB | Subtract | S,R,V | Subtracts the 16-bit contents of a |
| I | memory location from the 16-bit |
| | | contents of A. [
TCA | Two's | S,R,V | Forms the two's complement of the [
| Complement { | contents of A. II

| A I
TCL [Two's | v | Forms the two's complement of the |
II Complement : | contents of L. |
L [I

Third Edition

DOC306 0-192

Table 6-2 (continued)

Integer Arithmetic Instructions

Mnem | Name

Modes | Description

| |
I [
| ™C | Two's | I | Forms the two's complement of the |
| : Compl ement { } contents of R. I'
[R

| TCH | Two's | I | Forms the two's complement of the |
| : Compl ement } I contents of r. I|
| r

| ™ | Test | I | Tests the contents of a memory |
| | Memory I | location and sets the condition |
| | Fullword | | codes to reflect the result of [
| | I | the test. I
| ™MH | Test | I | Tests the contents of a memory [
I | Memory | | location and sets the condition I
| | Halfword | | codes to reflect the result of |
I | I | the test, l

Third Edition 6-8

DATATYPES

Addresses

The 50 Series processors manipulate addresses as if they were unsigned
integers. Table 6-3 lists the instructions that handle addresses.

Table 6-3
Address Manipulation Instructions

| Mnem | Name | Modes | Description |
| I
| EAFA | EA to | vV, I | Calculates an effective address |
| | FAR | | and loads it into the I
I | | | specified FAR. |
| FLX, | Load | R,V | Loads X with a multiple of the |
| DFLX | Floating | | contents of a memory |
| QFLX | Index I | location. !
| CEA | Compute EA | S,R | Uses the contents of A as an |
I I | | indirect address, calculates |
			an effective address from the
			referenced location and
[loads the EA into A.	
EAA	Effective	S,R,V	Loads an effective address
[Address to A		into A. I
BAL	Effective	S,R,V	Loads an effective address
	Address to L.		into L.
EAIB	Effective	vV, I	Loads an effective address
	Address to IB		into LB. [
EAR	Effective	I	Loads an effective address
[Address to R		into R.
EAXB	Effective	V, I	Loads an effective address
[| Address to XB | | into XB. [

6-9 Third Edition

DOC3060-192

Fixed-point Operations

The 50 Series processors can perform several kinds of operations on
fixed-point data. Same examples are setting or resetting a single bit
in a logical value, or storing an unsigned integer into a memory
location. Table 6-4 lists the instructions that move fixed-point data
from one place to another. Table 6-5 describes a group of load/store
instructions. Table 6-6 lists the instructions that shift the contents
of a 16— or 32-bit register. Table 6-7 shows instructions that can be
used to set or reset all or part of a piece of data.

Table 6—-4
Data Movement Instructions

Mnem | Name | Modes | Description

DLD Double Load | S,R Loads A and B with the contents

of two 16-bit memory locations.

I I
| |
I | I I I
I I | I I
| DST | Double | S,R | Stores the contents of A and B |
[| Store | | into two 16-bit memory locations. |
| I | Interchange | I | Interchanges the contents of |
| | R and l | R and a memory location. |
I | Memory I l I
| | Fullword | | I
| IAB | Interchange | S,R,V | Interchanges the values of A |
| | A and B [| and B. I
| ICA | Interchange | S,R,V | Interchanges the contents of |
I | Characters | | the two bytes in A, I
| | in A | I I
| ICBL | Interchange | I | Interchanges the contents of the [
	and Clear		bytes in r, then loads zeroes
	Left		into the leftmost byte of r.
ICBR	Interchange	I	Interchanges the contents of the
	and Clear		bytes in r, then loads zeroes
	Right		into the rightmost byte of r.
ICHL	Interchange	I	Interchanges the contents of
	Halfwords		bits 1-16 and 17-31 of R, then
	and Clear		load s bits 1-16 of R with zeroces.
I	Left [I	
ICHR	Interchange	I	Interchanges the contents of
	Halfwords		bits 1-16 and 17-31 of R, then
	and Clear		loads bits 17-31 of R with zeroes.
	Right I I		
ICL	Interchange	S,R,V	Interchanges the contents of the I
	and Clear		bytes in A, then loads zeroes
	Left I	into the leftmost byte of A.	
ICR	Interchange	S,R,V	Interchanges the contents of the [
	and Clear		bytes in A, then loads zeroes
	Right		into the rightmost byte of A. I

Third Edition 6-10

DATATYPES

Table 6-4 (continued)
Data Movement Instructions

Mnem | Name | Modes | Description I
|
IH | Interchange | I | Interchanges the contents of |
| r and | | r and a memory location. |
| Memory | | |
ILE | Interchange | V | Interchanges the contents of |
| E and L | | E and L. I
| Halfword I | I
IMA | Interchange | S,R,V | Interchanges the contents of A and a |
| A and | | memory location. |
| Memory I | |
IRB | Interchange | I | Interchanges the contents of bits |
| Register I | 1-8 and 9-16 of r. [
| Bytes | I I
IRH | Interchange | I | Interchanges the contents of bits |
| Register | | 1-16 and 17-32 of R. |
| Halves I | |
L | Load | I | Loads the contents of a memory |
| Fullword | | location into R. |
LDA | Load A | S,R,V | Loads the contents of a memory |
[| | location into A, |
LD, | Load long | V | Loads the contents of a memory I
| I | location into L. |
LDX | Load X | S,R,V | Loads the contents of a memory |
| | | location into X. I
ILDY | Load Y | V | Loads the contents of a memory |
I | | location into Y. I
LH | Load | I | Loads the contents of a memory I
| Halfword I | location into r. |
LHL1 | Load | T | Shifts the contents of a memory |
| Halfword | | location left one bit and |
| Left Shifted]| | loads the result into r. |I

| By 1 | |
LHL2 | Load | I | shifts the contents of a memory |
| Halfword I | location left two bits and |
| Left Shifted| [loads the result into r. ‘

| By 2 | I
LHL3 | Load | I | Shifts the contents of a memory |
| Halfword I | location left three bits and |
| Left Shifted’ | loads the result into r. !

| By 3 I
ST | Store | I | Stores the contents of R into a [
| Fullword | | memory location. I
STA | Store A | s,R,V | Stores the contents of A into memory. |

6-11 Third Edition

DOC3060-192

Table 6-4 (continued)
Data Movement Instructions

| Mnem | Name | Modes| Description

I

| STAC | Store A | v | Stores the contents of A into memory
[| Conditionally| | if the contents of the specified

| [| | memory location equal the contents
| I I | of B.

| STICD | Store | I | Stores the contents of R into the

| | Conditional | | location specified by EA if the

| | Fullword [| contents of R+l equal the contents
| | | [of the location specified by EA.

| STCH | Store | I | Stores the contents of r into the

[| Conditional | | location specified by EA if the

[| Halfword | | contents of bits 17-32 equal the

| | | | contents of the location specified
| I | | by EA.

| STH | Store | I | Stores the contents of r into a

[| Halfword | | memory location.

| STL | Store long | V | Stores the contents of L into memory.
| STLC | Store L | Vv | Stores the contents of L into memory
[[Conditionally| | if the contents of the specified

| | | | memory location equal the contents
| | | | of E.

| STX | Store X [S,R,V| Stores the contents of X into memory.
| STY | Store Y | Vv | Stores the contents of Y into memory.
| TAB | Transfer | v | Transfers the contents of A into B.

I | AtoB | I

| TAX | Transfer | Vv | Transfers the contents of A into X.

[| A toX I I

| TAY | Transfer | v | Transfers the contents of A into Y.

| | Ato Y | |

| TBA | Transfer | v | Transfers the contents of B into A,

I | B to A | I

| XA | Transfer | v | Transfers the contents of X into A,

I | X to A | I

| TYA | Transfer | v || Transfers the contents of Y into A,

| | YtoA |

| XCA | Exchange | S,R,V| Exchanges the contents of A and B,

[| and Clear A | | then loads zeroes into A.

| XCB | Exchange | S,R,V| Exchanges the contents of B and A,

I | and Clear B | | then loads zeroes into B,

Third Edition 6-12

DATATYPES

Table 6~5
Special Load/Store Instructions

Mnem | Name | Modes | Description l
I

RSAV | Save | V,I | Saves the contents of the general, |
| Registers | | floating, temporary, and base |

| [| registers in a block of |

| | | consecutive memory locations. |

RRST | Restore | V,I | Restores the values of the general, |
| Registers | | floating, temporary, and base |

| I | registers with information |

[| | contained in a block of |

|] | consecutive memory locations. |

LDAR | Load Addressed| V,I | Loads the contents of a register |
| Register | | file location into R. |

LDIR | Load L from | V | Loads the contents of a register |
| Register File | | file location into L. |

STAC | Store A Y | Stores the contents of A at the |
| Conditionally | | specified address if the contents|

| I | of the specified address are I

| | | equal to the contents of B. [

STAR | Store | I | Stores the contents of the |
| Addressed | | specified R in a register file |

| Register I | location. I

STLC | Store L | v | Stores the contents of L into the |
| Conditionally | | specified address if the contents|

| | | of the specified address are |

I I | equal to the contents of E. I

STIR | Store L Into | V | Loads the contents of L into a |
I I I I

Register File register file location,

6-13 Third Edition

DOC3060~-192

Table 6-6

Shift Instructions

| Mnem | Name | Modes | Description

I

| ALL, | A Left | S,R,V | Shifts the contents of A

[| Logical | | left a specified number of bits.

| ALR | A Left | S,R,V | Shifts the contents of A

I | Rotate | | left a specified number of bits,

| I I | rotating bit 1 into bit 16.

| ALS | A Left | S,R,V | Shifts the contents of A

| | shift I | left a specified number of bits.

| ARL | A Right | S,R,V | Shifts the contents of A

| | Logical | | right a specified number of bits.

| ARR | A Right | S,R,V | Shifts the contents of A

| | Rotate | | right a specified number of bits,

I I I | rotating bit 16 into bit 1.

| ARS | A Right | S,R,V | Shifts the contents of A

| | shift [| right a specified number of bits.

| LLL | L Left | S,R,V | Shifts the contents of L

| | Logical | | left a specified number of bits.,

| LLR | L Left | S,R,V | Shifts the contents of L

| | Rotate | | left a specified number of bits,

I | I | rotating bit 1 into bit 16.

| LLS | L Left | S,R | Shifts the contents of A and B left a
[| Shift [| specified number of bits, bypassing
| | | | bit 1 of B.

| LLS | LLeft |V | Shifts the contents of L

| | shift | | left a specified number of bits.

| LRL | L Right | S,R,V | Shifts the contents of L

| | Logical | | right a specified number of bits.

| LRR | L Right | S,R,V | Shifts the contents of L

| | Rotate | | right a specified number of bits,

| I [| rotating bit 16 into bit 1.

| LRS | L Right [V | Shifts the contents of L right a

| | Shift | | specified number of bits.

| LIRS | L Right | S,R | Shifts the contents of A and B right
| | shift I | a specified number of bits,

| | I | bypassing bit 1 of B.

| ROT | Rotate | I | Rotates the contents of R a specified
| | [| number of bits in a specified

| l | | direction.

| SHA |[Arithmetic| I | shifts the contents of R a specified
| | shift | | number of bits in a specified

I I I | direction.

| SHI. | Logical | I | Shifts the contents of R a specified
| | shift | | number of bits in a specified

I I | | direction.

| SL1 | shift R | I | shifts the contents of R left

| | Left 1] | one bit.

| sL2 | shiftrR | I | shifts the contents of R left

I | Left 2 | I two bits,

I
I
I
|
|
|
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
|
|
l
I
I
I
I
|
I
I
[
I
I
I
I
I
I
I
I
I
|
I
I
I

Third Edition

6-14

DATATYPES

Table 6-6 (continued)
Shift Instructions

Mnem | Name | Modes | Description l
l

SR1 | Shift R | I | Shifts the contents of R right |
| Right 1 | | one bit. |

SR2 | shift R | I | Shifts the contents of R right I
| Right 2 | | two bits. |

SHL1 | Shiftr | I | Shifts the contents of r left |
| Left 1 | | one bit. l

SHL2 | Shiftr | I | Shifts the contents of r left]
| Left 2 | | two bits. |

SHR1 | shiftr | I | Shifts the contents of r right |
| Right 1 | | one bit. |

SHR2 | Shiftr | I | Shifts the contents of r right |
| Right 2 | | two bits. I

Note to Table 6-6

The instructions in Table 6-6 specify three types of shift
operations. An instruction that performs a logical shifk
treats the data to be shifted as a logical string of bits,
shifting zeroes into the vacated bits. The carry reflects the
state of the last bit shifted out.

An instruction performing an arithmetic shift treats the data
as a signed number., For a right arithmetic shift, the
instruction shifts in copies of the sign bit into the vacated
bits; CBIT reflects the state of the 1last bit shifted out.
For a left arithmetic shift, the instruction shifts zeroes into
the vacated bits. If there is a sign change in bit 1
(interpreted as an overflow condition), an integer exception
occurs. (See Chapter 1l.)

An instruction that performs a rotate shifts bits out of one
side of the data word and loads them into vacated bits on the
other side.

6-15 Third Edition

DOC3060-192

Table 6-7
Clear Register/Memory Instructions

| Mnem | Name | Modes | Description |
| |
CAL	Clear A	S,R,V	Sets bits 1-8 of A to 0.
	Left Byte		
CAR	Clear A	S,R,V	Sets bits 9-16 of A to 0.
l	Right Byte		
CR	Clear	I	Sets the specified register to
I	Register		0. l
CRA	Clear A	SR,V	Resets the contents of A to 0.
CRB	Clear B	S;R,V	Resets the contents of B to 0.
CRBL	Clear High	I	Sets bits 1-8 of the specified
	Byte 1 Left]	register to 0. [
CRBR	Clear High	I	Sets bits 9-16 of the specified
	Byte 1 l	register to 0.	
	Right l I		
CRE	Clear E	v	Resets the contents of E to 0.
CRHL	Clear Left	I	Sets bits 1-16 of the specified
	Halfword		register to 0,
CRHR	Clear Right	I	Sets bits 17-32 of the specified]
	Halfword		register to 0.
CRL	Clear L	SR,V	Resets the contents of L. to 0.
CRLE	Clear L	v	Resets the contents of L and E
	and E [to 0.	
ZM	Zero	I	Resets the 32-bit contents of
I	Memory		the specified memory location
	Fullword		to 0.
ZMH	Zero	I	Resets the 16-bit contents of
I | Memory | | the specified memory location |
[| Halfword | | toO.
Third Edition 6-16

DATATYPES

Field Operations

The 50 Series processors support a group of instructions that perform
field operations. These instructions use the field address and length
registers in their manipulations. These registers are abbreviated as
FAR, for field address register, or FLR, for field 1length register;
but both are specified in the same 64-bit register shown in Figure 6-2.

Note that the field address and length registers overlap the floating
accumulators. The precise overlap varies fram one Prime machine to
another, as shown in Figures 6-2 and 6-3. Table 6-8 lists the field
operation instructions.

Table 6-8
Field Operation Instructions

| Mnem | Name | Modes | Description I
| |
| ALFA | Add | v | Adds the contents of L to the contents |
| | Long to | | of the specified FAR. |
I | FAR I [I
| ARFA | AddR to | I | Adds the contents of the specified |
| | FAR | | R to the contents of the I
I | I | specified FAR. I
| EAFA | EA to | VI | Calculates an effective address and |
| | FAR I | loads it into the specified FAR. I
| LDC | Load | V,I | Calculates an effective address. |
| | Character | | Loads the character in the |
| | I | specified field into the [
I | | | addressed location. |
| LFLI | Load | V,I | Loads an immediate value into the l
| | Immediate | | specified FLR. I
| | to FLR I I I
STFA	Store FAR	V,I	Calculates an effective address and
			stores the contents of the
			specified FAR into the
]			addressed location. I
STC	Store	Vv,I	Stores the contents of a register into
l	Character		the specified field. I
I	into	I	
I	Field I I		
TFLL	Transfer	V	Transfers the contents of the specified
I	Long [FLR to L.	
	from FLR		
TLFL	Transfer	V	Transfers the contents of L into the [
	Long to		specified FLR, [
	FLR I	I	
TFLR	Transfer	I	Transfers the contents of the specified
I	FLR to R		FLR to the specified R. I
TRFL	Transfer	I	Transfers the contents of the specified
	R to FLR		R to the specified FLR. I

6-17 Third Edition

DOC3060-192

1 2 3 45 16 17 32 33 36 37 43 44 64

| 0 | RING | 0 | SEGMENT | WORD | BIT | 0000000 | LENGT |

| Bits | Mnem | Description

I

| 2-3 | RING | Specifies the ring number of the field
I I | address.

I I [

| 5-16 | SEGMENT | Specifies the segment number of the

| | | field address.

| [|

| 17-32 | WORD | Specifies the word number of the field
[I | address.

| I [

| 33-36 | BIT | Specifies the bit number of the field
I I | address.

| I I

| 37-43 | — | Must be 0.

I I I

| I

44-64 | LENGTH Specifies 21 bits of field length.

Format of Field Address and Length Register (FAR, FLR)

Figure 6-2
1 48 49 64
| DOUBLE PRECISION FRACTION | EXP |
| Bits | Mnem | Description |
I I
| 1-48 | DOUBLE | Specifies the sign and magnitude of a |
I | PRECISION | floating-point number. I
| | FRACTION | :
| I |
| 49-64 | EXP | Specifies the exponent of a floating- |
I | | point number. |

Format of Floating Register (F)
Fiqure 6-3

Third Edition 6-18

DATATYPES

FLOATING-POINT NUMBERS

Floating-point numbers are made up of two fields:
e A fraction containing the two's complement value of the number

® An exponent

Bits 1-24 (single precision), bits 1-48 (double precision), or bits
1-48 and 65-112 (quad precision, applicable only to 9950) contain the
two's complement value representing the fraction of the number. Bit 1
indicates whether the number is positive (bit 1 contains 0) or negative
(bit 1 contains 1). The binary point lies between bits 1 and 2.

Bits 25-32 (single precision) or bits 49-64 (double and quad precision)
contain the exponent of the floating-point number. The exponent is the
power of 2 that is to multiply the fraction in excess 128 form. The
true value of the exponent is always 128 less than the value oontained
in the exponent field.

In other words:
Floating-point Number = (fraction) * (2**(exponent-128))

Figure 6-4 shows the format of single (SP), double (DP), and quad
precision (QP) numbers. The abbreviated names of the SP, DP, and QP
floating-point accumulators are FAC, DAC, and QAC, respectively. The
number of floating accumulators for each mode and precision type
appears in Table 6-9. These accumulators are overlapped, sharing the
same storage,

Table 6-9
Number of Floating-point Accumulators

| Name | R Mode | V Mode | 1 Mode |
:FAC | 1 | 1 | 2 {
e |1 |1 2
IQAC I None || 1 = 1 i

6-19 Third Edition

DOC3060-192

Location | Size | Format
1 24 25 32
Memory Single
Precision | FRACTION | EXPONENT |

|

[

| | I

| | [

| I I

| | l

| | l

[| [1 48 49 64

| Memory | Double |

I } Precision } | FRACTION | EXPONENT |

I I |

| | | 1 48 49 64

| Memory | Quad [

l { Precision I | FRACTION | EXPONENT |

| | I

I } | 65 112 113 128
|

} } : | FRACTION | UNUSED |

| I I

I I | 1 32 33 48

| Accumulator | Single |

| | Precision | FRACTION | EXPONENT |

| | (2250*, 650, |

| | 550-II) |

| | [1 48 49 64

| Accumulator | Single |

| | Precision [FRACTION | EXPONENT |

I | (750, 850, |

| | 9950) [

| [|

I | | 1 48 49 64

| Accumulator | Double |

i i Precision { [FRACTION | EXPONENT |

I I I

| [| 1 48 49 64

| Accumulator | Quad |

I : Precision } | FRACT'ION | EXPONENT |

| | |

= } : 65 112 113 128

| : 1 | FRACTION [UNUSED I

|

*Throughout this section, points applying to a 2250 also relate to the
150, 250, 250-I1I, 350, 400, 450, I450, 1500, 550, and I1000 systems.

Floating-point Formats
Figure 6-4

Third Edition 6-20

DATATYPES

Floating Accumulators

In R and V modes, FAC or DAC occupies locations '12-'13 in the caurrent
register file set. I mode has two FAC or DAC accumulators labeled 0
and 1 that occupy locations '10-'13. For all modes, QAC combines
floating accumulators 0 and 1 into one accumulator occupying locations
'10-'13. Note that high-order fraction bits and exponent of a quad
floating-point number are found in DACl in I mode.

The field address and 1length registers overlap the floating-point
registers, Using FARO, FLRO, and FACO instructions will not modify the
contents of FACl, FLRl, or FACl, and vice versa. However, mixing FARO
and FLRO instructions with FACO (32I mode), or combining FAR1 or FLR1
instructions with FAC1 (32I mode or FAC 64V mode), produces variable
results fram machine to machine and attempt to attempt.

There is no particular implied overlap amongst ILDLR and STLR

intructions. Extracting the exponent can best be done with either an
LDA 6 (address trap) or a DFST T followed by an LDA T+3.

Floating-point Operations

In R, V, and I modes, floating-point has instructions that operate from
memory to register or on a register alone. I mode also has soame
floating-point instructions that operate in a register to register and
immediate fashion. Table 6-10 lists all floating-point operations.
Note that the first letter of a floating-point instruction shows its

data type:
e F for single precision
e D for double precision

e Q for quad precision

6-21 Third Edition

DOC3060-192

Table 6-10
Floating-point Instructions

| Mnem | Name | Modes

| FAD, DFAD | Floating Add | R, V |
| QFAD | | Vv |
| FA, DFA, QFA | | I }
I I |

| FC, DFC, QFC | Floating Compare = I =
I I

| FCM, DFCM | Floating Complement | R, V, I |
o i
| FCS, DFCS | Floating Compare | R, V |
| QFCS | and Skip | v |
| I I I
| FDV, DFIV | Floating Divide | R, V [
| QFDV l [Vv |
: FD, DFD, QFD } I I }
| FLD, DFLD | Floating Load | R, V [
| QFLD I | v I
l FL, DFL, QFL ; : I ;
| FMP, DFMP | Floating Multiply | R, V |
| QFMP I | Vv I
|| FM, DFM, QM } : I }
| FSB, DFSB | Floating Subtract | R, V |
| QFSB I | v I
: FS, DFS, QFS l l I }
| FST, DFST | Floating Store | R, V, I |
| QFST | | v, I I

Third Edition 6-22

DATATYPES

Manipulating Floating-point Numbers

The following topics are pertinent for many operations since they deal
with some aspect of handling the accumulator results: overflow or
underflow, normalization, and rounding.

Overflow and Underflow: Overflow occurs when the number of bits in the
exponent of a result exceeds the capacity of its destimation's
exponent. Underflow happens when the exponent of a result is too small
to be represented in a specified register or memory location. For all
50 Series systems, upon overflow or underflow, the fraction is
incorrect and the exponent has the incorrect sign. Underflow can be
distinguished from overflow by checking the sign of the exponent.

A floating-point exception occurs upon overflow or underflow, When
this happens the processor checks the content of bit 7 of the keys for
the prescribed action. If bit 7 contains 1, the processor merely sets
CBIT to 1. If bit 7 contains 0, the processor sets (BIT to 1 and also
loads the FADDR, FCODEH, and FCODEL registers of the user register file
as described in Chapter 11.

Because the FAC has a much greater exponent range than the memory
format, overflow in single precision is detected only when a store
operation is performed. 'This situation produces a store exception.
See Chapter 11 for more information.

Normalization: All numbers generated by arithmetic floating-point
operations are normalized by the processor. A number is defined as
being normalized either when bits 1 and 2 contain different values or
when the number is a 2zero with both fraction and exponent equal to
zero. If this is not the case when a result is first generated, the
processor shifts the fraction to the left and adjusts the exponent
appropriately until bits 1 and 2 do have different values.

The 9950 retains two extra least significant bits of precision, called
quard bits, that are shifted into the right side of the fraction during
the first two left bit shifts, If more bit shifts are needed, the
processor shifts in zeroes.

Multiply instructions for the 550-II, 650, 750, and 850 also keep guard
bits for normalization use. No guard bits are saved in any other
instruction or for the 2250 as a whole; in these cases the processor
shifts in only zeroes during normalization.

Rounding: Table 6-11 1lists the prerequisites and procedures for
rounding on all 50 Series systems. Note that rounding is done after
the result is normalized; rounding in turn may produce a result that
needs to be normalized again,

6-23 Third Edition

DOC3060-192

Table 6-11

Rounding Prerequisites and Procedures

— e — —— — e —— . —— e e e o ——— e e e —— — — . — — — — — — — — — .

(bit 13 of keys
is 1), add gquard
bit 1 to FAC bit
48 and normalize.
FRN may be done

in rounding mode
and a double round
will not occur.

I
I
I
I
I
I
I
|
I
I
I
l
Divide: Always |
rounds, 49 |
mantissa bits I
are generated for |
rounding to 48. |
I

Store: In rounding]
mode, add 1 to FAC|
bit 25, normalize |
result, but leave |
original FAC man- |
tissa unchanged. |
I

I

|

I

I

|

I

I

I

|

Campare and Skip:
In rounding mode,
add 1 to FAC bit
25, normalize re-—
sult, store in
temporary register
for compare, but
do not load back
into FAC; original |
FAC mantissa left |
left unchanged. |

|

I [550-1I, 650 |
Type | 9950 ! 750 and 850 | 2250
SP Add, subtract, Add, subtract, Add, subtract,
multiply: In multiply: FRN multiply: FRN
rounding mode compiler option compiler option

rounds result just
before store, (See
Store below.)

Divide: Always
rounds., 33
mantissa bits
are generated for
rounding to 32.

|
I
I
|
[
[
I
I
|
|
I
I
|
I
I
I
|
I
Store: FRN rounds |
and normalizes |
just before store, |
If FACbit 25 =1, |
add 1 to bit 24, |
zero rest of FAC |
mantissa. |
|

|

|

[

|

|

|

|

|

[

|

|

|

Campare and Skip:
Rounding never
done.

rounds result just
before store. (See
Store below.)

Divide: Rounding
never done.

Store: FRN rounds
and normalizes
just before store.
If FAC bit 25 =1,
add 1 to bit 24,
zero rest of FAC
mantissa.

Campare and Skip:
Rounding never
done.

Third Edition

6-24

DATATYPES

Table 6-11 (continued)
Rounding Prerequisites and Procedures

I

I

I

l
rounds. 97 I
mantissa bits [
are generated for |
rounding to 96. =
:|

I

I

Other instructions
Rounding never
done.

I I | 550~I1, 650 | |
I Type | 9950 | 750 and 850 | 2250 |
| DP Arithmetic opera- | Divide: Rounding never

[tions: Rounding | 49 mantissa bits done.,

| is the same as in | generated for

I SP. { rounding to 48.

| Other instructions:| Other instructions:

I Rounding never Rounding never

| done. done.

I

|

I

|

I

I

I

|

|

|

I | I
| | |
I | I
I I [
| I I
[I I
I I [
: I |
QP | Divide: Always n/a | n/a |
I [I
I [I
| I |
I | |
| I I
[I |
| | |
I I |

Normalized Versus Unnormalized Operands

Floating-point operations in Prime processors always produce normalized
results. Hence, an unnormalized number can only enter the system as an
external input operand. Instructions assume normalized floating-point
operands; however, no exception results from unnormalized operands
apart from those in a divide. To ensure accurate floating-point
results, use normalized numbers.,

There are several ways of obtaining normalized numbers. FAD, DFAD, or
QFAD instructions normalize an unnormalized memory argument when the
other value is a floating-point zero (defined as having both mantissa
and exponent equal to zero)., The instruction sequence DFLD, DFCM, and
DFCM also normalizes an operand., Data conversion instructions FLOT,
FLT, FLTA, and FLTH convert integers to normalized floating—point
numbers. Lastly, standard Prime compilers and assemblers produce
normalized constants.

When floating-point instructions are performed on unnormalized numbers,
the following guarantees apply. The instructions do not hang or
deviate from the processor's normal flow of control. Add, subtract,
complement, and compare and skip instructions produce approximately
correct answers., Bit for bit identical values will compare equal or
subtract to =zero by using either a subtract instruction, or a
complement instruction that is followed by an add. All floating load

6-25 Third Edition

DOC3060-192

and store instructions copy 32, 64, or 128 bit quantities from place to
place as appropriate without faulting or normalizing unless single
precision is used and rounding mode is enabled, Because single
precision rounding mode rounds and normalizes on a compare and store,
the single precision numbers will always be normalized before a store,
causing a bit pattern change.

Using unnormalized numbers for some floating-point operations causes
problems in the following cases. Compare and skip instructions fail on
machines that look first at the sign, then the exponent, and finally
the fraction for possible inequality. Divide produces indeterminate
results on all processors but that of the 2250 when confronted with
unnormalized numbers. Accuracy loss is probable for all other
operations on all other systems.

Programming Notes: FORTRAN 66 programmers often use floating-point to
store character strings. To the processor, these character strings are
unnormalized floating-point values. REAL*8 values work for copy and
identity comparison operations, but make sorted ordering impossible.
REAL*4 values work in a similar fashion if rounding mode is not
enabled, For storing character strings, use INTEGER*4 since they work
faster and permit sorting.

Floating-point Accuracy and Precision

Table 6-12 shows the accuracy of floating-point arithmetic instructions
as performed on normalized numbers. The number of quard bits preserved
need be no greater than two to simulate infinite precision if
normalized numbers are used and the algorithm is carefully designed.

Table 6-13 shows floating-point precision for all 50 Series systems
when performed with normalized numbers. The degree of floating-point
precision and accuracy varies among these systems due to their
differences in implemention, as discussed in the following paragraphs.

Third Edition 6-26

Floating-point Instruction Accuracy

Table 6-12

DATATYPES

| l 750 | 550-IT | I
Instruction | 9950 | and 850 | and 650 | 2250 |
FAD | 48+# l 48 l 32 I 32 I
DFAD { 48+# : 48 : 48 : 48 :
FSB || 48+# 1 48 I| 32 = 32 {
DFSB lI 48+# } 48 : 48 : 48 :
FMP |I 48+# : 48+ } 32+ : 29 :
DFMP { 48+# : 48+ { 48+ : 45 {
FIV : 48+* : 31%* = 31* : 30 :
DFDV % 48+* } 47* ll 47* : 46 :
QFAD 1 9% : n/a : n/a : n/a :
QFSB I| 96 } n/a |l n/a]I n/a :
QFMP } 96 |I n/a { n/a { n/a l
QFDV } 96 I| n/a l n/a : n/a :

+ means 2 extra guard bits are used.
means rounding mode can be used.

* means rounding is always performed.

6-27

Third Edition

DOC3060-192

Table 6-13

Floating-point Precision for All 50 Series Systems
I | l 750 | 550-I1 |
| Precision | 9950 | and 850 | and 650 | 2250
|
| Mantissa Bits: | | I |
| Memory | 24/48/96 | 24/48/— | 24/48/— | 24/48/—
: Accumulator ll 48/48/96 } 48/48/— ’ 32/48/— = 32/48/—
| Exponent Bits: | l I |
| Memory | 8/16/16 | 8/16/— | 8/16/— | 8/16/—
|l Accumul ator { 16/16/16 : 1l6/16/— } 16/16/~— ‘ 16/16/—
| Guard Bits | 2 for all, | 2 for | 2 for | None
| | excepting | multiply | multiply |
| | quad | | |
| i [[[
| Rounds | For divide | For divide | For divide | No
| Automatically | regardless | | I
	of mode or		
	precision.		
	For rest of		
I	SP or DP in—		
	structions		
	in rounding		
I | mode only. | | |

The number of mantissa and exponent bits is

Third Edition

6-28

shown in SP/DP/QP form,

DATATYPES

9950 Systems: All 9950 SP and DP arithmetic operations generate at
least 48 mantissa bits plus two guard bits to safequard accuracy during
normalization, If more than two bit shifts are needed during
normalization, the processor shifts in zeroes. After normalization,
the processor rounds if in rounding mode (as explained in Table 6-13),
and then renormalizes the result.

To store the number in SP memory while in non-rounding mode, the
processor truncates the result to 24 bits, In rounding mode, the
processor rounds the stored value to 24 bits.

Quad precision divide instructions generate 97 mantissa bits for
rounding to 96. All other operations produce 96 mantissa bits of
mantissa; gquard bits are not used.

The quad floating point accumulator and memory is 128 bits long., Bits
1-112 of this are used for calculations. Bits 113-128 are unused but
are subject to the following restrictions. QFLD loads bits 1-112 into
QAC and zeroes QAC bits 113-128, or QFLD loads 128 bits into QAC. QFLD
followed by QFST does not reliably copy 128 bits of data. All
arithmetic operations zero bits 113-128 on completion,

750 and 850 Systems: The 750 and 850 processors operate in DP even
when executing SP instructions. Floating load instructions zero
accumulator bits 25 through 48. SP add, subtract, and multiply
instructions do not truncate accumulator mantissas to 32 bits,
resulting in an additional 16 bits of precision. The multiply
instruction keeps extra bits of precision that are used during
normalization.

In an SP divide instruction, one mantissa is 48 bits and the other is
24 bits., This instruction generates 33 mantissa bits and rounds to 32
before placing the result in the SP accumulator. A DP divide
instruction, however, generates 49 mantissa bits and rounds to 48.

550-ITI and 650 Systems: A 550-II or 650 system has a separate
double-precision hardware floating-point unit. ‘These systems insert
zeroes in mantissa bits 25 through 48 of an SP memory argument before
loading the accumulator. They also zero mantissa bits 33 through 48
for arguments from the SP accumulator. All arithmetic operations are
then performed in DP.

Mantissas are truncated to 32 bits to place the results in the FAC,
leaving the low order 16 bits alone in the overlapped DAC. Storing a
number in SP memory truncates a number further to 24 bits. A multiply
instruction alone preserves two extra bits of precision for use in
normalization.

A divide instruction automatically generates an extra mantissa bit for
rounding the result to 32 bits (SP) or 48 bits (DP).

6-29 Third Edition

DOC3060-192

A single precision floating load instruction always zeroes accumulator
bits 25 through 48 before actually loading the number for systems with
PRIMOS Rev., 18 or above.

2250 Systems: When an SP number is loaded from memory to the
accumulator, zeroes are placed in FAC mantissa bits 25 through 32,
After performing a floating-point operation, the FAC mantissa contains
a 32-bit result. To store this result in SP memory, the processor
truncates bits 25 through 32 but leaves bits 33 through 48 alone.

DP memory and accumulator mantissas both have a capacity of 48 bits, so

no bits of precision disappear when transferring DP numbers from one
place to the other.

A single precision floating load instruction always zeroes accumulator
bits 25 through 48 before actually loading the number for system with
PRIMOS Rev. 18 or above.

Converting Datatypes

Several 50 Series system instructions convert floating-point numbers to
integers and vice versa, Table 6-14 lists these instructions and gives
a brief description of each.

Third Edition 6-30

DATATYPES

Table 6-14
Conversion Instructions

— . — —— — —— — s et — et P e o o S e s e et s e S, i s et et ey et et s et e S e e S ot et St e e i

Mnem | Name | Modes | Description |
|

DBLE | Convert | I | Converts the single precision |
| Single to | | floating-point number to a double |

| Double | | precision floating-point number. |

DRN | Double Round | V,I | Converts a quad precision floating- |
| £rom Quad | | point accumulator value to a double |

| | | precision floating-point number. |

DRNM | Double Round | V,I | Converts a quad precision floating- |
| from Quad | | point accumulator value to a double |

| to Minus | | precision floating-point number. [

| Infinity | l I

DRNP | Double Round | V,I | Converts a quad precision floating- |
| from Quad | | point accumulator value to a double |

| to Plus | | precision floating-point number., |

| Infinity | l |

DRNZ | Double Round | V,I | Converts a quad precision floating- |
| from Quad | | point accumulator value to a double |

| to Zero l | precision floating-point number. l

FCDQ | Floating | V,I | Converts a double precision floating- |
| Convert [| point accumulator number to a quad |

| Double | | precision floating-point number. |

| to Quad l | I

FDBL | Floating | R,V | Converts a single precision floating- |
| Point [| point accumulator number to a |

| Convert | | double precision floating-point [

| Single to | | number. |

| Double I | I

FLOT | Convert | R | Converts the 31-bit contents of A and |
| Integer to | | B to a normalized floating-point |

| Floating | | number and stores the 31-bit result |

| Point | | in the floating accumulator. [

FLT | Convert | I | Converts the contents of the specified|
| Integer to | | R to a normalized floating-point |

| Floating | | number and stores the result in the |

| Point I | floating accumulator. I

FLTA | Convert | v | Converts the 16-bit contents of A to |
| Integer to | | normalized floating-point number |

| Floating | | and stores the result in the |

| Point | | floating accumulator. |

FLTH | Convert | I | Converts the 16-bit integer contained |
| Halfword |] in the specified r to a normalized |

| Integer to | | floating~point number and stores it |

| Floating | | in the floating accumulator. |

| Point | | l

FLTL | Convert Y | Converts the 32-bit contents of L to |
| Integer to | | a floating-point number and stores |

| Floating | | the result in the floating |

| Point l | accumulator. I

6-31 Third Edition

DOC3060-192

Table 6-14 (continued)
Conversion Instructions

Mnem | Name | Modes | Description

FRN | Floating | R,V,I | Rounds the mantissa of a floating-
| Round | | point accumulator number to the
| | | nearest 24-bit fraction.

FRNM | Floating | V,I | Converts a double precision floating-
| Round from | | point accumulator value to a single
| DP to Minus] | floating-point number.
| Infinity | l

FRNP | Floating | V,I | Converts a double precision floating-
| Round from | | point accumulator value to a single
| DP to Plus | | precision floating-point number.
| Infinity | |

FRNZ | Floating | V,I | Converts a double precision floating-
| Round from | | point accumulator value to a single
| DP to Zero | [precision floating-point number.

INT | Convert | R | Converts the number in a floating
| Floating | | accumulator to a 31-bit integer and
| Point to | | stores it in A and B,
| Integer l |

INT | Convert | I | Converts the number in a floating
| Floating | | accumulator to a 32-bit integer
| Point to | | and stores it in GR2.
| Integer | [

INTA | Convert | v | Converts the number in a floating
| Floating | | accumulator to a 16-bit integer and
| Point to | | stores it in A.
| Integer | |

INTH | Convert | I | Converts the number in a floating
| Floating | | accumulator to a 16-bit integer and
| Point to | | stores it in r.
| Halfword | |
| Integer | |

INTL | Convert | v | Converts the number in the floating
| Floating | | accumulator to a 32-bit number and
| Point to | | stores it in L.
| Long | I
| Integer l |

QINQ | Floating | V,I | Converts the truncated integer
| Convert | | portion of the floating-point
| Integer to | | accumulator to a quad precision
| Quad | | floating-point number.

QIQR | Floating | V,I | Converts the rounded integer portion
| Convert | | of the floating-point accumulator
| Integer | | to a quad precision floating-point
| to Quad | | number.
| Rounded I I

——— — — — —— . —— — et i — ey s e — e e — —— — —— — — — —— o— — —— — — — — ——— e st e bt ‘e

Third Edition

6-32

DATATYPES

DECIMAL DATA

Decimal data can be represented in packed or unpacked forms.

Unpacked Decimal

There are four forms of unpacked decimal numbers, as shown in Figure
6—5n

| Type | Format | Example |
| I
Leading	First byte	
Sign,	contains sign	10101011]10110011]/10110000}10110101
not	only.	
embedded } { +	3	o0

| | I I
| Trailing | Last byte | [
| Sign, | contains sign | 10110010]10110110]/10110001/10101101 |
| not | only. | |
| embedded } I 2 [6 | 1 | - }
|

[| I |
Leading	First byte	
Sign,	contains sign	10110110]10110110]/10111001/10111001
embedded	and first	
[[digit. { + (6)[6	9	9 Il
I		

| | I !
Trailing	Last byte l		
Sign,	contains sign	10110100]10110110]10111000/11001010	
embedded	and last		
	digit. I 4	6	8 =1 (3)

Unpacked Decimal Formats
Figure 6-5

In the first two cases listed in Fiqure 6-5, a plus sign represents a
positive number, and a minus sign a negative number. You can use a
space character to represent a positive sign, and the processor will
interpret it oorrectly. Numerical operations, however, cannot produce
positive numbers that contain a space character.

In the two cases where the sign is embedded, a single character

represents the appropriate sign and digit. Table 6-15 shows the
characters that you use to represent sign/digit combinations,

6-33 Third Edition

DOC3060-192

Table 6-15
Sign/Digit Representations for Unpacked Decimal

Digit | Positive Rep. | Negative Rep.
}r -

0, space, +, {
1,
2,

Q w »

3,

w)

4,

U s W

3,

e

0 N o

~J
T @ =
T o0 ®™Ww O =2 =B B =W 4

I
I
|
I
|
|
I
|
I
I
I
I
I
I
I
|
I
I
I

O
-
=

There are several multiple representations listed above. The processor
recognizes all of the representations, but it generates only the first
character as the result of an operation. For example, the processor
will generate a } to represent a negative zero with embedded sign.

Packed Decimal

The fifth way to represent decimal numbers is called packed decimal. A
number in this form uses four bits to represent each digit in the
number; the last four bits of the number represent the sign. (Packed
decimal numbers are always in trailing sign format.) A decimal number
must contain an odd number of digits (excluding the sign digit). It
must also begin on a byte boundary.

The sign digit of a decimal result contains a hex C if the sign is
positive or a hex D if it is negative. The processor interprets the
sign digits of a decimal operand as positive if it contains anything
other than a hex C or D.

Third Edition 6-34

DATATYPES

Control Word Format

Unlike the instructions already listed in this chapter, decimal
arithmetic instructions require more information to execute than they
can ocontain. ‘They require a ocontrol word to specify the
characteristics of the operations to be performed. When a decimal
instruction is executing in V mode, L contains a copy of the control
word; in I mode, General Register 2 contains the copy. Figure 6-6
shows the format of the control word. Within this figure, F1 and F2
stand for field 1 and field 2, respectively.

1 678 9 10 11 12 13 1416 17 2223 29 30 32

| A JulB|ClUilTID|] E | F | G | B |

Field | Bits | Contents or Meaning

I I
I |
| A | 16 | Number (0-'77) of digits in Fl }
I I I
| © | 7-8 | Unused; must be zero :
| I I
| B |9 | Sign of Fl: |
| | | B=l: sign of Fl1 is inverse of specified value |
| | | 0: sign of Fl is as specified }
I | |
| C |10 | Sign of F2: I
| | | C=1: sign of F2 is inverse of specified value |
| | | 0: sign of F2 is as specified {
I | I
| U |1 | Unused; must be zero !
I I |
| T |12 | Sign of result: |
I | | T=1: result is forced positive I
| | | 0: instruction operation dictates the sign =
| | I
| D |13 | Round flag (used only by XWV) }
| I |
| E | 14-16 | Decimal data type of F1 {
| | I
| F | 17-22 | Number (0'77) of digits in F2 {
I I I
| G | 23-29 | Scale differential ,
I I I
| H | 30-32 | Decimal data type of F2 l

Decimal Control Word Format
Fiqure 6-6

6-35 Third Edition

DOC3060-192

Most of the fields are self-explanatory. Fields D, E, G, H, and T,
however, merit extra discussion.

Field D is used only by the XMV instruction. This field tells the
processor whether to round the decimal number in F1 or not, If D
contains a 0, no rounding occurs. If D contains 1, rounding occurs if
the last digit of the F1 (adjusted as specified by field G) is greater
than or equal to 5. The rounding occurs when XMV moves the contents of
F1 into F2.

For this field to be effective when XMV uses it, make sure that the
scale differential in field G is greater than or equal to 1.

Control word fields E and H specify the decimal data types of the
operands, Table 6-16 lists the available data types and the codes used
to represent them in the control word fields.,

Table 6-16
Decimal Data Types

Code | Decimal Data Type

0 Leading separate

1 Trailing separate

[
I
[
I
|
[
|
| Leading embedded
[

I

I
[
|
3 | Packed decimal
|
[
[
[

Trailing embedded

Control word field G specifies the scale differential, the difference
in magnitude between the operators of an instruction. This field
contains a 7-bit, two's complement number with the value:

Fx = magnitude(Fl) - magnitude(F2).

If Fx is positive, then F1 must be shifted right so that it aligns with
F2; if negative, Fl must be shifted left to be aligned with F2.

For example, suppose Fl1 contains 999V99, and F2 contains 999. The

scale differential for these operands would be +2, since Fl1 must be
shifted to the right two digits to align with F2.

Third Edition 6-36

DATATYPES

The T bit is used by the decimal instructions XAD, XDV, XMP, and XMV.
For all these instructions, results are forced positive if the T bit
contains 1.

The descriptions of the decimal instructions (see Chapters 13 and 14)

list the control word fields required for instruction execution. Any
unused fields must contain zeroes for proper execution to occur.

Decimal Operations

Decimal results are ocorrect for all the digits shown in the result
field. The processor calculates the result to all its bits of
precision, then loads as many as can fit into the result field. If the
portion stored does not contain the most significant bits of the
result, an overflow occurs that causes a decimal exception. (See
Chapter 12.)

Register Use

In general, all decimal instructions use GRO, GRl, GR3, GR4, and GR6 in
both V and I mode. On the 9950, all decimal instructions use L (GR2 in
I mode), FARO, and FARl. XDTB and XBTD do not use FARl, but also use
GR4.

Table 6-17 lists the decimal instructions.

6-37 Third Edition

DOC3060-192

Table 6-17
Decimal Instructions

| Mnem | Name |[Modes| Description |
| I
| XAD | Decimal | V,I | Adds the contents of two decimal |
I | Add I | fields together and stores the |
I | I | result in the destination field. |
I | | I I
XMV	Decimal	V,I	Moves the contents of the source
	Move		field into the destination field.
	I I		
XCM	Decimal [V,I	Compares the contents of the source I	
	Compare		and destination fields and sets
I	I	the condition codes depending	
[on the outcome of the compare.	
I I I			
XMP	Decimal	V,I	Multiplies the contents of the source
	Multiply		and destination fields and stores the
I			result in the destination field. {
	I		

XOV	Decimal	V,I	Divides the contents of the destination
	Divide		field by the contents of the source
[field and stores the result and the	
			remainder in the destination field.
I			
XBTD	Binary to	V,I	Converts a binary number contained in a
	Decimal		register to a decimal number and
	Conversion		stores the result in a memory [
I I		location.	
I		I I	
XDTB	Decimal to	V,I	Converts a decimal number in memory to
	Binary I	a bimary number and stores the	
	Conversion		result in a register.
I I I I I			
XED	Decimal	V,I	Edits a decimal string under control [
	Edit [of an edit subprogram. I	

Third Edition 6-38

CHARACTER STRINGS

DATATYPES

Character strings are made up of bytes, with each byte representing one

ASCII character. A character string can contain from 1 to

bytes, Table 6-18 lists the character instructions.

Table 6-18

Character Instructions

(2%*17)-1

| Mnem | Name | Modes | Description

|

| LDC | Load | V,I | Calculates an effective address. Loads
| | Character | | the character in the specified field
| I | | into bits 9-16 of a register.

| | | | Clears bits 1-8.

| | | |

| SIC | Store | Vv,I | Stores the contents of bits 9-16 of A
[| Character | |I into the specified field.

l | I

| ZOM | Compare | V,I | Compares two character fields and sets
| | Character | | the condition codes depending on the
| | Fields | | outcome of the compare.

| l | I

| ZED | Edit | V,I | Moves characters from one field to

| | Character | | another under control of an edit

| | Fields | | subprogram.

I | | I

| ZFIL | Fill | Vv,I | Stores a character into each

| | Field I | byte of the specified field.

| l I [

| ZWW | Move | vV, I | Moves characters from one field to

| | Characters| | another.

| I I I

| ZWD | Move Bqual| V,I | Moves characters from one field to

I | Length [| another of equal length.

| l I |

| ZIRN | Translate | V,I | Uses one field to reference a translation
| | Character | | table and construct a second field.

| | Field [|

6-39 Third Edition

DOC3060-192

The Z-prefix character instructions (that is, all character
instructions except LDC and STC) move data in the source string
starting from the lowest addressed byte (ascending order). Note that
ZED and ZTRN move one byte at a time; 2(M, ZFIL, ZW, and ZWD always
move four bytes at a time (unless there are fewer than six bytes to
move and the source and destination are not aligned).

The Z-prefix character instructions may produce unexpected results if
the source and destination strings overlap. For example, suppose ZIMV
is to move the contents of a large source string into a destination
string, Figure 6-7 shows how the source and destination strings
overlap; S represents the first byte in the source string (labelled 6)
and D represents the first byte in the destination string (labelled 1).

After ZMV moves the first four characters, the strings are as shown in
the second part of Figure 6-7. The last part shows how the second move
affects the string. ‘The third and subsequent moves would work in the
same way. In this case ZWV simply moves all characters in the source
string into the destination string straightforwardly, without
deviation.

1 2 3 4 5 6 7 8 9 10 11 12 13

-~ A

D S

| [
I I
| Strings |
| IAIB|ICID|IE|F|IGIHII[JIKILIM] before |
| move |I
| ~ ~

| D S :
l

| 1 2 3 4 5 6 7 8 9 10 11 12 13 |
| After |
| I FIG|H|]I|E|JF|G|H|I]|]JI|IKI|L]|M] first |
| move II
I ~ ~

. ; |
| 1 2 3 4 5 6 7 8 9 10 11 12 13 |
| After |
| T1PIGIHI|II|JI|RILIMI|I|]JIIR|L]|M] seocond |
| move |
I [
| I
| |
| I

String Manipulation
Figure 6-7

Third Edition 6-40

DATATYPES

Suppose, however, that the starting addresses of the two strings are
switched. The first five bytes in the source string will be correctly
moved, but the rest of the string will have been overwritten by copies
of the first five bytes. ‘These same five characters will propagate
through the rest of the destination string, as shown in Figure 6-8.

1 2 3 4 5 6 7 8 9 10 11 12

I |
| |
| Strings |
| IAIB|CIDIE|IFIG|HIII|JIKRIL] before |
1 - " move {
| S D :
|

| 1 2 3 4 5 6 7 8 9 10 11 12 |
| After |
| |A|B|C|D|E|A|IB|CI|IDI|IJIKI|L] first [
| move II
I N ~

I S D :
|

I 1 2 3 4 5 6 7 8 9 10 11 12 |
I After |
| |[A|B|CIDI|E|JAIB|C|DI|E|A]|B] second |
I move [
I |
| |
| |
I |

String Manipulation
Figure 6-8

While the move shown in Figure 6-8 is useful, it may not be the action
that was intended. Overlapping strings produce arbitrarily different
results for each Prime machine. For this reason, avoid using
overlapping strings in any situation.

6-41 Third Edition

DOC3060-192

QUEUES

A queue is a fixed length, double-ended, circular word buffer. Figure
6-9 shows the format of a typical queue with wrapped and unwrapped
data.

QUEUE DATA BLOCK, DATA NOT WRAPPED

<—Origin = M*2**K

I I
: (empty) : }
TOP—> | (head) | I

| | Length = 2%*K
T B
| (tail) | I

BOTTOM—> | I
I (empty) | \'
| | <—End = (Mtl)*2%*K-1

QUEUE DATA BLOCK, DATA WRAPPED

= (data) [{—Origin = M*2**K
I [
[(tail) I I
BOTTOM——> | I I
: (empty) } Length = 2**K
I
| | I
TOP—> | (head) [|
[I I
I (data) [\'4
| |[<—End = (Mtl)*2**K-1

Queues With Wrapped and Unwrapped Data
Figure 6-9

Q(Bs

Each queue in the system is controlled by a queue control block (QCB).
This QB contains information about the queue's location in memory, as
well as data used to manipulate the elements, 1In addition, the QCB
defines the queue's type. If the QB has a physical address, the
associated queue is called a physical queue. These types of queues are
the only ones used for DM) operations. If the Q(B has a virtual

Third Edition 6-42

DATATYPES

segment number and offset rather than a physical address, the queue is
called a virtual queue. Queues of this type are never used for I/0
operations,

Try to align QCBs on 8-byte boundaries. IMQ operations (discussed in
Chapter 12) require this aligmment. For program queue manipulation via
the queue instructions, aligmment is not necessary but does produce
faster queue operations.

Figure 6-10 Shows the format of the QCB.

1| TOP POINTER | 16

17 | BOTTOM POINTER | 32

33 | Vv | 000 | HIGH ORDER ADIRESS | 48

49 | SIZE MASK | 64
| Bits | Name | Description |
I |
| 1-16 | Top Pointer | Points to first filled location |
I | | (the head) in the queue. I
| [I
| 17-32 | Bottom | Points to last filled location |
| | Pointer | (the tail) in the queue. }
[I I
| 33 | v | Virtual/physical control bit: |
| | | 0 = physical queue, I
[| | 1 = virtual queue. I
| I I
| 34-36 | | Reserved; must be 0. :
I | |
| 37-48 | High Order | Queue address (if V = 0), or |
| | Address | segment number (if V =1). }
I | I
| 49-64 | Size Mask | Mask; value = 2**(K-1). |

Figure 6-10
Format of the QCB

When addressing a Q@B, the ring number in the reference specifies the
access privileges that will govern the reference. Physical queues can
only be accessed from Ring 0.

6-43 Third Edition

DOC3060-192

Queue Specifications

A queue must be 2**K words long, where K is an integer between 4 and 16
inclusive. In addition, the queue's starting address must be M(2**K),
where M is an integer value. These restrictions allow the firmware to
easily identify and locate a queue. Note that two queues in the system
do not have to have the same K in common,

The 50 Series processors use a mask word to add elements to or delete
elements from a queue. This mask specifies the size of the queue, and
is 16 bits wide. The least significant K bits contain 1 and all other
bits contain 0. This means that the numerical value of the mask is
(2**K)-1.,

| I
| Suppose K = 5., |
| mask = 0000000000011111 |
| = 137 I
| = 31 decimal |
|| = (2**5)-1, QFD., {

Calculating a Mask
Figure 6-11

The mask also makes it easy to determine the starting and ending
addresses of the queue, If P is a pointer to same location within a
queue, the address of the queue's origin is:

origin = P AND (NOT mask)
and the address of the queue's last location is:

end = P OR mask.

Third Edition 6-44

DATATYPES

5, P="'204, and M = 4,
'37 and queue length = 2**5 = '37,

Suppose K
mask

'204 AND (NOT '37)

10000100 AND 1111111111100000
10000000

200

128 decimal

4 (2**5) , QED.

origin

'204 OR '37

10000100 OR 11111

10011111

1237

queue origin + queue length
200 + '37, QED.,

end

W wnun

e — — —— — —— — ——— ——— — —— —— — —

Calculating the Origin and End of a Queue
Fiqure 6-12

Queues operate under one final restriction. They are defined to be
empty when the ocontents of the top pointer equal the contents of the
bottom pointer. This means that the maximum number of elements in a
queue is (2**K)-1.

Queue Algorithms

The 50 Series processors use four algorithms to insert or delete queue
elements (depending on the specified operation). Table 6-19 shows the
algorithms used for specific operations. The symbols T1-TS5 represent
temporary storage registers.

6-45 Third Edition

DOC3060-192

Table 6-19
Queue Algorithms

Inst | Algorithm

Tl <- TOP
T2 <- BOTTOM
IfTM =T then A <0
CC <~ m
else T3 <- SEGMENT
T4 <— MASK
A <~ SHGMENT | T1 (16 bits)
TOP <- T1 AND NOT T4 OR (Tl + 1) AND T4

| <~ TOP

| <- BOTTOM

l <~ SHGMENT

| T4 <- MASK

| TS <— T2 AND NOT T4 OR (T2 + 1) AND T4
|

l

I

dRR

If TL = T5 then CC <~ BQ
else location(SEGMENT | T2) <- A
BOTTOM <- TS

ATQ | Tl <- TOP

| T2 <- BOTTOM

| T3 <— SEGMENT

| T4 <- MASK

| TL <- T1 AND NOT T4 OR (Tl - 1) AND T4

| If TL =T then CC <- B)

| else location(SEGMENT | T1) <~ A
| TOP <~ Tl

| TL <- TOP

| T2 <- BOTTIOM

| If TL = T2 then A <- 0

| CC <-m

l else T3 <~ SHGMENT

| T4 <- MASK

| T2 <~ T2 AND NOT T4 OR (T2 - 1) AND T4
1 A <~ SEGMENT | T2 (16 bits)

| BOTTOM <~ T2

——— —— — s — — — — — — —— — — s — ——— — ——— — — —— — — — — — — — — S T— ——— — ——

Third Edition 6-46

DATATYPES

The instructions provided for programmed queue manipulation are shown
in Table 6-20. The pointer in the instructions references the Q@B for
that queue. Note that an RT) instruction is equivalent to a DMQ output
operation, and an ABQ is equivalent to a DMQ input, as noted in Chapter
12, Input/Output.

Table 6-20
Queue Instructions; S, R, V Modes

| Mnem | Name | Description
RIQ) | Remove fram | Removes a single word fram the top
| Top of Queue | of a queue and places it in A,
I I
RBQD | Remove from | Removes a single word fram the
| Bottam of bottan of a queue and places
| Queue it in A,
|
ABQ | Add to the Adds the contents of A to
| Bottam of the bottam of the specified
| Queue queue.
|
ATQ | Add to the Adds the contents of A to the
| Top of Queue top of the specified queue.
TSTO | Test Queue Sets A to the number of items

in a specified queue and sets
the condition codes depending
on the new value of A.

SUMMARY OF DATATYPES AND APPLICABLE INSTRUCTIONS

Table 6-21 summarizes the different datatypes and lists the various
operations available., The body of the table shows which instructions
perform a specific operation on a specific datatype. For detailed
information about each instruction, refer to the instruction
dictionaries in Chapters 13 and 14.

When using Table 6-21, note that aa represents the set of arithmetic
conditions [EQ, GE, GT, LE, LT, NE]. Also note that Table 6-21 does
not include instructions that operate on (BIT, LINK, the condition
codes, or queues.

6—-47 Third Edition

DOC3060-192

Table 6-21
Summary of Datatypes and Applicable Instructions

| [Size of Datatype (in Bits) I
| Operation l I
[| 16 131 | 32| 64 [32FP |64FP |128FP| Dec|
{ [(A) 1(A/B)I (L) [(L/E) | (FAC) | (DAC) | (QAC) | ()II
| Load from memory |I LDA Il DLD } } { FLD { DFLD{ QFLD‘I XMVI
I
| Store to memory | STA | DST | STL | | FST | DF.‘ST} QFST| II
| | I I I I I |
| Add | ADD | DAD | ADL | lFADIDFAD%QFADI }
| I I I I I | I
}Subtract }sma:osa:sml }FSB}DFSB;QFSB}XAD}
|
| Multiply | MPY | | MPL | | FMP | DFMP| QFMP| XMP|
I I | | | I I I I I
}Divide :DIV} IDVL! {FDV’DFDV{ QF[N}XDVI
| Increment | IRS,| | | I I I I I
I | AlA, | [[[! [[[
| | A2A | | I I I I I I
| I [[I I | | I I
| Decrement | sia,| I I I [| | I
I | S2A | I | I | I I I
I | | I I | I I I I
| AND | ANA | | ANL | I [| I I
I I I			l				
OR	ORA	I I		I			
		I I			I		
XOR	ERA		ERL			I	
I	I I I I	[
CompLenent R							
Compare	Cas,		CLS		FCS	DFCS	QFC,
I	caz	[I [QFCS	I		
I I I	I I		I I				
: Logical test { Laa : II LLaa} } LFaaI LFaa{ I {							
: Branch } Baa ‘ ‘ al I BFaaI BFaa	{ }						
I I							
{ Logical left shift	[ALL } I LLL	} : I } I					
I							
} Logical right shift } BRI, ; } LRL } : l { : }							
Arithmetic left shift	ALS	LLS	LLS	[[
I I I I I I	I						
Arithmetic right	ARS	LRS	LRS	I I	I I		
shift I I [I I	I				
I			I I I I I I				
Rotate left shift	ALR		LLR		I [[I		
Third Edition 6-48

DATATYPES

Table 6-21 (continued)
Summary of Datatypes and Applicable Instructions

|32FP |64FP |128FP| Dec

| (L/E) | (FAC) | (DAC) | (QAC) | (-)

32 | 64

Size of Datatype (in Bits)

31
| (a/B) | (L)

CRL
CRA
CRB
1IAB
XCA
XCB
SSM
SSP
FLOT
INT
PID
PIM

16
(a)
ARR
CRA
CAL
CAR
ICA
ICL
ICR
TCA
SSM
SSP
CHS
FLTA
INTA
XBTD
XDTB
PIDA
PIMA
Saa

. | 1% B, BOEE §E5
- o B
SNEIEEE NN SRR N R
& g o % 4 2 PH %8 .9 L g $8o87oF @ ogf o3f
3 8 8 8 38 89 89 o » 8 § g 5@ ®©8 @& & @8 GE g
g g dug8 858 & & 488 8 8 g & @

Third Edition

6-49

DOC3060-192

SUMMARY

This chapter has introduced the datatypes supported on the 50 Series
processors and has listed the instructions you can use to manipulate
them. The next chapter, Altering Sequential Flow, lists instructions

that allow you to test for a condition and perform actions depending on
the outcome of the test.

Third Edition 6-50

Altering Sequential
Flow

So far this document has confined its discussions mostly to arithmetic
operations. This chapter describes instructions that can alter the
normally sequential flow of control within a program.

BRANCH AND SKIP INSTRUCTIONS

The simplest way to change the flow of control in a program is to use a
branch or a skip instruction. These instructions may directly load a
new value into the program counter, or they may first test some value
and then load the program counter according to the outcome of the test.
Note that branch and skip instructions always load the program counter
with an address contained within the current segment. (To transfer
control to an address outside the current segment, use a Jjump
instruction, explained in the second half of this chapter.)

Table 7-1 lists the branch instructions. Table 7-2 1lists the logic
test instructions. Table 7-3 contains information about the
conditional skip instructions. Table 7-4 describes the floating-point
skip instructions.

7-1 Third Edition

DOC3060-192

Table 7-1
Branch Instructions

| Mnem | Name [Modes| Description |
l |
| BEQ, BGE, | Branch on A | V | Branches if the contents of A |
| BGT, BLE, | Set With | | meet the specified condition |
| BLT, BNE | Respect to 0] | with respect to 0. I
I |
BCEQ, BOGE,	Branch on	V,I	Branches if the condition code
BOGT, BCLE,	CC Set With		reflects the specified
BCLT, BONE	Respect to 0]	condition with respect to 0.	
BFEQ, BFGE,	Branch on	V,I	Branches if the contents of the
BFGT, BFLE,	FA With		floating accumulator reflect
BFLT, BFNE	Respect to 0]	the specified condition with	
l I	respect to 0.		
[[
BHEQ, BHGE,	Branch on	I	Branches if the contents of the
BHGT, BHLE,	r With		specified r meet the specified
BHLT, BHNE	Respect to 0]	condition with respect to 0.	
I			
BLEQ, BIGE	Branch on	V	Branches if the contents of L,
BLGT, BLLE,	L With		meet the specified condition
BLLT, BLNE	Respect to 0		with respect to 0.

|
BMEQ, BMGE,	Branch on	V,I	Branches if LINK and the
BMGT, BMLE,	Magnitude		condition codes meet the
BMLT, BMNE	Condition		the specified condition with
	Set With		respect to 0.
	Respect to 0]	[

[
BREQ, BRGE,	Branch on	I	Branches if the contents of the
BRGT, BRLE,	R Set With		specified R meet the specified
BRLT, BRNE	Respect to 0l	condition with respect to 0.,	
I [
BRBR	Branch on	I	Branches if the specified bit in
	R Bit Reset		Ris 0,
BRBS	Branch on	I	Branches if the specified bit in
[R Bit Set		Ris 1. [
[
BHD1, BHD2,	Branch onr	I	Decrements r by the specified
BHD4	Decremented		value and branches if the
	by Value		value is not equal to O. I
BHI1, BHI2,	Branch onr	I	Increments r by the specified
BHI4	Incremented		wvalue and branches if the
	by Value		wvalues is not equal to 0. [
Third Edition 7-2

ALTERING SEQUENTIAL FLOW

Table 7-1 (continued)
Branch Instructions

than a specified integer;
otherwise, executes the next
instruction,

: Mnem | Name IModes| Description I
|

| BRD1, BRD2, | Branch onR | I | Decrements R by the specified |
| BRD4 | Decremented | | wvalue and branches if the I
	by Value		value is not equal to 0.
BRI1, BRI2,	Branch onR	I	Increments R by the specified
BRI4	Incremented		wvalue and branches if the
I	by Value		values is not equal to 0. I

| BCS | Branch if | V,I | Branches if the value of (BIT |
[| CBIT is Set | [is 1. I
| BCR | Branch if | V,I | Branches if the value of CGBIT |
| | CBIT is | | 1is 0. [
I | Reset I [|
| BLS | Branch if | V,I | Branches if the value of LINK |
I | LINK is Set | | is 1. I
| BLR | Branch if | V,I | Branches if the value of LINK |
| | LINK is | | is 0. I
, | Reset | [:
BDX	Branch on	V	Decrements the contents of X by
	Decremented		1 and branches if the
	X		decremented value equals 0.
BDY	Branch on	V	Decrements the contents of Y I
	Decremented		by 1 and branches if the
	Y		decremented value equals 0. I
BIX	Branch on	V	Increments the contents of X
	Incremented		by 1 and branches if the
	X		incremented value equals 0.
BIY	Branch on	V	Increments the contents of Y [
	Incremented		by 1 and branches if the [
	Y		incremented value equals 0. I
[
OGT Camputed V,I	Branches if the contents of A		
GOTO are greater than 1 and less			
I			
I			
I			

Third Edition

DOC3060-192

Table 7-2

Logic Test Instructions
| Mnem | Name | Modes | Description
l
[LEQ, | Load on | S,R,V,I | Loads a register with a 1 if
| LGE, | Register | | the register reflects the
| LGT, | With Respect | | specified condition with
| LLE, | to O | | respect to 0; otherwise,
| LLT, | | | clears the register to 0.
; LNE | | l
| LCEQ, | Load | s,R,V,I | Loads a register with a 1 if
| LOGE, | Register on | | the condition codes reflect
| LGGT,| Condition | | the specified condition with
| LCLE,| Codes Set | | respect to 0; otherwise,
| LCLT, | With Respect | | clears the register to 0.
| LCNE | to 0 | l
I
| LFEQ, | Load Register | S,R,V,I | Loads a register with a 1 if
| LFGE,| on FAC | | the contents of the floating
| LFGT,| With Respect | | accumulator reflect the
| LFLE,| to 0 | | specified condition with
| LFLT, | | | respect to 0; otherwise,
| LFNE | [| clears the register to 0.
I
| LHEQ,| Load Ron r | I | Loads R with a 1 if the contents
| LHGE,| With Respect | | of r reflect the specified
| LHGT,| to 0 | | condition with respect to O,
| LHLE, | | | or with a 0 if another
| LHLT, | | | condition exists.
: LHNE | | l
| LLBQ,] LoadAonL | S,R,V | Loads A with a 1 if the contents
| LIGE,| With Respect | | of L reflect the specified
| LIGT,| to O | | condition with respect to 0,
| LLLE, | | | or with a 0 if another
| LLLT, | | [condition exists.
} LINE | | |
| LT | Load True | S,R,V,I | Loads a register with a 1.
| LF | Load False | | Loads a register with a 0.

Third Edition

ALTERING SEQUENTIAL FLOW

Table 7-3
Conditional Skip Instructions

— — — —— —— — — — — — — — — — — — — — et ey — — . — — — ey oy . et e, s, .

Mnem | Name | Modes | Description |
|

CAS | Compare A and | S,R,V | Campares the contents of A to the |
| Skip I | the contents of a memory location |

| | | and skips depending on the result |

l I | of the compare. I

CAZ | Compare A to | S,R,V | Compares the contents of A to 0 |
| 0 | | and skips depending on the [

[| | outcome of the test. |

CLS | Compare L and | V | Compares the contents of L to the l
| Skip | | contents of a memory location |

| I | and skips depending on the I

| I | outcome of the compare. I

DRX | Decrement and | S,R,V | Decrements the contents of X by 1 [
| Replace X I | and skips the next word if the |

[| | decremented value is 0. [

IRS | Increment and | S,R,V | Increments the contents of a memory |
[Replace Memory| | location and skips the next word |

| I | if the incremented value is 0. |

IRX | Increment and | S,R,V | Increments the contents of X and [
| Replace X | | skips the next word if the |

[[| incremented value is 0. [

SAR | Skipon A | S,R,V | Skips the next word if the specified |
| Register Bit 0| | bit in A contains 0. |

SAS | Skipon A | S,R,V | SKkips the next word if the specified |
| Register Bit 1| | bit in A contains 1. |

SGT | Skipon A | S,R,V | Skips the next word if the contents |
| Greater than 0| | of A are greater than 0. |

SLE | Skip on A Less| S,R,V | Skips the next word if the contents |
| Than 0 | | of A are less than 0. |

SNR | Skip on Sense | S,R | Skips if the contents of the |
| Switch Reset | | specified sense switch are |

| to 0 | | are equal to 0. l

SNS | Skip on Sense | S,R | Skips if the contents of the |
| Switch Set | | specified sense switch l

| to 1 [| are equal to 1. |

7-5 Third Edition

DOC3060-192

Table 7-4
Floating-point Skip Instructions

If Zero contents of the floating

accumulator are equal to 0.

| Mnem | Name | Modes | Description :
I

FSGT	Flaating Skip	R,V	Skips the next location if the
	If Greater		contents of the floating
	Than O		accumulator are greater
I		than 0. [
FSLE	Floating Skip	R,V	Skips the next location if the
	If Less Than		contents of the floating
	or Bqual to 0		accumulator are less than
l			or equal to 0. [
FSMI	Floating Skip	R,V	Skips the next location if the
	If Minus		contents of the floating
			accumulator are less than 0.
FSNZ	Floating Skip	R,V	Skips the next location if the
	If Not Zero		contents of the floating
i			accumulator are not equal
l I	to 0.		
FSPL	Floating Skip	R,V	Skips the next location if the
[If Plus		contents of .the floating
[I		accumulator are greater	
			than 0. I
FSZE	Floating Skip	R,V	Skips the next location if the
[l [I [
l I ! I l

JUMP INSTRUCTIONS

Like the instructions listed in the tables above, jump instructions can
load new addresses into the program counter. The difference is that
jump instructions can transfer control to addresses outside the current
segment of execution. Table 7-5 lists these instructions.

SUMMARY

The 50 Series supports branch, skip, and jump instructions that you can
use to transfer control from one part of your program to another. The
next chapter begins the discussion of more complex methods of control
transfers.

Third Edition 7-6

ALTERING SEQUENTTAL FLOW

Table 7-5
Jump Instructions

Mnem | Name | Modes | Description

JDX | Jump on | S;R,V | Decrements the contents of X by
| Decremented X | | 1 and jumps if the
l [| decremented value is 0.

JED | Jump on A | S,R,V | Jumps if the contents of A
| Bqual to 0 I | equal O,

JGE | Jump on A | S,R,V | Jumps if the contents of A are
| Greater Than | | greater than or equal to 0.
| or BEqual to 0 | |

JGT | Jump on A | SyR,V | Jumps if the contents of A are
| Greater Than 0| | greater than 0.

JIX | Jump on | S,R,V | Increments the contents of X by
| Incremented X | | 1 and jumps if the
l | | incremented value is 0.

JLE | Jump on A | R | Jumps if the contents of A are
| Less Than or | | less than or equal to 0.
| Equal to O | |

JLT [Jump on A | R | Jumps if the contents of A are
| Less Than 0 | | less than 0.

JMP | Unconditional | S,R,V,I | Jumps to the specified
| Jump | | effective address.

JNE | Jump on A Not | R | Jumps if the contents of A are
| Equal to 0 | | not equal to O.

JSR | Jump to | I | Jumps to the specified
| Subroutine | | effective address and saves
I [| the return address in r.

JST | Jump and Store| S,R,V | Stores the current contents of
| | | the program counter into
| | | memory and jumps to the
[[| specified effective address.

JSX | Jump and Save | S,R,V | Increments the contents of the
| in X I | program counter by 1 and
| | | stores the result in X, then
[| | jumps to the specified
I I | effective address.

JSXB | Jump and Save | V,I | Stores the current contents of
| in XB [| the program counter in XB and
| | | jumps to the specified
| | | effective address.

JSY | Jump and Save | V | Increments the contents of the
| [l
l | |
I | |
l [I

inyY

program counter by 1 and
stores the result in Y, then
jumps to the specified

effective address.

Third Edition

Stacks and Procedure

Calls

This chapter describes how to transfer control from one procedure to
another. This type of control transfer, the procedure call, can:

e Call inward rings from outward rings.

e Invoke reentrant procedures.

e Invoke recursive procedures.,

e Use an embedded operating system.
Before describing how procedure calls work, however, this chapter
defines several key terms. It also describes the stack, the data

blocks that contain information about a call, and the special access
rights that govern a call.

DEFINITION OF TERMS

Note the difference between the terms process and procedure., A
procedure is a set of instructions, such as the body of a text editor
or diagnostic program. A process is the execution of a procedure, such
as the process that the system assigns to a user. A process may
execute several procedures throughout its life,

8-1 Third Edition

DOC3060~-192

A procedure may call other procedures by using the Procedure Call (PCL)
instruction. A processor may exchange one process for another by
invoking the process exchange mechanism (PXM). For information about
the PXM, refer to Chapters 9 and 10.

Note also the use of the terms caller, callee, calling procedure, and
called procedure, 'The procedure making the call is the calling
rocedure, or caller. The procedure answering the call is the called
rocedure, or callee. These terms are used throughout this and future
gﬁapters.

STACKS AND STACK MANAGEMENT

The more sophisticated methods of altering sequential program flow use
stacks as temporary storage areas. Procedure calls use the stack to
save the state of the machine before altering program flow and to
contain the parameters of the call. When the specified operation is
complete, information in the stack is used to restore the machine state
to what it was before the procedure call took place.

A stack is a group of one or more segments, Since a 50 Series
processor can support more than one stack at a time, the segment number
of the first segment in each stack (the stack root) serves as a unique
identifier, Stack segments following the stack root segment are called
stack extension segments. A stack can contain many stack extension
segments.,

Stack Header

The first four locations of the stack root segment contain the stack
header. These locations contain information needed by the processor to
manage the stack. Table 8-1 shows the format of these locations.

Each stack extension segment also has a header. Words 0-1 of each
extension segment must contain 0. Words 2-3 contain an extension
pointer that references the next stack extension segment. This pointer
contains 0 if this segment is the last stack extension segment,

Third Edition 8-2

STACKS AND PROCEDURE CALLS

Table 8-1
Stack Header Format for the Initial Stack Segment

| Word | Name | Description

| 0,1 Free

Pointer

| | Pointer to first word of next free space in
[| the current stack segment (segment number/
} | word number). This value must be even.

I
2,3 | Stack | Pointer to first location of extension
| Extension | segment, if one has been allocated. If
| Pointer | there is not enough roam to allocate a new
[| frame in the current segment referenced by
I | the free pointer, the processor uses the
| | extension pointer to reference the next
| [segment. If the extension pointer contains|
| [0, no extension segment has been allocated |
I | and a stack overflow fault occurs. |

I
|
|
I
I
I
I
I
I
I
I
I

Stack Frames

The 50 Series processors store information on the stack in blocks
called stack frames. ‘They allocate the frames in a last in first out
(LIFO) manner. Each time the PCL instruction executes, a new frame is
allocated; a PRIN instruction deallocates the frame when the procedure
specified by PCL completes execution, Note that an unextended frame
cannot cross a segment boundary. (See STEX in Chapters 13 and 14.)

The stack frames allocated at any time are backward threaded only.
This means that each frame points back to the frame of the procedure
that previously used this stack.

The information contained in a frame header defines the state of the
machine that was in effect when the calling procedure executed the PCL
instruction. This arrangement permits calls to or returns fram a
procedure without having to reference the frame of the calling
procedure,

Figure 8-1 shows the format of the stack frame header., Note that all

procedures in the same ring can use the same stack for storage.
Different processes, however, usually do not share stack segments.

8-3 Third Edition

DOC3060-192

I FLAG BITS |
| STACK ROOT SEGMENT # |
I RETURN POINTER |
| RETURN POINTER I
I STACK BASE [
| STACK BASE I
| LINK BASE [
| LINK BASE |
[KEYS |
| ARGUMENT WORD NUMBER |

WAL WNE

=

| Words in | Contents | Description |
| Frame | |
| l
[1 | Flag Bits | PCL always sets these bits to 0. }
I [|

| 2 | Stack Root | Address of the free pointer. [
| | Segment # | =
| | |

3,4	Return	Pointer to return location (that
	Pointer	following the last argument template
		of the PCL instruction that created
		this frame).
[[[
5,6	Stack Base	Contents of caller's SB (pointer to
[previous frame). {	
[| I

| 7,8 | Link Base | Contents of caller's LB, |
| [| I
| 9 | Keys | Contents of caller's keys. |
I I I I
| 10 | Argument | Wword number of the location following the|
| | word # | PCL that created this frame. I

Stack Frame Format
Figure 8-1

Third Edition 8-4

STACKS AND PROCEDURE CALLS

ENTRY CONTROL BLOCKS

The entry control block (ECB) identifies a procedure. When PCL
executes, 1t forms the effective address of the called procedure's ECB,
not of the procedure itself. The E® contains information about the
called procedure, as well as about the expected parameters (such as
number of expected arquments, size of stack frame, and so on). Figure
8-2 shows the format and contents of the ECB.

1 16 17 32

ECB.PBH | ECB.PBL
ECB.SFSIZE | ECB.ROOTSN
ECB.ARGDISP | ECB.NARGS

l |

| |

I I

| ECB.IBH | EGB.IBL |

| ECB.KEYSH | 0 I

| 0 | 0 l

| 0 | 0 |

| 0 | 0 [
[Word in | Name | Description |
IBlock | | Il
l
| 0-1 | EGB.PB | Pointer (ring, segment, word number) to |
| | | the first executable instruction of |
| | | the called procedure. =
I l I
| 2 | ECB.SFSIZE | Stack frame size to create (in words). |
[| | Must be even, :
| | I
| 3 | ECB.ROOTSN | Stack root segment number. If zero, |
| | | keep same stack. }
[| [
| 4 | EB.ARGDISP| Displacement in new frame of where |
[[| to build argument list. II
| | |
| 5 | ECB.NARGS | Number of arguments expected. {
| I I
| 6-7 | ECB.IB | Pointer (ring, segment, word) to be [
| | | loaded as called procedure's linkage |
| [| base (location of called procedure's |
| | | linkage frame less '400). ‘
| | |
| 8 | ECB.KEYS | Keys desired by called procedure, |
[I | |
| 9-15 | | Reserved, must be zero. I

Entry Control Block Format
Fiqure 8-2

8-5 Third Edition

DOC3060-192

INDIRECT POINTERS

If the callee expects arguments, several pointers to the arguments
should follow the PCL instruction. These pointers are called argmuent
templates (or argument pointers). They contain directions that PCL
uses to form indirect pointers to the actual arguments. Indirect
pointers are saved in a stack frame that the callee uses to reference
the arguments.

Several templates may be used in succession to form one indirect
pointer. One template may specify a level of indirection; the next, a
base register. Each template contains an S bit that determines if that
template is the last one to be used to form a single indirect pointer.
If this S bit contains 1, then the argument is the last one to be used
for this indirect pointer, and the processor should store it into the
current stack frame. If the S bit contains 0, then the indirect
pointer requires more templates.

Each template also contains an L bit to indicate if it is the last one
for the last indirect pointer. When L and S are both 1, then this
argument is the last one for the last pointer. When L is 0, other
arguments follow it., When L is 1 and S is 0, the processor forms dummy
indirect pointers. See Storing Indirect Pointers, below, for
information about these dummy indirect pointers.

Figure 8-3 shows the format of all argument templates, Figure 3-3 in
Chapter 3 shows the format of 32-bit and 48-bit indirect pointers.

1 45 6 7 8 9 10 11 16 17 32

| BIT | I | 0| BR | L | S |000000] WORD I

Bits | Mnem | Contents

1-4 BIT Bit number.
5 I Indirect.
6 _— Reserved; must be 0,

| |
| |
I I
7-8 { BR } Base register.
I |
|
|

9 L Last template for this call.

10 S Last template for this argument;
I store argument address.

11-16 | — Reserved; must be zero.

17-32 | WORD | Word number.

Argument Template Format
Figure 8-3

Third Edition 8-6

STACKS AND PROCEDURE CALLS

GATE ACCESS

There are some Ring 0 or 1 procedures that procedures in
higher-numbered rings will want to call. Since normal read, write, and
execute access rights will not allow such inward references, these Ring
0 or 1 procedures must specify a special access right called gate
access. Gate access allows a Ring 3 procedure to safely use a specific
set of Ring 0 and 1 procedures without harming the rest of the system.

For identification, the ECBs of the procedures that allow gate accesses
are grouped in a special gate access segment. These E(Bs must all have
starting addresses of 0(modl6é) in this segment. If a procedure
references an improperly aligned ECB, an access fault occurs.

To call any of the procedures allowing gate accesses, the caller must

execute a PCL instruction that points to an ECB in the gate access
segment. There is no other way to call these procedures.

MAKING A PROCEIURE CALL

When PCL executes, it:
e Calculates the callee's ring number.
e Allocates a new stack frame for the callee.
e Saves the caller's state.
e Loads the callee's state.
e Calculates and stores indirect pointers for the callee's use,

This sequence of events is summarized in Figure 8-4 and described
below.

Calculating a Ring Number

When PCL. begins execution, it calculates the ring number of the call.
PCL looks at the appropriate STIB entry, since it oontains access
rights for the calling procedure. PCL uses these access rights to
determine if the caller has access to the callee's ECB. If the STIB
specifies read access, PCL weakens the ring number contained in the
callee's ring field to that of the caller. If the callee's ECB is in a
gate segment, PCL uses the ring field contained in words 0-1 of the
callee's ECB as the ring number.

8-7 Third Edition

DOC3060-192

Third Edition

Reference
correct SDW

Callee’s ring #
—Caller’'s ring #

Read

access
?

YES

Gate

access
?

Access
violation

YES

Callee’'s ring # «— ring #
in words 0 - 1 of
caller’'s ECB

Word
3in ECB
=07?

Stack segment NO
for call is the
current one

Fetch stack root
from caller’s
stack frame

Actions of PCL, Part 1
Figure 8-4a

8-8

STACKS AND PROCEDURE CALLS

Words
2-3in
segment ref.
by free
pointer = 0
?

Room
in stack

for frame
?

New frame
begins at location
specified by
free pointer

Stack
overflow
fault

Y

Update free
pointer

!

Clear flag
word in
new frame

!

Store caller’'s
PC,SB, LB,
and keys into
new frame

[Disable interrupts 1

Load callee's PB, LB,
and keys with values
specified in caller’'s ECB
and load SB with starting
address of new frame

!

Calculate ana
store argument
pointers

Callee
begins

execution

Free pointer —
words 2-3 In
segment ref. by
free pointer

Actions of PCL, Part 2

Figure 8-4b

8-9

Third Edition

DOC3060-192

Allocating a Stack

PCL looks at the contents of EM.ROOTSN (word 3 of the ECB) to
determine the stack root segment, If ECB.ROOTSN contains zeroes, the
processor fetches the stack root number from the stack frame of the
caller. (Gate E's must have a nonzero stack root segment indicated
in ECB.ROOTSN,) The first two words of the stack root segment contain
the free pointer; PCL compares the number of available locations in
the segment to the contents of EM.SFSIZE (the number of words
contained in a frame). Stack frame sizes and free pointers are always
rounded upwards to form an even value.

If the frame will fit into the locations remaining in the stack
segment, PCL starts the new frame at the location specified by the free
pointer. It also updates the contents of the free pointer so that they
point past the new frame.

If the new frame is too large to fit in the current segment, PCL
examines the contents of words 2-3 in the segment referenced by the
free pointer. If words 2-3 contain 0, a stack overflow fault occurs.

If words 2-3 contain a nonzero value, this value becomes the new free
pointer. PCL rechecks for available segment locations as it did the
first segment. If this segment cannot contain the whole frame, a stack
fault occurs, If there are enough available locations, PCL starts the
frame at the first available location.

Saving the Caller's State

The processor clears the flag word of the new frame and stores the
ocontents of the caller's program oounter, stack base and link base
registers, and keys into the new frame. Note that the contents of the
saved program counter specify the ring and segment of the caller, and
that these saved contents point to the location immediately following
PCL.

Loading the Callee's State

PCL disables interrupts so that page faults, STIB faults, or interrupts
cannot disrupt the system while it is loading the callee's state.
After these are disabled, PCL loads the program ocounter with the
contents of EC.PB and LB with the contents of E(B.IB. The keys are
loaded with the contents of ECB.KEYS; note, however, that bits 15-16
of the keys are set to 0. PCL also loads the address of the new frame
into SB.

Third Edition 8-10

STACKS AND PROCEDURE CALLS

Calculating Indirect Pointers

Figure 8-5 shows how the indirect pointers are formed. The text that
follows elaborates on this figure.

To form an indirect pointer, PCL first forms the ring field. It
compares the contents of the program counter's ring field and that of
the base register specified in the caller. The larger value of these
two fields becomes the ring field of the indirect pointer.

The contents of the segment field of the caller's specified base
register become the contents of the indirect pointer's segment field.
The contents of the base register's word and bit fields are added to
those of the word and bit fields specified in the argument template to
form the appropriate fields for the indirect pointer. When XB is the
base register, bits 1-4 of X (GR7 in I mode) contain the bit field, if
there is one.

When the argument template bit field is added to the XB field, the
carry out goes into the word number part of the address. Note that the
argument template bit field is used only when the argument template
indirect bit is 0.

If the arqument template indirect bit is 0, the value just calculated
is the final value,

If the arqument template indirect bit is 1, the value just calculated
is not the final value. PCL uses this calculated value to fetch the
indirect pointer. PCL compares the calculated value's ring field to
the caller's ring field (found in the program counter) and takes the
larger of the two as the new ring field. The contents of the segment,
word, and bit fields are the same as the contents of those just
calculated.

When an indirect pointer's fault bit contains a 1, the contents of the
argument template S bit and the pointer's first word determine the
action to be taken. If the S bit contains a 1 and the pointer's first
word is '100000, the indirect pointer is loaded onto the callee's stack
frame; all other cases result in a pointer fault.

Once PCL finds the final value generated by the template, it examines
the S bit to determine if it should store the pointer in the stack
frame as an indirect pointer, or if it should store the pointer in XB.

If S contains a 0, PCL must use at least one more template to complete
the formation of the pointer. The value calculated so far is stored in
XB, (If there is a bit field, the value is also stored in X. Bit 4 of
XB, the E bit, contains 1 when X is used.) The value calculated for
the next template 1is stored in XB and X again. This continues until
the S bit of one of the templates contains a 1.

8-11 Third Edition

DOC3060-192

Ring # =
max [PCring #,
BRring #)

!

Seg# =caller's

BR seg #
Word # =caller’s

BR word #

+ AP word #
Bit# =APbit#

) AP YES !’-‘etch
BR=XB? indirect indirect
bit=1? pointer
Bit# « Ring # «
AP bit# + max [IP ring #,
GR7 (X) bits 1-4 ring #]
P
N
2 fault bit
=1?
YES
Word# «
word# +1
P
bits 1-16 Pointer
='100,000 fault
?
Y Yy ¢ YES

Calculating and Storing Argument Pointers, Part 1
Figure 8-5a

Third Edition 8-12

STACKS AND PROCEDURE CALLS

Store pointer
NO \nto XB Go back
(and X) to start
YES

Store pointer
into next
frame location

NO YES

Make
dummy
pointers

Ignore extra
arg pointers

¥ R

Count « YES NO Count «
count 1 count 1

Calculating and Storing Argument Pointers, Part 2
Figure 8-5b

8-13 Third Edition

DOC3060-192

Storing Indirect Pointers

If S contains a 1, PCL stores the calculated indirect pointer in the
next stack frame location. If L also contains a 1, then there are no
more indirect pointers to be calculated., A 0 in L indicates that there
are more arguments to follow, so PCL proceeds with the next one.

If the number of indirect pointers produced is greater than the number
the callee expects, PCL ignores the extras.

If the number of indirect pointers produced is less than the number the
callee expects, PCL creates dummy indirect pointers and stores them in
the current frame, The format of these dummy pointers is '100000,
where bit 1 =1 indicates a pointer fault (omitted argument pointer).
PCL stores one dummy pointer for each omitted one.

Note that the callee can reference omitted indirect pointers only to
pass them on to other new procedures; if such a reference occurs, the
new procedure will see such indirect pointers as omitted. Any use of
an omitted indirect pointer other than to pass it on causes a pointer
fault.

PCL always allocates three words in the current stack frame to store
each indirect pointer, An indirect pointer occupies all three words,
however, only if it has a nonzero bit field. If this is the case, PCL
sets the E bit for that indirect pointer to 1. If an indirect pointer
has a bit field containing 0, PCL sets the arqument's E bit to 0 and
loads the indirect pointer into the first two allocated locations;
when PCL loads the next indirect pointer, it skips the third location.

THE ARGT INSTRUCTION

PCL is resumable if any interruption occurs while it is transferring
arguments, When such an interruption occurs, the program ocounter in
the return block contains the address of the first instruction in the
callee. If the callee does not expect arguments, its first instruction
can be anything, If arguments are expected, however, the first
instruction of the callee must always be the Arqument Transfer (ARGT)
instruction., After the processor services the interrupt, control
returns to ARGT, which identifies. how many indirect pointers have yet
to be transferred, and begins the transfer anew at that point.

Note that ARGT transfers arguments only if an interrupt occurs during
PCL's execution. If this happens, ARGT completes the transfer that PCL
began. If no interrupt occurs, ARGT is not executed.

Third Edition 8-14

STACKS AND PROCEIURE CALLS

THE PRIN INSTRUCTION

After all arguments are transferred, control transfers to the called
procedure, The last instruction of the called procedure must be a
procedure return instruction, PRIN. When this called procedure
completes execution, PRIN transfers oontrol back to the <calling
procedure. The calling procedure picks up execution at the instruction
immediately following PCL and its arguments.

PRIN also deallocates the stack frame created when the procedure call
was first made. To deallocate the frame, the instruction stores the
current value of the stack base register into the free pointer. It
then restores the caller's state by loading the caller's stack base and
link base registers with the values ocontained in the frame being
deallocated. The keys are similarly loaded, but bits 15-16 of the keys
are set to 0. PRIN also loads the program counter with the appropriate
address contained in the frame, but loads the program counter's ring
field with the logical OR (weaker) of the saved program counter ring
number and the current ring number. This prevents inward returns, yet
allows returns from gated calls to work properly.

Programming Notes

When making a procedure call, make sure that the caller, callee, and
associated E(B all contain consistent information about arguments. If
the EB specifies no arguments, then no argument templates should
follow PCL, nor should the callee begin with ARGT. Similarly, if the
ECB specifies arquments, the associated callee must begin with ARGT,
and PCL. should be followed by the correct number of arqument templates
(or fewer).

Also note that PCL. without argument pointers does not change the
contents of any general registers or XB. PCL with argument pointers
may alter the contents of some general registers, so do not rely on
them to be the same as they were before PCL executed. Specifically,
when calling an inner-ring procedure, do not use an indexed or an
XB-relative PCLL instruction. If an asynchronous interrupt condition
occurs, the software restarts the interrupted call at the location
specified by the calling PCL. Since neither XB nor the general
registers were saved during the first try of PCL, the processor may
calculate an invalid effective address.

In addition, do not specify an XB-relative argument template unless it
is immediately preceded by at least one other template whose S bit is
0. The previous template's S bit tells the processor that another
template is to follow, and to save the current template in XB, not to
store it in memory. The processor reads in the XB-relative template,
and uses the saved contents of XB in the manipulation. If the
XB-relative template were not immediately preceded by another template
whose S bit is 0 and if the processor were to retry PCL, XB would not
contain valid contents; the calculated template would be invalid.

8-15 Third Edition

Process Exchange on
Single-stream
Processors

INTRODUCTION

The previous chapter described how to transfer control from one
procedure to another., This chapter and the next discuss the process
exchange mechanism (PXM) and how it transfers control from one process
to another. This chapter describes the PXM implemented on the
single-stream processors: the 2750, 2250, 250-II, 550-1I, and 750.
The next chapter describes the PXM implemented on the dual-stream 850.

As defined in the previous chapter, a process is a dynamic state of
execution, such as a user in a time-sharing system. To quickly service
as many processes as possible (up to approximately 1000 at once), the
50 Series PXM executes one process for a given length of time, If a
resource is not available or time for this process is up, the PXM
exchanges this process for another, and so on. ‘This allows many
processes to work towards completion at the same time.

ELEMENTS OF THE PXM

The main elements of the process exchange mechanism (PXM) are:
e Three data structures:
Process control blocks

Ready list
Wait lists

9-1 Third Edition

DOC3060-192

® Two PXM instructions:

WAIT
NOTIFY

e The dispatcher

In addition to these elements, the PXM manipulates the register file
and the process interval timer during process exchange.

PROCESS CONTROL BLOCKS

Each process has a process control block (PCB) that describes it. Each
PCB contains a minimum of 64 words and completely specfies its process
from a hardware point of view. Table 9-1 shows the format of the PCB.

A single dedicated segment contains the PCBs of all processes running
throughout the system., Bits 1-16 of word 25 in the current register
set specify the number of this segment, OWNERH. (See Table 9—6 later
in this chapter for the format of the current register set.) All
pointers and addresses in a PCB (except fault vectors and wait list
pointers) are 16 bits long and are assumed to be relative to OWNERH.
(For more information on OWNERH, see the section on User Register
Files, later in this chapter.)

PCBs generally start on 0(mod64) boundaries, but must start on at least
0 (mod32) boundaries.

READY LIST

The PXM uses the ready list to indicate priorities and dispatch
processes. The elements of the ready list are:

e A series of headers that make up the actual ready list.
e A data base made up of PCBs.
e Two 32-bit registers, PPA and PPB.

Figure 9-1 and the text in the following section show the relationships
between the ready list elements.

Third Edition 9-2

PROCESS EXCHANGE

Table 9-1
PCB Format

Section | Word # | Contents

in segment OWNERH; they need not start at
location '100. The concealed stack can
contain as many frames as desired.

I |
: | (octal) | }
| Control | 0 | Level pointer to BOL in ready list. |
I | 1 | Link pointer to next PCB, or 0. I
| | 2-3 | Segment #/word # of the semaphore whose wait |
| [| 1list is currently pointing to this PCB. |
l | | A segment # of 0 indicates that this PCB I
I I | is on the ready list. |
| | 4 | Abort flags used to generate a process fault |
| [| when this PCB is dispatched. |
[| | Bits 1-15: set by the software I
I	Bit 16: process interval timer overflow	
	5	Pointer to the register set this process
I	used last.	
	6-7	Reserved for future use. I
Process	10-11	Process elapsed timers. These must be I
State		maintained by the software that resets [
		the live interval timer.
	12-15	DrAR2 and DI'AR3. These are never saved,
[only restored. I	
I [16	Interval timer, bits 1-16.	
	17	Interval timer, bits 17-32.
[20	save mask. PXM uses this to avoid saving or
[[restoring registers containing zeroes.	
[Format of the word is: [
I		1-8: GRO-GR7 (8 32-bit registers) i
I I	9-12: FPO-FPl (4 32-bit registers) l	
		13-16: base registers (4 32-bit registers;
[I PB, SB, 1B, XB)		
	21	Keys.
	22-61	Storage for nonzero registers. (See Save
		mask, above,) I
Fault	62-63	Fault vector. Segment #/offset to [
] I	fault table for Ring 0.	
	64-65	Fault vector. Segment #/offset to
[fault table for Ring 1. I
	66-67	Reserved for future use.
	70-71	Fault vector. Segment #/offset to
] [fault table for Ring 3.	
	72-73	Fault vector. Segment #/offset to [
		fault table for page fault.
	74-76	Concealed fault stack header (FIRST, NEXT,
[[and LAST pointers).	
I I 77	Reserved.	
	100-137	Concealed stack. These words can go anywhere
I I		
I I I I
I I I I

9-3 Third Edition

DOC3060-192

Level 600 Level 602 Level 604 Level 606 Level 610
Header Header Header Header Header
Ready BOL | EOL BOL | EOL | BOL | EOL | BOL EOL | BOL EOL
List
A|C D| E 4] | F F G| K
A D F G
> 600 > 602 606 lpe! 610
— B — E [’—1 H
B E H
LP‘ 600 - 602 610
—1 C] — J
C J
-1 600 |- 1 610
('] ’— K
K
o[i e
9

Third Edition

Ready List and Associated PCB Lists

Figure 9-1

PROCESS EXCHANGE

Headers

The ready list itself is made up of headers, one header for each level
of priority. These headers are allocated in contiguous memory
locations, with the highest priority header contained in the Ilowest
numbered memory location. Each header, in turn, is made up of two
l6-bit pointers. The pointers are called the beginning of list (BOL)
pointer and the end of list (EOL) pointer, and each contains the
address of a PCB in segment OWNERH,

The P(B referenced by a BOL pointer is associated with the first
process having a particular priority. The BOL pointer points to the
PCB of the last process with that particular priority.

A BOL pointer containing a 1 signals the end of the ready 1list, since

PCB addresses must be even. A BOL pointer containing a 0 signals an
empty level,

Ready List Data Base

The ready list data base is made up of 1linked lists of PCBs whose
associated processes are ready to execute. There is one list defined
for each level of priority; all PCBs contained in that list have the
same level of priority. A list can contain as many processes as can
exist in the system at a time.

The first location in each PCB specifies the process' priority level by
pointing to one of the BOL pointers in the ready list. The second
location contains a forward 1link to the next PCB in the linked list.
For the last PCB in the linked list (that is, the last PCB in the ready
list with this level of priority), the second location contains 0.

PPA and PPB Registers

The PXM uses the pointer to process A (PPA) and pointer to process B
(PPB) registers to locate the next process to dispatch. Both registers
are 32 bits wide.

PPA always contains information about the currently active process.
Bits 17-32 contain PCBA, the address of the process' PCB. Bits 1-16
contain the level of priority, called Level A, ILevel A always
specifies the system's highest priority level that has an associated
PCB ready to run. This is because the system's currently running
process is always the highest priority process that is capable of
running.

PPB contains Level B and PCBB, which specify the priority level and the
PCB address, respectively, of the next process to run when execution of
the current process terminates,

9-5 Third Edition

DOC3060-192

Using PPA, PPB, and the Ready List

To show how PPA and PPB are used, suppose Process H is running when
Process J, whose priority is higher than that of Process H, needs to be
serviced. This means that Process J preempts Process H. The PXM
suspends Process H, saves the contents of PPA (which reference Process
H) in PPB, and then services Process J. When Process J completes, the
PXM checks PPB to see what process to run next. PPB identifies Process
H, and so the PXM resumes execution of Process H.

Except when bringing the system up from a cold start, software should
never alter the contents of PPA or PPB. This holds even if PCBA or
PCBB contains 0, indicating invalid register contents. Even if PCBA is
invalid, Level A specifies the highest level of priority that was
executing in the system, and this determines the starting point of a
scan to find the next process to run. When PCBA is invalid, PCBB is
guaranteed to be invalid. Note that PCBB is also invalid when the
system is idle.

Upon cold start, the cold start software loads the PLA register with
the highest level of priority in the ready list. At all other times,
however, Level A specifies the highest level of priority that was last
known to contain a process., All scans of the ready list can begin at
this last known level, Whenever the PXM needs to run a process of
higher priority than that specified in Level A, the PXM loads PPA with
that higher level.

The PXM does not maintain a pointer to the highest priority 1level of
the ready list. The ready list allocator that starts the PXM, however,
knows the starting address of the ready list. In addition, Level A
always points to either the highest priority level currently in the
system, or the last known highest level. This means that Level A can
be a pointer into the ready list.

If PCBB is valid, Level B points to the next process to be executed
when the current process completes., Note that the priority level of
this next process is lower than or equal to that of the currently
executing process., If PCBB is invalid, the contents of Level B are
unpredictable.

Third Edition 9-6

PROCESS EXCHANGE

WAIT LISTS

Wait lists specify a group of processes that are waiting for an event
to occur. There are two major elements of each wait list:

e A semaphore
® A data base made up of PCBs

Figure 9-2 and the text in the following section describe the
relationship between the semaphore and the wait list PCBs.

Sema@ores

Semaphores define an event, such as the completion of a task. The

finition of the semaphore is known by at least two processes, or by
one process and phantam interrupt code. Upon completion of the event,
a NOTIFY instruction changes the value of the semaphore. This change
in value may cause the PXM to run a new process.

A semaphore consists of two sequential 16-bit memory locations. The
first location contains a WAIT counter, C. If C is greater than =zero,
then it specifies the number of PCBs on the associated wait list. If C
is negative, it specifies the number of times the event has occurred
without running a process.

The second location contains the address of the first PCB awaiting
completion of the specified event. Since all P(Bs are contained in
segment OWNERH, a 16-bit pointer is all that is needed to identify a
specific PCB.

A semaphore can reside anywhere in memory but segment 0. It does not
usually reside in segment OWNERH.

Wait List Data Base

Each wait list has associated with it a 1linked list of PCBs. The
processes represented by the PCBs all share the same semaphore; this
means that they are all waiting for the same event to occur.

Note that the PCBs in a wait list need not have the same level of
priority, since the wait list uses a priority-based queuing algorithm,
This means that processes with higher priorities are queued ahead of
those with lower priorities.

9-7 Third Edition

DOC3060-192

Semaphore
Counter{ BOL
Semaphores
in memory
+2 M
|
PCB'sin
segment
OWNERH

Third Edition

604

606

Semaphore Semaphore
Counter| BOL Counter| BOL
+3 P —4 f
—3-{ 606

R
- 606
5

616

Wait List and Associated PCB Lists

Figure 9-2

PROCESS EXCHANGE

PXM INSTRUCTIONS

The two notify instructions, NFYE and NFYB, and the wait instruction,
WAIT, are restricted instructions. Therefore, they must be executed in
Ring 0. All three instructions are 48 bits long: bits 1-16 contain an
instruction code, and bits 17-48 contain a 32-bit address pointer to a
semaphore.

The WAIT Instruction

Figures 9-3 and 9-4 show the actions of the WAIT instruction.

As the name indicates, WAIT signals the PXM to wait for an event before
executing any more of the currently running process. When WAIT
executes, the processor uses the address pointer ocontained in the
instruction to reference a semaphore. The processor increments the
counter contained in the addressed semaphore, then looks at the result.

If the result is less than or equal to 0, there are no other processes
waiting for the event defined by the semaphore. 1In this case, the
currently executing process can continue.

If the result is greater than 0, either the expected result has not
occurred, or the desired resource is not available. The processor
stops executing the current process, removes the associated PCB from
the ready list, and places the PCB on the wait list associated with the
semaphore. The P(B's priority level dictates where on the wait list
the PCB should go. If the wait list already contains PCBs with the
same priority 1level, the new PGB 1is placed after the ones already
there.

If the result is greater than +32767, a semaphore overflow fault
occurs.

Note

The processor saves only the oontents of the keys, base
registers, and program counter when it adds a PCB to the wait
list, It does not save the contents of the general registers
or floating registers., After this short save the processor
makes the register set used by the exchanged process available
to the next process to run. For this reason, never assume that
the contents of the general registers after a WAIT instruction
executes are the same as they were before WAIT executed.

9-9 Third Edition

DOC3060-192

Count + Count +1

() =(T2)

YES
T1 = BOL
l“
T2=T
YES
NO
YES
NO
((T1)) = PCB
(T1) = (PCB+1)
(PCB+1) = T2
(BOL) = T1

G-

Third Edition

WAIT Instruction

Figure 9-3

9-10

WLSN AND WLWN
to PCB:
turn off CP timer

Y

Short save
under mask

Y

PPB

NO

valid?
(<>07?)

YES

Level A =
Level B

|

PCBA = PCBB
PCBB =9

PROCESS EXCHANGE

Save timer
and keys

l

Save mask =

All
registers
saved?

YES

o SD(CRS) =1

RTN

Shift save
mask left

Set bitin
save mask

'

Store register
in PCB

Save Under Mask Algorithm
Figure 9-4

9-11 Third Edition

DOC3060-192

The NOTIFY Instruction

Figure 9-5 shows the actions of NOTIFY.

The two notify instructions, NFYE and NFYB, perform the same sequence
of events., They differ only in the queuing algorithm used: NFYE
queues PCBs at the end of the appropriate ready list priority level,
while NFYB queues PCBs at the beginning of the appropriate priority
level , In the discussion that follows, NOTIFY encompasses the
operation of both instructions.

NOTIFY signals the PXM that some awaited event has occurred. When
NOTIFY executes, the processor uses the address pointer contained in
the instruction to reference a semaphore. The processor decrements the
counter contained in the semaphore by 1 and checks the result,

If the result is less than 0, no process is waiting for this event, so
the processor continues the currently executing process. (If the
result is less than -32768, a semaphore undeflow fault occurs.)

If the result is greater than or equal to 0, the processor removes the
PCB at the head of the specified wait list and places it on the ready
list, If the process associated with the PCB moved to the ready 1list
has a higher 1level of priority than that of the currently executing
process, the processor will preempt the current one. However, it does
not remove the current process' PCB from the ready list. In addition,
the processor saves the contents of the preempted process' registers
before starting to execute the new process.

As the above explanation shows, NOTIFY does not always interrupt the

currently executing procedure. However, it does always make a change
in the specified semaphore.

Third Edition 9-12

PROCESS EXCHANGE

Count - Count -1

&

NO

(BOL)=((BOL)

{(EOL)) = PCB
(EOL) = PCB
Pash: PCB+1=0
- PPB = PPA
PPA = new

(EOL) — PCB
y
(BOL) = PCB
Y

t Dispatch)

Y

NOTIFY Instructions
Figure 9-5

9-13 Third Edition

DOC3060-192

DISPATCHER

The operations performed by the PXM are mostly governed by the
dispatcher. This microcoded routine is responsible for:

® Deciding which process to run next.

e Assigning that process a register set.

e Managing the register file, including saves and restores.
e Turning the process timer on and off.

The section Dispatcher Operation below, describes the details of the
dispatcher's actions.

REGISTER FILES

The 9950 processor contains eight distinct register files. All other
50 Series processors have four register files. Each register file
contains 32 32-bit registers that each have a high half and a low half.
Table 9-2 shows the allocation of the register files and the absolute
memory locations each occupies.

Table 9-2
Register File Allocation

Register File | Absolute Locs | Use

[[
I I
RFO	'0-'37	Microcode scratch and system
		registers (set 1 for 9950)
RF1	'40-'77	32 DMA channels
RF2	'100-'137	User register set 1
RF3	'140-'177	User register set 2
! RF4*	'200- 237	User register set 3
RF5%	'240-'277	User register set 4
RF6*	'300-'337	Microcode scratch and system
	_	registers (set 2) l
(RF7* | '340-'377 | Spare register set |

*For the 9950 processor only.

Third Edition 9-14

PROCESS EXCHANGE

Microcode Register Files

RF0 and RF6 are reserved for microcode use. These registers can hold
temporary data, control information, or other such items for the
microcode to use. Same locations are defined for microdiagnostic use.
Table 9-3 defines the locations in the microcode register file,

Table 9-3a
Microcode Register File Set 1, RF0, for the 9950

| Loc | Contents || Loc | Contents I
:0 | TRO || 20 | RMASAVE }
dm flad — |
o dme ln mem |
DI IOE P —
}4 ='IR4 H24 :PARRECB :
=5 }'IRB st :PBSAVE |l
{6 :’136 H 26 :SYSRBGl :
:7 !‘]R7 H27 :DmPARITY l
}lO {E'R032,'138 HBO {Pmm :
:11 :’IR9 HBl IIPS*JKEYS }
:12 PFR132, TR10 H32 :PLA, PPA :
13 | ma 3 |msoem |
{14 :REDIV, UCSADDRH 34 ||DS«1RMA :
=15 {RIEAVE H 35 lIDS‘VSTAT }
:16 :CFFOO, COOFF H 36 :DSNPB 1
}17 }RATMP H37 }RSAVPI'R I|

9-15 Third Edition

DOC3060-192

Table 9-3b
Microcode Register File Set 2, RF6, for the 9950

— — — — — —— — s — —— e et e e e . Wiy e e St St S Sty e S et e e e, st

——— — — —— — — — — — — — e e . e e e, . s e e et St ot o e

DGRl (STLBRF2)
DGR2 (RIMX1)

9-16

Third Edition

Table 9-3c
Microcode Register File, RF0, for All Other 50 Series Systems

PROCESS EXCHANGE

| Loc | Contents || Loc | Contents
{ 0 | IRrO Il 20 | ZERO, ONE
} 1 { TR1 :{ 21 { PBSAVE
2 | m |22 | Ry
3 Ims | 23 | oo

: 4 : TR4 }} 24 : C377

s @ ms | 25 | vt w2
: 6 : TR6 {{ 26 : WWADIR
ERE | 27 | powenerry
10 | o [l 30 | P

{ 11 : RDMX2 == 31 { PSWKEYS

{ 12 : USCADDR*,RBDIV#!: 32 ’ PPA, PCBA
} 13 : RSGT1 :} 33 : PPB, PCBB
: 14 : RSGT2 :: 34 : DSWRMA

: 15 } RECC1 :: 35 : DSWSTAT
16 | RBoc2 | 36 | oo

: 17 : ——, RATMPL# :: 37 : RSAVPTR

* Used only for the 750 and 850 systems.

The locations for REOIV and RATMPL are
switched on the 2250,
550-1II.

9-17

250, 400, and

Third Edition

DOC3060-192

DMA Channel Register File

The DMA register file, RF1l, contains 32 channel registers.

shows the format of this register file.

Third Edition

Table 9-4

DMA Register File (RF1l) Format

| Loc | Contents || Loc | Contents |
:40 | DMA cell 00 || 60 |DMAce1120}
:41 =DMAce1101”61 :Dl\'ul\ce1121ll
:42 iDMAce1102HGZ }DMAcellzzi
:43 lDMAce1103HGB :DMAcellZB:
I44 :DMAce1104H64 ;DMAce1124:
{45 :DMAce1105”65 }DMAcellzsi
:46 :DMAcellOGHGG {DMAcenZGIl
:47 {DMAcellO’I”G? :IIVIAce1127:
:50 :DMAcelllOH70 I|DMAce1130:
:51 HDMAcellllHH :mAcell31=
:52 =DMAce1112H72 :DMAce1132:
{53 :DMAcelll3H73 :DHAce1133:
:54 EDMAce1114H74 {DMAcell34:
:55 !DMAcelllS”?S IlnMAcell35:
I56 =DMAce1116H76 {MAcell36{
I57 lDMAce1117H77 IDVIAce1137:
9-18

Table 9-4

User Register Files

PROCESS EXCHANGE

Table 9-6 shows the format of the user register files, RF2 through RF5,

for v, I, R, and S modes. Table 9-5 defines the terms used in Table
9-6.
Table 9-5
Definition of Register File Terms
| Name | Contents || Name | Contents |
I |
GRO	General register 0		FACML	Floating accumulator,
GRl	General register 1			mantissa low
GR2	General register 2		FAC	Floating accumulator
GR3	General register 3 [PB	Procedure base	
GR4	General register 4		SB	Stack base
GRS	General register 5		IB	Linkage base
GR6	General register 6		XB	Temporary base [
GR7	General register 7		DTAR3	Descriptor table
A	Accumulator [address, segments		
B	Double-precision and		[3072-4095 l	
	long accumulator		DTAR2	Segments 2048-3071
	extension		DTAR1	Segments 1024-2047
E	Accumulator extension		DTARO	Segments 0-1023
	for MPL,DVL		KEYS	Reys I
S	Stack, alternate		MODALS	Modals
	index		OWNER	PCB address of the
X	Index [process that owns		
FARO	Field address I	the register		
l	register 0 [contents		
FLRO	Field length		FOODE	Fault code
	register 0		FADDR	Fault address
FAR1	Field address		FAW #	Fault address word
	register 1 [number l		
FLR1	Field length		CPUT	Process 1024-usec
	register 1 [timer I		
FAOMH	Floating accumulator,		CLKB	Uses timer uses bits
I	mantissa high [1-9		
FAOM	Floating accumulator,		FACE	Floating accumulator,
	mantissa middle I	exponent		
L	Double-precision Il Y	Index register		
I | accumulator I | |

9-19

Third Edition

DOC3060-192

Table 9-6

User Register Files (RF2 through RFS5)

I Location [I I |
| RF2, RF3, RF4, RF5 | V Mode | I Mode | S, R Modes |
I |
| 101, 141, 201, 241 | — | GR1 | — I
| 102, 142, 202, 242 | L,A,B | GR2 | A, B (1,2) |
| 103, 143, 203, 243 | E | GR3 | — I
| 104, 144, 204, 244 | — | GR4 | — I
| 105, 145, 205, 245 | S,Y | GRS | S (3) I
107, 147, 207, 247	X	GR7	X (0)
110, 150, 210, 250	FARO	FARO	(13)
111, 151, 211, 251	FLRO	FLRO	—
112, 152, 212, 252	FARl, FACMH	FAR1, FACMH	FACO (4,5)
] and FACMM	and FACMM		
113, 153, 213, 253	FLRl, FACE	FLRl, FACE	FACl (6)
	and FACML	and FACML	I
114, 154, 214, 254	PB	PB	PB
115, 155, 215, 255	SB	SB	SB (14,15)
116, 156, 216, 256	LB	LB	LB (16,17)
117, 157, 217, 257	XB	XB	XB [
120, 160, 220, 260	DTAR3	DTAR3	DTAR3 (10)
121, 161, 221, 261	DTAR2	DTAR2	DrAR2
122, 162, 222, 262	DIAR1	DTARL	DTAR1L
123, 163, 223, 263	DIARO	DTARO	DTARO I
124, 164, 224, 264	KEYS/MODALS	KEYS/MODALS	KEYS/MODALS
125, 165, 225, 265	OWNER	OWNER	OWNER
126, 166, 226, 266	FCODE	FOODE	FOODE (11)
127, 167, 227, 267	FADDR, FAW#	FADDR	FADDR (12)
130, 170, 230, 270	TIMER	TIMER	TIMER
132, 172, 232, 272	—	—	— I
133, 173, 233, 273	—	—	— I
134, 174, 234, 274	—	—	— [
135, 175, 235, 275	—	—	— I
136, 176, 236, 276	—	—	—
Note

User register sets RF4 and RF5 are for the 9950 only.

The twenty-fifth location in each user register set specifies OWNER,
the address of the PCB associated with the process that owns the
register set., Note that bits 1-16 of GWNER specify OWNERH, the number
of the segment containing the ready list and the PCBs. Make sure that

Third Edition 9-20

PROCESS EXCHANGE

OWNERH contains the proper value in both user register sets BEFORE
entering process exchange mode.

Directly Addressing A Register Set

To address the register file directly, you must use the LDLR/STLR
instructions. For more information, refer to the descriptions of LDLR
and STLR in Chapters 13 and 14. Some register set locations can be
addressed as memory locations in some addressing modes as well. See
the Address Traps section in Chapter 3 for more information on this
topic.

PROCESS INTERVAL TIMER

The process interval timer is a 48-bit number that represents the time
that has passed since this process began executing (or, for system
processes, the time since cold start). The timer represents time in
wmnits of 1.024 milliseconds., Bits 1-42 of the timer represent the
time; bits 43-48 are reserved for future use.

Four PCB locations and two register file locations contain timer
information. Table 9-7 describes these locations and their contents.

Table 9-7
Timer Control Words

PCB Loc | Name | Contents

10-11 Total time used by this process
in uits of 1.024 msecs.

Copy of TIMERH from location
30 in the current register
set. This value is the two's
complement of the number of
1.024 msec intervals left

Elapsed Timer |
I
[
|
I
!
|
| before the end of the
l
l
l
l
I
[
I
|

(ETH, ETL)
Interval Timer
High (ITH)

16

timeslice.

Bits 1-10 contain a copy of
TIMERL from location 30 in
the current register set.
This value is the amount of
process time used in units of
one usec. Bits 11-16 are
reserved,

Interval Timer
Low (ITL)

17

9-21 Third Edition

DOC3060-192

The 550-II, the 1450, the 850, and the 9950 use a timer accurate to_the
microsecond, The 2250, the 250-II, and the 750 process interval timer
is accurate to the millisecond.

The process timer represents the amount of time that has passed in the
current timeslice. The interval timer contained in the register file
locations represents the amount of time remaining in this timeslice.
Figure 9-6 shows how to use these two values to calculate the time that
has passed since the last reset.

/* L now specifies the time that has passed since
/* the last timer reset.

I [
| LI, ET /* load L with value of ET I
| ST, SET /* save the current value of ET at location SET |
| LDA RESET /* load A with the reset value |
| RTS /* reset the timeslice I
| IMA CQURRTS /* save the reset value in CURRTS, load A with |
| /* previous reset value I
| SUB RESET /* f£ind difference between new, old reset values |
| TCA /* form 2's comp of contents of A |
| PIDA /* position for addition |
| ADL ET /* add difference of reset values to contents of ET|
| SBL SET /* subtract old value of ET from contents of L |
| |
| |

Timer Example for I450, P850, and 9950
Figure 9-6

The I450, the 550-II, the 850, and the 9950 support two instructons
that manipulate the process timer. Table 9-8 describes these
instructions.

Table 9-8
Process Timer Instructions

Mnem | Name | Modes | Description

RTS Reset v

Timeslice

|
| Adds the contents of A, the |
| interval timer, and the |
| elapsed timer and stores |
| the result in the elapsed |
| timer., Loads the contents |
| of A into the interval |
| timer, I
I I
I I
I I

Stores the contents of the
process timer into memory.

STIM | Store

Process Time

I
|
I |
I |
I I
I I
| I
l !
I I
| |
I I
I |

Third Edition 9-22

PROCESS EXCHANGE

DISPATCHER OPERATION

As mentioned earlier, the dispatcher governs most of the actions of the
PXM. These can be divided into the following steps:

. Turning off the process interval timer.

1

2., Choosing a process to run.

3. Selecting a user register set for that process.
4

. Turning the process interval timer back on.

The paragraphs below elaborate on each of these steps.

Step 1. Turning off the Process Interval Timer

As soon as the dispatcher begins to execute, it turns off the process
interval timer. This timer is located in bits 1-16 (2250, 250-II,
550-1II, and 750) or bits 1-26 (I450, 550-II, 850 and 9950) of location
'30 in the current register set. It ocontains a negative number
specifying the amount of time left in the current timeslice. On each
tick, this negative value is incremented by 1; when the incremented
value reaches 0, the dispatcher sets bit 16 in the PCB abort flags to
cause a process fault, signalling the end of this timeslice.

Step 2. Choosing the Next Process to Run

PCBA, contained in PPA, holds information about which process the
dispatcher should dispatch next. When the dispatcher is first
activated, it checks PCBA; if P(BA contains a nonzero value, it
specifies a valid PCB and the dispatcher will dispatch the associated
process.

If PCBA contains zero, it is invalid and the dispatcher checks PPB for
a nonzero value. If PPB is valid, the dispatcher will dispatch that
associated process.

If PPB is invalid, the dispatcher must scan the ready list for the PCB
of the next process to dispatch. The scan begins at the level
specified by Level A in PPA., If the dispatcher finds a PCB, it changes
Level A to reflect the 1level of the found PCB and dispatches that
process next., If it finds no PCB, the ready 1list is empty and the
dispatcher idles.

9-23 Third Edition

DOC3060-192

Step 3. Manipulating User Register Sets

Once the dispatcher has identified the next process to dispatch, it
must allocate a user register set to the process. Since there are only
a finite number of register sets, the dispatcher may have to swap one
register set for another; the new process will require a register set
other than that used by the last process. Figure 9-7 shows a flowchart
of the allocation algorithm the dispatcher uses. ‘The text in this
section elaborates on the figure.

The dispatcher first checks whether the process to be dispatched owns
the current register set. It looks at the contents of bits 17-32 of
OWNER (location 25 in the current register file). These specify the
address of the PCB whose associated process owns that register set., If
OWNERL specifies the address of the PCB associated with the next
process to run, then this process owns the current register set. The
dispatcher makes no changes in the current register set before
dispatching the next process.

If OWNERL specifies the address of some other PCB, the next process to
be dispatched does not own the current register set, For 50 Series
systems, dispatcher makes the other user register set the current
register set.,

For the 9950, the dispatcher reads the contents of word 5 in the PCB
associated with the next process to run to find the number of the
register set this process used last., The dispatcher checks OWNER in
the register set specified by word 5 to see if the next process to run
owns this register set. If it does, the dispatcher must make this
register set the current one. Figure 9-8 shows register set allocation
on the 9950.

If the next process to run does not own the last register set it used,
the dispatcher must choose one for it. It increments the number of the
current register set by 1 (modulo 4) to form the number of the new
register set, then makes this register set the current one.

3A. The Save Done Bit: In the case where the process does not own the
current register set, the dispatcher must load the values of the new
process' registers into the current register set. Before it can o
this, it must determine whether it must save the old contents of the
current register set. Bit 16 of the keys contains the Save Done bit.
If this bit contains a 0, the dispatcher must save the old contents of
the current register set before restoring the new process to run,
After the save, the dispatcher loads the new data into the current
register set, resets bits 15-16 of the keys (the In Dispatcher bit and
the Save Done bit) to 0, and loads the program counter with the
contents of PB.

Third Edition 9-24

YES

YES

Process
owns current
reg set?

Process
owns other
reg set?

Other
reg set’'s
save done
bit=1?

Current
reg set’'s
save done
bit=1?

Save contents
of other
reg set

l

Restore
process into
this reg set

Dispatch
process

Register Set Allocation Algorithm
(A1l Processors Except 9950)

Figure 9-7

9-25

PROCESS EXCHANGE

Third Edition

DOC3060-192

Process
still has reg
set?

YES

Point to
reg set of

previous user

|

l.ook at

h’ next reg
set (mod 4)

All
reg sets

examined
?

Save
done bit
of this reg
set=1
?

Set that
reg set to
current reg set

Point to
reg set owned
by previous user

'

Set next
reg set to
current reg set

'

Save contents
of this
reg set

Y

Restore

this reg set

process into

Dispatch
process

Register Set Allocation Algorithm
for the 9950

Figure 9-8

Third Edition 9-26

PROCESS EXCHANGE

If the Save Done bit contains a 1, the old contents of the current
register set have been saved in the P and register file memory
locations, so0 no further save needs to be done before the new data is
loaded. After loading the registers, the dispatcher resets bits 15-16
of the keys and lcads the program counter fram PB.

3B. Saving the Current Register Set: When the dispatcher must save
the current register set before loading in new data, it saves only the
registers that contain nonzero values. The contents of these nonzero
registers are packed together and loaded into the save area. The save
mask determines which registers have had their contents saved and the
exact location of those contents in the PCB.

Only the currently active register set contains valid information in
the modals field. Whenever the processor switches register sets, the
microcode autamatically copies the contents of the current modals field
into the new register set.

Step 4. Turning On the Process Interval Timer

The last thing the dispatcher must do before dispatching a process is
to turn on the process interval timer. The dispatched process begins
execution immediately after.

FETCH CYCLE TRAPS

At various points during dispatcher execution, the processor checks for
fetch cycle traps, to allow the system to handle external interrupts.
For more information about this topic, refer to Chapter 11, Interrupts,
Faults, Checks, and Traps.

SUMMARY
This chapter described the actions that occur during process exchange

for all single-stream processors. The next chapter describes how the
PXM is implemented on the dual-stream 850.

9-27 Third Edition

10

Process Exchange

on the 850

The previous chapter described process exchange for the single-stream
members of the 50 Series family. On the dual-stream 850, however,
process exchange is more complex because:

e There are two processing units, the ISUs.

e Two processes can execute at once (one per ISU).

® The two ISUs share one set of PCBs, one ready list,
and one set of wait lists,

This chapter elaborates on each of these points, It also describes the

elements of the 850 PXM, and describes the actions of the 850
dispatcher.

INSTRUCTION STREAM UNITS

Before beginning this discussion, note the use of two terms. This ISU
refers to the ISU on which a process of interest is currently
executing, The Other ISU designates the second system ISU. Throughout
this discussion, This ISU is assumed to be the master ISU; The Other
ISU, the slave ISU,

As mentioned in Chapter 1, the 850 contains two instruction stream
uits, or ISUs, each of which is equivalent toa 750 CPU. 'The 1ISUs
operate independent of each other and are capable of performing any
task any 750 processor can perform., The one exception is that only one

10-1 Third Edition

DOC3060-192

ISU performs I/O. This means that if This ISU is currently incapable
of performing I/0, any process running on it that wants to request I/0
service is moved to The Other ISU.

Two Executing Processes

Since there are two ISUs per system, two independent processes can be
executing at the same time., ‘These two processes are always the two
having the highest level of priority in the entire system. Ensuring
that the processes with the highest priority are the ones that are
selected to execute makes dual-stream process exchange more complicated
than its single-stream complement. It is further complicated by the
fact that a process can be locked to one ISU, which means that it can
only execute on a particular ISU (such as the backstop or supervisor).
See the section, The PX Lock, below, for more information about this
topic.

One Set of Process Exchange Data Structures

To aid the ISUs in selecting the highest priority processes, the 850
uses one ready list, one group of wait lists, and one group of PCBs for
both ISUs, This means that an ISU has to scan only one list to
determine the processes available to execute. It also means the system
has to maintain only one set of information, eliminating the need to
check and update any duplicates. 1In addition, it means that a process
not locked to one ISU may execute faster, since whichever ISU becomes
available first can execute it.

850 PROCESS EXCHANGE ELEMENTS

The data structures of the 850 PXM include:
e PCBs
® Ready list
® Wait lists
e WAIT and NOTIFY instructions
e Dispatcher
Like its single-stream counterpart, the 850 PXM also manipulates the

register file and the process interval timer., In addition, the 850 PXM
uses the value CPUNUM and the PX lock to facilitate its operations.

Third Edition 10-2

PROCESS EXCHANGE ON THE 850

The CPUNUM

CPUNUM is a 16-bit number stored in bits 1-16 of location '33 of the
current register set. This number distinguishes the two ISUs. CPUNUM
contains '41004 to represent the This ISU and '102010 to represent The
Other ISU.

The PX Lock

The PX lock ensures that only one ISU at a time has access to and can
modify the contents of the process exchange data structures. This lock
is a 16-bit number. When the lock contains 0, then either ISU can
claim the right to access the structures. When it does not contain O,
the lock contains the same value as CPUNUM; i.e., the ID for one of
the ISUs. Only the ISU specified by the lock can access the
structures; the second ISU must wait until the first ISU is through
its current task before gaining access.

PCBs

The process control block format for the 850 1is nearly identical to
that of the single-stream PCBs., Only a few locations contain added
information, as shown in Table 10-1.

OANNERH (bits 1-16 of location 25 in the current register set) specifies
the segment containing all the PCBs. Each PCB contains at least 64
locations and must be aligned on a 128-byte boundary. The starting
address of the PCB is also the process ID.

No PGB (or any other data structure the PXM uses) should be contained
in locations 0-'37 of a segment. Each addressing mode handles address
traps differently; avoiding these 1locations ensures that all
addressing modes handle process exchange in the same way.

10-3 Third Edition

DOC3060-192

Table 10-1
PCB Format for the 850

Section | Word #
| (octal)

| Contents
I

6~7
10-11

12-15

Level pointer to BOL in ready list.
Link pointer to next PCB, or 0.

Segment #/offset of the semaphore on whose
wait list this process is currently.
A segment # of 0 indicates that this PCB
is on the ready list.

Abort flags used to generate a process fault
when this PCB is dispatched.
Bits 1-15: Set by the software.
Bit 16: Process interval timer overflow.

I

I

I

I

|

|

I

I

I

I

I

I

I

I

| Bits 1-4: Temporarily restrict process
| from running on one of the ISUs:
[0000 = no restrictions

| 0100 = bar from This ISU

| 1000 = bar from The Other ISU
| Bit 5: Reserved for future use.

| Bits 6-7: If 01, this process last ran on
| This ISU; if 10, The Other ISU.
| Bit 8: If 0, the registers for this

| process has not been saved in
| the PCB. If 1, the registers
| have been saved in the PCB.

| Bits 9-11: Indicates which register set

| this process used last, Uses
| the same format as the modals
| CRS field.

| Bit 12: Reserved for future use.

| Bit 13-16: Process is locked to:

| 0000 = neither ISU

| 0100 = This ISU

| 1000 = The Other ISU

I

I

|

I

I

I

I

I

I

|

Reserved for future use.

Process elapsed timers. This value is added
to contents of PCB location '16 to give
the number of msec this process has run.
RTS can alter this location.

DT2R2 and DIAR3., These are never saved,
only restored.

I
I
I
I
l
I
|
|
I
|
I
|
|
I
I
|
I
I
|
I
I
|
|
|
I
I
I
I
|
I
|
I
|
I
I
I
|
I
I
I
|
|
I
I
I
|
I
I

Third Edition

10-4

PROCESS EXCHANGE ON THE 850

Table 10-1 (continued)
PCB Format for the 850

Section | Word # | Contents
| (octal) |
| 16 | Interval timer, bits 1-16.
I I
I 17 | Interval timer, bits 17-32.
| [
[20 | save mask. PXM uses this to avoid saving or
| | restoring registers containing zeroes.
| | Format of the word is:
| | 1-8: GRO-GR7 (8 32-bit registers)
| [9-12: FPO-FPl (4 32-bit registers)
| | 13-16: base registers (4 32-bit registers
| : PB, SB, LB, XB)
|
[21 | Keys.
I I
| 22-61 | Storage for nonzero registers. (See mask,
I | above.)
I [
Fault | 62-63 | Fault vector. Segment #/offset to
| [fault table for Ring 0.
I I
| 64~65 | Fault vector. Segment #/offset to
| | fault table for Ring 1.
I [
| 66-67 | Reserved for future use.
| [
| 70-71 | Fault vector. Segment #/offset to
[| fault table for Ring 3.
I |
| 72,73 | Fault vector. Segment #/offset to
| | fault table for page fault.
| I
| 74-76 | Concealed fault stack header (FIRST, NEXT,
I | and LAST pointers).
I I
| 77 | Reserved.
I |
| 100-137 | Concealed stack. These words can go anywhere
I I
I I
| I
I |

in segment OWNERH; i.e., they do not have
to start at location '100. The concealed
stack can contain as many frames as

|
|
I
I
I
I
[
|
|
|
I
I
I
I
|
I
|
|
I
I
|
|
[
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
[
I
[
I
I
desired. I

10-5 Third Edition

DOC3060-192

Ready List and Wait Lists

The wait lists used in the 850 are identical to those found in the
other 50 Series processors. The ready list is also identical except
for the process exchange registers it uses.

Each ISU contains four process exchange registers. Two specify
information about the currently running processes, and two specify
information about the next processes to run. All four are 32 bits
wide.

MY_PPA and OTHER PPA define either the currently running process, or
the process that 1s about to run. MY_PPA represents this process for
This ISU; OTHER PPA, for The Other ISU. Bits 1-16 of each register
contain the process' level of priority; bits 17-32, the starting
address of that process' PCB. Bits 1-16 of each register are
guaranteed to always point to the ready 1list priority level that
contains the highest priority process that is able to execute for the
appropriate ISU.

The MY_PPNEXT register specifies the next process to run on This ISU;
OTHER_PPNEXT, for The Other ISU. Like their single-stream counterpart
(PPB) , bits 1-16 specify the priority level of the next process to run,
and bits 17-32 identify the PCB of this process. A nonzero value in
bits 1-16 indicates valid contents,

WAIT and NOTIFY Instructions

These instructions perform the same basic functions as their
single-stream counterparts, However, their tasks also include
obtaining the PX lock and loading the PXM registers with the correct
information so that each ISU can correctly determine its own state and
that of the second ISU. Figures 10-1 and 10-2, together with the text
in this section, give simplified versions of how the 850 WAIT and
NOTIFY instructions work.

WAIT: WAIT tells the PXM to wait for an event to occur before
executing more of the currently active process. The address pointer
contained in WAIT specifies a semaphore on which the process is to
wait. WAIT obtains the PX lock, then increments the semaphore count by
1.

If the incremented value is less than or equal to 0, WAIT releases the
PX lock and performs no other actions. If the incremented value is
greater than 0, WAIT removes the process' PCB from the ready list and
places it on the appropriate wait 1list acording to the process'
priority. WAIT 1loads locations 2-3 of the process' PCB with the
semaphore address and saves the process' base registers into its PCB.

After the short save, WAIT either runs the next process, if it knows
it, or invokes the dispatcher to choose a new process to run,

Third Edition 10-6

Get PX lock.
Count «— Count +1

NO

PROCESS EXCHANGE ON THE 850

YES

Release PX lock

Remove process’ PCB
from ready list. Place
it on appropriate

wait list

Put semaphore address
in PCB locations 2-3.
Save registers in PCB

850 WAIT Instruction

Figure

10-7

10-1

Third Edition

DOC3060-192

Get PX lock.
Count — Count-1

NO Release PX

lock

YES

Halt execution
of currently
running process.

:

Remove first process’
PCB from wait list.
Put it on ready list

MY__ PPXNEXT

valid? Call dispatcher

Determine 2 highest
priority processes.
Run them.

Y

The 850 NOTIFY Instruction
Figure 10~2

Third Edition 10-8

PROCESS EXCHANGE ON THE 850

NOTIFY: The 850 NOTIFY is significantly more complex than the
single~-stream WAIT. Its purpose is deceptively easy to state: NOTIFY
ensures that the two currently running processes in the system are the
two highest priority processes that are able to run. To do this,
NOTIFY notifies the process that is at the top of the associated
semaphore's wait list, then compares the priority level of this process
with those of the two processes currently running.

Step 1. Finding a Process to Notify: When it executes a NOTIFY
instruction, the PXM first acquires the PX lock, It then uses the
pointer contained in the NOTIFY to reference a semaphore and decrement
the semaphore count by 1. If the decremented value is less than 0, the
PXM releases the PX lock and the NOTIFY is done.

If the decremented value is greater than or equal to 0, then the PXM
must notify a process. It ceases to execute the current process and
removes the first PCB on the semaphore's wait list. It places the PCB
at the beginning or end of the appropriate level of the ready list as
indicated by the NOTIFY,

Step 2. Choosing a Process to Run: The PXM must now choose a new
process to run. If the contents of MY _PPNEXT are invalid, control
transfers to the dispatcher, which determines the next process to run.

If the contents of MY_PPA are valid, the PXM must decide if the process
it just notified is of higher priority than either of the processes
currently executing., Six cases exist:

A<C and B<C
Cc<B<A
C<A<B
C<A=B
A<LC<B
B<LC<A

where A is the process currently running on This ISU, B is the process
currently running on The Other ISU, and C is the process that was just
notified,

These cases can become quite involved, depending on where each of the
three processes can run, and depending on what actions the PXM has
taken previously. This discussion will explain two simple examples.

Suppose the first case were true. This means that C has the lowest
priority of the three processes and will not be run. All the PXM needs
to do is to decide on which ISU C is to be run.

If C can be run on only one ISU and has a higher priority than the
process that ISU is to execute next (as specified in that ISU's
MY_PPNEXT register), the PXM updates that ISU's MY_PPNEXT register so
that it points to C. Therefore, that ISU will execute C next.

10-9 Third Edition

DOC3060-192

If C can be run on either ISU, the PXM updates MY _PPNEXT and
OTHER _PPNEXT on both ISUs so that C will execute as soon as either ISU
is free,

As another example, suppose case 2, C<B<A, were true. Here C has the
highest priority of all, and should run on This ISU, if possible, A
simplified algorithm for this case is shown in Figure 10-3.

If C can run on This ISU
then if A can run on The Other ISU
then if OTHER PPNEXT is of lower priority than A
then invalidate OTHER_PPNEXT
set MY PPA to A
set PPA to C and go to the dispatcher.

If C can run on The Other ISU,
**% then if The Other ISU has received the most recent scan
then send this scan message. Scan identifies C as the
process to consider running;
else if priority of process in last scan is greater than C's
then return;
If priority of process in last scan is less than C's
then go to *** gbove;
If priority of process in last scan equals C's
then call dispatcher to scan ready list to
pick up the process queued first and return.

— — — — — —— — —— — — — —— — — — —— — ——
——— — — — i s —t — — o — — ——— —— —— — — —

Sample NOTIFY Algorithm
Figure 10-3

Dispatcher

Like its single-stream counterpart, the 850 dispatcher selects the next
process to run and sets up the registers and conditions that process
needs to run. ‘The section, Dispatcher Operation, below, explains its
actions,

Register Sets

Each ISU contains a register file identical to the single-stream
register file. Each contains two user register sets designated as the
current register set (CRS) and the other register set (ORS). Both of
these have the same format as the user register sets on the
single—-stream processors.

Third Edition 10-10

PROCESS EXCHANGE ON THE 850

Microsecond Timer

The 850 process timer is accurate to the microsecond. It is contained
in two registers, TIMERH and TIMERL. TIMERH contains the two's
complement of the millisecond portion of the clock., Bits 1-10 of
TIMERL contain the microsecond part. Bits 11-16 of TIMERL are never
changed.

Every 1.024 milliseconds the microsecond time overflows, causing a
fetch cycle trap. The contents of TIMERH are incremented; when the
contents of TIMERH overflow, a process abort fault occurs and stops the
current process from being executed.

DISPATCHER OPERATION

When a process completes execution or is aborted, the dispatcher begins
to execute to select the next process to run. This discussion assumes
that the PX 1lock contains the number of This ISU, so This ISU has the
right to access the PXM data structures.

Step 1. Finding a Process to Run

The dispatcher first checks the contents of MY_PPA., If bits 17-32 are
0, the contents are invalid, as are the contents of PPNEXT. To find
the next process to run, the dispatcher scans the ready list beginning
at the level specified in bits 1-16 of MY_PPA.

The dispatcher scans the ready list until it finds the first process
that is neither locked from This ISU, nor currently running on The
Other ISU. Any processes the dispatcher finds during the scan that are
temporarily locked from This ISU are unlocked by setting the lock field
in the process' PCB location 5 to 0. If the ready list contains no
suitable process, the dispatcher releases the PX lock.

If the dispatcher finds a process on the ready list to run, it next
checks for two things:

e Does the OTHER PPNEXT point to this process?

e Has This ISU sent a scan message to The Other ISU suggesting
that The Other ISU run this process?

If the OTHER PPNEXT points to this process, This ISU will not run this
process. It will be run at a later date on The Other ISU.

If a scan message was sent, the dispatcher invalidates the message so
that The Other ISU will not run this process. Once the message is
invalidated, or if no such message was sent, the dispatcher loads
MY _PPA with the level and PCB starting address of this process,

10-11 Third Edition

DOC3060-192

Step 2. locating Register Values and a Register Set

Once MY _PPA contains valid information, the dispatcher must locate the
register values this process needs for execution, and must find a
register set to ocontain them, The values can be in one of three
places:

e In a register set on This ISU
e In a register set on the Other ISU
e In the process' PCB

The dispatcher checks the CRS field in the process' PCB to see if
either of This ISU's register sets or either of The Other ISU's
register sets already contain the process' register values. If either
of This 1ISU's register sets do, the dispatcher makes that set the CRS.

If either of The Other ISU's register sets contain the process' values,
the dispatcher sends a message to The Other ISU telling it to save the
contents of that register set into the process' PCB. The dispatcher
then releases the PX lock so that The Other ISU can save the values.
After a short time, This ISU regains the PX lock and tries to choose a
register set from the beginning.

If none of the register sets on either ISU already contains the
process' register values, the dispatcher must load them from the
process' PCB. The dispatcher chooses a register set on This ISU by
checking the Save Done bit of both the CRS and ORS.

If the Save Done Bit of the CRS contains a 1, the CRS is available.
The dispatcher loads the process' values from the PCB into the CRS.

If the CRS is not available, the dispatcher checks the Save Done bit of
the ORS, If the Save Done bit contains a 1, the dispatcher makes ORS
the CRS, then loads in the process' register values.

If neither the CRS nor the ORS is available (both Save Done bits
contain 0), the dispatcher saves the contents of the ORS into the
appropriate PCB, makes ORS the CRS, then loads the process' register
values into it.

Step 3. Updating Information and Running the New Process

After choosing and loading (if necessary) a register set, the
dispatcher loads 1location 5 of the process' PCB with the ID of the ISU
on which the process most recently ran. It also loads the PCB with the
location of the process' register values, and sets bits 15-16 of the
keys to 0. The dispatcher then releases the PX lock and enables the
microsecond timer. The new process begins to execute,

Third Edition 10-12

PROCESS EXCHANGE ON THE 850

SUMMARY
This chapter explained how the dual-stream 850 processor performs

process exchange. The next chapter describes how all members of the 50
Series family handle interrupts, faults, checks, and traps.

10-13 Third Edition

11

Interrupts, Faults,
Checks, and Traps

Most of the time, the processor executes instructions contained in one
process, then goes on to those contained in another. At some point,
however, another part of the system may require service; when this
happens, the processor has to break the flow of control within the
currently running process and service whatever has interrupted. This
chapter describes the types of breaks that can occur, and how the 50
Series processors service them,

BREAKS

Breaks in execution can be caused by four events:
e An interrupt
e A fault
e A check
® A trap

The first three types of events are breaks in software execution. The
last, the trap, is a break in microcode execution.

11-1 Third Edition

DOC3060-192

The way in which the processor services a break depends on its type and
on the current process exchange mode of the machine. When the PXM is
disabled, the processor handles all software breaks in the same way.
Interrupts, checks, and faults all vector through a dedicated Sector 0
location to reach their handlers.

When the PXM is enabled, the processor handles each software break with
a different protocol. Table 11-1 defines the software breaks and
briefly describes the protocols that the machine uses to service them.

Microcode breaks are handled differently. When a trap occurs, it may
cause a software break, which the processor services to clear the
microcode break. If no software break is necessary, the processor
handles the microcode break in a fashion transparent to the currently
executing process.

Table 11-1
Summary of Software Breaks

Break | Definition | How Serviced
Interrupt | The processor receives The currently executing
a signal from an software does not usually
external device cause an interrupt. Code
requiring service. especially designed for the
purpose services the
interrupt outside the
context of the currently
executing process.
Fault

software requires software usually handles a

software intervention. fault by mirroring a
procedure call to fault
code., This code services
the fault within the
context of the current
process.

The processor detects As with interrupts, code
an internal consis-— designed especially for
tency problem requiring| the purpose services the

!
l
I
|
I
|
|
|
|
The currently executing | The currently executing
l
I
|
|
|
|
I
|
|
|

software intervention, | check outside the context
such as an integrity | of the currently executing
violation, a reference | process.

to a nonexistent memory|
module, or a power |
failure, I

Third Edition 11-2

INTERRUPTS, ETC.

INTERRUPTS

Interrupts take one of two forms: external interrupts, or memory
increment interrupts. (Memory increment interrupts are not supported
on the 9950.) As mentioned above, actions depend on whether the PXM is
enabled or disabled.

External Interrupts, PXM Disabled

If an external interrupt occurs when the PXM is disabled, the processor
uses either the address specified by the controller (vectored interrupt
mode) or the contents of location '63 (standard interrupt mode) to
reference a vector in segment 0. This vector points to the interrupt
response code (IRC), which is also located in segment 0.

To reach the IRC, the processor jumps indirectly through the vector, as
if it had executed a JST instruction in 64R mode. The JST saves the
current contents of the program counter in the location specified by
the vector contents before transferring control to the IRC. IRC
execution begins at the location specified by the vector plus 1.

Interrupts are disabled when the IRC begins execution, but all other
keys and modals remain unchanged. In vectored mode, the IRC must clear
the active interrupt before reenabling interrupts. After the clear,
the IRC reenables interrupts, saves the current contents of any
register it intends to use, and completes the rest of its operation.
When it 1is done, it transfers control back to the location whose
address is contained in the first IRC location.

In standard interrupt mode, only one IRC can execute at a time, so the
IRC has nothing to clear or save (other than the contents of any
registers it intends to use) before reenabling interrupts. As in
vectored mode, the IRC completes the rest of its operation and
transfers control back to the location whose address is contained in
the first IRC location.

External Interrupts, PXM Enabled

If an external interrupt occurs when the PXM is enabled, the processor
uses the address sent by the controller as a 16-bit offset into the
interrupt segment, segment 4. The microcode saves the current value of
PB and the keys in the phantom code scratch registers — PSWPB and
PSWKEYS, respectively — turns off the microsecond timer, and inhibits
interrupts. The address mode is then set to 64V, Ring 0 is entered,
and interrupts are disabled — i.e., bits 1-16 of PB are set to 4, the
keys are set to '14000, and the E (Enable Interrupt) bit of the modals
is reset to 0. The IRC in segment 4 (called the immediate IRC, or
phantom interrupt code) begins to execute.

11-3 Third Edition

DOC3060-192

Phantam Interrupt Code: Phantam interrupt code gives the processor a
chance either to perform a trivial task to service the interrupt, or,
as happens most often, merely to notify the real interrupt handler. It
is usually only a few instructions long. An example of what the
phantom interrupt code might look like is shown in Figure 11-1,

| up the I/0 bus, and
I | enable interrupts.

| Code Purpose | Code Sequence | Comments |
| |
| Perform trivial | STA address | Save A register. |
| task | EIO address | Read a 16-bit quantity |
| | | from a device. I
| | ABQ address | Add entry to the bottom |
[| | of a queue. |
| | LDA address | Restore A register. [
	IRTC	Clear interrupt from I/O
		bus, enable interrupts,
I	and return to normal	
		execution.
I		
Notify	INBC address	Notify a process, clean
I I		
I		

Sample Phantam Interrupt Code Sequences
Figure 11-1

Some restrictions govern phantom interrupt code. Since it has no PCB
that PPA can referen