
Prime Computer, Inc.

DOC3060-192P
System Architecture
Reference Guide
Revision 19.2

TfualSBi.'flL'Hi

m'

^^^^ * ^^H

Ik *
K 9 B 8 sk

v. *̂̂ HH ^H

•VV'/II -=::'-DB

H£Sr

EflB

System Architecture
Reference Guide

DOG3060-192

Third Edition

by

Martha August, Alice Landy,
and Marilyn Hammond

This guide documents the software operation of the Prime Computer and
its supporting systems and utilities as implemented at Master Disk
Revision Level 19.2 (Rev. 19.2).

Prime Computer, Inc.
500 Old Connecticut Path

Framingham, Massachusetts 01701

COPYRIGHT INFORMATION

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer
Corporation. Prime Computer Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Copyright © 1983 by
Prime Computer, Incorporated
500 Old Connecticut Path

Framingham, Massachusetts 01701

PRIME and PRIMDS are registered trademarks of Prime Computer, Inc.

PRIMENET, RINGNET, Prime INFORMATION, PRIMACS, MIDASPLUS, Electronic
Design Management System, EEMS, PRIMEWAY, and THE PROGRAMMER'S
COMPANION are trademarks of Prime Computer, Inc.

HOW TO ORDER TECHNICAL DOCUMENTS

U.S. Customers Prime Employees

Software Distribution Communications Services
Prime Computer, Inc. MS 15-13, Prime Park
1 New York Ave. Natick, MA 01760
Framingham, MA 01701 (617) 655-8000 X4837
(617) 879-2960 X2053

Customers Outside U.S.

Contact your local Prime
subsidiary or distributor.

li

PRINTING HISTORY

System Architecture Reference Guide

Edition Date Number Software Release

F i r s t Edition April 1979 IDR3060 n/a
Second Edition April 1981 PDR3060-182 18.2
Third Edition July 1983 DOC3060-192 19.2

SUGGESTION BOX

All correspondence on suggested changes t o t h i s document should be
directed to :

Alice Landy
Technical Publications Department
Prime Computer, Inc.
500 Old Connecticut Path
Framingham, Massachusetts 01701

in

Contents

ABOUT THIS BOOK i x

1 SYSTEM OVERVIEW

Single-stream Architecture 1-1
Dual-stream Implementation 1-6
Special Features of the 9950 1-8

2 PHYSICAL AND VIRTUAL MEMORY

Physical Memory 2-2
Virtual Memory 2-4
Summary 2-7

3 ADDRESSING

Introduction 3-1
Units 3-1
Components of a Virtual Address 3-2
Components of an Instruction 3-5
Forming an Address 3-6
Addressing Modes 3-9
Summary of Addressing Modes 3-11
Address Traps 3-27
Summary 3-30

4 MEMORY MANAGEMENT

The Virtual Address 4-1
Memory Management Data Structures 4-3
Accessing the STLB and Cache 4-13
Paging 4-24
Summary 4-27

5 RESTRICTED INSTRUCTIONS AND CONTROL INFORMATION

Other System Data Structures 5-1
Restricted Instructions 5-11
Summary 5-13

6 DATATYPES

Fixed-point Data 6-1
Floating-point Numbers 6-19
Decimal Data 6-33
Character Strings 6-39
Queues 6-42
Summary of Datatypes and
Applicable Instructions 6-47

Summary 6-50

7 ALTERING SEQUENTIAL FLOW

Branch and Skip Instructions 7-1
Jump Instructions 7-6
Summary 7-6

8 STACKS AND PROCEDURE CALLS

Definition of Terms 8-1
Stacks and Stack Management 8-2
Entry Control Blocks 8-5
Indirect Pointers 8-6
Gate Access 8-7
Making a Procedure Call 8-7
The ARGT Instruction 8-14
The PRTN Instruction 8-15

9 PROCESS EXCHANGE ON SINGLE-STREAM PROCESSORS

Introduction 9-1
Elements of the PXM 9-1
Process Control Blocks 9-2
Ready List 9-2
Wait Lists 9-7
PXM Instructions 9-9
Dispatcher 9-14
Register Files 9-14
Process Interval Timer 9-21
Dispatcher Operation 9-23
Fetch Cycle Traps 9-27
Summary 9-27

10 PROCESS EXCHANGE ON THE 850

Instruction Stream Units 10-1
850 Process Exchange Elements 10-2
Dispatcher Operation 10-11
Summary 10-13

VI

11 INTERRUPTS, FAULTS, CHECKS, AND TRAPS

Breaks 11-1
Interrupts 11-3
Faults 11-6
Checks 11-17
Traps 11-29
Interval Clock 11-37
Summary 11-38

12 INPUT/OUTPUT

Programmed I/O 12-2

DMx 12-5

13 S , R, AND V MODE INSTRUCTION DICTIONARY

Introduction 13-1

instructions 13-7
14 I MODE INSTRUCTION DICTIONARY

Introduction 14-1
Instructions 14-7

APPENDIXES

A Power-up A-l

INDEX X-l

VII

About
This Book

Prime's 50 Series family i s a sophisticated group of to ta l ly compatible
supermini computers. I t s members are the Prime:

• 2250

• 250-11

• 550-11

• 750

• 850

• 9950

The 50 Series systems embody an advanced 32-bit architecture that
grants the user the ability to perform complex tasks efficiently and
quickly. This document describes the 50 Series architecture from a
functional point of view.

NOTES TO THE READER

Several groups of people will find this document useful: engineers,
programmers, designers, and technicians. To read this book, you should
have a basic understanding of computers, but not necessarily of Prime
computers. Prime stresses a high degree of compatibility across its
product line; therefore, you can apply much of the information
contained in this book to other Prime machines, as well as to the 50
Series machines.

IX

ORGANIZATION OF THIS GUIDE

Because this guide stresses the functional aspects of the 50 Series
processors, the topics are organized according to function. Chapter 1
presents a general overview. Chapters 2 through 12 each describe one
aspect of the system, beginning with memory configuration and
addressing and ending with the I/O system. Each chapter builds on the
information contained in the previous one. Chapters 1 through 12 may
be summarized as follows:

• Chapter 1: Overview of the 50 Series systems

• Chapter 2: Configuration of the 50 Series physical and virtual
memory

• Chapter 3: Virtual addressing, modes and formats, and address

traps

• Chapter 4: Memory management

• Chapter 5: Control data structures and restricted instructions

• Chapter 6: Datatypes supported on the 50 Series systems

• Chapter 7: Branch instructions and the stack

• Chapter 8: Procedure calls, the stack, and argument transfers

• Chapter 9: Single-stream process exchange

• Chapter 10: Dual-stream (850) process exchange

• Chapter 11: Interrupts, faults, checks, and traps

• Chapter 12: The I/O system (DMA, DMC, DMT, and DMQ)
Throughout these chapters are lists of Prime assembly language
instructions that pertain to the topics under discussion. These lists
briefly define the instructions' actions and show how they relate to
the topics. In addition to these lists, Chapters 13 and 14 contain
detailed information about each instruction — name, format, mnemonic,
and required operands — and a complete description of each of the
instruction's actions. These chapters are summarized as follows:

• Chapter 13: Instructions executable in S, R, and V mode

• Chapter 14: Instructions executable in I mode

Appendix A discusses system power-up and the initialization of
registers.

1
System Overview

The CPUs of all 50 Series systems share a common architecture and one
operating system. This commonality is what makes the 50 Series a line
of completely upward- and downward-compatible systems. The
implementation of the common architecture, however, is slightly
different for each member, allowing the 50 Series systems to address a
wide variety of user needs as well as remain compatible. The first
part of this chapter explores the single-stream CPU implemented on the
2250, 250-11, 550-11, and 750. The second part discusses the
dual-stream 850 CPU. The third part discusses Prime's newest CPU, the
9950.

SINGLE-STREAM ARCHITECTURE

The CPU can be divided into four major units. The first three of these
are implemented on all single-stream members of the 50 Series family:

• Cache memory

• Control store

• Processor execution unit

The fourth, the instruction preprocessor unit, is a feature of the 750
and 850 systems^ It serves as ii speedup mechanism to process
instructions at a greater speed.

Figure 1-1 diagrams this architecture.

1-1 Third Edition

DOC3060-192

1/0 bus

Processor
execution unit

I 1
I I
I Instruction i ^ _
I preprocessor*
I

l

—i—J

Cache

Control store

Memory bus

* = 750 and 850 only

Block Diagram of Single-processor Architecture
Figure 1-1

Third Edition 1-2

SYSTEM OVERVIEW

Cache and STLB

The 50 Series uses a virtually addressed, write-through cache. Each of
the cache entries contains the contents of and additional information
about two bytes (2250, 250-11, and 550-11) or four bytes (750, 850, and
9950) of recently accessed physical memory. If the contents of a
specified location can be found in the cache, the system saves a great
deal of time: it takes only 80 nanoseconds to access a cache entry, a
vast improvement over the approximately 600 nanoseconds needed to
access physical memory. The time saved can be spent performing other
operations rather than waiting for a memory reference to complete.

To speed up the virtual to physical address translation, the STLB
(Segmentation Table Lookaside Buffer) contains the results of the last
64 translations (128 translations on the 9950). Since programs tend to
reference the same set of locations during their execution, the system
can perform a translation once, store the result in the STLB, and then
have it for reference the next time the user specifies the same
location. Since the STLB has a much faster access time than physical
memory does, referencing it saves translation time as well as access
time.

See Chapter 4, Memory Management, for more information about cache,
STLB, and address translation.

The Control Store Unit

To speed up execution, the 50 Series systems implement many functions,
such as procedure calls, in hardware and firmware. (Procedure calls
are explained in Chapter 8.) The firmware that governs instruction
execution is contained in the control store POM. Each 50 Series system
can support up to 64 Kbytes of firmware address space. The exception
is the 9950, which uses a loadable control store of 50 Kbytes of RAM.

The Processor Execution Unit

This unit performs the computation required during instruction
execution. Elements of the processor execution unit include:

• Integer arithmetic logic unit (ALU)

• Decimal ALU

• Floating point unit

• Register file

• Program counter

1-3 Third Edition

DOC3060-192

Figure 1-2 shews an expanded block diagram of the processor execution
unit.

ALUs: The integer arithmetic logic unit (ALU) performs the desired
operation on the user's two's complement data. In a similar fashion,
the decimal ALU and the floating-point unit handle decimal and
floating-point operations, respectively. These units can perform tests
and checks as well as arithmetic operations.

Register File: The register file contains four sets of registers.
Each set contains 32 32-bit registers. Two of these are user register
sets that contain information about a process and about the system as
the process sees it. These user register sets contain information
about the general registers a process can use, addresses of fault
handlers, contents of system registers, and other useful information.

One of the remaining register sets contains microcode scratch and
system status registers. The fourth set contains direct memory access
(DMA) channels to speed I/O operations. (See Chapter 12.)

The 9950 has eight register sets: four sets of user registers, three
sets of mircrocode scratch registers, and one set of direct memory
access registers.

Program Counter: The program counter contains the address of the next
instruction to be executed.

The Instruction Preprocessor Unit

The 750 has a special instruction preprocessor unit, designed to speed
up execution by processing information about instructions before
execution. While the processor execution unit is performing an add or
similar operation for instruction n, the instruction preprocessor is
working on the next two instructions. It is decoding instruction n+1,
calculating its address, and determining what registers, if any, are to
be accessed. It is also fetching instruction n+2 from the cache so
that it can be decoded when instruction n+1 begins to execute. This
means that, in most cases, when the processor execution unit finishes
one operation, the instruction preprocessor unit has already done the
calculations necessary to allow the execution unit to perform the next
instruction without delay.

Third Edition 1-4

SYSTEM OVERVIEW

Floating point unit

1 Decimal ALU* (

_l

Program counter

*= 550-11, 750, 850, and 9950 only.

Processor Execution Unit
Figure 1-2

1-5 Third Edition

C0C3 060-192

DUAL-STREAM IMPLEMENTATION

The 850 system implements a dual-stream version of the common 50 Series
architecture. The system's dual-stream nature enables it to provide
60-80% more service than the 750. Figure 1-3 shows a block diagram of
the 850 dual-stream architecture.

Instruction Stream Units

The 850 contains two instruction stream units (ISUs), each of which is
similar in capabilities to a 750 CPU. Each ISU executes an independent
stream of instructions simultaneously, synchronized by a stream
synchronization unit (SSU). (See below.) Each ISU is responsible for:

• Full instruction decode.

• Effective address calculation.

• Instruction execution.

• Calculating data for the anticipated next instruction.

The four blocks shown in each ISU contain the same elements and perform
the same functions as those described in the first part of this
chapter.

Note that the two ISUs share one copy of the operating system. PRIM3S
is reentrant and can run on either ISU (as can any user program), so
duplicate copies are not needed. System actions are also simplified,
since there is no need to check for or handle discrepancies caused by
different versions of the operating system.

Stream Synchronization Unit

The primary task of the SSU is to prevent improper information from
being loaded into the cache of either ISU. It does this by maintaining
a list of the contents of both caches. When data is written into
either cache, the SSU detects it and invalidates the contents of the
appropriate entry in its list of cache contents. This means that the
SSU always knows which cache locations contain current information and
which do not.

When a cache location in one of the ISUs contains information that is
out-of-date, the SSU notifies that ISU of the discrepancy. That ISU
invalidates the stale entry, thus forcing a memory read to the current
information the next time that location is referenced.

Third Edition 1-6

SYSTEM OVERVIEW

VrVl

W
3

O
V .

/W\

'

i

m

'

,

*

C\J

Z>
CO

Z>
CO
CO

*

O o

<B 3-S
i i §
a •

O)
c
N

I/O

ic
hr

on

lo
gi

c

>.

Z)
CO

i

, 1

O CM

o fi

1 I

' l

ru
ct

io
n

oc
es

so
r

ni
t 2

oi a .
c (o

a
i i

CM
<D

. C

01
O

c
o

3 m
CO o

- E
u

'

o §
CO 3 * -

11 = Q. ">

1 I

'

,_ a> o

<o o
O E

i

_̂
R§ O to
o S ?
m a J

a.

.
'

i

i

o »-
i= IS
So

O w

_
<D

O
at

O

' '

^ V l

CO
13

- Q

o
E
CD

mi

IXial-stream Architecture
Figure 1-3

1-7 Third Edition

DOC3060-192

In addition to synchronizing cache references, the SSU also coordinates
references to memory and system handlers. The two ISUs share one main
memory, one operating system, and one copy of several system handlers.
To ensure that these resources are used effectively and efficiently,
the SSU contains four locks. The process exchange lock aids the
process exchange mechanism (see Chapter 10) to transfer control
smoothly between processes on both ISUs. The queue lock controls
situations in which simultaneously executing queue instructions (one on
each ISU) are vying for access to a single queue. It ensures that both
instructions get access, but that neither one interrupts or interferes
with the other. The check lock allows only one ISU to signal a check
at a time, thus guaranteeing that the single set of check handlers
services all checks. The fourth lock, the mutual exclusion lock, can
be used by software to prevent both ISUs from trying to access a
particular procedure or piece of data at the same time.

Diagnostic operations and communications between ISUs are also handled
through the SSU. The former feature aids in system monitoring and
testing; the latter enhances the 850's ability to execute independent
instruction streams without high system overhead.

SPECIAL FEATURES OF THE 9950

Although the 9950 follows the general architecture of the 50 Series, as
shown in the previous discussions, it contains several features
designed for outstanding performance. These include:

• ECL design. The 9950 uses emitter coupled logic (ECL) for swift
execution of instructions. Memory parts using ECL are about
50-60% faster than those made of TIL or NMOS; all other ECL
parts are twice as fast, on the average, as their Schottky
counterparts.

• Dedicated backplane. To minimize delay when instructions flow
from one system unit to another, each of the five PC boards that
make up the 9950 processor is assigned a specific slot in the
CPU chassis.

• Pipeline. The 9950 uses a pipeline technique for executing
instructions in parallel, thus speeding up instruction execution
considerably. The pipeline is explained in the next section.

• Branch cache. The 9950 uses a memory called the branch cache to
record and predict the target addiress for jump and branch
instructions. The branch cache contains 256 entries.

Third Edition 1-8

SYSTEM OVERVIEW

Because the 9950 executes instructions in parallel, it might
begin to execute instructions down an incorrect path, following
a branch, before it had determined the correct branch address.
If this occurs, the processor must flush the pipeline of all
instructions from the wrong branch path, and then must begin
execution down the correct branch path. This sequence of steps
causes a delay.

To minimize the chance of such an occurrence, the 9950 branch
cache contains information about the branches that have
previously occurred in the program. The processor uses this
information to determine which branch was most recently taken
for each conditional instruction. The 9950 then assumes that
the same branch will be taken this time. If the prediction is
wrong, the processor adds a new entry in the cache, specifying
the correct branch for future use.

• Environmental sensors. These are explained in the final section
of this chapter.

The 9950 Pipeline

The execution of each 9950 instruction is divided into ten stages, as
shown in Table 1-1. Each stage takes 40 nanoseconds to complete. This
is called the beat rate of the system.

The 9950 executes instructions in parallel. This means that the
processor does not have to complete the entire ten-stage sequence for
one instruction before it can begin executing the next. Rather,
instructions are processed somewhat like cars in a factory assembly
line. The cars travel past a number of specialized stations. At each
station a specific operation takes place. Then the car moves on.
After a certain length of time the next car arrives at the same station
where the same operation occurs.

The 9950 ten-stage pipeline processes instructions in a similar
fashion. After every other 40-nanosecond beat, a new instruction
arrives at a station, and that station's operation is performed on it.

Using the pipeline in this fashion, the 9950 executes Stages 1 and 2 of
the first instruction. When it begins on Stage 3 of the first
instruction, it can also begin Stage 1 of the second instruction.
Likewise, when it begins Stage 3 of the second instruction, it can also
begin Stage 1 of the third, and so on. This means that the pipeline
can begin a new instruction every other beat.

The rate of instruction flow through the pipeline is determined by the
processor's use of system elements at each stage. As shown in Table
1-1, Stages 2 and 7 both use the cache, and Stages 7 and 10 both use
the register file. When two instructions in the pipeline request the
same element at the same time, a conflict occurs. Starting a new
instruction every other beat minimizes this type of conflict.

1-9 Third Edition

DOC3060-192

When there are no conflicts in the pipeline, simple instructions
complete execution every 80 nanoseconds. Some instructions, however,
require more than 80 nanoseconds to complete execution. When this
occurs, the pipeline holds up operations on the subsequent instructions
until it has completed the extra operation for the first instruction.
During the holdup, the processor still forms control store addresses
and fetches microcode words, but it performs no prefetch or effective
address calculations.

Flushing the Pipeline

If an instruction stores data into the stream of instructions that
follows it, the 9950 pipeline may have to be flushed before further
calculations take place. S and R mode store instructions automatically
flush the pipeline; therefore, no further actions are required and
performance is reduced substantially. V and I mode store instructions,
however, do not automatically flush the pipe. Either an E64V (V mode)
or an E32I (I mode) instruction will perform the flush.

Prime systems are designed for pure procedure. All
translator-generated code avoids storing into the instruction stream.

UPS and Environmental Sensing Support on the 9950

The 9950 has a diagnostic processor system that supports inputs from
the UPS (uninterruptable power supply) system and environmental
sensors. These allow the 9950 to be brought to an orderly shutdown in
the event of an overtemperature or a main AC power loss with messages
appearing on the supervisor terminal. In order to conserve power, the
diagnostic processor does not accept typed commands during system
shutdown or while the UPS is active.

UPS Support; The UPS uses two signals, UPS active and UPS battery low.
UPS active means that main AC power has been interrupted. The low
battery condition means that 5 or 6 minutes remain before system power
is lost.

When the UPS is powering the entire system, including peripherals, and
a battery low condition occurs, the diagnostic processor sends a
processor check to the CPU (as explained in Chapter 11), and waits for
a CPU halt or for up to 5 minutes before powering down the system.

When a UPS active condition occurs and the UPS is powering only the
CPU, memory, and diagnostic processor, the diagnostic processor sends a
power failure signal to the processor, causing the processor to log the
power failure condition and then halt.

Third Edition 1-10

SYSTEM OVERVIEW

Table 1-1
Stages in the 9950 Instruction Execution Pipeline

1 Stage

I 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

1 10

Action 1

Send the contents of the lookahead program j
register to the memory address register. I

Read the next instruction from the cache. |

Start decoding the address of the next I
instruction. I

Read the contents of the base and index |
registers. !

Form the effective address and the I
control store address. 1

Send the contents of the effective address |
register to the memory address register and |
fetch the contents of the next microword. |

Read the operand from the cache and register |
file. 1

Execution, phase 1 (ALU). 1

Execution, phase 2. (Transfer results to RS.) 1

Store the results of the operation. |

1-11 Third Edition

DOC3060-192

When the UPS condition changes from active to inactive, it implies
that AC power has returned. The diagnostic processor initiates a
warm start to the CPU provided that the operator keyed an MORMON
command at the supervisor terminal before main AC power loss.
Otherwise, the diagnostic processor initiates a master clear and
enters control panel mode.

Environmental Sensing Support; There are three environmental
sensors: a cabinet overtemperature sensor, a processor board
overtemperature sensor, and an air flow sensor that detects
failures in the cabinet blowers. The cabinet temperature and
airflow sensors are warning indicators; the processor board sensor
is a critical indicator.

When the cabinet temperature is too high or the airflow sensor
detects a failure in the cabinet blowers, the diagnostic processor
initiates an orderly system shutdown by sending the processor an
appropriate environmental check code (explained in Chapter 11) that
initiates the PRIMDS system shutdown. The diagnostic processor
waits for a CPU halted message or for a specified timeout (10
minutes for cabinet overtemperature, 1 minute for air blower
failure). If an air blower failure occurs while there is more than
1 minute to timeout, the timeout is set to 1 minute.

When an overtemperature condition is detected on the processor
board, the diagnostic processor initiates an immediate system
powerdown that includes powering down trie processor.

Third Edition 1-12

2
Physical and Virtual

Memory

The 50 Series processors are virtual memory systems. This means that a
very large, protected, virtual address space is available to each user
who is logged onto the system. This virtual address space is supported
by a much smaller physical address space invisible to the user.

Virtual memory has several advantages. To the user logged onto the
system, there appears to be an address space of almost unlimited size,
which can support very large applications without using overlays. This
address space is protected against unauthorized accesses in hardware.
To the system owner, a virtual memory scheme provides the ease of use
of a large memory at the cost of a much smaller amount of hardware.

The three key parts to a virtual memory scheme are physical memory,
virtual memory, and a manager to control the virtual memory scheme.
The manager is the operating system, FRIMDS, and its attendant hardware
and firmware support. This chapter describes the characteristics of
the 50 Series physical and virtual memory, and shows how PRIMDS
coordinates the 50 Series virtual memory scheme. It also describes
some of the hardware protection mechanisms implemented in the 50 Series
virtual memory.

2-1 Third Edition

DOC3060-192

PHYSICAL MEMDRY

Physical memory encompasses all hardware parts of the system used to
store large blocks of information. There are three types of physical
memory:

• Cache

• Main memory

• Disk

Figure 2-1 shows the relationship between the three elements of
physical memory.

Disk
up to 8 600- megabytes
disk drives

Main memory
up to 8 megabytes

Cache
up to 3 kilobytes

Elements of Physical Memory
Figure 2-1

Third Edition 2-2

PHYSICAL AND VIRTUAL MEMORY

Cache

The cache is a data buffer that stores copies of the information
contained in the most frequently referenced memory locations. Its size
varies from system to system as shown in Table 2-1. During program
execution, this buffer is used to speed up memory references.

Since cache is a form of very high speed memory, it takes only 80
nanoseconds to access data stored there. In contrast, it takes about
600 nanoseconds to access data stored in main memory. This difference
in access times makes it very advantageous to access cache whenever
possible.

Three factors determine how often the cache contains the
(known as the cache hit rate):

correct data

• The size of the cache (2-32 Kbytes)

• The information fetch rate (16-64 bits, depending on the system
and the amount of memory interleaving)

• Locality of reference (the tendency of a program to execute
within a small part of itself at any time)

The 50 Series cache hit rate varies from system to system. See Table
2-1 for details.

Table 2-1
Cache Sizes and Hit Rates

System

2250
250-11
550-11
750
850
9950

Cache Size

2 Kbytes
2 Kbytes
8 Kbytes
16 Kbytes
32 Kbytes
16 Kbytes

Hit Rate I

85% I
85% I
90% |
95% |
95% I
95% |

Main Memory

The 50 Series main memory is high speed MDS with error checking and
correction built in to correct single bit errors and detect double bit
errors. The memory is packaged on boards in units of 512 Kbytes or 1
Mbyte. (The 9950 allows up to 2 Mbytes per board in units of 64K RAM
chips. Since the 9950 can contain up to eight memory boards, it can
have up to 16 Mbytes of main memory.)

2-3 Third Edition

EOC3060-192

All systems use two-way interleaving. This doubles the amount of data
that can be fetched with one operation. Thus, it speeds up memory
references and makes more efficient use of the I/O bus.

On the 9950, interleaving takes place within each memory board. On all
other systems, interleaving is done between pairs of boards. In this
type of interleaving, consecutive physical locations are placed on
alternate memory boards; when a reference to memory is made, the
system fetches the same location on each board. Systems with an odd
number of memory boards use interleaving for all but the odd board.

Main memory is divided into units called pages. Each page is 2 Kbytes
in size. The pages subdivide main memory into uniform pieces that
PRIMOS can manage conveniently and efficiently. Since all pages are
the same size, PRIMOS can reply to all requests for space in the same
way, regardless of who or what makes the request. In addition, disk
records (called virtual pages) are the same 2 Kbytes in size, so
transfers between main memory and disk are simplified. Chapter 4,
Memory Management, describes other advantages of pages.

Disk

Disks provide storage for all of virtual memory. Either the system or
the user can access any of this information at any time (given the
proper access rights). When accessed, a copy of the information is
moved from disk to main memory. The Paging section in Chapter 4
describes how the information is moved.

VIRTUAL MEMORY

Virtual memory is divided into units called segments. Each segment can
contain up to 128 Kbytes. Segments are virtual units, not physical
ones, that aid both the user and the system in organizing their virtual
address spaces and the information contained there. For example, the
user can organize program code in one segment and program data in a
second one. Segments make it possible to allow extra room in a program
for variable length data structures, such as arrays whose dimensions
can change each time the program runs. They also allow the user to
build modular programs, one module to a segment. PRIMOS uses segments
in a similar way to organize its own code into modules.

The virtual address space of each user contains 4096 segments. These
are subdivided into four groups of 1024 each. The segments are
subdivided to make address translation and segment sharing easier.
(See Shared and Unshared Segments, below, and Chapter 4, Memory
Management.)

Third Edition 2-4

PHYSICAL AND VIRTUAL MEMDRY

Shared and Unshared Segments

In the Prime virtual memory scheme (diagrammed in Figure 2-2), each
user address space of 4096 segments is divided into shared and unshared
space. The first 2048 segments are shared with all other users. This
allows the operating system, shared libraries, and shared subsystems to
be seen by all users.

The second 2048 segments are private, containing information unique to
each user. This means that if two users reference segment 4000, they
are specifying completely different locations.

This arrangement of shared and unshared segments means that there is no
possibility of one user's private space conflicting with that of
another user. It also means that only one copy of PRIMDS and the
shared system software need be maintained, and thus reduces memory use.
Moreover, it means that PRIMDS is embedded in the virtual address space
of each user and is directly accessible via a normal procedure call.
(See Chapter 8, Stacks and Procedure Calls.) No interrupts, special
supervisor calls, or system traps are necessary when the user accesses
PRIMDS or any utility, library, or subsystem residing in shared space.

Private
User-2's

2048 segments.

Private
user-n's
8 segments.

Y Shared \
/ I by all users y V

1 2048 segments for 1
\ Primos, shared libraries /
\ and subroutines. /

Private
user-fs

2048 segments

50 Series Virtual Memory Space
Figure 2-2

2-5 Third Edition

DOC3060-192

Protection Rings

Designating shared and unshared segments is not the only form of
protection available to the 50 Series virtual memory. Three hardware
implemented rings provide a simple, unbreakable form of security that
checks each memory reference for its right to access the specified part
of memory.

The rings represent levels of protection. Ring 0 represents the
highest level of protection and grants the greatest number of
privileges. The kernel of PRIMDS runs under Ring 0 protection, which
means that its segments cannot be accessed by the user except through
protected entry points, and that it has read, write, and execute
privileges to all segments. PRIMDS can access any information in the
system, invoke special routines, and so on.

Users run under Ring 3 protection, which means that they cannot
arbitrarily access Ring 0 routines or items contained in the private
segments of other users' address spaces. Each segment under Ring 3
protection may have a different combination of read, write, and execute
access rights.

Ring 1 provides privileges less powerful than those of Ring 0 but
powerful than those of Ring 3.

more

Inward Call

Protection Rings
Figure 2-3

Third Edition 2-6

PHYSICAL AND VIRTUAL MEMORY

Rings provide a simple, effective way to protect critical parts of the
system. Without them, a Ring 3 procedure could directly access any
Ring 0 procedure, which could potentially corrupt system operation.
Screening out such references protects the integrity of the entire
system.

See Chapter 4, Memory Management, for information about how rings
govern the virtual-to-physical address translation to prevent invalid
accesses.

Segmentation Table Lookaside Buffer

Virtual memory has its counterpart of the cache, the STLB. The system
uses this buffer with the cache to reduce tiie time needed to access
information. Where a cache entry contains information about a recently
accessed physical memory location, an STLB entry contains the
information the system needs to find the physical location from the
virtual address the user specified. Each entry also specifies the
protection attributes associated with the location. Chapter 4
describes more about how the STLB is used.

SUMMARY

This chapter described the configuration of the 50 Series physical and
virtual memories. Chapter 3, Addressing, shows how to form a virtual
address that references a location within the virtual address space.
Chapter 4, Memory Management, shows how the 50 Series systems use the
virtual address and the virtual-to-physical address translation process
to integrate virtual and physical memory.

2-7 Third Edition

3
Addressing

INTRODUCTION

The 50 Series processors support several kinds of addressing: direct
addressing, indexed addressing, indirect addressing, and indirect
indexed addressing. They also support several modes of addressing,
each with its own uses and benefits. This chapter:

• Provides an overview of virtual addressing and of effective
address calculation.

• Explains how effective address calculation is done for each type
of addressing, and what registers are involved.

• Explains the various modes of addressing.

• Provides summaries of instruction forms for each type of
addressing in each mode.

UNITS

The basic units of information are bits, bytes, halfwords, and words.
A byte contains eight bits. One halfword contains two bytes; the bits
are labelled from 1 (most significant bit) to 16 (least significant
bit). A word contains four bytes. The bits are labelled from 1 to 32.

Memory is measured in bytes. The 50 Series physical memory size can be
up to 16 Mbytes; the virtual address space contains 512 Mbytes.

3-1 Third Edition

DOC3060-192

COMPONENTS OF A VIRTUAL ADDRESS

A virtual address refers to a unique location in a user's virtual
address space. The location is characterized by three elements: a
ring number, a segment number, and an offset within that segment. (All
offsets are relative to the first location within a segment, and are
expressed in units of halfwords.) The format of a virtual address is
shown in Figure 3-1.

When an instruction makes a memory reference, it provides information
from which the virtual address can be calculated. This is frequently
referred to as calculating the effective address. Depending on the
type of instruction, the information can be provided in several
different formats, and the calculation done in various ways. This
section explains the various ways in which the ring number, segment
number, and offset can be specified. It also explains the use of the
indirect bit.. The section, Forming an Address, explains how each of
the four types of addressing uses these components to calculate the
effective address.

Ring Number

Ring numbers are found in the program counter, in the base register,
and within indirect addresses. When an effective address is
calculated, the highest numbered ring referenced in any of these
locations is chosen as the ring field for the effective address. (For
more information on rings, and on the process of calculating ring
numbers, see Chapter 4.)

Segment Number

The segment number is generally provided in one of three ways:

• If the instruction contains a base register field, the segment
number is found in the specified base register.

• If the instruction does not contain a base register field, the
segment number is found in the program counter.

• In indirect addressing, the segment number field contains the
segment number.

Base Registers: There are four base registers available for use in
address calculation:

• The procedure base register (PB)

• The stack base register (SB)

Third Edition 3-2

ADDRESSING

• The link base register (IB)

• The auxiliary base register (XB)

All of these are 32-bit registers . Their format i s shown in Figure
3-1.

1 2 3 4 5 16 17

0 |RING| 0 | SEGMENT

32

OFFSET |

I Bits

I 1

I 2-3

1 4

1 5-16

I 17-32

Name

Ring

Segment

Offset

Description

Must be 0. (See the F bit in
the section on Calculating
Indirect Pointers, in
Chapter 8, for the
explanation of this.)

Specifies the ring number.

Must be 0. (See the E bit in
the section on Calculating
Indirect Pointers, in
Chapter 8, for the
explanation of this.)

Specifies the segment number.

Specifies the offset value.

Format of Virtual Addresses and Base Registers
Figure 3-1

The PB contains the address of the currently active procedure. It is
unique among the four base registers because its offset is always 0.

The program counter always contains a trusted copy of the segment
number in the PB. Therefore, an instruction that contains no base
register field uses the same segment number as one that specifies the
PB.

3-3 Third Edition

D0C3060-192

SB contains the starting address of the stack for the currently active
stack frame. IB contains the starting address of a save area for
static variables, such as an entry control block. (See Chapter 8.) XB
usually contains a temporary pointer, such as that to a FORTRAN common
block. These three registers usually have non-zero offsets. Thus,
they supply not only the segment number but also an offset address
relative to that number.

Offset

The offset portion of an effective address is supplied by one or more
of the following components:

• Displacement; a 16-bit number given explicitly within the
instruction.

• Base register; if the base register is SB, LB, or XB, it will
contain an offset to be added to the displacement given within
the instruction.

• Index register; if an index register is used, then the contents
of that index register are to be added to whatever other offset
has been calculated.

• Indirect address: if indirect addressing is used, the indirect
address will contain the offset.

In summary, an offset can be calculated in any of the following ways:

• Displacement

• Displacement + offset from BR

• Displacement + index register

• Displacement + offset from BR + index register

• Indirect address

• Indirect address + index register

The instruction format tells the processor which method to use.

Third Edition 3-4

ADDRESSING

COMPONENTS OF AN INSTRUCTION

Instruction Format

Figure 3-2 diagrams a typical instruction format. Thus, it shows how
all the fields described in this chapter fit together into a single
instruction.

6 7

X I OP 11000

11 12 13 14 15 16 17 32

DISP OP BR

I Bits

I 1

! 2

(3-6

1 7-11

1 12

1 15-16

I 13-14

1 17-32

Mnem

I

X

OP

—

y

BR

OP

DISP

Name

Indirect bit

Index field

Opcode

Index field

Base register

Opcode

Displacement

Description 1

Specifies indirect addressing. I

Specifies use of an index register. I

Specifies the operation to perform. |

Specifies instruction format. I

Specifies use of an index register. |

Specifies the base register to use. I

Specifies the operation to perform. I

Specifies a 16-bit offset. I

Format of a Typical Instruction (V Mode, Long)
Figure 3-2

Indirect Bit

An instruction may contain an indirect bit. If this bit is 1, it
signifies that the address being calculated is an indirect address. If
this bit is 0, the address is a direct address. (Indirect addresses
are explained under Forming an Address, later in this chapter.)

3-5 Third Edition

DOC3060-192

Index Register Field

An instruction may specify two index registers by using the X and Y
fields. Each of these fields is one bit long. These fields are
encoded with the I field to specify indexing. (See Table 3-6 for the
encoding.) If an index register is specified, then the contents of
that index register are added to whatever other offset has been
calculated.

Base Register Field

The base register field of an instruction may contain one of the
following four values:

Value Base Register

00 IB (Procedure Base)
01 SB (Stack Base)
10 IB (Link Base)
11 XB (Auxiliary Base)

The value tells the processor which base register to check for the
correct segment number (and, perhaps, offset).

Displacement

The displacement field contains a 16-bit number representing an offset
within a segment. As the section on Offset explained, the value given
by the displacement may either stand alone or have other values added
to it to provide the actual offset for the effective address.

FORMING AN ADDRESS

The processor uses the contents of the fields in a memory reference
instruction to select which of the four types of address formations to
use:

• Direct

• Indexed

• Indirect

• Indirect indexed

Third Edition 3-6

ADDRESSINS

Direct Addressing

In direct addressing, the processor forms the effective address by
adding the contents of the base register to the displacement.

Indexed Addressing

The processor adds the contents of the base register, index register,
and displacement to produce the effective address.

S, R, and V mode instructions that contain 1101 in bits 3-6 cannot
specify indexing. See the tables at the end of this chapter for
specific information.

Indirect Addressing

Short Form Indirection; Depending on the addressing mode, indirect
addressing takes one of two forms. In the first, the processor treats
the displacement as the address of a location in the procedure segment.
The processor uses the contents of the addressed location as the
effective address. This is called short form, or 16-bit, indirection.

Some addressing modes allow more than one level of indirection. (See
the 16S, 32S, and 32R sections at the end of this chapter.) In these
cases, the processor uses the displacement as the address of some
location in the address space. If this addressed location contains
another indirect address, then the processor uses these contents as the
address of another location in memory. This indirection chain is
followed until one addressed location does not contain an indirect
address; these contents are called the result of the chain. The
processor uses the result of the chain as the effective address.

The tables at the end of this chapter specify the number of levels of
indirection supported by each addressing mode.

Long Form Indirection; In long form indirect addressing, the
instruction points to a location in memory that contains a 32-bit (or,
more rarely, 48-bit) pointer. These long pointers contain not only
addresses but also 2 or 3 bits that provide additional information.

Figure 3-3 shows the format of those pointers. The bits of special
interest are the extension bit (or E bit), the fault bit (or F bit),
and the bit number field.

3-7 Third Edition

EOC306 0-192

The functions of these three fields are as follows:

F bit If P = 1, a pointer fault is generated when this
indirect address is used. (See Chapter 11 for
information on pointer faults.)

E bit If E = 0, the pointer is a 32-bit pointer. If E = 1,
the pointer is a 48-bit pointer. (Throughout the
rest of the chapter, discussions will assume that the
32-bit format is being used.)

Bit number Permits you to specify (or point to) a particular bit
within an address offset.

1 2 3 4 5 16 17 32

I F | RING | E | SEGMENT | OFFSET |

Indirect Pointer Format, Long Form (32-bit)
(E is always 0.)

1 2 3 4 5 16 17 32 33 36 37 48

F | RING | E | SEGMENT | OFFSET | BIT# | RESERVED I

Indirect Pointer Format, Long Form (48-bit)
(E is always 1.)

Pointer Formats for Long Form Indirection
Figure 3-3

Indirect Indexed Addressing

This type of addressing takes one of two forms: indirect preindexed,
or indirect postindexed.

When calculating a preindexed indirect address, the processor adds the
value of the index register to the contents of the base register and
displacement and uses the sum as an indirect address. It resolves any
indirection chain and uses the result of the chain (or the indirect
address itself, if there was no chain to follow) as the effective
address.

Third Edition 3-8

ADDRESSING

When calculating a postindexed indirect address, the processor adds the
contents of the base register and displacement and uses the result as
an indirect address. It resolves any indirection chain, then adds the
result of the chain (or the indirect address itself, if there was no
chain to follow) to the contents of the specified index register to
form the effective address.

ADDRESSING MODES

The first part of this chapter described several ways to specify an
address with information contained within an instruction. Once the
processor calculates the effective address, it can reference whatever
information is contained in the location specified by the effective
address. This section describes the ways to specify an address in an
instruction and how the processor forms the effective address.

The 50 Series processors support four modes of addressing, each of
which forms addresses differently. Depending on the program and
personal preference, one or two of these modes may be more useful than
another. The three most important modes are:

• V, or virtual

• I, or general register

• R, or relative

The fourth mode — S, or sectored, mode — is supported for historical
reasons.

V Mode

V mode performs short and long operations and has a wide variety of
registers to use. A short (halfword) instruction in this mode can
reference the first 256 locations of both the stack and link, as well
as the 224 locations on either side of the current location in the
procedure segment. A long (word) V mode instruction can directly
reference all locations in four segments. Indirect addressing can
reference all locations in up to 4096 128-Kbyte segments.

I Mode

When referencing memory, I mode is similar to 32-bit V mode. The
difference is that I mode short operations reference 8 32-bit general
purpose registers for use as index registers, accumulators, counters,
or the like. I mode long operations have the same referencing power as
V mode long operations. They can also use five additional index
registers and immediate forms.

3-9 Third Edition

DOC3060-192

R Mode

A sector is a block of 512 (1000 octal) contiguous memory locations.
Sector 0 starts on location 0 and ends on location '777; Sector 1
begins on location '1000 and ends on location '1777; and so on.

An R mode instruction can reference any location in Sector 0, as well
as a group of locations relative to the current value of the program
counter. When the sector bit (S) in an R mode instruction is 0, the
instruction can only reference locations in Sector 0. When S is 1, the
instruction references locations relative to the current value of the
program counter. The range of these- relative locations is PC - '360 to
PC + '377, inclusive.

Note that an R mode instruction that specifies a location in the range
PC - '361 to PC - '400, inclusive, selects a special addressing code,
such as stack register. These special codes are explained in more
detail in Tables 3-6 and 3-7.

S Mode

Like R mode instructions, S mode instructions contain a sector bit.
When S is 0, references are to Sector 0. When S is 1, however,
references are only to those locations within the sector containing the
instruction.

Note that S mode is a holdover from early Prime machines that were
based on the Honeywell 316 and 516 minicomputers. When operating in S
mode, the 50 Series processors act exactly as these early machines do.

Third Edition 3-10

ADDRESSING

SUMMARY OF ADDRESSING MODES

The figures and tables in the rest of this chapter present summaries of
each addressing mode. Table 3-1 summarizes useful information about
all the modes.

•Sable 3-1
Summary of Addressing Modes

1 Mode

I 16S direct

j 16S indirect

I 32S direct

j 32S indirect

I 32R direct

I 32R indirect

1 64R direct

I 64R indirect

I 64V short

j 64V long

I 64V indirect

I 321 long

1 321 indirect

Address
Length

14 bits

14 bits

15

15

15

15

16

16

16

28

28

28

28

bits

bits

bits

bits

bits

bits

bits

bits

bits

bits

bits

Addressing Range

1024 halfwords

16K halfwords

1024 halfwords

32K halfwords

1008 halfwords

32K halfwords

1008 halfwords

64K halfwords

64K halfwords:
+256 SB relative
+256 LB relative
+/-256 PC relative
+512 PB absolute

4 segments*

4096 segments*

4 Segments*

4096 segments*

Index
Regs

One

One

One

One

One

One

One

One

One

Two

Two

Seven

Seven

Indirection |
Levels I

Multiple I

Multiple 1

Multiple |

One i

One j

One !

One |

One |

One j

* All segments contain 128 Kbytes.

3-11 Third Edition

DOC3060-192

64V Mode Short Form

Instruction Format

16

ADDRESS

Indirect Pointer Format

64V Mode Formats, Short Form
Figure 3-4

Table 3-2
64V Mode Short Form Summary

1 I 1

1 0 I

1 0 I

1 1 1

1 1

1 o
1 o
1 1
1 1

x I

0 I

1 !

0 I

1

1 o
1 1
1 o
1 1

s I

0 I

0 I

0 1

0 I

1
1 1
1 1
1 1

Disp

0-
•10-

'400-
0-

'10-
'400-

0-
'10-
0-

•10-

'100-

•-340-
'-340-
'-340-
I'-340-

1

'7@ I
•377 |
•777 I
'7(3 |

•377 I
•777 |
'7@ I
•777 I
'77

'77

'777

'+377
'+377
'+377
•'+377

Inst Type I

Direct I
Direct I
Direct@@ 1
Indexed |

Indexed
Indexed@@
Indirect
Indirect
Indirect,

preindexed

Indirect,
preindexed
Indirect,

postindexed
Direct
Indexed
Indirect

1 Indirect,
Ipreindexed

Form of EA 1

LDA ADR

LDA ADR,1 I

LDA ADR,*

LDA ADR,1*

LDA ADR,1*

LDA ADR,*1

LDA ADR
I LDA ADR,1
LDA ADR,*

I LDA ADR,1*

Example I

REG 1
SB+D I
LB+D I
REG, if 1
D+X<'7;@ I

SB+DfX, if |
D+X>'7@ I

SB+D+X j
LB+D+X |
I (REG) I
I (PB+D) |
I (REG) , if |
D+X<'7;@ 1
I(PB+D+X), |
if DfX>'7@|
I(PB+D+X) I

I(PB+D)+X |

I PC+D I
PC+D+X I

I I(PC+D) 1
| I(PC+D+X) |

Third Edition 3-12

ADDRESSING

Notes to Table 3-2

@ This table assumes segmented mode (bit 14 of the modals =
1). For nonsegmented mode, the displacement range is 0-'37,
rather than 0-'7. This means that the range '10-'377
changes to '40-'377 in nonsegmented mode. The range
,400-'777 remains unchanged.

@@ In these address forms, the displacement offsets the
contents of LB by '400 (bit 8=1). To compensate for this,
set the contents of LB to the current value of the link
frame minus ' 400. For example, if the segment number in LB
is '4002 and the word number in the displacement is '177400,
the offset of '400 gives the location of the link frame as
segment number '4002, word number 0.

This mode allows one level of indexing, and one of indirection.

REG refers to a location in the register file. See Address
Traps at the end of this chapter.

The instructions STX, FLX, DFLX, LDX, LDY, STY, and JSX do not
do indexing. The effective address is formed as if bit 2 = 0 .

3-13 Third Edition

DOC306 0-192

64V Mode, Long Form and Indirect Form

1

1 I

2 3 6

1 X | OP |

7 11 12 13 14 15 16 17 32

11000 | Y | XX | BR | DISP |

Instruction Format

1 2 3 4 5 16 17 32

I F | RING | 0 | SEGMENT OFFSET

32-bit Indirect Pointer Format

1 2 3 4 5 16 17 32 33 36 37 48

F | RING I 1 I SEGMENT | OFFSET | BIT# | RESERVED

48-bit Indirect Pointer Format*

* This indirect format is used only by a few instructions;
most use the 32-bit form.

64V Mode Formats, Long Form and Indirect Form
Figure 3-5

Third Edition 3-14

Table 3-3
64V Mode Long Form, Indirect Summary

ADDRESSING

1 I

1 o

1 o

i o

1 o

1 1

1 1

1 1

1 1

x

0

0

1

1

0

0

1

1

Y

0

1

0

1

0

1

0

1

BR

00
01
10
11
00
01
10
11
00
01
10
11
00
01
10
11
00
01
10
11
00
01
10
11
00
01
10
11
00
01
10
11

Instruction Type

Direct

Indexed by Y

Indexed by X

Indirect

Preindexed by Y

Postindexed by Y

Preindexed by X

Postindexed by X

Example

LDA ADR

LDA ADR,Y

LDA ADR,X

LDA ADR,*

LDA ADR,Y,*

LDA ADR,*Y

LDA ADR,X,*

LDA ADR,*X

Form of EA |

PB/D 1
SB+D |
LB+D |
XB+D I
PB/D+Y |
SB+D+Y |
LB+D+Y |
XB+D+Y |
PB/D+X |
SB+D+X |
LB+D+X |
XB+D+X |
I(PB/D) |
I (SB+D) |
I (LB+D) |
I (XB+D) |
I (PB/D+Y) |
I (SB+D+Y) |
I(LB+D+Y) |
I (XB+D+Y) I
I(PB/D)+Y |
I(SB+D)+Y |
I (LB+D) +Y |
I(XB+D)+Y !
I (PB/D+X) I
I(SB+D+X) |
I(LB+D+X) |
I(XB+D+X) |
I(PB/D)+X |
I(SB+D)+X |
I(LB+D)+X |
I(XB+D)+X |

Notes to Table 3-3

The processor performs X and Y indexing and 32-bi t word
(inter-segment) ind i rec t ion .

PB/D indica tes t ha t the displacement i s r e l a t i v e t o the or ig in
of PB. PB specif ies the segment number (the of fse t must be 0) ;
the displacement specif ies the of fse t .

All displacements a re within the range 0-'177777.

3-15 Third Edition

DOC3060-192

The instructions STX, FLX, DFLX, LDX, LDY, STY, and JSX do not
do indexing. The effective address is formed as shown in Table
3-4. Bit 2, the X bit, is used as part of the opcode in these
instructions.

Table 3-4
Address Formation for Nonindexing Instructions

1 I

1 o
I o
I o
1 o
1 1
1 1
1 1
1 1

X

0
0
1
1
0
0
1
1

Y

0
1
0
1
0
1
0
1

400, 250-11,
550-11, 2250

•Direct
Index by Y
*Direct
I (A+X)
I (A+Y)
*KA)
I (A+X)
*KA)

750, 850

Direct
Direct
Direct
1(A)
1(A)
KA)
KA)
KA)

9950 !

Direct |
Direct I
Direct 1
Direct |
KA) 1
KA) I
KA) I
I (A) 1

Notes to Table 3-4

* These modes should be used to ensure consistent behavior
across processors.

The symbol A in Table 3-4 represents the value calculated from
the base regTster (PB, SB, LB, or XB) and displacement in the
instruction.

Third Edition 3-16

321 Mode

ADDRESSING

6 7 9 10 11 12 14 15 16 17 32

OP DR TM | SR I BR | DISPLACEMENT

Instruction Format*

1

1 F

2 3

I RING I

4 5

0 I

16 17

SEGMENT | OFFSET

32

1

Indirect Pointer Format

16 17 32

SECOND HALF OF INSTRUCTION ZEROES

Immediate Type 1**

16 17 32

SIGN EXTENSION I SECOND HALF OF INSTRUCTION I

Immediate Type 2**

8 9 56 57 64

BITS 17-24 I ZEROES BITS 25-32

Immediate Type 3 (Floating Point)**, ***

321 Mode Formats
Figure 3-6

Notes to Figure 3-6

* TM represents the tag modifier, which specifies the type of
register to use.

** The instruction itself specifies the type of immediate to
use. When the instruction executes, the processor forms
the immediate in the appropriate form and stores it
internally for use in the operation. The three formats

3-17 Third Edition

DOC306 0-192

shown in Figure 3-6 represent the value that i s stored
internally.

*** Bits 1-8 of Immediate Type 3 are formed from bi t s 17-24 of
the I mode instruction. Similarly, b i t s 57-64 are formed
from bi ts 25-32 of the I mode instruction.

Table 3-5
321 Mode Summary

TM | SR I BR | Instruction Type EA

3
3
2
2
1
1
0
0
0
0
0

0

0

0

0

0
>0

0
>0
0

>0
0-7

0
>0

0
1

2

3

4-7

- |
- |
- |
- |
- |
- |
0 1
1 I
1 1
2 I
2 I

2 I

2 I

2 I

3 I

Indirect
Indirect postindexed
Indirect
Indirect preindexed
Direct
Indexed
Regi ster-to-register
Immediate type 1
Immediate type 2
Immediate type 3
Floating register
source (FRO)

Undefined; generates
UII (unimplemented
instruction) fault

Floating register
source (FR1)

Undefined; generates
UII fault

Undefined; generates
UII fault

(D+B)*
(D+B) *+S
(D+B)*
(D+B+S) *
D+B
D+B+S

Note to Table 3-5

Displacements are within the range 0 to '177777, inclusive.

Third Edition 3-18

32R Mode

ADDRESSING

1 2 3 6 7 8 16

I I X | OP | S | DISPLACEMENT

Short Instruction Format

1

1 I

2 3 6 7 12 13 14 15 16

I X | OP | 110000 | OP I CB I

16-bit Long Instruction Format

1

1 I

2 3 6 7 12 13 14 15 16 17 32

I X | OP I 110000 | OP I CB I DISP I

32-bit Long Instruction Format

1 2 16

ADDRESS

Indirect Pointer Format

1 2 16

ADDRESS

Final Effective Address Format*

32R Mode Formats
Figure 3-7

3-19 Third Edition

EOC3060-192

Table 3-6
32R Mode Summary

I I X | S I CB | Displacement | Instruction Type |Form of EA|

0
0
1
1
1
0
0
1
1
0
0

1
0
0

1
0
0
1
1

1

0
0
1
1

1

0
1
0
1
1
0
1
0
1
0
1

0
0
1

0
0
1
0
1

1

0
1
0
1

1

0
0
0
0
0
1
1
1
1
1
1

1
1
1

1
1
1
1
1

1

1
1
1
1

1

— 1
— 1
— 1
— 1
— 1
— 1
— 1
— 1
— 1
2 1
2 I

2 I
3 1
3 I

3 1
0 1
0 I
0 1
0 I

2 I

1 I
1 |
1 |
1 |

3 I

0 to '777
0 to »777
0 to '777
0 to '77
'100 to'777
'-360 to '+377
'-360 to '+377
•-360 to »+377
'-360 to '+377

0 to '177777
0 to '177777
0 to '177777
0 to '177777

0 to '177777

0 to '177777
0 to '177777
0 to '177777
0 to '177777

0 to '177777

preindexed
postindexed

Direct
Indexed
Indirect
Indirect,
Indirect,
Direct
Indexed
Indirect
Indirect postindexed
^Postincrement
@Post increment, indirect,

postindexed
©Postincrement, indirect
#Predecrement
#Predecrement, indirect,

postindexed
#Predecrement, indirect
*Direct, long reach
*Indexed, long reach
*Indirect, long reach
*Indirect, preindexed,

long reach
•Indirect, postindexed,

long reach
*Direct, stack relative
•indexed, stack relative
•Indirect, stack relative
•Indirect, preindexed

stack relative
•Indirect, postindexed

stack relative

0/D
0/EH-X
I (0/D)
K0/D+X)
i(0/D)+x
P+D
P+D+X
I (P+D)
I(P+D)+X
SP
I(SP)+X

KSP)
SP-1
I(SP-1)4X|

I (SP-1)
D
D+X
1(D)
I (D+X)

I(D)+X

EH-SP
D+SP+X
I (D+SP)
I(D+SP+X)

I(D+SP)+X|

Third Edition 3-20

ADDRESSING

Note to Figure 3-7

The final form of an effective address in 32R mode is only 15
bits wide. Special hardware logic exists to truncate the
effective address to this length. The program counter,
however, is a full 16 bits wide. Multilevel indirection is a
feature of 32R mode.

Notes to Table 3-6

* These instruction types use the 32-bit long format shown in
Figure 3-7.

@ These instruction types use the 16-bit long format shown in
Figure 3-7. They also increment the contents of SP by 1
during EA formation.

These instruction types use the 16-bit long format shown in
Figure 3-7. They also decrement the contents of SP by 1
during EA formation.

For all instruction types listed above, address traps can occur
when any part of the EA formation results in an address in the
range 0-'7 (segmented mode) or 0-'37 (unsegmented mode). See
the end of this chapter for more information.

The processor performs one level of indexing and multiple
levels of indirection.

0/D indicates that the displacement is within Sector 0; P+D,
within the current sector.

CB represents the class bits of the instruction.

The instructions STX, FLX, JDX, JIX, LDX, and JSX do not do
indexing. The processor treats the X bit as a 0 to determine
what addressing mode to use. For example, if one of these
instructions specifies I, X, S, and CB as 0113, the processor
interprets it as 0013.

3-21 Third Edition

DOC306 0-192

64R Mode

1 2 3 6 7 8 16

I I X I OP IS DISP

Short Instruction Format

1

1 I

2 3 6 7 12 13 14 15 16

I X | OP I 110000 I OP I CB I

16-bit Long Instruction Format

1

1 I

2 3 6 7 12 13 14 15 16 17 32

I X | OP | 110000 | OP I CB | DISP I

32-bit Long Instruction Format

16

ADDRESS

Indirect Pointer Format*

*Only a single level of indirection is possible in 64R mode,

64R Mode Formats
Figure 3-8

Third Edition 3-22

Table 3-7
64R Mode Summary

ADDRESSING

I I X | S I CB | Displacement | Instruction Type IForm of EA.

0
0
1
1
1
0
0
1
1
0
0

1
0
0

1
0
0
1
1

1

0
0
1
1

1

0
1
0
1
1
0
1
0
1
0
1

0
0
1

0
0
1
0
1

1

0
1
0
1

1

0
0
0
0
0
1
1
1
1
1
1 -

1
1
1

1
1
1
1
1

1

1
1
1
1

1

— 1
— 1
— 1
— 1
— 1
— 1
— 1
— 1
— 1
2 I
2 1

2 I
3 1
3 I

3 1
0 1
0 I
0 I
0 1

2 I

1 I
1 I
1 I
1 |

3 1

0 to '777
0 to '777
0 to '777
0 to '77
•100 to'777
'-360 to '+377
'-360 to '+377
'-360 to '+377
'-360 to '+377

0 to '177777
0 to '177777
0 to '177777
0 to '177777

0 to '177777

0 to '177777
0 to '177777
0 to '177777
0 to '177777

0 to '177777

Direct
Indexed
Indirect
Indirect, preindexed
Indirect, postindexed
Direct
Indexed
Indirect
Indirect postindexed
©Postincrement
©Postincrement, indirect,

postindexed
©Postincrement, indirect
#Predecrement
•Predecrement, indirect,

postindexed
•Predecrement, indirect
•Direct, long reach
•indexed, long reach
•indirect, long reach
•Indirect, preindexed,

long reach
•Indirect, postindexed,

long reach
•Direct, stack relative
•Indexed, stack relative
•Indirect, stack relative
•Indirect, preindexed

stack relative
•Indirect, postindexed

stack relative

0/D
0/D+X
KO/D)
I (0/D+X)
i(o/b)+x
P+D
P+D+X
I (P+D)
I(P+D)+X
SP
I(SP)+X

KSP)
SP-1
I(SP-1)+X

I (SP-1)
D
D+X
1(D)
I (D+X)

I(D)+X

D+SP
D+SP+X
I (D+SP)
I(D+SP+X)

I(D+SP)+X

3-23 Third Edition

EOC306 0-192

Notes to Table 3-7

For all the instruction types listed in Table 3-7, address
traps can occur when any part of the EA formation results in an
address in the range 0-'7 (segmented mode) or 0-'37
(unsegmented mode). See the end of this chapter for more
information.

* These instruction types use the 32-bit long format shown in
Figure 3-8.

@ These instruction types use the 16-bit long format shown in
Figure 3-8. They also increment the contents of SP by 1
during EA formation.

The processor performs one level of indexing and multiple
levels of indirection.

0/D indicates that the displacement is within Sector 0; P+D,
within the current sector.

CB represents the class bits of the instruction.

The instructions STX, FLX, JDX, JIX, LDX, and JSX do not do
indexing. The processor treats the X bit as a 0 to determine
what addressing mode to use. For example, if one of these
instructions specifies I, X, S, and CB as 0113, the processor
interprets it as 0013.

Third Edition 3-24

16S Mode

ADDRESSING

2 3 6 7 8 16

OP DISPLACEMENT

Instruction Format

2 3 16

ADDRESS

Indirect Pointer Format

2 3 16

I 0 | 0 I ADDRESS

Final Effective Address Format

16S Mode Formats
Figure 3-9

Note to Figure 3-9

The final form of effective addresses in S mode are only 14
bits wide. Special hardware logic exists to truncate the
effective address to this length. The program counter,
however, is a full 16 bits wide.

Table 3-8
16S Mode Summary

1 I

1 o
1 o
1 o
1 o
1 1
1 1
1 1
1 1

x

0
0
1
1
0
0
1
1

1 s

0
1
0
1
0
1
0
1

1 Disp

0-'777
0-'777
0-'777
0-'777
0-'777
0-'777
0-'777
0-'777

Instruction

Direct
Direct
Indexed
Indexed
Indirect
Indirect
Indirect
Indirect

Type

preindexed
preindexed

Example

LDA ADR
LDA ADR
LDA ADR,1
LDA ADR,1
LDA ADR,*
LDA ADR,*
LDA ADR,1*
LDA ADR,1*

|EA Form |

1 0/D I
1 c/b I
I 0/D+X |
I C/D+X |
1 I (0/D) |
1 KC/D) I
1 KD+X) I
1 KD+X) I

3-25 Third Edition

DOC3060-192

Notes to Table 3-8

The processor performs indexing before resolving each level of
indirection.

This mode allows multiple levels of both indexing and
indirection.

The instructions, LDX and STXf cannot do indexing. The
effective address is formed as if bit 2 = 0.

0/b indicates that the displacement is within Sector 0; C/D,
within the current sector.

32S Mode

2 3 6 7 8 16

I I I X | OP DISPLACEMENT

Instruction Format

ADDRESS

Indirect Pointer Format

ADDRESS

16

16

Final Effective Address Format

32S Mode Formats
Figure 3-10

Note to Figure 3-10

The final form of effective addresses in S mode are only 15
bits wide. Special hardware logic exists to truncate the
effective address to this length. The program counter,
however, is a full 16 bits wide.

Third Edition 3-26

Table 3-9
32S Mode Summary

ADDRESSING

1 I

1 o
1 o
1 o
1 o
1 1
1 1
1 1
1 1
1 1

1 x

0
0
1
1
0
0
1
1
1

1 s

0
1
0
1
0
1
0
0
1

I Disp

0-'777
0-»777
0-'777
0-'777
0-«777
0-'777
0-'77
'100-'777
0-'777

Instruction Type

Direct
Direct
Indexed
Indexed
Indirect
Indirect
Indirect
Indirect
Indirect

preindexed
postindexed
postindexed

Example

LDA ADR
LDA ADR
LDA ADR,1
LDA ADR,1
LDA ADR,*
LDA ADR,*
LDA ADR,1*
LDA ADR,*1
LDA ADR,*1

EA Form |

0/D |
c/b |
0/D+X |
C/D+X |
K0/b) 1
i (c/b) I
I(D+X) |
I(D)+X |
I(D)+X |

Notes to Table 3-9

The processor performs indexing before resolving each level of
indirection.

This mode allows one level of indexing, and multiple levels of
indirection.

The instructions, LDX and STX, cannot do indexing,
effective address is formed as if bit 2 = 0 .

The

ADDRESS TRAPS

Several of the summaries in the last section specified special cases of
EA formation when the address was within a particular range. This
range of addresses corresponds to registers within the current user
register set in the register file. (See Chapter 9.) In segmented
mode, this range is '0 to '7? in nonsegmented mode, '0 to '37. Note
that this range of addresses for segmented and nonsegmented modes is
referred to as the ATR, or address trap range, throughout this section.

The registers within the user register set contain information, such as
general, base, floating-point, and index registers, and system status
and control information. Each time any part of the EA formation
generates an address within the ATR, an address trap aborts any read or
write to a memory location and instead references the specific
register.

Table 3-10 summarizes when address traps occur for all modes of
addressing and instruction types.

3-27 Third Edition

EOC3060-192

Table 3-10
Address Trap Information

Mode | Ins t Type I Action

16S,
32S,
32R,
64R

Memory
reference

Generic

Generic AP

Address trap occurs if the EA falls
within the ATR. The format or length
of the instruction has no bearing.

Address traps never occur.

Address traps do not occur when the
processor is fetching the address
pointer.

64V Two-word | Address traps never occur.
memory
reference

Short
format

16-bit
indirect

32-bit
indirect

See Table 3-11.

Address traps occur if the EA falls
within the ATR..

Address traps never occur.

321 | All types | Address traps never occur.

When bits 17-32 of the program counter contain a value within the ATR
and the processor is reading an instruction, an address trap always
occurs. The only exception to this is if the machine is operating in
321 mode.

When the processor executes short format instructions in 64V mode,
address traps can occur during operand fetches or indirect fetches.
Table 3-11 lists the conditions that must be present for an address
trap to occur.

Third Edition 3-28

ADERESSING

Table 3-11

Address Trap Action for Short Format
Instructions, 64V Mode

I I X | S I D Action

I o
1 o

1 o
I o

1 1

1 1

1 o

I o

1 1

1 1

0 1
0 I

0 I
1 1

0 I

1 1

0 I

1 1

0 I

1 1

'0 to '7
•10 to '37

'40 to '377
-•340 to +»377

'0 through ATR I

From ATR to '377

'400 to '777
-'340 to +'377

•0 to '777

-'340 to +'377

•0 to '777

-'340 to +'377

Takes address trap.
Takes address trap only if
segmentation is off.

Cannot take address trap.
Takes address trap if EA (EH-RP) is
within the ATR.

Takes address trap if EH-X is
within the ATR. If EH-X is
outside the ATR, the EA is
SB(seg #) I D+X (850, 750, 9950)
or SB(seg #) I D+X+SB(word #)
(all other V mode Machines).

Cannot take address trap; EA is
SB+EH-X (P750, P850, 9950).
All other machines
take address t r a p i f EH-X i s
within the ATR.

Cannot take address t r a p .
Takes address t r a p i f EA (EH-X+RP)

i s within the ATR.
Takes address t r a p i f D i s

within the ATR.*
Takes address t r a p i f EA

((RP+D)) i s within the ATR.*
Takes address t r a p i f EK'100 and

EH-X i s within the ATR.*
Takes address t r a p i f EA (EH-RP)

i s within the ATR.*

Note t o Table 3-11

The ind i rec t address a lso takes an address t r a p i f EA i s within
the ATR.

3-29 Third Edition

DOC3060-192

If an instruction specifies a write operation that could potentially
cause an address trap, the instruction loads the data to be written
into a temporary register. If a trap occurs, the routine aborts the
memory write. It loads the specified register file location with the
contents of the temporary register.

If the instruction specifies a read operation that causes an address
trap, the trap routine aborts the memory read and fetches the contents
of a register file location. It loads this value into the cache to
save it. The trap routine loads it into the area specified in the
instruction from the cache location.

Table 3-12 shows the address trap locations and the registers to which
they correspond. For more information on the register file, see
Chapter 9.

SUMMARY

The fields of a memory reference instruction specify information used
to form an effective address. These fields specify which information
is to be used in the formation, how the formation is to be done,
and — in conjunction with the rest of the program — the addressing
mode under which the address is to be formed. Depending on the
segmentation mode and the EA formation, addresses can reference
registers within the current user register file as well as memory
locations.

Third Edition 3-30

ADDRESSING

Table 3-12
Address Trap/Register File Correspondence

I AT

1 '0
1 '1
1 '2
1 '3
1 '4
1 '5
1 '6
1 '7
1 '10*
1 '11*
1 '12*
I '13*
1 '14*
1 '15*
I "16*
I '17*
1 '20*
1 '21*
I '22*
1 '23*
I '24*
1 '25*
I '26*
1 '27*
1 '30*
1 '31*
I '32*
1 '33*
1 '34*
1 '35*
1 '36*
1 '37*

S, R Modes

X
A
B
S
FAC bits
FAC bits

1-16
17-32

FP exponent
PC, LSBs
DTAR3H
FCODEH
FADDRL

DMA cell
DMA cell
DMA cell
DMA cell
DMA cell
DMA cell
DMA cell
DMA cell
DMA cell
DMA cell
DMA cell
DMA cell
DMA cell
DMA cell
DMA cell
DMA cell

*20H
•20L
'22H
'22L
'24H
»24L
'26H
•26L
'30H
•30L
'32H
'32L
*34H
'34L
•36H
'36L

Note to Tabl(

V Mode

X
A, LH
LL
Y

1

FAC bits 1-16 1
FAC bits 17-32 |
FP exponent I
PC, LSBs
DTAR3H
FCODEH
FADDRL

SBH
SBL
LBH
LBL
DMA cell
DMA cell
DMA cell
DMA cell
DMA cell
DMA cell
DMA cell
DMA cell
DMA cell
DMA cell
DMA cell
DMA cell
DMA cell
DMA cell
DMA cell
DMA cell

5 3-12

•20H |
'20L |
•22H |
'22L |
•24H |
•24L I
'26H |
'26L |
'30H |
'30L I
•32H I
'32L I
'34H |
•34L I
'36H I
'36L |

* These correspond to user register file
locations only in nonsegmented mode.

3-31 Third Edition

4
Memory Management

The last chapter showed how the 50 Series systems use information
contained in an instruction to form a virtual address. This address
specifies a location in the virtual address space, which may or may not
correspond to a location currently loaded in physical memory. This
means that the processor must find some way to convert the virtual
address into something that can address a physical memory location, and
must then search physical memory for that location. This chapter
describes how the processor uses a virtual address to address memory,
and describes the data structures (registers and tables) that
facilitate the reference.

THE VIRTUAL ADDRESS

A virtual address is a reflection of the segmented virtual address
space the user sees. A physical address, similarly, must reflect the
pages that make up physical memory. How does the processor make the
transition from a segment-oriented address to a page-oriented one? The
virtual address (diagrammed in Figure 4-1) is the starting point. (As
this figure shows, the page number and DTAR are generally transparent
to the user. They are seen only by the mapping hardware.)

4-1 Third Edition

DOC3060-192

2 3 4 5 16 17 32

0 | RING | 0 | SEGMENT | OFFSET

Virtual Address Format

1 2 3 4 5 16 17 22 23 32

0 | RING I 0 | DTAR and SEGMENT # | PAGE # | OFFSET # |

Virtual Address Format as Seen by
the Mapping Hardware

Figure 4-1

The steps the processor takes to convert this virtual address into a
physical address are:

1. Check the STLB and the cache. If both of these contain the
correct information, the reference can be completed. If not,
go on to the next step.

2. Translate the virtual address into a physical address. During
the translation, identify if the virtual page containing the
information is currently loaded into main memory. If it is,
load the physical page address (the result of the translation)
into the STLB and retry the access, if main memory does not
contain the page, go on to the next step.

3. Find the correct virtual page on disk and move it into main
memory. After the virtual page is loaded into a physical page,
the reference is retried.

The first task is completely performed in hardware; the second, by a
microcode routine. A software page fault handler performs all aspects
of paging.

Third Edition 4-2

MEMORY MANAGEMENT

MEMORY MANAGEMENT DATA STRUCTURES

All three of the steps in the memory reference operation use several
data structures to maintain needed information:

• Segnentation table lookaside buffer (STLB)

• Cache

• Descriptor table address registers (DTARs)

• Segment descriptor tables (SDTs)

• Page map tables (PMTs), for 9950 only

• Hardware page map tables (HMAPs), for other 50 Series systems

• Logical page map tables (LMAPs), for other 50 Series systems

• Memory map table (MMAP)

Table 4-1 shows the steps in which each structure is used.

Table 4-1
Use of Memory Management Data Structures

Structure

STLB

Cache

DTARs

SEWs

PMTs

HMAPs

LMAPs

MMAP

When Used

STLB/cache access, address translation

STLB/cache access, address translation

STLB/cache access, address translation

Address translation

Address translation, paging (9950 only)

Address translation, paging
(other 50 Series systems)

Address translation, paging
(other 50 Series systems)

Paging

4-3 Third Edition

DOC3060-192

The STLB

The STLB contains 128 entries on the 9950 and 64 entries on other 50
Series systems. Each STLB entry specifies one virtual address and one
physical page address. Since each entry specifies a physical page
address, each SUB entry is valid for a 2-Khyte block (one page) of
physical memory locations. Figure 4-2 describes the format of each
STLB entry.

1 2 3 4 6 7 9 10 21 22 33 34 45*

|V|M|S| RING 1 I RING 3 |PROC ID| SEG | FHYS ADR I

*46 for 9950, which has a 13-bit PHYS ADR field

1 Bits |

1 1

! 2

1 3

1 4-6

1 7-9

1 10-21

1 22-33

1 34-45*

Mnem

V

M

S

RING 1

RING 3

PROC ID

SEG

PHYS ADR

Description 1

Valid bit. Indicates if the |
STLB contains valid data. 1

Modified bit. Specifies if |
the physical page has been I
modified since its contents |
were loaded from disk. I

Shared bit. Indicates if this |
entry represents a location |
in shared or unshared memory. I

Specifies the Ring 1 access |
rights that are to govern |
the reference. 1

Specifies the Ring 3 access |
rights that are to govern the |
reference. 1

Specifies the process ID for |
the process making the |
reference to memory. 1

Specifies the segment number |
from the virtual address. |

Specifies the physical page |
address (from translation). I

*34-46 for 9950

Figure 4-2
STLB Entry Format

Third Edition 4-4

MEMORY MANAGEMENT

The processor uses a hashing algorithm to access the STLB. Ten bits
from the virtual address are used in the hashing algorithm, as shown in
Table 4-2. This table also identifies the names that will be used for
these bits in the explanation of the algorithm.

Table 4-2
Bits Used in the Hashing Algorithm

Bits Name

Bi ts 5-6 of the v i r t u a l address. | DTAR Bi t 1
These specify one of the four | and
DTARs. I DTAR B i t 2

Bi t s 15-16 of the v i r t u a l address. | Seg Bi t 9
These are the two l ea s t s igni f icant | and
b i t s of the segment f i e ld . I Seg Bi t 10

Bi t s 17-22 of the v i r t u a l address. | Page Bi t 1
These are a l l of the b i t s i n the | through
page f i e ld . I Page Bi t 6

The hashing algorithm exclusively QRs pa i r s of these b i t s t o form a
6-bi t or 7 -b i t address i n to the STLB (a 7 -b i t address for the 9950, a
6-bi t address for other 50 Series systems). Figure 4-3 shows how the
b i t s are QRed t o form the address for the 9950 and for other 50 Series
systems.

4-5 Third Edition

DOC3060-192

Page Bi t 1

DTAR Bi t 1

Page Bi t 2

DTAR Bi t 2

XOR I— STLB Address Bi t 1

XOR I— STLB Address Bi t 2

Page Bi t 3

Seg Bit 10 —

Page Bit 4

Seg Bit 9

Page Bit 5

Page Bit 6

STLB Address Bit 3

STLB Address Bit 4

XOR I— STLB Address Bit 5

STLB Address Bit 6

STLB Address Bit 7

Hashing Algorithm for the 9950 STLB
Figure 4-3a

Page Bit 1

DTAR Bit 1

Page Bit 2

DTAR Bit 2

Page Bit 3

Seg Bit 10

Page Bit 4

Seg Bit 9

Page Bit 5

Page Bit 6

XOR

XOR

XOR

XOR

— STLB Address Bit 1

— STLB Address Bit 2

— STLB Address Bit 3

— STLB Address Bit 4

— STLB Address Bit 5

— STLB Address Bit 6

Hashing Algorithm for the STLB of Other
50 Series Machines

Figure 4-3b

Third Edition 4-6

MEMORY MANAGEMENT

Cache

Like the STLB, the cache specifies the number of the physical page that
contains the desired physical location. In addition, it contains the
contents of that physical location. Figure 4-4 describes the format of
each cache entry.

12 1 16

PHYSICAL PAGE NUMBER DATA

1450, 250-11, 550-11 Cache Entry Format

12 32

PHYSICAL PAGE NUMBER DATA

750, 850, Cache Entry Format

13 32

I PHYSICAL PAGE NUMBER I DATA

9950 Cache Entry Format

I Bits | Mnem I Description I

I 1-12 I PHYSICAL I Specifies the number of the |
I or | PAGE I physical page that contains j
1 1-13 1 NUMBER I the specified location. This j
| | 11 is the cache index. |

1 1-16 1 DATA I Contains a copy of the I
I or | I contents of a location in |
1 1-32 | I physical memory. 1

Cache Entry Format
Figure 4-4

4-7 Third Edition

DOC3060-192

DTARs

As described in Chapter 2, the 50 Series virtual address space is
divided into four groups of 1024 segments each. Each group is
referenced through a descriptor table address register (DTAR)
associated with it. The public (shared) segments are referenced
through DTARO and DTAR1; the private (unshared) segments, through
DTAR2 and DTAR3. Figure 4-5 shows the format of the DTARs.

1 10 11

I SIZE |

16 17

A | -

18

1 B

32

1

Bits | Mnem | Description

1-10 | SIZE | Specifies 1024 minus the size of the
segment table.

11-16 I A I Bits 1-6 of the segment descriptor
table physical address.

17 I — I Must have the same value as bit 18.

18-32 I B | Bits 7-21 of the segment descriptor
table physical address.

DTAR Format
Figure 4-5

Third Edition 4-8

MEMORY MANAGEMENT

Segment Descriptor Tables

Each of the four DTARs described above points to a segment descriptor
table (SDT). These SDTs contain from 0 to 1024 32-bit entries called
segment descriptor words (SEWs). Each SEW describes one segment. The
table must begin on an even word boundary, and must not cross a segment
boundary. It must also be located in the first 8 Mbytes of physical
memory, since the ETTAR can specify only a 22-bit address. The format
of the SEWs is shown in Figure 4-6.

1 16 17

I PHYSICAL ADDRESS I F

18 20 21 23 24 26

1 Al I I A3 I

27 32

PHYSICAL ADERESS |

I Bits

I 1-16

1 17

I 18-20

I 21-23

I 24-26

1 27-32

i Mnem

PHYSICAL
ADERESS

F

Al

A3

PHYSICAL
ADDRESS

Description 1

Bits 7-22 of an HMAP's physical starting |
address. Bits 17-22 of this address |
must be 0. 1

Fault bit. 1

Specifies the access rights for Ring 1: I

000 = no access I
001 = gate I
010 = read access I
011 = read, write access I
100 = reserved 1
101 = reserved 1
110 = read, execute access I
111 = read, write, execute access |

Reserved. 1

Specifies the access rights for Ring 3. |
See bits 18-20 for a list of the I
available access codes. |

Bits 1-6 of an HMAP's physical starting I
address. |

Segment Descriptor Word Format
Figure 4-6

4-9 Third Edition

DOC3060-192

Hardware Page Map Tables

Bits 1-16 and 27-32 of each SDW contain the starting address of a
hardware page map table (HMAP). Each table contains 64 16-bit entries,
each of which contains information about one virtual page. An HMAP
cannot cross a '200000 (65,536) boundary. Figure 4-7 shows the format
of each HMAP entry.

1

1 R

2

1 0

3

| M

4

s

5 16

| PAGE ADDRESS |

| Bits

| 1

I 2

1 3

1 4

I 5-16

Mnem

R

U

M

S

PAGE
ADDRESS

Name

Resident
Bit

Used Bit

Modified
Bit

Shared
Bit

Page
Address

Description 1

Indicates if the page resides in I
physical memory. 1 indicates |
residency. !

Hardware sets U to 1 when a page I
is used. 1

Hardware resets M to 0 when a |
page is modified. I

Inhibits use of cache. 1

Specifies high-order 12 bits of I
physical page address, or the I
address of an LMAP entry. (See |
Paging, below.) 1

Hardware Page Map Table Entry Format
Figure 4-7

Third Edition 4-10

MEMORY MANAGEMENT

Logical Page Map Tables

As mentioned earlier, each HMAP has a logical page map table (LMAP)
associated with it. Each HMAP entry specifies either the physical
address of a page in memory, or, if that page is not currently loaded
in main memory, the address of an entry in the HMAP1 s associated LMAP.
This LMAP entry specifies the disk address of the page. Figure 4-8
shows the format of each LMAP entry.

16

I LOCK | COPY | ALT | DISK RECORD ADDRESS

I B i t s

1 1-2

1 3

1 4

I 5-16

Mnem

LOCK

COPY

ALT

DISK
RECORD
ADDRESS

Name

Locked
B i t s

Copy Bi t

Alternate
Paging
Device

Disk
Record
Address

Description I

If 00, the page i s not locked i n to j
memory. If 0 1 , the page i s locked |
i n to memory. 1

If 0, a copy of t h i s page already I
ex i s t s on disk. If 1 , no such copy |
e x i s t s . 1

Contains 1 if the page f au l t |
handler should use another paging |
device. 1

Specifies the address of the page I
on disk (to the nearest 8-page I
block) . I

LMAP Entry Format
Figure 4-8

Bits 1-2 of the LMAP entry are lock bits. These bits can be set to
ensure that the associated page always remains in main memory and is
not mapping tables, I/O buffers, or some of the data structures
described in this chapter. By locking these contents into main memory,
the processor can always be sure to access the correct data and
complete vital operations when it cannot stop to handle a page fault.

4-11 Third Edition

DOC3060-192

Page Map Tables

Bits 1-16 and 27-32 of each SEW contain the s t a r t i n g address of a page
map t ab le (PMT). These tables contain 64 32-bi t e n t r i e s , each of which
contains information about one page. A page map t ab le cannot cross a
'200000 (65,536) boundary. Figure 4-9 shows the format of each page
map t ab le entry.

1

1 R

2

1 u

3

1 M

4

1 s

5 16 17 19 20 32

I SOFTWARE | 000 I PAGE ADERESS |

I B i t s

1 1

1 2

1 3

1 4

1 5-16

1 17-19

1 20-32

Mnem

R

U

M

S

SOFTWARE

PHYSICAL
ADERESS

Name

Resident
B i t

Used b i t

Modified
Bi t

Shared
Bi t

Software

Physical
Address

Description 1

Indicates i f the page res ides in I
physical memory. 1 indica tes I
residency. 1

Hardware se t s U t o 1 when a page |
i s used. 1

Hardware r e se t s M to 0 when a page I
i s modified. !

Inhib i t s use of cache. 1

Reserved for software use. 1

Must be zero. 1

Specifies high-order 13 b i t s of a I
physical page address. I

PMT Entry Format (for 9950 only)
Figure 4-9

Third Edition 4-12

MEMORY MANAGEMENT

Memory Map

Each entry of the memory map table (MMAP) describes one physical page
and tells whether it is already in use, is available for use, or does
not exist. The first two descriptions, page in use and page is
available, are self-explanatory. The last, page does not exist,
indicates that the system is not currently accessing this page. This
means that the system can still run even if part of physical memory has
a problem or does not exist. Figure 4-10 shows the format of each MMAP
entry.

16 17 32

PAGE STATUS

I Bi t s

I 1-16

1 17-32

Mnem

PAGE
STATUS

Name

Page
Status

Unused

Description 1

Contains a two's complement in teger : I

n < 0: Page i s not t o be used I
(does not e x i s t) . I

n = 0: Page i s ava i l ab le . 1
n > 0: Page i s in use; n i s a |

pointer t o the HMAP entry I
for t ha t page. 1

Reserved for future use. 1

MMAP Entry Format
Figure 4-10

ACCESSING THE STLB AND CACHE

As described in Chapter 2, the STIB and the cache are high-speed
buffers. If these buffers contain valid information for the process
making a reference to a piece of data, the processor can access them in
very little time instead of having to make a long memory access.

The hardware accesses both the STIB and the cache in parallel to speed
up the reference. A slightly different set of actions is performed,
depending on whether the operation is a read or a write. Refer to
Figures 4-11 and 4-12 when reading the text in these sections.

4-13 Third Edition

DOC3060-192

Read Memory Access

As shown in Figure 4-11, the hardware performs three tasks in parallel:
it references the STLB, references the cache, and validates the
reference's access rights. The priority among these three tasks is
also illustrated in the figure: the leftmost task (checking STLB
entry) has a higher priority than the access check, and the access
check has a higher priority than the cache entry stage. This means
that if a problem arises in the STUB entry stage, that is solved first;
then the whole access is retried from the beginning. The text in this
section describes the access according to this priority.

Step 1. Accessing an STLB Entry

The hashing algorithm described above uses bits from the virtual
address to choose an STLB entry. To make sure that this entry contains
valid data, the hardware checks the entry's valid bit. If it contains
1, the entry is valid; 0, invalid. The hardware must also check that
the process ID in the STLB entry is identical to that of the process
making the reference. This is done only if the segment number
specified in the virtual address is greater than or equal to
'4000 — that is, if the segnent specified is an unshared segment. If
these conditions are met, the STLB entry contains valid data and can be
used.

If the conditions are not met, the STLB needs to be loaded with the
correct data. Therefore, the address translation microcode is invoked.
(See Address Translation, below.) Assuming no page faults occur, the
new translation is loaded into the STLB entry, and the used bit in that
entry is set to 1. The reference is then retried from the beginning.

Step 2. Choosing an Access Field

If the STLB entry contains valid data, the hardware must determine what
access rights should govern the reference. This requires two steps:
first, isolating the ring number that specifies what access field to
use; and second, using the access field contents to determine whether
the reference is valid or not. Note that STLB entries for segment 0
have no ring field entry and can be accessed only by Ring 0.

To isolate the ring number, the processor weakens the ring number
contained within the program counter by logically ORing it with the
ring number contained in the effective address. This screens out all
invalid references to lower-numbered rings (inward references), but
allows references to higher-numbered rings (outward references) to be
made.

This screening process makes sure that the access rights of the
referencing procedure are weaker than those of the referenced
procedure. If this were not done, then a Ring 3 procedure could call a

Third Edition 4-14

MEMORY MAWCEMENT

Invoke page
fault handler

-40,000 /xsecs

<.0O1%

YES

Set Used bit
in STLB entry

Load STLB
entry

4 ^secs

.5 - 1 %

Start memory
and read data
into cache

1.2/j.secs

14.5%

Use data
from cache

T
DONE

.08 /^secs

85%

Read Memory Access
Figure 4-11

4-15 Third Edition

DOC3060-192

Ring 0 procedure, which in turn could call several procedures for which
the Ring 3 procedure had no access rights. Screening out such
references protects the integrity of the entire system.

Once the EA ring number has been weakened, the processor uses the
weakened ring number to select an access field. If the ring number is
00, the hardware assumes that the reference has unlimited access and no
further access checking is done. If the ring number is 01 or 11, the
harcWare uses the Ring 1 or Ring 3 access fields, respectively, in the
SILB entry as the access field. If the ring number is 10, undefined
results occur.

the access fields in the STLB entry specify the operations that
references using this entry can legitimately perform. Table 4-3 lists
the values these fields can contain and their meanings.

Table 4-3
Access Field Values and Their Meanings

1 Value

1 000
1 001
1 010
I 011
1 100
1 101
1 110
I 111

Description |

No access I
Gate (See Chapter 8.) 1
Read access 1
Read, write access I
Reserved 1
Reserved 1
Read, execute access 1
Read, write, execute access |

The hardware checks the operation specified in the instruction, making
the reference against the selected access field to ensure that the
operation is valid. For example, if tiie instruction specifies a read
operation and the selected access field allows reads, then the read
operation is valid. If, however, the instruction specifies a write and
the access field allows only reads, then the operation is invalid. In
the first case, the processor performs the valid operation and program
execution continues. In the latter case, an access fault occurs and
control transfers to the access fault handler. See Chapter 11 for more
information about faults.

A reference must have read access to perform either a write or an
execute operation. If an instruction specifies either a write or an
execute and the access field does not allow reads, an access fault
occurs.

Third Edition 4-16

MEMORY MANAGEMENT

Step 3. Accessing the Cache

If the access check is successful, the hardware references the cache.
To do this, the hardware must form an address that references an entry
in the cache index, which in turn specifies an entry in the cache data.
The cache index address is formed in one of two ways, depending on the
processor.

For the 2250, 250-11 and earlier Prime systems, the hardware uses bits
23-32 in the virtual address as an address of an entry in the cache
index. These bits are the 10-bit offset field.

For the 1450 and the 550-11, the hardware uses bits 21-32 of the
virtual address as an address of an entry in the cache index; the 750,
850, and 9950 use bits 20-32 of the virtual address. These are the
least significant two or three bits of the page field and the 10-bit
offset field. Note that the extra two or three bits create a virtually
mapped cache. See Mapped I/O in Chapter 12 for information about how
the MB 10 bits in the IOTIB reconstruct this virtual mapping.

When the hardware has an address, it uses it to select an entry, j, in
the cache index. Entry j contains a physical page address, which the
hardware compares to the physical page address specified in the STLB
entry. If the page numbers are the same, then the jth entry in the
cache data area contains the contents of the desired physical location.
These contents are used in the specified operation.

If the page numbers are not the same, the hardware must read the data
in the specified physical location into the cache. It starts memory,
reads the data into the cache, and then retries the access from the
beginning.

Step 4. Timing Considerations

Figure 4-11 lists the time taken by each step of the read memory
access. These figures are based on a 1 MIP machine. The figure also
notes the percentage of times each step is likely to occur. As shown,
the cache and STLB contain the needed information 85% of the time, and
so the access requires only 80 nanoseconds. In addition, even though a
page fault requires 40,000 microseconds it occurs very rarely (on the
order of 10 per second). The other three steps occur the majority of
the time, and give the system an average read memory access time of
.24-.26 microseconds.

Write Memory Access

Figure 4-12 describes the general stages that occur in a write memory
access. Note that the hardware references the STLB, validates the
reference's access rights, and checks the STLB modified bit in
parallel. However, the access validation takes precedence over

4-17 Third Edition

DOC3060-192

checking the modified bit, and the STLB entry access takes precedence
over the access validation. This means that if problems occur in one
of the stages with higher precedence, the problem is corrected and the
access is retried from the beginning even if no problems occur with
other stages.

Stage 1. Accessing the STLB

The hardware uses the hashing algorithm described above to select an
STIJB entry. The entry is validated in the same way as that described
in the Read Memory Access section.

Stage 2. Checking the Access Rights

This stage is identical to that described in the Read Memory Access
section above.

Stage 3. Checking the STIB Modified Bit

If the STLB entry is valid and if the reference has the proper access,
the hardware checks the STLB entry's modified bit. If this bit
contains 1, the page has been modified since this STIB entry was last
used. This means that hardware must reload the STIB entry via the
address translation mechanism. Once the new translation is loaded into
the STLB entry, the reference is retried from the beginning.

If the STLB entry's modified bit is 0, then the entry contains valid
data. The hardware forms the address of a cache entry (see Accessing
the Cache, above), starts memory, and writes the contents of the
referenced location into that cache entry.

Stage 4. Timing Considerations

Figure 4-12 lists the time each step of the write memory access takes.
These figures are based on a 1 MIP machine. The figure also notes the
percentage of times each step is likely to occur. As shown, the STLB
contains the needed information 35-64% of the time, depending on
whether the accesses are overlapped or not. In the case of overlapped
transfers, the system's average write access time is about .22
microseconds; for transfers that are not overlapped, the average time
is about .32 microseconds.

Third Edition 4-18

MEMORY MANAGEMENT

33000 /xsecs

.004%

4/isecs

1%

4 usees

1%

Start memory
and write
into cache

-I DONE j

.8 /isecs

35%

.28 usees

64%

(not overlapped)

(overlapped)

Write Memory Access
Figure 4-12

4-19 Third Edition

DOC3060-192

Address Translation

When the STLB does not contain information about the virtual-to-
physical translation, a microcoded part of PRIMDS (called the address
translation mechanism, or ATM) must perform the translation. The
DTARs, the segment descriptor tables, and the hardware page map tables
allow the ATM to make the correct reference.

When reading the detailed description of the translation process, refer
to Figures 4-13a and 4-13b. Figure 4-13a depicts address translation
on the 9950; Figure 4-13b, address translation on other 50 Series
systems. The numbers labelling the discussion match the numbers on the
diagram.

1. Interpreting the Virtual Address

The virtual address derived from the information contained in an
instruction is a 30-bit quantity. When the translation occurs, the
virtual address is interpreted as shown in Figure 4-1. Bits 2-3
contain protection information and will be described in the next
chapter. Bits 5-16 contain a segment number; bits 17-22, a page
number; and bits 23-32, an offset. The ATM looks at bits 5-6 first,
since they specify one of the four ETARs. The ATM references the
specified DTAR.

2. Referencing the DTAR

The specified DTAR contains the address of a segment descriptor table,
as well as the size of the table. The ATM uses the contents of bi ts
11-32 of the DTAR to form the starting address of the SDT.

3. Validating the Segment Number

After forming the table's starting address, the ATM uses bits 7-16 of
the virtual address as an offset into the table. It first compares the
segment number contained in these bits to bits 1-10 of the DTAR to
check if the virtual address specifies an invalid segment. If the
segment number is greater than the maximum allowable table size, the
segment number is invalid and a segment fault occurs (segment number
too large). If the segment number is less than or equal to the maximum
allowable table size, the segment number is valid and the ATM adds the
segment number to the starting address of the SDT. The sum specifies
an entry, n, in the SDT.

Third Edition 4-20

MEMORY MANAGEMENT

c w S *>
t | . = l l D-X3
— T* ^ /« rr

CO
(0

<
CO
3

0) 52

c w 2 o>

© l l l l l

m
IN

«t

*~ m

.-

co (A

»•— O

k_

•o < (D

o» CD

a.
(0

>. c
Q_

(J w
.— a>

.E-CTJ

u. an

e

CM

m
00

r-

to

o

ID

<&

<

N
CO

4
1
&
DC

< 1 -
Q

,_
oc
< 1 -
a

CM
tr
< t-
o

o
OC

< (-Q

CM)

B

03

<

n TO
«
o

<= to

a. o

Address Translation on the 9950
Figure 4-13a

4-21 Third Edition

EOC3060-192

4. Referencing the SET

Entry n in the SET contains a segment fault b i t , access information
(see next chapter), and the address of a hardware page map table
(HMAP). The ATM checks bit 17, the fault b i t , for an invalid segnent.
If F contains a 1, the segment i s invalid or an HMAP i s missing, and a
segment fault occurs. If F contains a 0, the segment i s valid and the
ATM uses bits 1-16 and 27-32 of entry n as the starting address of an
HMAP. The ATM adds the contents of bi ts 17-22 of the vir tual address
to the starting address in order to specify an entry (entry m) in the
HMAP.

In the 9950, the ATM adds twice the value of bi ts 17-22 of the vir tual
address to reference the correct entry in a 640-element entry page map
table.

5. Checking Page Status

Bits 1-4 of entry m contain status information about a page of memory.
When the entry i s obtained from memory, the ATM examines the used (U)
b i t . If the content i s 1, the page i s assumed to be resident (R
bi t=l) . If the U b i t content i s 0, the resident (R) b i t i s examined.
If R contains 1, the page i s resident but unused; the ATM sets the U
bi t in the PMT/HMAP entry and loads the translation into the STLB. If
R contains 0, the page i s not resident and a page fault occurs.
(Chapter 11 contains more information about faults.) This ordering of
the examination of the U and R bits maximizes the speed of the ATM.

Note

The combination of R=0 and U=l i s i l legal and will cause
undefined resul ts .

6. Forming the Address and Loading the STLB

After determining that no page fault exists, the 9950 ATM combines the
physical page address contained in bi ts 20-32 of the PMT entry with
bi ts 23-32 of the virtual address to form a 23-bit physical address.
The ATM for a l l other 50 Series systems combines the physical page
address contained in bits 5-16 of the HMAP entry with bi ts 23-32 of the
virtual address to form a 22-bit physical address. This i s the final
physical address. The ATM loads th is address, plus i t s associated
access information, into the STLB. The translation process for any
address has to be done only the f i rs t time that location i s referenced,
because after that the STLB contains the translated value.

Third Edition 4-22

MEMORY MANAGEMENT

u>

CD

a, = g a ^
5fc-o " E
r- W CO Q . C

^ W

m
IN

<* *̂ n

r-

0)
to

O
k.

13

< 0>

o>
ra a.
w
>. .c Q.

« 12
O Cfl

m w « -
£JC-O
LL D.C0

^1

(A
(A

I?
<
re
3

0)

a a.

®

<D to

©
c «> 2 «>

rei2-o2 3
»- w re Q.c ,.

re
E
CD a>
SP-fi
JP re
Q-h-

k.

•a <
w >. .c
a.

CO

<

• •
•

<
u.

k .

•o
<
>. £
0-

1 I CO

a>
•a
•a
<

re
*-• CO

s
k.

c
ill

a>
E

to

e

CO

4

CS

a.
< t-
o

T—

oc
< 1 -
Q

c»
tr
<• »-a

CO

oc
< 1 -
o

CM)

S
eg

m
en

t
D

es
cr

ip
to

Ta

bl
e

v\ I
z
5
o

I

i t re
V)
o

* * CD

0. o

Address Translation on Other 50 Series Machines
Figure 4-13b

4-23 Third Edition

DOC3060-192

PAGING

When a requested page is not in main memory, a page fault occurs.
Often, a page must be moved out of main memory and onto disk so that
the new page can be loaded in. The software page fault handler uses
three tables to move out a page, if necessary, and load in the
requested page: the memory map table, and either the page map table
(for 9950) or the hardware page map table and the logical page map
table (for all other 50 Series systems).

Refer to Figure 4-15 when reading the text in this section.

Step 1. Locating the Page on Disk

The first thing the page fault handler must do is locate the specified
page on the disk, it uses the virtual address to reference an SDT
entry (see Address Translation, above), which contains the starting
address of a PMT/HMAP. This starting address and the contents of the
virtual address page field allow the handler to reference an HMAP
entry.

The HMAP specifies the starting address of an LMAP. The virtual page
field contents are used as an offset into this table to reference an
LMAP entry. Bits 5-16 of the LMAP entry specify a paging device index.
This index points to a block of eight pages on the disk. (PMT bits
5-16 perform a similar function; they are reserved for software use.)

To choose one of the eight pages in this block, the handler uses the
three least significant bits of the virtual address page field. The
resulting address of the page on disk is shown in Figure 4-14.

1 12

I PAGING DEVICE INDEX

13 15

I VIRTUAL ADDRESS BITS 20-22 I

Disk Page Address
Figure 4-14

Third Edition 4-24

MEMORY MANAGEMENT

Step 2. Allocating a Page in Physical Memory

Before the handler can load the page from disk into main memory, it
must find a place to put it. It checks MMAP for an available page. If
there are no available pages, it uses a first in, not used, first out
algorithm to choose a page to move out of main memory. (With periodic
polling, this algorithm gives an effective simulation of a first in,
first out algorithm. It also provides many of the same benefits as a
least recently used algorithm.)

Each PMT/HMAP entry contains a used bit (U) that specifies whether the
page the entry identifies has been used since the last page fault
occurred. If U contains 0, the page has not been used; if U contains
1, the page has been used. The page fault handler checks the used bits
and identifies the first available page whose U is 0. This algorithm
assures the handler that the page to be moved out of memory is not one
currently being used by another process.

The handler can be configured to use the LFLJ algorithm to check for
more than one currently available page. When this is done, the handler
identifies several least recently used pages (default is 3) and
prepares to move them out of main memory. This is called prepaging
(also known as paging ahead or anticipatory clearance). It can speed
up processor execution by paging out several pages during one page
fault. When the next page fault occurs, the handler has only to load
the disk page into main memory without first having to clear a space
for the page.

Step 3. Saving the Old Page Contents

After the handler identifies available physical pages, it must choose a
page to page out, and must determine whether or not it must store the
old page contents on disk before loading in the new information. The
PMT/HMAP entry aids in this task.

Bit 2 of the PMT/HMAP entry specifies whether this page has been used
since this entry was last reset. If the page has not been used, then
the handler can move it out without adversely affecting any running
processes. If it has been used, the handler should locate another page
to move out, since some process is likely to be using this page.

When the handler chooses a used page to page out, it checks bit 3 of
the PMT/HMAP entry to determine if the page's contents have been
modified since they were moved into main memory. If the old contents
have not been modified (bit 3 contains 1), the handler can load in the
new contents immediately. If the old contents have been modified (bit
3 contains 0), the handler must save a copy Of them on disk before
loading in the new data.

4-25 Third Edition

DOC3060-192

Use virtual address
to reference
an HMAP entry

7
Use HMAP entry
to reference
an LMAP entry

I
Use LMAP entry and
bits 20-22 of
virtual address
as disk address

Load disk page
into memory.
Update data
structures.

~~r~
[DONE J

1

1
Go on to
next disk page

Save old page
contents on
disk

Paging
Figure 4-15

Third Edition 4-26

MEMORY MANAGEMENT

Like the LHJ algorithm, the HMAP entries save the system processing
time by limiting the number of disk accesses necessary to page in new
information. By checking the entries periodically and tracking how
they change, the handler determines the best page to swap out of main
memory.

Step 4. Loading the Available Page

Once the handler has a physical page available, it loads a copy of the
disk page into the physical page. After the copy, the handler updates
the affected entries in the SEW, HMAP, LMAP, and MMAP.

SUMMARY

This chapter described how a 50 Series system uses a virtual address to
locate information in physical memory. The cache and STLB provide
rapid means of locating commonly referenced information without
requiring memory access. When these buffers do not contain the desired
information, PRIMOS can translate the user's virtual address into a
physical one through the use of specialized data structures and
algorithms. The software page fault handler ensures that information
currently on disk is moved in a controlled fashion into main memory
when it is needed.

4-27 Third Edition

5
Restricted Instructions

and Control
Information

The previous three chapters have described physical and virtual memory,
how they are manipulated, and the data structures used in their
manipulation. These data structures, like many parts of ERIMOS, are
essential to system operation and so are protected against use by the
casual user. However, a set of restricted instructions is available
for situations that require manipulation of these and other system
structures.

Restricted instructions can be executed in Ring 0, and many of them
perform system functions, such as purging an STLB entry. Others
manipulate some of the other system data structures, such as the keys
register or the sense switches. 'Phis chapter describes some of these
other data structures, especially the keys and modals, and lists the
restricted instructions and describes what they do. For more detailed
information about these instructions, refer to the appropriate entries
in Chapters 13 and 14.

OTHER SYSTEM DM?A STRUCTURES

There are other data structures the system uses:

• Modals

• Keys

• (BIT, LINK, and condition code bits

5-1 Third Edition

DOC3060-192

Modals

The 16-bit register called the modals contains information about the
state of the processor. This register specifies information needed by
the hardware and the operating system, such as the type of process
control the system uses and which user register set is currently
active. (See Chapter 10.) Note that this register is directly
accessible only in V and I modes.

Figure 5-1 shows the normal setting of the modals that FRIMOS uses.
Figure 5-2 shows the format of the modals. Table 5-1 lists the
instructions that modify the modals.

8 9 11 12 16

I 11000000 | CRS I 11111

Normal Modals Setting
Figure 5-1

Third Edition 5-2

RESTRICTED INSTRUCTIONS

2 3 8 9 11 12 13 14 15 16

E | V I 000000 | CRS | MIO | PXM | S | MCM

Bits I Mnem I Description

1

2

3-8

9-11

12

13

14

15-16

E I

v 1

1

CRS I

MIO I

PXM |

S I

MCM |

Enable interrupts:
0 = interrupts disabled
1 = interrupts enabled

Vectored interrupt mode:
0 = standard interrupt mode
1 = vectored interrupt mode

— I Must be zero.

Specifies the current register set.
Only the PXM can alter these bits.
(See Chapter 8.)

Specifies the current mode of I/O:
0 = unmapped mode
1 = mapped mode

Process exchange enable/disable:
0 = process exchange disabled
1 = process exchange enabled

Specifies the mode of segmentation:
0 = no segmentation
1 = segmentation

Machine check mode:
00 = no reporting
01 = report only uncorrected memory

parity errors
10 = report only unrecovered errors
11 = report all errors
See Chapter 10 for more information.

Modals Format
(V and I Modes Only)

Figure 5-2

5-3 Third Edition

DOC3060-192

Table 5-1
Modals Instructions

1 Mnem

I EMCM

I ENB

1 ESIM

I EVIM

I INH

I LMCM

1 LPSW

I RMC

Name

Enter Machine
Check Mode

Enable
Interrupts

Enter Standard
Interrupt Mode

Enter Vectored
Interrupt Mode

Inhibit
Interrupts

Leave Machine
Check Mode

Load Program
Status Word

Reset Machine
Check Flag to 0

Modes

S,RfV,I

S,R,V,I

S,R,V

S,R,V

S,R,V,I

S,R,V,I

V,I

S,R,V,I

Description

Enters machine check mode.

Sets bit 1 of the modals to 1.

Resets bit 2 of the modals to 0.

Sets bit 2 of the modals to 1.

Resets bit 1 of the modals to 0.

Leaves machine check mode.

Loads the PSW with the contents
of a location in memory.

Resets bits 15-16 of the modals
to 0 and inhibits interrupts
for the next instruction.

Keys

The other 16-bit register, the keys, describes the currently running
process and the procedure that process i s executing. The keys contain
status information (such as the mode of addressing currently enabled)
and specify fault handling information. Figure 5-3 shows the format of
the keys for S and R modes; Figure 5-4 shows the format for V and I
modes. Table 5-2 l i s t s the instructions that modify the keys.

Never modify the keys or modals with the STLR instruction; use only
the instructions l i s ted in Tables 5-1 and 5-2. In addition, never use
LPSW to change bi ts 15-16 of the keys or bi ts 9-11 of the modals. For
more information, refer to individual instruction descriptions in
Chapters 13 and 14.

Third Edition 5-4

RESTRICTED INSTRUCTIONS

1

I CBIT

2

I DBL

3

-

4 6

I MODE |

7

FEX

8 9

IEX |

16

VISIBLE SHIFT COUNT |

I Bi t s

I 1

1 2

1 3

1 4-6

1 7

1 8

I 9-16

Mnem

CBIT

DBL

MODE

FEX

IEX

VISIBLE
SHIFT
COUNT

Description 1

Reflects ar i thmetic conditions of I
some ins t ruc t ions . 1

Reflects ar i thmetic mode: 1
0 = s ingle precis ion |
1 = double precis ion |

Reserved for future use. I

Specifies the current mode of addressing: |
000 = 16S 1
001 = 32S 1
010 = 64R 1
011 = 32R 1
100 = 321 1
101 = unused 1
110 = 64V 1
111 = unused i

Floating-point exception enable /disable : I
0 = s e t CBIT t o 1 and invoke f a u l t I

handler on error 1
1 = s e t CBIT t o 1 only on error 1

Integer exception enable /disable : 1
1 = s e t CBIT t o 1 only on error 1
0 = s e t CBIT t o 1 and invoke f au l t I

handler on error j

Bottom half of the f loa t ing-poin t I
exponent. 1

Keys Format, S and R Modes
Figure 5-3

5-5 Third Edition

DOC3060-192

1 2 3

ICBITlOiLINKl

4 6

MODE

7 8

|FEX|IEX|

9

LT|

10 11

EQIDEXI

12

Asai--8

13 14 15

|RND|P850|IN|

16

SD|

| Bi t s

I 1

1 2

1 3

1 4-6

i 7

I 8

1 9

! 10

1 11

Mnem

CBIT

LINK

MODE

FEX

IEX

LT

EQ

DEX

Description I

Reflects ari thmetic conditions of I
some ins t ruc t ions . 1

Must be zero. I

Reflects ar i thmetic conditions of I
some ins t ruc t ions . 1

Specifies the current mode of addressing: I
000 = 16S 1
001 = 32S 1
010 = 64R I
011 = 32R 1
100 = 321 1
101 = unused I
110 = 64V 1
111 = unused 1

Floating-point exception enable/disable : |
0 = se t CBIT to 1 and invoke 1

fau l t handler on error 1
1 = se t CBIT to 1 only on error 1

Integer exception enable/disable: 1
0 = se t CBIT to 1 only on error 1
1 = se t CBIT to 1 and invoke 1

fau l t handler on error I

Less Than condition code: 1
1 re f lec t s a l e s s than 0 condit ion. 1

Equal To condition code: 1
1 re f lec t s an equal t o 0 condit ion. 1

Decimal exception enable /disable : I
0 = se t CBIT t o 1 only on error I
1 = se t CBIT t o 1 and invoke 1

fau l t handler on error 1

Keys Format, V and I Modes
Figure 5-4

Third Edition 5-6

RESTRICTED INSTRUCTIONS

I Bits

1 12

1 13

1 14

1 15

1 16

Mnem I

ASCI 1-81

RND I

P850 I

IN |

SD 1

I Description

ASCII character representat ion:
specif ies whether 7 -b i t or 8-bi t ASCII
characters a re t o be used.
0 = most s ignif icant b i t of characters

i s 1 (8-bi t format)
1 = most s igni f icant b i t of characters

i s 0 (7-bi t format)
Used on 9950 only.
Disregarded on other machines.

Floating-point round: speci f ies the form
of rounding t o use in f loa t ing-point
operat ions.
0 = no rounding
1 = rounding
Used on 9950 only.

P850 bit: used by the P850 processor.

In dispatcher: specifies if the current
process associated with the register
is in the dispatcher.
0 = process is in the dispatcher
1 = process is not in the dispatcher
Only the PXM alters this bit.

Save done bit: specifies if PXM has saved
values of current register set.
0 = save must be done before this

register set can be used
1 = save has been done and this

register set is available
Only the PXM alters this bit.

Keys Format, V and I Modes
Figure 5-4 (continued)

5-7 Third Edition

DOC3060-192

Table 5-2
Keys Instructions

I Mnem

1 DBL

I E16S

1 E32I

I E32S

I E32R

I E64R

I E64V

I INK

I OTK

I RCB

I SCA

I SCB

I SGL

1 LPSW

I TAK

| TKA

Name

Enter Double
Precision
Mode
Enter
Mode
Enter
Mode
Enter
Mode
Enter
Mode
Enter
Mode
Enter
Mode

16S

321

32S

32R

64R

64V

Input Keys

Output
Keys
Mode
Reset (BIT

Load Shift
Count into A
Set (BIT

Enter Single
Precision
Mode
Load PSW

Transfer A
to Keys
Transfer
Keys to A

Modes

S,R

S,R,V,I

S,R,V,I

S,R,VfI

S,R,V,I

S,R,V,I

S,R,VfI

S,R,I

S,R,I

S,R,V,I

SfR

S,R,V,I

SfR

V,I

SfR,V

S,R,V

Description

Sets bit 2 in

Sets bits 4-6
to 000.

Sets bits 4-6
to 100.

Sets bits 4-6
to 001.

Sets bits 4-6
to 011.

Sets bits 4-6
to 010.

Sets bits 4-6
to 110.

the keys to 1. |

of the keys |

of the keys I

of the keys I

of the keys |

of the keys |

of the keys |

Reads the keys into the |
specified register. |

Loads the keys with the I
contents of
register.

Sets the value

the specified |

; of (BIT in |
the keys to 0. I

Loads bits 9-16 of the keys |
into bits 9-

Sets the value
-16 of A. I
i of (BIT in |

the keys to 1. I
Sets bit 2 in the keys to 0. |

Loads new data into the |
keys, modals, and program |
counter.

Transfers the contents of A I
into the keys. |

Transfers the contents of |
the keys into A. 1

Third Edition 5-8

RESTRICTED INSTRUCTIONS

OBIT, LINK, and the Condition Codes

Some of the bits in the keys merit extra discussion. Bit 1, CBIT, and
bit 2, LINK, are set by many instructions to indicate conditions under
which the instruction completed execution. Several instructions
performing arithmetic operations, for example, set CBIT to 1 to
indicate that the operation has resulted in an overflow (result too
large to fit in the specified number of bits). Others set LINK to 1 to
reflect a carry out condition. Still others set CBIT to indicate a
fault condition. The instruction entries in Chapters 13 and 14 state
how each instruction affects the values of these bits.

Also note that bits 9-10 of the keys contain the condition codes. Many
arithmetic, branch, skip, jump, and other instructions set these bits
to indicate the result of a test (result is less than 0, for example),
to indicate whether a value is positive or negative, and so on. Other
instructions use the condition code values as Boolean values. The
instruction entries in Chapters 13 and 14 also describe how an
instruction affects the state of these bits.

BQ shows whether or not a 16- or 32-bit result is equal to 0. LT
contains the extended sign for arithmetic and comparison operations.
The extended sign is the sign of the result as if the operation had
been done on a machine of infinite precision; thus, LT shows the
correct sign of the result despite any overflow. For logic operations,
LT reflects the sign of the result. Table 5-3 shows condition code
interpretation for comparison, arithmetic, and logic operations.

5-9 Third Edition

EOC3060-192

Table 5-3
Interpretation of Condition Codes

1 LT, BQ | | I 1
I Values | Comparison j Arithmetic I Logic I

I 00 I Register > 0 | Signed result > 0 | Result <> 0, I
I I Register > EA I Unsigned result <> 0 I High-order bit = 0 I
j I Reg 1 > Reg 2 I 1 1

I 01 | Register = 0 I Result = 0 1 Result = 0 , 1
j 1 Register = EA | 1 High-order bit = 0 1
I | Reg 1 = Reg 2 j I 1

I 10 | Register < 0 | Result = 0 1 Result <> 0f I
I j Register < EA I 1 High-order bit = 1 |
| I Reg 1 < Reg 2 | 1 1

j 11 | Not working | Possible if largest I Not working 1
| j | negative number i s j I
| | j added to i tself . | 1
I | | (CBIT i s set to 1 | 1
I | | as well, to j 1
] j j indicate overflow.) | 1

Third Edition 5-10

RESTRICTED INSTRUCTIONS

RESTRICTED INSTRUCTIONS

Table 5-3 l i s t s the restr icted instructions and briefly describes
their actions. Refer to Chapters 13 and 14 for more information about
these instructions.

Table 5-3
Restricted Instructions

I Mnem

I CAI

I EIO

| EMCM

I ENB

| ESIM

I EVIM

| HLT
I INA

I INBC

| INBN

| INEC

I INEN

I INH

I IRTC

1 IRTN

Name

Clear Active
Interrupt
Execute I/O

Enter Machine
Check Mode
Enable
Interrupts
Enter Standard
Interrupt Mode
Enter Vectored
Interrupt Mode
Halt
Input to A

Interrupt
Notify

Interrupt
Notify

Interrupt
Notify

Interrupt
Notify

Inhibit
Interrupts
Interrupt
Return

Interrupt
Return

Modes

S,R,V,I

V,I

S,R,V,I

S,R,V,I

S,R,V,I

S,R,V,I

S,R,V,I
S,R

V,I

V,I

VfI

V,I

S,R,V,I

VfI

vfi

Description 1

Clears the currently active I
interrupt. 1

Executes an effective address I
as an I/O instruction. I

Enters machine check mode. 1

Enables interrupts so that 1
devices can request service. I

All interrupts use location '63 1
to reach the interrupt handler, j

Services interrupts according to |
their priority on the I/O bus. I

Halts the processor. 1
Loads data from the specified I
device into A. I

Notifies during the interrupt 1
code. Uses LIFO queuing. I
Clears the currently active I
interrupt. 1

Notifies during the interrupt 1
code. Uses LIFO queuing. I
Does not clear the currently I
active interrupt. |

Notifies during the interrupt I
code. Uses FIBD queuing. |
Clears the currently active I
interrupt. 1

Notifies during the interrupt I
code. Uses FIFO queuing. I
Does not clear the currently 1
active interrupt. 1

Disables interrupts so that |
devices cannot request service. |

Returns control from an interrupt |
and clears the currently |
active interrupt. I

Returns control from an interrupt |
and does not clear the currently |
active interrupt. I

5-11 Third Edition

DOC3060-192

Table 5-3 (continued)
Restr icted Inst ruct ions

I Mnem

I ITLB

I LIOT
I LMCM

I LPID

1 LPSW

1 MDRS

I MDWC

I NFYE

I NFYB

1 OCP
I OTA

I PTLB

Name

Invalidate
STLB Entry
Load I/O TLB
Leave Machine
Check Mode
Load Process
ID
Load PSW

Memory
Diagnostic
Read Syndrome
Bits
Pulse
Memory
Diagnostic
Write Control
Register
Notify End of
Queue

Notify Head
of Queue

Output Control
Output from A

Purge TLB

Modes

V,I

V,I
S,RfVrI

V,I

V,I

VrI

VfI

V,I

V,I

SfR
S,R

V,I

Description 1

Invalidates the STLB entry I
specified by L. 1

Loads an entry in the IOTLB. 1
Leaves machine check mode. |

Loads the process ID contained in I
A into RPID. 1

Loads new values into the program |
counter, keys, and modals. 1

Reads the memory syndrome bits. I

Writes the control register. I

Notifies on the specified |
semaphore. Uses LIPO queuing. |
Does not clear the currently I
active interrupt. 1

Notifies on the specified |
semaphore. Uses FIFO queuing. |
Does not clear the currently |
active interrupt. I

Sends a control pulse to a device. 1
Transfers data from A to the I
specified device. I

Purges either an entry or a |
page in the translation |
lookaside buffer. 1

Third Edition 5-12

RESTRICTED INSTRUCTIONS

Table 5-3 (continued)
Restricted Instructions

I Mnem

1 RMC

1 RTS

1 SKS

1 SNR

I SNS

1 SRI,
I SR2f
1 SR3,
I SR4
1 SSI,
I SS2,
1 SS3,
1 SS4
1 SSR

1 SSS

I STPM

I VIRY
I WAIT

Name

Clear Machine
Check
Reset Time
Slice
Skip on
Satisfied
Condition

Skip on Sense
Switch Reset
Skip on Sense
Switch Set
Skip on Sense
Switch Reset

Skip on Sense
Switch Set

Skip on Any
Sense Switch
Reset
Skip on Any
Sense Switch
Set
Store
Processor
Model Number
Verify I
Wait

Modes

S,R

V,I

S,R

S,R,V

S,RfV

S,R

S,R

S,R,V

S,R,V

V,I

S,R,V,I
V,I

Description 1

Clears the machine check flag. I

Resets the value of the interval I
timer. 1

When the specified condition is I
satisfied, the specified device j
responds ready and the I
instruction skips the next word. |

Skips the next word if the |
specified sense switch is off. I

Skips the next word if the |
specified sense switch is on. |

Skips the next word if the |
specified sense switch is off. |

Skips the next word if the |
specified sense switch is on. |

Skips the next word if any of the |
sense switches are off. I

Skips the next word if any of the |
sense switches are on. |

Stores the CPU model number and |
microcode revision number |
into memory. 1

Executes the verify routine. I
Waits until the specified 1

semaphore is notified. |

SUMMARY

This chapter described more of the system registers and data structures
that aid in controlling system operation. The next chapter, Datatypes,
presents the data representations and formats supported on the 50
Series processors. It also lists the instructions you can use to
manipulate the various types of data.

5-13 Third Edition

6
Datatypes

The 50 Series systems support several data representations. These
representations fall into the major groups:

• Fixed-point data

• Floating-point numbers

• Decimal integers

• Character strings

• Queues

This chapter describes each of these data representations, and the
operations and instructions available to manipulate each type.

Throughout the rest of this book, R is used to indicate a 32-bit I mode
general register, while r indicates bits 1-16 of a 32-bit I mode
general register. In addition, A and B represent S and R mode 16-bit
registers; L and E represent V mode 32-bit registers.

FIXED-POINT DATA

Fixed-point data can be a logical value, a signed or unsigned integer,
or an address. Addresses are treated as unsigned integers.

6-1 Third Edition

DOC3060-192

Logical Values

A logical value is a 16- or 32-bit value that is interpreted as a
string of bits. Table 6-1 lists the instructions that perform logical
operations, such as OR and AND. Note that the 50 Series processors
treats each bit in a bit string separately: the value of one bit does
not affect the value of another.

There are several instructions available that test logical values and
perform an action depending on the result of the test. Chapter 7
discusses these instructions.

Table 6-1
Logic Instructions

I Mnem

1 ANA

I ANL

I CMA

1 CMH

I CMR

I ERA !

I ERL

1 N

I NH

1 o
I OH

I ORA

1 x
I XH

Name

AND to A

AND Long

Complement A

Complement
Halfword
Complement
Fullword
Exclusive OR
to A
Exclusive OR
Long
AND Fullword

AND Halfword

OR Fullword

OR Halfword

Inclusive OR
to A
Exclusive OR
Fullword

I Exclusive OR
I Halfword

Modes

s,

V

s,
I

I

s,
V

I

I

I

I

V

I

I

R,V

R,V

R,V

Description |

Logically ANDs the contents of A and |
the contents of a memory locat ion. |

Logically ANDs the contents of L and |
the contents of a memory locat ion. |

Forms the one 's complement of the |
contents of A. 1

Forms the one 's complement of the |
contents of r . 1

Forms the one 's complement of the |
contents of R. 1

Exclusively ORs the contents of A and|
the contents of a memory locat ion. I

Exclusively ORs the contents of L and|
the contents of a memory locat ion. I

Logically ANDs the contents of R and |
the contents of a memory locat ion. I

Logically ANDs the contents of r and |
the contents of a memory locat ion. |

Logically ORs the contents of R and j
the contents of a memory locat ion. |

Logically ORs the contents of r and j
the contents of a memory locat ion. |

Logically ORs the contents of A and I
the contents of a memory locat ion. I

Exclusively ORs the contents of R and|
the contents of a memory locat ion. I

Exclusively ORs the contents of r and |
the contents of a memory locat ion. 1

Third Edition 6-2

DATATYEES

Signed Integers

Depending on the addressing mode, there are a variety of signed integer
formats to use. Each is based on a magnitude field that represents a
two's complement value. Figure 6-1 shows the formats and data sizes
available for each addressing mode.

1 Size

I 16 bits

I 32 bits

I 64 bits

I 31 bits

Modes

S,R,
V,I

V,I

V,I

SrR

Format

1

1

1

1

1

16

MAGNITUDE 1

32

MAGNITUDE I

64 !

| MAGNITUDE 1 I

1

1

16 17 18 32

MAGNITUDE | 0 | MAGNITUDE |

Signed Integer Formats
Figure 6-1

Unsigned Integers

Unsigned integers can be 16, 32, or 64 bits long. Regardless of length
or addressing mode, all of the bits in the unsigned integer represent
the magnitude of the number.

Most operations work for both signed and unsigned numbers. Special
unsigned support is provided only for those magnitude branch
instructions that allow results to be evaluated as unsigned integers.
Multiply and divide instructions do not work correctly for unsigned
integers.

Table 6-2 lists the instructions that operate on signed and unsigned
integers.

6-3 Third Edition

DOC3060-192

Table 6-2
Integer Arithmetic Instructions

I Mnem

1 A

1 A1A
1 A2A
I ACA

I ADD

I ADL

1 ADLL

1 ADLR

I AH

1 c

I CH

1 CHS

I CHS

1 CSA

1 CSR

1 D

I DAD

1 DH

1 DH1

I DH2

Name

Add
Fullword
Add 1 t o A
Add 2 t o A
Add CBIT
t o A
Add

Add Long

Add LINK
t o L
Add LINK
t o R
Add
Halfword
Compare
Fullword

Compare
Halfword

Change
Sign
Change
Sign
Copy Sign
of A
Copy Sign

Divide
Fullword

Double Add

Divide
Halfword

Decrement
r by 1
Decrement
r by 2

Modes

I

s,
s,
s,

s,

V

V

I

I

I

I

I

s,

s,

I

Sr

I

I

I

R,V
R,V
R,V

R,V

R,V

R,V

R

Desc r ip t i on I

Adds t h e 3 2 - b i t c o n t e n t s of a memory j
l o c a t i o n t o t h e c o n t e n t s of R. I

Adds one t o t h e c o n t e n t s of A. I
Adds two t o t h e c o n t e n t s of A. I
Adds t h e va lue of CBIT t o t h e |

c o n t e n t s of A. 1
Adds t h e c o n t e n t s of a 1 6 - b i t |

memory l o c a t i o n t o t h e 1 6 - b i t I
con t en t s of A. I

Adds t h e 3 2 - b i t c o n t e n t s of a memory |
l o c a t i o n t o t h e 3 2 - b i t c o n t e n t s j
of L. |

Adds t h e va lue of LINK t o t h e |
con t en t s of L. 1

Adds t h e va lue of LINK t o t h e |
con t en t s of R. |

Adds t h e 1 6 - b i t c o n t e n t s of a memory |
l o c a t i o n t o t h e c o n t e n t s of r . I

Compares t h e c o n t e n t s of R t o t h e |
con t en t s of a memory l o c a t i o n and |
s e t s t h e c o n d i t i o n codes t o |
r e f l e c t t h e r e s u l t of t h e compare. |

Compares t h e c o n t e n t s of r t o t h e j
con t en t s of a memory l o c a t i o n and |
s e t s t h e c o n d i t i o n codes t o j
r e f l e c t t h e r e s u l t of t h e compare. |

Complements b i t 1 of R. 1

Complements b i t 1 of A. I

Se t s CBIT t o t h e va lue of b i t 1 |
i n A, then s e t s b i t 1 of A t o 0 . I

Copies b i t 1 of R i n t o CBIT and |
r e s e t s b i t 1 of R t o 0 . |

Divides t h e 6 4 - b i t c o n t e n t s of R |
and R+l by t h e 3 2 - b i t c o n t e n t s |
of of a memory l o c a t i o n . I

Adds t h e 3 1 - b i t c o n t e n t s of a I
memory l o c a t i o n t o t h e 3 1 - b i t |

con t en t s of A and B. I
Divides t h e 3 2 - b i t c o n t e n t s of R |

by t he 1 6 - b i t c o n t e n t s of a memory |
l o c a t i o n . 1

Decrements r by 1 and s t o r e s t h e I
r e s u l t s i n r . 1

Decrements r by 2 and s t o r e s t h e I
r e s u l t s i n r . 1

Third Edition 6-4

DATATYPES

Table 6-2 (continued)
Integer Arithmetic Instructions

I Mnem

I DIV

1 DIV

| DM

I DMH

| DR1

I DR2

I DSB

| DVL

I IH1

I IH2

I IM

I IMH

| IR1

| IR2

1 M

| MH

Name

Divide

Divide

Decrement
Memory
Fullword
Decrement
Memory
Halfword
Decrement
R by 1
Decrement
R by 2
Double
Subtract

Divide
Long

Increment
r by 1
Increment
r by 2
Increment
Memory
Fullword
Increment
Memory
Halfword
Increment
R by 1
Increment
R by 2
Multiply
Fullword

Multiply
Halfword

Modes

SrR

V

I

I

I

I

S,R

V

I

I

I

I

I

I

I

I

Description 1

Divides the 31-bi t contents of A I
and B by the 16-bi t contents I
of a memory locat ion. 1

Divides the 32-bi t contents of L |
by the 16-bi t contents of a I
memory locat ion. 1

Decrements the contents of the 1
specified memory locat ion by 1. I

Decrements the contents of the I
specified memory locat ion by 1 . I

Decrements R by 1 and s to res the I
r e s u l t in r . 1

Decrements R by 2 and s to res the I
r e su l t in r . 1

Subtracts the 31-bi t contents of a I
memory locat ion from the 31-b i t I
contents of A and B. 1

Divides the 64-bi t contents of E I
and L by the 32-bi t contents 1
of a memory locat ion. 1

Increments r by 1 and s to res the |
r e su l t in r . 1

Increments r by 2 and s to res the |
r e s u l t in r . 1

Increments the contents of the 1
specified memory locat ion by 1 . 1

Increments the contents of the 1
specified memory locat ion by 1. |

Increments R by 1 and s to res the I
r e s u l t in R. 1

Increments R by 2 and s to res the |
r e s u l t in R. 1

Mult ipl ies the 32-bi t contents of R |
by the 32-bi t contents of a I
memory locat ion t o get a 64-b i t |
r e su l t . 1

Mult ipl ies the 16-b i t contents of r |
by the 16-bi t contents of a 1
memory locat ion t o get a 32-b i t |
r e s u l t . 1

6-5 Third Edition

DOC3060-192

Table 6-2 (continued)
Integer Arithmetic Instructions

I Mnem

1 MPL

1 MPY

I MPY

I MPY

I NRM
I PID

I PID

I PIDA

I PIDH

I PIDL

I PIM

I PIM

Name

Multiply
Long

Multiply

Multiply

Multiply

Normalize
Position
for
Integer
Divide
Position
for
Integer
Divide
Position
for
Integer
Divide
Position
for
Integer
Divide
Position
for
Integer
Divide
Position
After
Integer
Multiply
Position
After
Integer
Multiply

Modes

V

S,R

V

I

S,R
S,R

I

V

I

V

S,R

I

Description I

Multiplies the 32-bit contents I
of L by the 32-bit contents I
of a memory location to get a I
64-bit result. I

Multiplies the 16-bit contents |
of A by the 16-bit contents I
of a memory location to get a j
31-bit result. |

Multiplies the 16-bit contents |
of A by the 16-bit contents j
of a memory location to get a I
32-bit result. I

Multiplies the 16-bit contents of r |
by the 16-bit contents of a I
memory location to get a 32-bit |
result. |

Normalizes the contents of A and B. |
Converts the 16-bit integer in A to |
to a 31-bit integer in A and B. |

Converts the 32-bit integer in R to I
to a 64-bit integer in R and R+l. |

Converts the 16-bit integer in A to |
to a 31-bit integer in L. 1

Converts the 16-bit integer in r I
to a 32-bit integer in R. I

Converts the 32-bit integer in L to |
to a 64-bit integer in L and E. |

Converts the 31-bit integer in A I
and B to a 16-bit integer in A. j

Converts the 64-bit integer in R |
and R+l to a 32-bit integer in R. I

Third Edition 6-6

DATATYPES

Table 6-2 (continued)
Integer Arithmetic Instructions

I Mnem

I PIMA

I PIMH

| PIML

I S1A

I S2A

1 s

I SBL

I SH

| SSM

I SSM

I SSP

I SSP

I SUB

I TCA

1 T O .

Name

Posi t ion
After
Integer
Multiply
Posi t ion
for
Integer
Multiply
Posi t ion
After
Integer
Multiply
Long
Subtract 1
From A
Subtract 2
From A
Subtract
Fullword

Subtract
Long

Subtract
Halfword

Set Sign
Minus
Set Sign
Minus
Set Sign
Plus
Set Sign
Plus
Subtract

Two's
Complement
A
Two's
Complement
L

Modes

V

I

V

s,

s,
I

V

I

s,
I

s,
I

s,

s '

V

RrV

R,V

R,V

R,V

R,V

R,V

Description I

Converts the 32-bi t integer in L I
t o a 16-bi t integer in A. 1

Converts the 32-bi t integer in R I
to a 16-bi t integer in r . 1

Converts the 64-bi t integer in L 1
and E to a 32-bi t integer in L. I

Subtracts 1 from the contents of A. I

Subtracts 2 from the contents of A. I

Subtracts the 32-bi t contents of a |
memory location from the 32-b i t |
contents of R. 1

Subtracts the 32-bi t contents of a I
memory locat ion from the 32-b i t |
contents of L. 1

Subtracts the 16-bi t contents of a |
memory locat ion from the 16-b i t I
contents of r . 1

Sets b i t 1 of A to 1 . 1

Sets b i t 1 of R to 1 . 1

Sets b i t 1 of A t o 0. 1

Sets b i t 1 of R to 0. 1

Subtracts the 16-bi t contents of a |
memory locat ion from the 16-b i t |
contents of A. 1

Forms the two's complement of the 1
contents of A. 1

Forms the two's complement of the I
contents of L. 1

6-7 Third Edition

DOC3060-192

Table 6-2 (continued)
Integer Arithmetic Instructions

I Mnem

I TC

I TCH

I TM

I TMH

Name

Two's
Complement
R
Two's
Complement
r
Test
Memory
Fullword

Test
Memory
Halfword

Modes

I

I

I

I

I Description 1

I Forms the two's complement of the I
I contents of R. 1

I Forms the two's complement of the |
I contents of r . 1

I Tests the contents of a memory |
I location and s e t s the condition |
j codes t o r e f l ec t the r e s u l t of |
I the t e s t . 1
1 Tests the contents of a memory 1
1 locat ion and se t s the condition I
I codes t o r e f l ec t the r e s u l t of I
I the t e s t . I

Third Edition 6-8

DATATYPES

Addresses

The 50 Series processors manipulate addresses as if they were unsigned
integers. Table 6-3 lists the instructions that handle addresses.

Table 6-3
Address Manipulation Instructions

I Mnem

I EAFA

1 FLXf
I DFLX
1 QFLX
1 CEA

I EAA

1 EAL

I BALB

I EAR

I EAXB

Name

EA to
FAR

Load
Floating
Index
Compute EA

Effective
Address to A
Effective
Address to L
Effective
Address to LB
Effective
Address to R
Effective
Address to XB

Modes

V,I

R,V

S,R

S,R,V

SfR,V

V,I

I

V,I

Description I

Calculates an effective address j
and loads it into the I
specified FAR. 1

Loads X with a multiple of the |
contents of a memory 1
location. 1

Uses the contents of A as an |
indirect address, calculates I
an effective address from the |
referenced location and |
loads the EA into A. 1

Loads an effective address |
into A. 1

Loads an effective address |
into L. 1

Loads an effective address I
into LB. 1

Loads an effective address |
into R. 1

Loads an effective address I
into XB. 1

6-9 Third Edition

DOC3060-192

Fixed-point Operations

The 50 Series processors can perform several kinds of operations on
fixed-point data. Some examples are setting or resetting a single b i t
in a logical value, or storing an unsigned integer into a memory
location. Table 6-4 l i s t s the instructions that move fixed-point data
from one place to another. Table 6-5 describes a group of loadystore
instructions. Table 6-6 l i s t s the instructions that shift the contents
of a 16- or 32-bit register. Table 6-7 shows instructions that can be
used to set or reset a l l or part of a piece of data.

Table 6-4
Data Movement Instructions

I Mnem

1 DLD

1 DST

1 I

I IAB

I ICA

I ICBL

I ICBR

I ICHL

I ICHR

I ICL

I ICR

Name

Double Load

Double
Store
Interchange
R and
Memory
Fullword
Interchange
A and B
Interchange
Characters
in A
Interchange
and Clear
Left
Interchange
and Clear
Right
Interchange
Halfwords
and Clear
Left
Interchange
Halfwords
and Clear
Right
Interchange
and Clear
Left
Interchange
and Clear
Right

Modes

SfR

S,R

I

S,RfV

S,R,V

I

I

I

I

S,R,V

S,RfV

Description I

Loads A and B with the contents |
of two 16-bit memory locations. |

Stores the contents of A and B |
into two 16-bit memory locations. |

Interchanges the contents of |
R and a memory location. I

Interchanges the values of A 1
and B. 1

Interchanges the contents of (
the two bytes in A. 1

Interchanges the contents of the I
bytes in r, then loads zeroes I
into the leftmost byte of r. |

Interchanges the contents of the |
tytes in rf then loads zeroes I
into the rightmost byte of r. I

Interchanges the contents of |
bits 1-16 and 17-31 of R, then |
load s bits 1-16 of R with zeroes. |

Interchanges the contents of |
bits 1-16 and 17-31 of R, then I
loads bits 17-31 of R with zeroes. |

Interchanges the contents of the I
tytes in A, then loads zeroes |
into the leftmost byte of A. 1

Interchanges the contents of the I
bytes in Af then loads zeroes 1
into the rightmost byte of A, 1

Third Edition 6-10

DATATYPES

Table 6-4 (continued)
Data Movement Instructions

1 Mnem

1 IH

I ILE

I IMA

I IRB

I IRH

1 L

I LDA

1 LDL

I LDX

I LDY

I LH

I LHL1

I LHL2

I LHL3

I ST

I STA

Name

Interchange
r and
Memory
Interchange
E and L
Halfword
Interchange
A and
Memory
Interchange
Register
Bytes
Interchange
Register
Halves
Load
Fullword
Load A

Load long

Load X

Load Y

Load
Halfword
Load
Halfword
Left Shifted
By 1
Load
Halfword
Left Shifted
By 2
Load
Halfword
Left Shifted
By 3
Store
Fullword
Store A

Modes

I

V

s,

I

I

I

s,

V

s,

V

I

I

I

I

I

s,

RrV

R,V

R,V

RrV

Description 1

Interchanges the contents of |
r and a memory location. 1

Interchanges the contents of |
E and L. 1

Interchanges the contents of A and a |
memory location. 1

Interchanges the contents of bits |
1-8 and 9-16 of r. 1

Interchanges the contents of bits |
1-16 and 17-32 of R. 1

Loads the contents of a memory |
location into R. 1

Loads the contents of a memory I
location into A. 1

Loads the contents of a memory I
location into L. 1

Loads the contents of a memory I
location into X. i

Loads the contents of a memory I
location into Y. 1

Loads the contents of a memory I
location into r. 1

Shifts the contents of a memory |
location left one bit and I
loads the result into r. 1

Shifts the contents of a memory |
location left two bits and I
loads the result into r. 1

Shifts the contents of a memory I
location left three bits and |
loads the result into r. 1

Stores the contents of R into a |
memory location. 1

Stores the contents of A into memory. |

6-11 Third Edition

DOC3060-192

Table 6-4 (continued)
Data Movement Instructions

I Mnem

I STAC

I STCD

I STCH

I STH

I STL
I STLC

I STX
I STY
I TAB

I TAX

I TAY

I TBA

I TXA

I TYA

I XCA

I XCB

Name

Store A
Conditionally

Store
Conditional
Fullword

Store
Conditional
Halfword

Store
Halfword
Store long
Store L
Conditionally

Store X
Store Y
Transfer
A to B
Transfer
A to X
Transfer
A to Y
Transfer
B to A
Transfer
X to A
Transfer
Y to A
Exchange
and Clear A
Exchange
and Clear B

Modes

V

I

I

I

V
V

S,R,V
V
V

V

V

V

V

V

S,R,V

S,RfV

Description 1

Stores the contents of A into memory I
if the contents of the specified I
memory location equal the contents |
of B. I

Stores the contents of R into the I
location specified by EA if the j
contents of R+l equal the contents |
of the location specified by EA. I

Stores the contents of r into the |
location specified by EA if the j
contents of bits 17-32 equal the |
contents of the location specified |
by EA. |

Stores the contents of r into a |
memory location. |

Stores the contents of L into memory.I
Stores the contents of L into memory |
if the contents of the specified I
memory location equal the contents j
of E. |

Stores the contents of X into memory.|
Stores the contents of Y into memory. |
Transfers the contents of A into B. |

Transfers the contents of A into X. I

Transfers the contents of A into Y. |

Transfers the contents of B into A. I

Transfers the contents of X into A. I

Transfers the contents of Y into A. |

Exchanges the contents of A and B, |
then loads zeroes into A. I

Exchanges the contents of B and Ar j
then loads zeroes into B. |

Third Edition 6-12

DATATYPES

Table 6-5
Special Load/Store Instructions

I Mnem

1 RSAV

I RRST

I LDAR

I LDLR

I STAC

| STAR

I STLC

I STLR

Name

Save
Registers

Restore
Registers

Load Addressed
Register
Load L from
Register File
Store A
Conditionally

Store
Addressed
Register
Store L
Conditionally

Store L Into
Register File

Modes

V,I

v,i

vri

V

V

1

V

V

Description I

Saves the contents of the general, I
floating, temporary, and base I
registers in a block of |
consecutive memory locations. I

Restores the values of the general,!
floating, temporary, and base |
registers with information j
contained in a block of I
consecutive memory locations. I

Loads the contents of a register |
file location into R. 1

Loads the contents of a register |
file location into L. 1

Stores the contents of A at the I
specified address if the contents!
of the specified address are 1
equal to the contents of B. I

Stores the contents of the I
specified R in a register file I
location. 1

Stores the contents of L into the |
specified address if the contents I
of the specified address are I
equal to the contents of E. I

Loads the contents of L into a |
register file location. I

6-13 Third Edition

DOC3060-192

Table 6-6
Shift Instructions

Mnem | Name Modes | Description

ALL

ALR

ALS

ARL

ARR

ARS

LLL

LLR

LLS

LLS

LRL

LRR

LRS

LRS

ROT

SHA

SHL

SL1

SL2

A Left
Logical
A Left
Rotate

A Left
Shift
A Right
Logical
A Right
Rotate

A Right
Shift
L Left
Logical
L Left
Rotate

L Left
Shift

L Left
Shift
L Right
Logical
L Right
Rotate

L Right
Shift
L Right
Shift

Rotate

Arithmetic
Shift

Logical
Shift

Shift R
Left 1
Shift R
Left 2

s,

s,

s,

s,

s,

Si

s,

s,

s,

V

s,

s,

V

s,

I

I

I

I

I

'R,V |

-R,V |

'R,V |

>R,V |

-R,V I

-RfV |

RfV |

RrV |

R 1

R,V |

R,V I

R 1

Shifts the contents of A
left a specified number of bits.

Shifts the contents of A
left a specified number of bits,
rotating bit 1 into bit 16.

Shifts the contents of A
left a specified number of bits.

Shifts the contents of A
right a specified number of bits.

Shifts the contents of A
right a specified number of bits,
rotating bit 16 into bit 1.

Shifts the contents of A
right a specified number of bits.

Shifts the contents of L
left a specified number of bits.

Shifts the contents of L
left a specified number of bits,
rotating bit 1 into bit 16.

Shifts the contents of A and B left a
specified number of bits, bypassing
bit 1 of B.

Shifts the contents of L
left a specified number of bits.

Shifts the contents of L
right a specified number of bits.

Shifts the contents of L
right a specified number of bits,
rotating bit 16 into bit 1.

Shifts the contents of L right a
specified number of bits.

Shifts the contents of A and B right
a specified number of bits,
bypassing bit 1 of B.

Rotates the contents of R a specified
number of bits in a specified
direction.

Shifts the contents of R a specified
number of bits in a specified
direction.

Shifts the contents of R a specified
number of bits in a specified
direction.

Shifts the contents of R left
one b i t .

Shif ts the contents of R l e f t
two b i t s .

Third Edition 6-14

DATATYPES

Table 6-6 (continued)
Shift Instructions

I Mnem

1 SRI

1 SR2

1 SHL1

1 SHL2

I SHR1

I SHR2

Name

Shift R
Right 1
Shift R
Right 2
Shift r
Left 1
Shift r
Left 2
Shift r
Ri^it 1
Shift r
Right 2

Modes

I

I

I

I

I

I

Description 1

Shifts the contents of R right I
one bit. 1

Shifts the contents of R right |
two bits. 1

Shifts the contents of r left |
one bit. 1

Shifts the contents of r left 1
two bits. 1

Shifts the contents of r right I
one bit. 1

Shifts the contents of r right I
two bits. 1

Note to Table 6-6

The instructions in Table 6-6 specify three types of shift
operations. An instruction that performs a logical shift
treats the data to be shifted as a logical string of bits,
shifting zeroes into the vacated bits. The carry reflects the
state of the last bit shifted out.

An instruction performing
as a signed number. For
instruction shifts in
bits;

an arithmetic shift treats the data
shift, a right arithmetic shift, the

copies of the sign bit into the vacated
CBIT reflects the state of the last bit shifted out.

For a left arithmetic shift, the instruction shifts zeroes into
the vacated bits. If there is a sign change in bit 1
(interpreted as an overflow condition), an integer exception
occurs. (See Chapter 11.)

An instruction that performs a rotate shifts bits out of one
side of the data word and loads them into vacated bits on the
other side.

6-15 Third Edition

DOC3060-192

Table 6-7
Clear Register/Memory Instructions

I Mnem

1 CAL

1 CAR

1 CR

I CRA
I CRB
I CRBL

I CRBR

I CRE
1 CRHL

I CRHR

1 CRL
I CRLE

I ZM

I ZMH

Name

Clear A
Left Byte
Clear A
Right Byte
Clear
Register
Clear A
Clear B
Clear High
Byte 1 Left
Clear Hi^i
Byte 1
Right
Clear E
Clear Left
Halfword
Clear Right
Halfword
Clear L
Clear L
and E
Zero
Memory
Fullword
Zero
Memory
Halfword

Modes

s,

s,

I

Sr
s,
I

I

V
I

I

s,
V

I

I

R,V

R,V

RfV
R,V

R,V

Description 1

Sets bits 1-8 of A to 0. I

Sets bits 9-16 of A to 0. |

Sets the specified register to I
0. 1

Resets the contents of A to 0. I
Resets the contents of B to 0. |
Sets bits 1-8 of the specified |
register to 0. 1

Sets bits 9-16 of the specified I
register to 0. 1

Resets the contents of E to 0. |
Sets bits 1-16 of the specified |
register to 0. I

Sets bits 17-32 of the specified |
register to 0. I

Resets the contents of L to 0. I
Resets the contents of L and E j
to 0. 1

Resets the 32-bit contents of |
the specified memory location |
to 0. 1

Resets the 16-bit contents of I
the specified memory location |
to 0. 1

Third Edition 6-16

DATATYPES

Field Operations

The 50 Series processors support a group of instructions that perform
field operations. These instructions use the field address and length
registers in their manipulations. These registers are abbreviated as
FAR, for field address register, or FLR, for field length register;
but both are specified in the same 64-bit register shown in Figure 6-2.

Note that the field address and length registers overlap the floating
accumulators. The precise overlap varies from one Prime machine to
another, as shown in Figures 6-2 and 6-3. Table 6-8 lists the field
operation instructions.

Table 6-8
Field Operation Instructions

I Mnem

I ALFA

I ARFA

I EAFA

I LDC

| LFLI

I STFA

I STC

| TFLL

I TLFL

I TFLR

I TRFL

Name

Add
Long to
FAR
Add R to
FAR

EA to
FAR
Load
Character

Load
Immediate
to FLR
Store FAR

Store
Character
into
Field
Transfer
Long
from FLR
Transfer
Long to
FLR
Transfer
FLR to R
Transfer
R to FLR

Modes

V

I

V,I

V,I

V,I

V,I

V,I

V

V

I

I

Description 1

Adds the contents of L to the contents |
of the specified FAR. 1

Adds the contents of the specified 1
R to the contents of the 1
specified FAR. 1

Calculates an effective address and 1
loads it into the specified FAR. 1

Calculates an effective address. 1
Loads the character in the 1
specified field into the 1
addressed location. 1

Loads an immediate value into the I
specified FLR. 1

Calculates an effective address and |
stores the contents of the 1
specified FAR into the I
addressed location. 1

Stores the contents of a register into |
the specified field. 1

Transfers the contents of the specified |
FLR to L. 1

Transfers the contents of L into the |
specified FLR. 1

Transfers the contents of the specified |
FLR to the specified R. I

Transfers the contents of the specified |
R to the specified FLR. 1

6-17 Third Edition

DOC3060-192

1 2 3 4 5 16 17 32 33 36 37 43 44 64

0 | RING | 0 | SEGMENT | WORD | BIT | 0000000 I LENGTH I

I Bits

1 2-3

1 5-16

I 17-32

1 33-36

1 37-43

1 44-64

Mnem

RING

SEGMENT

WORD

BIT

LENGTH

Description 1

Specifies the ring number of the field |
address. 1

Specifies the segment number of the I
field address. 1

Specifies the word number of the f ield |
address. I

Specifies the b i t number of the field I
address. 1

Must be 0. 1

Specifies 21 bi ts of field length. I

Format of Field Address and Length Register (FAR, FLR)
Figure 6-2

48 49 64

DOUBLE PRECISION FRACTION I EXP

I Bi t s

I 1-48

I 49-64

Mnem

DOUBLE
PRECISION
FRACTION

EXP

Description I

Specifies the sign and magnitude of a j
floating-point number. 1

Specifies the exponent of a floating- |
point number. 1

Format of Floating Register (F)
Figure 6-3

Third Edition 6-18

DATATYPES

FLQftTING-POINT NUMBERS

Floating-point numbers a re made up of two f i e l d s :

• A f rac t ion containing the two's complement value of the number

• An exponent

Bi ts 1-24 (single p rec i s ion) , b i t s 1-48 (double p rec i s ion) , or b i t s
1-48 and 65-112 (quad precis ion, applicable only t o 9950) contain the
two's complement value representing the f rac t ion of the number. Bit 1
indicates whether the number i s pos i t ive (b i t 1 contains 0) or negative
(bi t 1 contains 1) . The binary point l i e s between b i t s 1 and 2 .

Bi ts 25-32 (single precision) or b i t s 49-64 (double and quad precision)
contain the exponent of the f loat ing-point number. The exponent i s the
power of 2 t ha t i s t o multiply the f rac t ion in excess 128 form. The
t rue value of the exponent i s always 128 l e s s than the value contained
in the exponent f i e l d .

In other words:

Floating-point Number = (fraction) * (2**(exponent-128))

Figure 6-4 shows the format of s ingle (SP), double (DP), and quad
precis ion (QP) numbers. The abbreviated names of the SP, DP, and QP
f loat ing-point accumulators a re FAC, DAC, and QAC, respect ive ly . The
number of f loa t ing accumulators for each mode and precis ion type
appears i n Table 6-9. These accumulators a re overlapped, sharing the
same storage.

Table 6-9
Number of Floating-point Accumulators

I Name

1 FAC

1 DAC

1 QAC

R Mode

1

1

None

V Mode

1

1

1

I Mode I

2 I

2 1

1 I

6-19 Third Edition

DOC3060-192

Location I Size Format

Memory

Memory

Memory

Accumulator

Accumulator

Accumulator

Accumulator

Single
Precision

Double
Precision

Quad
Precision

Single
Precision
(2250*, 650,
550-11)

Single
Precision
(750, 850,
9950)

Double
Precision

Quad
Precision

24 25 32

| FRACTION | EXPONENT |

1

1

1

1

65

1

1

1

1

1

1

1

1

1

65

1

FRACTION

FRACTION

FRACTION

FRACTION

FRACTION

FRACTION

FRACTION

FRACTION

48 49

| EXPONENT

48 49

I EXPONENT

112 113

I UNUSED

32 33 48

I EXPONENT |

48 49

| EXPONENT

48 49

I EXPONENT

48 49

I EXPONENT

112 113

I UNUSED

64

1

64

1

128

1

64

1

64

1

64

1

128

1

•Throughout this section, points applying to a 2250 also relate to the
150, 250, 250-11, 350, 400, 450, 1450, 1500, 550, and 11000 systems.

Floating-point Formats
Figure 6-4

Third Edition 6-20

DATATYPES

Floating Accumulators

In R and V modes, FAC or DAC occupies locat ions *12-'13 in the current
reg i s te r f i l e s e t . I mode has two FAC or DAC accumulators labeled 0
and 1 tha t occupy locat ions ' 1 0 - ' 1 3 . For a l l modes, QAC combines
floating accumulators 0 and 1 into one accumulator occupying locations
'10- ' 13. Note that high-order fraction bi ts and exponent of a quad
floating-point number are found in DAC1 in I mode.

The field address and length registers overlap the floating-point
registers. Using FARO, FLRO, and FACO instructions wil l not modify the
contents of FAC1, FLRl, or FAC1, and vice versa. However, mixing FARO
and FLRO instructions with FACO (321 mode), or combining FARl or FLRl
instructions with FAC1 (321 mode or FAC 64V mode), produces variable
results from machine to machine and attempt to attempt.

There i s no particular implied overlap amongst LDLR and STLR
intructions. Extracting the exponent can best be done with either an
LDA 6 (address trap) or a DFST T followed by an LDA T+3.

Floating-point Operations

In R, V, and I modes, floating-point has instructions that operate from
memory to register or on a register alone. I mode also has some
floating-point instructions that operate in a register to register and
immediate fashion. Table 6-10 l i s t s a l l floating-point operations.
Note that the f i r s t l e t t e r of a floating-point instruction shows i t s
data type:

• F for single precision

• D for double precision

• Q for quad precision

6-21 Third Edition

DOC3060-192

Table 6-10
Floating-point Instructions

I Mnem

| FAD, DFAD
I QFAD
| FA, DFA, QFA

I FC, DFC, QFC

I PCM, DFCM
1 QFCM

I PCS, DFCS
1 QPCS

I FDV, DFDV
I QFDV
I FD, DFD, QFD

I FLD, DFLD
1 QFLD
I FL, DFL, QFL

| FMP, DFMP
I QFMP
I FM, DFM, QFM

I FSB, DFSB
1 QFSB
| FS, DPS, QPS

| FST, DFST
I QFST

Name

Floating Add

Floating Compare

Floating Complement

Floating Compare
and Skip

Floating Divide

Floating Load

Floating Multiply

Floating Subtract

Floating Store

Modes |

Rr
V
I

I

v,

R,
V

R,
V
I

Rr
V
I

Rr
V
I

Rr
V
I

Rr

v,

V |

V, I |
I I

V I

V I

v |

V |

v |

V, I |
I 1

Third Edition 6-22

DATATYPES

Manipulating Floating-point Numbers

The following topics are pertinent for many operations since they deal
with some aspect of handling the accumulator results: overflow or
underflow, normalization, and rounding.

Overflow and Underflow: Overflow occurs when the number of bits in the
exponent or" a result exceeds the capacity of its destination's
exponent. Underflow happens when the exponent of a result is too small
to be represented in a specified register or memory location. For all
50 Series systems, upon overflow or underflow, the fraction is
incorrect and the exponent has the incorrect sign. Underflow can be
distinguished from overflow by checking the sign of the exponent.

A floating-point exception occurs upon overflow or underflow. When
this happens the processor checks the content of bit 7 of the keys for
the prescribed action. If bit 7 contains 1, the processor merely sets
(BIT to 1. If bit 7 contains 0, the processor sets (BIT to 1 and also
loads the FADDR, FCODEH, and POODEL registers of the user register file
as described in Chapter 11.

Because the FAC has a much greater exponent range than the memory
format, overflow in single precision is detected only when a store
operation is performed. This situation produces a store exception.
See Chapter 11 for more information.

Normalization: All numbers generated by arithmetic floating-point
operations are normalized by the processor. A number is defined as
being normalized either when bits 1 and 2 contain different values or
when the number is a zero with both fraction and exponent equal to
zero. If this is not the case when a result is first generated, the
processor shifts the fraction to the left and adjusts the exponent
appropriately until bits 1 and 2 do have different values.

The 9950 retains two extra least significant bits of precision, called
guard bits, that are shifted into the right side of the fraction during
the first two left bit shifts. If more bit shifts are needed, the
processor shifts in zeroes.

Multiply instructions for the 550-11, 650, 750, and 850 also keep guard
bits for normalization use. No guard bits are saved in any other
instruction or for the 2250 as a whole; in these cases the processor
shifts in only zeroes during normalization.

Rounding: Table 6-11 lists the prerequisites and procedures for
rounding on all 50 Series systems. Note that rounding is done after
the result is normalized; rounding in turn may produce a result that
needs to be normalized again.

6-23 Third Edition

DOC3060-192

Table 6-11
Rounding Prerequisites and Procedures

Type 9950
550-11, 650
750 and 850 2250

SP Add, subtract,
multiply: In
rounding mode
(bit 13 of keys
is 1), add guard
bit 1 to FAC bit
48 and normalize.
FRN may be done
in rounding mode
and a double round
will not occur.

Divide: Always
rounds. 49
mantissa bits
are generated for
rounding to 48.

Store: In rounding
mode, add 1 to FAC
bit 25, normalize
result, but leave
original FAC man­
tissa unchanged.

Compare and Skip:
In rounding mode,
add 1 to FAC bit
25, normalize re­
sult, store in
temporary register
for compare, but
do not load back
into FAC; original
FAC mantissa left
left unchanged.

Add, subtract,
multiply: FRN
compiler option
rounds result just
before store. (See
Store below.)

Divide: Always
rounds. 33
mantissa bits
are generated for
rounding to 32.

Store: FRN rounds
and normalizes
just before store.
If FAC bit 25 = 1,
add 1 to bit 24,
zero rest of FAC
mantissa.

Compare and Skip:
Rounding never
done.

Add, subtract,
multiply: FRN
compiler option
rounds result just
before store. (See
Store below.)

Divide: Rounding
never done.

Store: FRN rounds
and normalizes
just before store.
If FAC bit 25 = 1,
add 1 to bit 24,
zero rest of FAC
mantissa.

Compare and Skip:
Rounding never
done.

Third Edition 6-24

DATATYPES

Table 6-11 (continued)
Rounding Prerequisites and Procedures

1 Type

I DP

1 QP

9950

Arithmetic opera­
tions: Rounding
is the same as in
SP.

Other instructions:
Rounding never
done.

Divide: Always
rounds. 97
mantissa bits
are generated for
rounding to 96.

Other instructions:
Rounding never
done.

550-11, 650
750 and 850

Divide:
49 mantissa bits
generated for
rounding to 48.

Other instructions:
Rounding never
done.

n/a

2250 |

Rounding never |
done. |

n/a I

Normalized Versus Unnormalized Operands

Floating-point operations in Prime processors always produce normalized
resul ts . Hence, an unnormalized number can only enter the system as an
external input operand. Instructions assume normalized floating-point
operands; however, no exception results from unnormalized operands
apart from those in a divide. To ensure accurate floating-point
resul ts , use normalized numbers.

There are several ways of obtaining normalized numbers. FAD, DFAD, or
QFAD instructions normalize an unnormalized memory argument when the
other value i s a floating-point zero (defined as having both mantissa
and exponent equal to zero). The instruction sequence DFLD, DFCM, and
DFCM also normalizes an operand. Data conversion instructions FLOT,
FLT, FLTA, and FLTH convert integers to normalized floating-point
numbers. Lastly, standard Prime compilers and assemblers produce
normalized constants.

When floating-point instructions are performed on unnormalized numbers,
the following guarantees apply. The instructions do not hang or
deviate from the processor's normal flow of control. Add, subtract,
complement, and compare and skip instructions produce approximately
correct answers. Bit for b i t identical values wil l compare equal or
subtract to zero by using either a subtract instruction, or a
complement instruction that i s followed by an add. All floating load

6-25 Third Edition

DOC3060-192

and store instructions copy 32, 64, or 128 b i t quantities from place to
place as appropriate without faulting or normalizing unless single
precision i s used and rounding mode i s enabled. Because single
precision rounding mode rounds and normalizes on a compare and store,
the single precision numbers will always be normalized before a store,
causing a b i t pattern change.

Using unnormalized numbers for some floating-point operations causes
problems in the following cases. Compare and skip instructions fa i l on
machines that look f i r s t at the sign, then the exponent, and finally
the fraction for possible inequality. Divide produces indeterminate
results on a l l processors but that of the 2250 when confronted with
unnormalized numbers. Accuracy loss i s probable for a l l other
operations on a l l other systems.

Programming Notes; FORERAN 66 programmers often use floating-point to
store character strings. To the processor, these character strings are
unnormalized floating-point values. REAL*8 values work for copy and
identity comparison operations, but make sorted ordering impossible.
REAL*4 values work in a similar fashion if rounding mode i s not
enabled. For storing character strings, use INTEGER*4 since they work
faster and permit sorting.

Floating-point Accuracy and Precision

Table 6-12 shows the accuracy of floating-point arithmetic instructions
as performed on normalized numbers. The number of guard bi ts preserved
need be no greater than two to simulate infinite precision if
normalized numbers are used and the algorithm i s carefully designed.

Table 6-13 shows floating-point precision for a l l 50 Series systems
when performed with normalized numbers. The degree of floating-point
precision and accuracy varies among these systems due to their
differences in implemention, as discussed in the following paragraphs.

Third Edition 6-26

DATATYPES

Table 6-12
Floating-point Instruction Accuracy

I Instruction

1 FAD

I DFAD

I FSB

1 DFSB

| FMP

i DFMP

1 FDV

I DFDV

I QFAD

I QFSB

| QFMP

1 QFDV

9950

48+#

48+#

48+#

48+#

48+#

48+#

48+*

48+*

96

96

96

96

750
and 850

48

48

48

48

48+

48+

31*

47*

n/a

n/a

n/a

n/a

550-11
and 650

32

48

32

48

32+

48+

31*

47*

n/a

n/a

n/a

n/a

2250 I

32 I

48 1

32 I

48 I

29 I

45 I

30 I

46 I

n/a I

n/a |

n/a I

n/a |

+ means 2 extra guard bits are used.
means rounding mode can be used.
* means rounding is always performed.

6-27 Third Edition

DOC3060-192

Table 6-13
Floating-point Precision for All 50 Series Systems

I Precision

1 Mantissa Bits:
I Memory
1 Accumulator

I Exponent Bits:
1 Memory
1 Accumulator

1 Guard Bits

I Rounds
I Automatically

9950

24/48/96
48/48/96

8/16/16
16/16/16

2 for all,
excepting
quad

For divide
regardless
of mode or
precision.
For rest of
SP or DP in­
structions
in rounding
mode only.

750
and 850

24/48/—
48/48/—

8/16/-
16/16/—

2 for
multiply

For divide

550-11
and 650

24/48/—
32/48/—

8/16/-
16/16/—

2 for
multiply

For divide

2250 !

24/48/— |
32/48/— I

8/16/- I
16/16/— 1

None |

No |

The number of mantissa and exponent bits is shown in SP/t)P/QP form.

Third Edition 6-28

DATATYPES

9950 Systems: All 9950 SP and DP ar i thmet ic operations generate a t
l ea s t 48 mantissa b i t s plus two guard b i t s t o safeguard accuracy during
normalization. If more than two b i t sh i f t s a re needed during
normalization, the processor sh i f t s in zeroes. After normalization,
the processor rounds i f in rounding mode (as explained in Table 6-13),
and then renormalizes the r e s u l t .

To s tore the number in SP memory while in non-rounding mode, the
processor t runcates the r e s u l t t o 24 b i t s . In rounding mode, the
processor rounds the s tored value to 24 b i t s .

Quad precis ion divide ins t ruc t ions generate 97 mantissa b i t s for
rounding t o 96. All other operations produce 96 mantissa b i t s of
mantissa; guard b i t s a re not used.

The quad f loa t ing point accumulator and memory i s 128 b i t s long. Bits
1-112 of t h i s are used for ca lcula t ions . Bi ts 113-128 are unused but
are subject t o the following r e s t r i c t i o n s . QFLD loads b i t s 1-112 in to
QAC and zeroes QAC b i t s 113-128, or QFLD loads 128 b i t s i n t o QAC. QFLD
followed by QFST does not r e l i ab ly copy 128 b i t s of data . All
ar i thmetic operations zero b i t s 113-128 on completion.

750 and 850 Systems; The 750 and 850 processors operate in DP even
when executing SP ins t ruc t ions . Floating load ins t ruc t ions zero
accumulator b i t s 25 through 48. SP add, subt rac t , and multiply
ins t ruc t ions do not t runcate accumulator mantissas t o 32 b i t s ,
resu l t ing in an addi t ional 16 b i t s of precis ion. The multiply
ins t ruc t ion keeps extra b i t s of precision t h a t a re used during
normalization.

In an SP divide ins t ruc t ion , one mantissa i s 48 b i t s and the other i s
24 b i t s . This ins t ruc t ion generates 33 mantissa b i t s and rounds t o 32
before placing the r e s u l t in the SP accumulator. A DP divide
ins t ruc t ion , however, generates 49 mantissa b i t s and rounds t o 48.

550-11 and 650 Systems: A 550-11 or 650 system has a separate
double-precision hardware f loat ing-point uni t . These systems i n se r t
zeroes in mantissa b i t s 25 through 48 of an SP memory argument before
loading the accumulator. They also zero mantissa b i t s 33 through 48
for arguments from the SP accumulator. All a r i thmet ic operations are
then performed in DP.

Mantissas a re truncated t o 32 b i t s t o place the r e su l t s in the FAC,
leaving the low order 16 b i t s alone in the overlapped DAC. Storing a
number in SP memory t runcates a number further t o 24 b i t s . A multiply
ins t ruc t ion alone preserves two ext ra b i t s of precis ion for use in
normalization.

A divide ins t ruc t ion automatically generates an extra mantissa b i t for
rounding the r e s u l t t o 32 b i t s (SP) or 48 b i t s (DP).

6-29 Third Edition

DOC3060-192

A single precision floating load instruction always zeroes accumulator
bits 25 through 48 before actually loading the number for systems with
PRIMOS Rev. 18 or above.

2250 Systems; When an SP number is loaded from memory to the
accumulator, zeroes are placed in FAC mantissa bits 25 through 32.
After performing a floating-point operation, the FAC mantissa contains
a 32-bit result. To store this result in SP memory, the processor
truncates bits 25 through 32 but leaves bits 33 through 48 alone.

DP memory and accumulator mantissas both have a capacity of 48 bits, so
no bits of precision disappear when transferring DP numbers from one
place to the other.

A single precision floating load instruction always zeroes accumulator
bits 25 through 48 before actually loading the number for system with
PRIMDS Rev. 18 or above.

Converting Datatypes

Several 50 Series system instructions convert floating-point numbers to
integers and vice versa. Table 6-14 l i s t s these instructions and gives
a brief description of each.

Third Edition 6-30

DATATYPES

Table 6-14
Conversion Instructions

I Mnem

I DBLE

I DRN

I DRNM

I DRNP

I DRNZ

1 FCDQ

I FDBL

I PLOT

| FLT

1 FLTA

I FLTH

| FLTL

Name

C o n v e r t
Single t o
Double

Double Round I
from Quad

Double Round
from Quad
t o Minus
Inf in i ty

Double Round
from Quad
t o Plus
In f in i ty

Double Round
from Quad
to Zero

Floating
Convert
Double
to Quad

Floating
Point
Convert
Single to
Double

Convert
Integer to
Floating
Point

Convert
Integer to
Floating
Point

Convert
Integer to
Floating
Point

Convert
1 Halfword
I Integer to

Floating
Point

! Convert
Integer t o
Floating

1 Point

Modes

I

V,I

V,I

V,I

V fI

V,I

R,V

R

I

V

I

i V

Description I

Converts the s ingle precis ion I
f loat ing-point number t o a double |
precis ion f loa t ing-poin t number. I

Converts a quad precis ion f l o a t i n g - |
point accumulator value t o a double |
precis ion f loa t ing-point number. 1

Converts a quad precis ion f l o a t i n g - I
point accumulator value t o a double |
precis ion f loa t ing-poin t number. 1

Converts a quad prec is ion f l oa t i ng - |
point accumulator value t o a double |
precis ion f loa t ing-poin t number. |

Converts a quad prec is ion f l o a t i n g - |
point accumulator value t o a double |
precision f loa t ing-poin t number. I

Converts a double precis ion f loa t ing - I
point accumulator number t o a quad |
precis ion f loa t ing-poin t number. 1

Converts a s ingle precis ion f l oa t i ng - I
point accumulator number t o a I
double precis ion f loa t ing-poin t I
number. 1

Converts the 31-bi t contents of A and |
B to a normalized f loa t ing-poin t I
number and s to res the 31-bi t r e s u l t |
in the f loa t ing accumulator. 1

Converts the contents of the specif ied |
R to a normalized f loa t ing-poin t I
number and s to res the r e s u l t in the |
f loa t ing accumulator. 1

Converts the 16-b i t contents of A to |
normalized f loa t ing-poin t number |
and s tores the r e s u l t in the 1
f loa t ing accumulator. 1

I Converts the 16-b i t integer contained |
I i n the specified r t o a normalized |

f loat ing-point number and s to re s i t |
I i n the f loa t ing accumulator. I

Converts the 32-bi t contents of L t o |
I a f loat ing-point number and s to res |

the r e s u l t i n the f loa t ing I
accumulator. 1

6-31 Third Edition

DOC3060-192

Table 6-14 (continued)
Conversion Instructions

I Mnem

I FRN

1 FRNM

I FRNP

1 FRNZ

1 INT

I INT

1 INTA

I INTH

1 INTL

1 QINQ

1 QIQR

Name

Floating
Round

Floating
Round from
DP to Minus
Infinity

! Floating
Round from
DP to Plus
Infinity

Floating
Round from
DP to Zero

Convert
Floating
Point to
Integer

Convert
Floating
Point to
Integer

Convert
Floating
Point to
Integer

Convert
Floating
Point to
Halfword
Integer

Convert
Floating
Point to
Long
Integer

Floating
Convert
Integer to
Quad

Floating
Convert
Integer
to Quad
Rounded

Modes

R,V,I

V,I

VfI

V,I

R

I

V

I

V

V,I

V,I

Description 1

Rounds the mantissa of a floating- I
point accumulator number to the |
nearest 24-bit fraction. 1

Converts a double precision floating- I
point accumulator value to a single j
floating-point number. |

Converts a double precision floating- j
point accumulator value to a single |
precision floating-point number. I

Converts a double precision floating- I
point accumulator value to a single |
precision floating-point number. 1

Converts the number in a floating |
accumulator to a 31-bit integer and I
stores it in A and B. I

Converts the number in a floating |
accumulator to a 32-bit integer I
and stores it in GR2. |

Converts the number in a floating |
accumulator to a 16-bit integer and |
stores it in A. I

Converts the number in a floating |
accumulator to a 16-bit integer and |
stores it in r. I

Converts the number in the floating |
accumulator to a 32-bit number and |
stores it in L. |

Converts the truncated integer |
portion of the floating-point |
accumulator to a quad precision |
floating-point number. 1

Converts the rounded integer portion |
of the floating-point accumulator |
to a quad precision floating-point |
number. 1

Third Edition 6-32

DATATYPES

DECIMAL DATA

Decimal data can be represented in packed or unpacked forms.

Unpacked Decimal

There are four forms of unpacked decimal numbers, as shown in Figure
6-5.

Type Format Example

Leading
Sign,
not
embedded

Trailing
Sign,
not
embedded

Leading
Sign,
embedded

Trailing
Sign,
embedded

First byte
contains sign
only.

Last byte
contains sign
only.

First byte
contains sign
and first
digit.

Last byte
contains sign
and last
digit.

10101011110110011110110000110110101

+ 1 3 I 0 | 5

10110010|10110110|10110001|10101101

2 I 6 I 1 I -

10110110110110110110111001110111001

+6 (6) I 6 | 9 | 9

10110100110110110110111000111001010

-1 (J)

Unpacked Decimal Formats
Figure 6-5

In the first two cases listed in Figure 6-5, a plus sign represents a
positive number, and a minus sign a negative number. You can use a
space character to represent a positive sign, and the processor will
interpret it correctly. Numerical operations, however, cannot produce
positive numbers that contain a space character.

In the two cases where the sign is embedded, a single character
represents the appropriate sign and digit. Table 6-15 shows the
characters that you use to represent sign/digit combinations.

6-33 Third Edition

DOC3060-192

Table 6-15
Sign/Digit Representations for Unpacked Decimal

1 Digit

1 0

I 1

i 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

Positive Rep.

0,

If

2,

3,

4,

5,

6,

7,

8,

9r

space,

A

B

C

D

E

F

G

H

I

+ , {

Negative Rep.

}r -

J

K

L

M

N

0

P

Q

R

There are several multiple representations listed above. The processor
recognizes all of the representations, but it generates only the first
character as the result of an operation. For example, the processor
will generate a } to represent a negative zero with embedded sign.

Packed Decimal

The fifth way to represent decimal numbers is called packed decimal. A
number in this form uses four bits to represent each digit in the
number; the last four bits of the number represent the sign. (Packed
decimal numbers are always in trailing sign format.) A decimal number
must contain an odd number of digits (excluding the sign digit). It
must also begin on a byte boundary.

The sign digit of a decimal result contains a hex C if the sign is
positive or a hex D if it is negative. The processor interprets the
sign digits of a decimal operand as positive if it contains anything
other than a hex C or D.

Third Edition 6-34

DATATYPES

Control Word Format

Unlike the instructions already listed in this chapter, decimal
arithmetic instructions require more information to execute than they
can contain. They require a control word to specify the
characteristics of the operations to be performed. When a decimal
instruction is executing in V mode, L contains a copy of the control
word; in I mode, General Register 2 contains the copy. Figure 6-6
shows the format of the control word. Within this figure, Fl and F2
stand for field 1 and field 2, respectively.

6 7 8 9 10 11 12 13 14 16 17 22 23 29 30 32

U I B U I T | D H

1 Field

1 A

1 u

1 B

I c

1 u

1 T

1 D

1 E

1 F

1 G

1 H

Bi t s

1-6

7-8

9

10

11

12

13

14-16

17-22

23-29

30-32

Contents or Meaning

Number (0-*77) of d i g i t s i n Fl

Unused; must be zero

Sign of F l :
B=l: sign of Fl i s inverse of specif ied

0: sign of Fl i s as specif ied

Sign of F2:
C=l: sign of F2 i s inverse of specif ied

0: sign of F2 i s as specif ied

Unused; must be zero

Sign of r e s u l t :
T=l: r e s u l t i s forced pos i t ive

0: ins t ruc t ion operation d i c t a t e s the

Round f l ag (used only by XMV)

Decimal data type of Fl

Number (0'77) of d i g i t s i n F2

Scale d i f f e ren t i a l

Decimal data type of F2

value |

value |

sign I

!

Decimal Control Word Format
Figure 6-6

6-35 Third Edition

DOC3060-192

Most of the fields are self-explanatory,
however, merit extra discussion.

Fields D, E, G, H, and T,

Field D is used only by the XMV instruction. This field tells the
processor whether to round the decimal number in Fl or not. If D
contains a 0, no rounding occurs. If D contains 1, rounding occurs if
the last digit of the Fl (adjusted as specified by field G) is greater
than or equal to 5. The rounding occurs when XMV moves the contents of
Fl into F2.

For this field to be effective when XMV uses it, make sure that the
scale differential in field G is greater than or equal to 1.

Control word fields E and H specify the decimal data types of the
operands. Table 6-16 lists the available data types and the codes used
to represent them in the control word fields.

Table 6-16
Decimal Data Types

1 Code

1 o

1 1

1 3

1 4

1 5

Decimal Data Type

Leading separate

Trailing separate

Packed decimal

Leading embedded

Trailing embedded

Control word field G specifies the scale differential, the difference
in magnitude between the operators of an instruction. This field
contains a 7-bit, tamo's complement number with the value:

Fx = magnitude(Fl) - magnitude(F2).

If Fx is positive, then Fl must be shifted right so that it aligns with
F2; if negative, Fl must be shifted left to be aligned with F2.

For example, suppose Fl contains 999V99, and F2 contains 999. The
scale differential for these operands would be +2, since Fl must be
shifted to the right two digits to align with F2.

Third Edition 6-36

DATATYPES

The T bit is used fcy the decimal instructions XAD, XDV, XMP, and XMV.
For all these instructions, results are forced positive if the T bit
contains 1.

The descriptions of the decimal instructions (see Chapters 13 and 14)
list the control word fields required for instruction execution. Any
unused fields must contain zeroes for proper execution to occur.

Decimal Operations

Decimal results are correct for all the digits shown in the result
field. The processor calculates the result to all its bits of
precision, then loads as many as can fit into the result field. If the
portion stored does not contain the most significant bits of the
result, an overflow occurs that causes a decimal exception. (See
Chapter 12.)

Register Use

In general, all decimal instructions use GRO, GRL, GR3, GR4, and GR6 in
both V and I mode. On the 9950, all decimal instructions use L (GR2 in
I mode), FARO, and FARl. XDTB and XBTD do not use FARl, but also use
GR4.

Table 6-17 lists the decimal instructions.

6-37 Third Edition

DOC3060-192

Table 6-17
Decimal Instructions

Mnem I Name iModesI Description

XAD

XMV

XCM

XMP

XDV

XBTD

XDTB

XED

Decimal
Add

Decimal
Move

Decimal
Compare

Decimal
Multiply

Decimal
Divide

Binary to
Decimal
Conversion

Decimal to
Binary
Conversion

Decimal
Edit

V,I |

V,I I

V,I |

V,I |

V,I |

VrI |

V,I |

V,I |

Adds the contents of two decimal
fields together and stores the
result in the destination field.

Moves the contents of the source
field into the destination field.

Compares the contents of the source
and destination fields and sets
the condition codes depending
on the outcome of the compare.

Multiplies the contents of the source
and destination fields and stores the
result in the destination field.

Divides the contents of the destination
field by the contents of the source
field and stores the result and the
remainder in the destination field.

Converts a binary number contained in a
register to a decimal number and
stores the result in a memory
location.

Converts a decimal number in memory to
a binary number and stores the
result in a register.

Edits a decimal string under control
of an edit subprogram.

Third Edition 6-38

DATATYPES

CHARACTER STRINGS

Character strings are made up of bytes, with each byte representing one
ASCII character. A character string can contain from 1 to (2**17)-1
bytes. Table 6-18 lists the character instructions.

Table 6-18
Character Instructions

Mnem I Name Modes | Description

LDC

STC

ZCM

ZED

ZFIL

ZMV

ZMVD

ZTRN

Load
Character

Store
Character

Compare
Character
Fields

Edit
Character
Fields

Fill
Field

Move
Characters

Move Equal
Length

Translate
Character
Field

1 V fI |

1 v , i I

1 v , i |

1 v , i !

1 v , i 1

1 v , i 1

1 V,I I

1 v , i i

Calculates an effective address. Loads
the character in the specified field
into bits 9-16 of a register.
Clears bits 1-8.

Stores the contents of bits 9-16 of A
into the specified field.

Compares two character fields and sets
the condition codes depending on the
outcome of the compare.

Moves characters from one field to
another under control of an edit
subprogram.

Stores a character into each
byte of the specified field.

Moves characters from one field to
another.

Moves characters from one field to
another of equal length.

Uses one field to reference a translation
table and construct a second field.

6-39 Third Edition

DOC3060-192

The Z-prefix character instructions (that is, all character
instructions except LDC and STC) move data in the source string
starting from the lowest addressed byte (ascending order). Note that
ZED and ZTEN move one byte at a time; ZCM, ZFIL, ZMV, and ZMVD always
move four bytes at a time (unless there are fewer than six bytes to
move and the source and destination are not aligned).

The Z-prefix character instructions may produce unexpected results if
the source and destination strings overlap. For example, suppose ZMV
is to move the contents of a large source string into a destination
string. Figure 6-7 shows how the source and destination strings
overlap; S represents the first byte in the source string (labelled 6)
and D represents the first byte in the destination string (labelled 1).

After ZMV moves the first four characters, the strings are as shown in
the second part of Figure 6-7. The last part shows how the second move
affects the string. The third and subsequent moves would work in the
same way. In this case ZMV simply moves all characters in the source
string into the destination string straightforwardly, without
deviation.

1

1 A

2

B

3

1 c

4

D

5

1 E

6 7

F | G

8

1 H

9 10

I 1 J

11

1 K

12

1 L

13

1 M |
Strings
before
move

D

1 2

1 F | G

3

1 H

4

1 I

5

1 E

6

1 F

7

1 G

8

1 H

9 10

I 1 J

11

1 K

12

1 L

13

1 M |
After
first
move

D

1 2

1 F | G

3

1 H

4

I

5

1 J

6

1 K

7 8

1 L 1 M

9 10

I 1 J

11 12

1 K | L

13

1 M |
After
second
move

String Manipulation
Figure 6-7

Third Edition 6-40

DATATYPES

Suppose, however, that the starting addresses of the two strings are
switched. The first five bytes in the source string will be correctly
moved, but the rest of the string will have been overwritten by copies
of the first five bytes. These same five characters will propagate
through the rest of the destination string, as shown in Figure 6-8.

1

1 A

2

1 B

3

1 c

4

1 D

5

1 E

6 7

1 F I G

8

1 H

9 10

1 I 1 J

11

1 K

12

1 L |
Strings
before
move

D

1

1 A

2

B

3

1 c

4

1 D

5

1 E

6

1 A

7

1 B

8

1 c

9 10

1 D | J

11

1 K

12

1 L |
After
first
move

S D

1 2 3 4 5 6 7 8 9 10 11 12
After

A | B | C | D | E | A | B | C | D | E | A | B | second
move

Str ing Manipulation
Figure 6-8

While the move shown in Figure 6-8 i s useful, i t may not be the act ion
t ha t was intended. Overlapping s t r ings produce a r b i t r a r i l y d i f ferent
r e s u l t s for each Prime machine. For t h i s reason, avoid using
overlapping s t r i ngs in any s i t ua t ion .

6-41 Third Edition

DOC3060-192

QUEUES

A queue i s a fixed length, double-ended, c i rcu la r word buffer. Figure
6-9 shows the format of a typical queue with wrapped and unwrapped
data .

QUEUE DATA BLOCK, DATA NOT WRAPPED

<—Origin = M*2**K

TOP—>

BOTTOM—>

(empty) I

(head) I

(data) 1

(tail) i

(empty) i

I
Length = 2**K

I

V
<—End = (M+l) *2**K-1

QUEUE DATA BLOCK, DATA WRAPPED

<—Origin = M*2**K

BOTTOM—>

TOP—>

(data)

. (ta i l) .

(empty)

(head)

(data)

Length = 2**K
I

V
<—End = (M+l) *2**K-1

Queues With Wrapped and Unwrapped Data
Figure 6-9

QCBs

Each queue in the system i s controlled by a queue control block (QCB).
This QCB contains information about the queue's locat ion in memory, as
well as data used t o manipulate the elements. In addi t ion, the QCB
defines the queue's type. If the QCB has a physical address, the
associated queue i s cal led a physical queue. These types of queues a re
the only ones used for DMQ operations. If the QCB has a v i r t u a l

Third Edition 6-42

DATATYPES

segment number and offset rather than a physical address, the queue is
called a virtual queue. Queues of this type are never used for I/O
operations.

Try to align QCBs on 8-byte boundaries. EMQ operations (discussed in
Chapter 12) require this alignment. For program queue manipulation via
the queue instructions, alignment is not necessary but does produce
faster queue operations.

Figure 6-10 Shows the format of the QCB.

1 | TOP POINTER | 16
17 | BOTTOM POINTER | 32
33 | V | 000 | HIGH ORDER ADDRESS I 48
49 I SIZE MASK I 64

1 Bi t s

1 1-16

1 17-32

1 33

1 34-36

1 37-48

1 49-64

Name

Top Pointer

Bottom
Pointer

V

High Order
Address

Size Mask

Description 1

Points to f i r s t f i l l ed location |
(the head) in the queue. 1

Points to las t f i l l ed location 1
(the ta i l) in the queue. 1

Virtual/physical control b i t : |
0 = physical queue, 1
1 = v i r tua l queue. 1

Reserved; must be 0 . 1

Queue address (if V = 0) , or I
segment number (if V = 1) . 1

Mask; value = 2**(K-1). 1

Figure 6-10
Format of the QCB

When addressing a QCB, the ring number in the reference specifies the
access privileges that will govern the reference. Physical queues can
only be accessed from Ring 0.

6-43 Third Edition

DOC3060-192

Queue Specifications

A queue must be 2**K words long, where K is an integer between 4 and 16
inclusive. In addition, the queue's starting address must be M(2**K),
where M is an integer value. These restrictions allow the firmware to
easily identify and locate a queue. Note that two queues in the system
do not have to have the same K in common.

The 50 Series processors use a mask word to add elements to or delete
elements from a queue. This mask specifies the size of the queue, and
is 16 bits wide. The least significant K bits contain 1 and all other
bits contain 0. This means that the numerical value of the mask is
(2**K)-1.

Suppose K = 5.
mask = 0000000000011111

= '37
= 31 decimal
= (2**5)-1, QED.

Calculating a Mask
Figure 6-11

The mask also makes i t easy to determine the start ing and ending
addresses of the queue. If P i s a pointer to seme location within a
queue, the address of the queue's origin i s :

origin = P AND (NOT mask)

and the address of the queue's last location is:

end = P OR mask.

Third Edition 6-44

DATATYPES

Suppose K = 5f P = '204, and M = 4.
mask = '37 and queue length = 2**5 = '37.

origin = '204 AND (NOT '37)
= 10000100 AND 1111111111100000
= 10000000
= '200
= 128 decimal
= 4(2**5) , QED.

end = '204 OR '37
= 10000100 OR 11111
= 10011111
= '237
= queue or ig in + queue length
= '200 + '37 r QED.

Calculating the Origin and End of a Queue
Figure 6-12

Queues operate under one f ina l r e s t r i c t i o n . They are defined t o be
empty when the contents of the top pointer equal the contents of the
bottom pointer . This means t ha t the maximum number of elements in a
queue i s (2**K)-1.

Queue Algorithms

The 50 Series processors use four algorithms t o i n s e r t or de le te queue
elements (depending on the specif ied operat ion) . Table 6-19 shows the
algorithms used for speci f ic operations. The symbols T1-T5 represent
temporary storage r e g i s t e r s .

6-45 Third Edition

DOC3060-192

Table 6-19
Queue Algorithms

1 Inst

1 RTQ

1 ABQ

1 ATQ

1 RBQ

Algorithm 1

Tl
T2
If

Tl
T2
T3
T4
T5
If

Tl
T2
T3
T4
Tl

<-
<-
Tl

<-
<-
<-
<-
<-
TL

<-
<-
<-
<-
<-

TOP 1
BOTTOM 1
= T2 then A <- 0 1

CC <- EQ 1
else T3 <- SEGMENT 1

T4 <- MASK I
A <- SEGMENT | Tl (16 bits) I
TOP <- Tl AND NOT T4 OR (Tl + 1) AND T4 I

TOP !
BOTTOM 1
SEGMENT 1
MASK 1
T2 AND NOT T4 OR (T2 + 1) AND T4 I
= T5 then CC <- BQ 1

else location (SEGMENT | T2) <- A 1
BOTTOM <- T5 1

TOP 1
BOTTOM I
SEGMENT 1
MASK 1
Tl AND NOT T4 OR (Tl - 1) AND T4 I

If Tl = T2 then CC <- EQ 1

Tl
T2
If

<-
<-
Tl

else location (SEGMENT | Tl) <- A 1
TOP <- Tl |

TOP 1
BOTTOM I
= T2 then A <- 0 1

CC <- EQ I
else T3 <- SEGMENT I

T4 <- MASK |
T2 <- T2 AND NOT T4 OR (T2 - 1) AND T4 I
A <- SEGMENT | T2 (16 bits) I
BOTTOM <- T2 1

Third Edition 6-46

DATATYPES

The instructions provided for programmed queue manipulation are shown
in Table 6-20. The pointer in the instructions references the QCB for
that queue. Note that an RTQ instruction is equivalent to a DMQ output
operation, and an ABQ is equivalent to a EMQ input, as noted in Chapter
12, Input/Output.

Table 6-20
Queue Instructions; S, R, V Modes

I Mnem

1 RTQ

1 RBQ

1 ABQ

1 ATQ

I TSTQ

Name

Remove from
Top of Queue

Remove from
Bottom of
Queue

Add to the
Bottom of
Queue

Add to the
Top of Queue

Test Queue

Description I

Removes a single word from the top |
of a queue and places it in A. 1

Removes a single word from the 1
bottom of a queue and places j
it in A. 1

Adds the contents of A to I
the bottom of the specified |
queue. 1

Adds the contents of A to the I
top of the specified queue. I

Sets A to the number of items |
in a specified queue and sets |
the condition codes depending 1
on the new value of A. 1

SUMMARY OF DATATYPES AND APPLICABLE INSTRUCTIONS

Table 6-21 summarizes the different datatypes and lists the various
operations available. The body of the table shows which instructions
perform a specific operation on a specific datatype. For detailed
information about each instruction, refer to the instruction
dictionaries in Chapters 13 and 14.

When using Table 6-21, note that aa represents the set of arithmetic
conditions [EQ, GE, GT, LE, LT, NE]. Also note that Table 6-21 does
not include instructions that operate on CBIT, LINK, the condition
codes, or queues.

6-47 Third Edition

DOC3060-192

Table 6-21
Summary of Datatypes and Applicable Instructions

I Opera t ion

I Load from memory

I S t o r e t o memory

1 Add

1 S u b t r a c t

1 Mul t ip ly

I Divide

I Increment

I Decrement

1 AND

I OR

I XOR

I Complement

1 Compare

1 Logica l t e s t

I Branch

1 Logica l l e f t s h i f t

1 Logica l r i g h t s h i f t

I Ar i t hme t i c l e f t s h i f t

1 Ar i t hme t i c r i g h t
1 s h i f t

I Ro ta t e l e f t s h i f t

16
(A)

LDA

STA

ADD

SUB

MPY

DIV

IRS,
A1A,
A2A

SIA,
S2A

ANA

ORA

ERA

CMA

CAS,
CAZ

Laa

Baa

ALL

ARL

ALS

ARS

ALR

S ize of Datatype (in

31
(A/B)

DLD

DST

DAD

DSB

LLS

LRS

32
(L)

LDL

STL

ADL

SBL

MPL

DVL

ANL

ERL

CLS

LLaa

BLaa

LLL

LRL

LLS

LRS

LLR

64
(L/E)

32FP
(FAC)

FLD

FST

FAD

FSB

FMP

FDV

FCS

LFaa

BFaa

B i t s)

64FP
(DAC)

DFLD

DFST

DEAD

DFSB

DFMP

DFDV

DFCS

LFaa

BFaa

128FP
(QAC)

QFLD

QFST

QFAD

QFSB

QFMP

QFDV

QFC,
QFCS

Decj
HI

XMVl

XAD|

XADI

XMP|

XDV|

XCM|

Third Edition 6-48

DATATYPES

Table 6-21 (continued)
Sunmary of Datatypes and Applicable Instructions

I Operation

I Rotate right shift

I Clear

I Clear left

j Clear right

| Interchange halves

I Interchange and
j clear left

I Interchange and
j clear right

| Two's complement

I Set sign

I Clear sign

| Change sign

| Convert datatypes:

j Integer to
j floating point

| Floating point
1 to integer

I Binary to decimal

j Decimal to binary

I Position for integer
j divide

I Position after
I multiply

I Skips

16
(A) 1

ARR

CRA

CAL

CAR

ICA

ICL

ICR

TCA

SSM

SSP

CHS

FLTA

INTA

XBTD

XDTB

PIDA

PIMA

Saa

Size of Datatype (in

31 1
(A/B)

CRL

CRA

CRB

IAB

XCA

XCB

SSM

SSP

FLOT

INT

PID

PIM

32 I 64 I32FP
(L) |(L/E)|(FAC)I

LRR | I

CRL ICRLE |

CRA | CRL |

CRB | CRE |

IAB | ILE |

XCA | |

XCB | I

TCL | 1 FCM

SSM | |

SSP I I

CHS | I

FLTLl I

INTLl I

XBTDl XBTDl

XDTBl XDTBl

PIDLl PIDLI

PIMLl PIMLl

I I FSaa

Bits)

64FP
(DAC)

DFCM

FSaa

128FPI Dec|
(QAC)| (-)|

QFCMl |

QINQI 1
QIQRI 1

6-49 Third Edition

DOC3060-192

SUMMARY

This chapter has introduced the datatypes supported on the 50 Series
processors and has listed the instructions you can use to manipulate
them. The next chapter, Altering Sequential Flow, lists instructions
that allow you to test for a condition and perform actions depending on
the outcome of the test.

Third Edition 6-50

7
Altering Sequential

Flow

So far this document has confined its discussions mostly to arithmetic
operations. This chapter describes instructions that can alter the
normally sequential flow of control within a program.

BRANCH AND SKIP INSTRUCTIONS

The simplest way to change the flow of control in a program is to use a
branch or a skip instruction. These instructions may directly load a
new value into the program counter, or they may first test some value
and then load the program counter according to the outcome of the test.
Note that branch and skip instructions always load the program counter
with an address contained within the current segment. (To transfer
control to an address outside the current segment, use a jump
instruction, explained in the second half of this chapter.)

Table 7-1 lists the branch instructions. Table 7-2 lists the logic
test instructions. Table 7-3 contains information about the
conditional skip instructions. Table 7-4 describes the floating-point
skip instructions.

7-1 Third Edition

DOC3060-192

Table 7-1
Branch Instructions

I Mnem | Name |Modes | Description 1

I BBQr BGE, I Branch on A I V | Branches if the contents of A |
1 BGTr BLE, 1 Set With | | meet the specified condition |
I BLT, BNE | Respect to 0| | with respect to 0. I

1 BCEQ, BCGE, 1 Branch on I VfI | Branches if the condition code |
I BOGT, BCLE, | CC Set With | I reflects the specified I
I BCLT, BCNE 1 Respect to 0| I condition with respect to 0. I

I BFEQ, BPGE, | Branch on 1 VfI | Branches if the contents of the |
I BFGT, BFLE, I FA With I I floating accumulator reflect I
1 BELT, BENE j Respect to 01 I the specified condition with |
1 1 I I respect to 0. |

I BHEQ, BHGEr | Branch on | I | Branches if the contents of the I
I BHGT, BHLE, j r With I I specified r meet the specified!
1 BHLT, BHNE | Respect to 0 j I condition with respect to 0. |

I BLEQr BLGE | Branch on | V | Branches if the contents of L |
j BLGT, BLLEf | L With I | meet the specified condition I
1 BLLT, BLNE | Respect to 0| | with respect to 0. |

I BMEQ, BMGE, | Branch on 1 VfI | Branches if LINK and the I
j BM3T, BMLE, I Magnitude I 1 condition codes meet the |
j BMLT, BMNE I Condition I j the specified condition with I
1 I Set With I I respect to 0. |
1 I Respect to 0| | 1

I BREQ, BRGEf I Branch on I I I Branches if the contents of the I
I BEGTf BRLEf I R Set With I | specified R meet the specified |
I BRLT, BRNE | Respect to 0| | condition with respect to 0. |

I BRBR | Branch on I I I Branches if the specified bit in I
I 1 R Bit Reset I j R is 0. 1
1 BRBS 1 Branch on I I I Branches if the specified bit inj
I | R Bit Set | | R is 1. 1

j BHDl, BHD2, I Branch on r I I | Decrements r by the specified j
I BHD4 j Decremented j | value and branches if the j
I j by Value I I value is not equal to 0. 1

I BHI1, BHI2r | Branch on r | I | Increments r by the specified I
I BHI4 I Incremented | | value and branches if the |
I 1 by Value 1 I values is not equal to 0. I

Third Edition 7-2

ALTERING SEQUENTIAL FLOW

Table 7-1 (continued)
Branch Instructions

I Mnem | Name I Modes I Description 1

1 BRD1, BRD2, | Branch on R | I I Decrements R by the specified |
I BRD4 j Decremented j | value and branches if the j
I | by Value j | value is not equal to 0. |

I BRIl, BRI2, | Branch on R | I | Increments R by the specified |
1 BRI4 | Incremented j | value and branches if the |
1 1 by Value | | values is not equal to 0. |

1 BCS 1 Branch if 1 VfI | Branches if the value of CBIT |
1 I CBIT is Set | I Is 1. 1
1 BCR I Branch if 1 VfI 1 Branches if the value of CBIT I
1 I CBIT is | | is 0. |
1 1 Reset | | 1
1 BLS 1 Branch if 1 V,I | Branches if the value of LINK j
I | LINK is Set | | is 1. 1
j BLR j Branch if | VfI 1 Branches if the value of LINK j
I j LINK is | | is 0. 1
1 1 Reset | | 1

| BDX | Branch on | V 1 Decrements the contents of X by 1
| 1 Decremented | | 1 and branches if the I
j | X I I decremented value equals 0. I
j BDY | Branch on | V I Decrements the contents of Y 1
I | Decremented I I by 1 and branches if the I
j I Y I I decremented value equals 0. |
| BIX I Branch on j V I Increments the contents of X I
I | Incremented | I by 1 and branches if the 1
| | X I I incremented value equals 0. I
| BIY I Branch on | V I Increments the contents of Y [
| 1 Incremented | | by 1 and branches if the I
j | Y I I incremented value equals 0. |

| CGT I Computed 1 V,I | Branches if the contents of A I
	GOTO 1 1 are greater than 1 and less
	I I than a specified integer;
	I I otherwise, executes the next

7-3 Third Edition

DOC3060-192

Table 7-2
Logic Test Instructions

I Mnem

1 LBQf
1 LGE,
1 LGT,
I LLEf
1 LLT,
I LNE

I LCEQ,
1 LCGE,
1 LCGT,
I LCLE,
I LCLT,
I LCNE

1 LFEQ,
I LEGE,
I LFGTr
I LFLE,
I LFLTr
I LFNE

1 LHEQ,
I LHGE,
1 LHGT,
I LHLE,
I LHLT,
I LHNE

1 LLEQf
1 LLGE,
I LLGT,
I LLLE,
I LLLT,
I LLNE

I LT
I LF

Name

Load on
Register
With Respect
to 0

Load
Register on
Condition
Codes Set
With Respect
to 0

Load Register
on FAC
With Respect
to 0

Load R on r
With Respect
to 0

Load A on L
With Respect
to 0

Load True
Load False

Modes

S,R,V,I

SfRfV,I

S,R,V,I

I

S,RfV

S,R,V,I

Description 1

Loads a register with a 1 if I
the register reflects the I
specified condition with I
respect to 0; otherwise, 1
clears the register to 0. I

Loads a register with a 1 if 1
the condition codes reflect I
the specified condition with |
respect to 0; otherwise, 1
clears the register to 0. I

Loads a register with a 1 if |
the contents of the floating |
accumulator reflect the I
specified condition with I
respect to 0; otherwise, 1
clears the register to 0. I

Loads R with a 1 if the contents |
of r reflect the specified |
condition with respect to 0, |
or with a 0 if another |
condition exists. I

Loads A with a 1 if the contents |
of L reflect the specified j
condition with respect to 0, I
or with a 0 if another |
condition exists. I

Loads a register with a 1. I
Loads a register with a 0. I

Third Edition 7-4

ALTERING SEQUENTIAL FLOW

Table 7-3
Conditional Skip Instructions

I Mnera

I CAS

1 CAZ

I CLS

I DRX

I IRS

I IRX

I SAR

I SAS

I SGT

I SLE

I SNR

I SNS

Name

Compare A and
Skip

Compare A to
0

Compare L and
Skip

Decrement and
Replace X

Increment and
Replace Memory

Increment and
Replace X

Skip on A
Register Bit 0
Skip on A
Register Bit 1
Skip on A
Greater than 0
Skip on A Less
Than 0
Skip on Sense
Switch Reset
to 0
Skip on Sense
Switch Set
to 1

I Modes

S,R,V

SfRfV

V

S,R,V

S,R,V

SrR,V

S,R,V

S,R,V

S,R,V

S,R,V

S,R

S,R

Description I

Compares the contents of A to the j
the contents of a memory location |
and skips depending on the result |
of the compare. I

Compares the contents of A to 0 I
and skips depending on the 1
outcome of the test. I

Compares the contents of L to the j
contents of a memory location I
and skips depending on the I
outcome of the compare. I

Decrements the contents of X by 1 I
and skips the next word if the 1
decremented value is 0. 1

Increments the contents of a memory I
location and skips the next word |
if the incremented value is 0. I

Increments the contents of X and 1
skips the next word if the 1
incremented value is 0. I

Skips the next word if the specified |
bit in A contains 0. 1

Skips the next word if the specified I
bit in A contains 1. I

Skips the next word if the contents |
of A are greater than 0. 1

Skips the next word if the contents I
of A are less than 0. 1

Skips if the contents of the 1
specified sense switch are 1
are equal to 0. 1

Skips if the contents of the 1
specified sense switch 1
are equal to 1. 1

7-5 Third Edition

DOC3060-192

I Mnem

I FSGT

I FSLE

I FSMI

I FSNZ

I FSPL

I FSZE

Table 7-4
Floating-point Skip Instructions

Name

Floating Skip
If Greater
Than 0

Floating Skip
If Less Than
or Equal to 0

Floating Skip
If Minus

Floating Skip
If Not Zero

Floating Skip
If Plus

Floating Skip
If Zero

Modes

R,V

R,V

R,V

R,V

R,V

R,V

Description 1

Skips the next location if the j
contents of the floating 1
accumulator are greater 1
than 0. I

Skips the next location if the |
contents of the floating 1
accumulator are less than j
or equal to 0. |

Skips the next location if the j
contents of the floating j
accumulator are less than 0. I

Skips the next location if the j
contents of the floating |
accumulator are not equal |
to 0. |

Skips the next location if the I
contents of the floating I
accumulator are greater j
than 0. |

Skips the next location if the I
contents of the floating I
accumulator are equal to 0. I

JUMP INSTRUCTIONS

Like the instructions listed in the tables above, jump instructions can
load new addresses into the program counter. The difference is that
jump instructions can transfer control to addresses outside the current
segment of execution. Table 7-5 lists these instructions.

SUMMARY

The 50 Series supports branch, skip, and jump instructions that you can
use to transfer control from one part of your program to another. The
next chapter begins the discussion of more complex methods of control
transfers.

Third Edition 7-6

ALTERING SEQUENTIAL FLOW

Table 7-5
Jump Instructions

I Mnem

1 JDX

1 JEQ

1 JGE

I JGT

I JIX

1 JLE

1 JLT

I JMP

I JNE

I JSR

1 JST

1 JSX

I JSXB

I JSY

Name

Jump on
Decremented X

Jump on A
Equal to 0
Jump on A
Greater Than
or Equal to 0
Jump on A
Greater Than 0
Jump on
Incremented X

Jump on A
Less Than or
Equal to 0
Jump on A
Less Than 0
Unconditional
Jump
Jump on A Not
Equal to 0
Jump to
Subroutine

Jump and Store

Jump and Save
1 in X

Jump and Save
! in XB

I Jump and Save
in Y

Modes

S,R,V

S,R,V

S,RrV I

SfR,V

S,R,V

R

R

S,R,V,I

R

I

S,R,V

1 S,R,V

V,I

1 v

Description

Decrements the contents of X by
1 and jumps if the
decremented value is 0.

Jumps if the contents of A
equal 0.

Jumps if the contents of A are
greater than or equal to 0.

Jumps if the contents of A are
greater than 0.

Increments the contents of X by
1 and jumps if the
incremented value is 0.

Jumps if the contents of A are
less than or equal to 0.

Jumps if the contents of A are
less than 0.

Jumps to the specified
effective address.

Jumps if the contents of A are
not equal to 0.

Jumps to the specified
effective address and saves
the return address in r.

Stores the current contents of
the program counter into
memory and jumps to the
specified effective address.

Increments the contents of the
program counter by 1 and
stores the result in X, then
jumps to the specified
effective address.

Stores the current contents of
the program counter in XB and
jumps to the specified
effective address.

Increments the contents of the
program counter by 1 and
stores the result in Y, then
jumps to the specified
effective address.

7-7 Third Edition

8
Stacks and Procedure

Galls

This chapter describes how to transfer control from one procedure to
another. This type of control transfer, the procedure call, can:

• Call inward rings from outward rings.

• Invoke reentrant procedures.

• Invoke recursive procedures.

• Use an embedded operating system.

Before describing how procedure calls work, however, this chapter
defines several key terms. It also describes the stack, the data
blocks that contain information about a call, and the special access
rights that govern a call.

DEFINITION OF TERMS

Note the difference between the terms process and procedure. A
procedure is a set of instructions, such as the body of a text editor
or diagnostic program. A process is the execution of a procedure, such
as the process that the system assigns to a user. A process may
execute several procedures throughout its life.

8-1 Third Edition

DOC3060-192

A procedure may call other procedures by using the Procedure Call (PCL)
instruction. A processor may exchange one process for another by
invoking the process exchange mechanism (PXM). For information about
the PXM, refer to Chapters 9 and 10.

Note also the use of the terms caller, callee, calling procedure, and
called procedure. The procedure making the call is the calling
procedure, or caller. The procedure answering the call is the called
procedure", or callee. These terms are used throughout this and future
chapters.

STACKS AND STACK MANAGEMENT

The more sophisticated methods of altering sequential program flow use
stacks as temporary storage areas. Procedure calls use the stack to
save the state of the machine before altering program flow and to
contain the parameters of the call. When the specified operation is
complete, information in the stack is used to restore the machine state
to what it was before the procedure call took place.

A stack is a group of one or more segments. Since a 50 Series
processor can support more than one stack at a time, the segment number
of the first segment in each stack (the stack root) serves as a unique
identifier. Stack segments following the stack root segment are called
stack extension segments. A stack can contain many stack extension
segments.

Stack Header

The first four locations of the stack root segment contain the stack
header. These locations contain information needed by the processor to
manage the stack. Table 8-1 shows the format of these locations.

Each stack extension segment also has a header. Words 0-1 of each
extension segment must contain 0. Words 2-3 contain an extension
pointer that references the next stack extension segment. This pointer
contains 0 if this segment is the last stack extension segment.

Third Edition 8-2

STACKS AND PROCEDURE CALLS

Table 8-1
Stack Header Format for the I n i t i a l Stack Segnent

Word Name I Description

0,1

2,3

Free
Pointer

Stack
Extension
Pointer

Pointer to first word of next free space in
the current stack segment (segment number/
word number). This value must be even.

Pointer to first location of extension
segnent, if one has been allocated. If
there is not enough roan to allocate a new
frame in the current segment referenced by
the free pointer, the processor uses the
extension pointer to reference the next
segnent. If the extension pointer contains
0, no extension segment has been allocated
and a stack overflow fault occurs.

Stack Frames

The 50 Series processors store information on the stack in blocks
called stack frames. They allocate the frames in a last in first out
(LIFO) manner. Each time the PCL instruction executes, a new frame is
allocated; a PRTN instruction deallocates the frame when the procedure
specified by PCL completes execution. Note that an unextended frame
cannot cross a segment boundary. (See STEX in Chapters 13 and 14.)

The stack frames allocated at any time are backward threaded only.
This means that each frame points back to the frame of the procedure
that previously used this stack.

The information contained in a frame header defines the state of the
machine that was in effect when the calling procedure executed the PCL
instruction. This arrangement permits calls to or returns from a
procedure without having to reference the frame of the calling
procedure.

Figure 8-1 shows the format of the stack frame header. Note that all
procedures in the same ring can use the same stack for storage.
Different processes, however, usually do not share stack segments.

8-3 Third Edition

DOC3060-192

I FLAG BITS
I STACK ROOT SEGMENT
I RETURN POINTER
1 RETURN POINTER
| STACK BASE
I STACK BASE
I LINK BASE
I LINK BASE
1 KEYS

| ARGUMENT WORD NUMBER

1
2
3
4
5
6
7
8
9
10

I Words in
I Frame

! 1

1 2

1 3,4

1 5,6

1 7,8

1 9

1 10

Contents

Flag Bits

Stack Root
Segment #

Return
Pointer

Stack Base

Link Base

Keys

Argument
Word #

Description 1

PCL always sets these bits to 0. 1

Address of the free pointer. I

Pointer to return location (that I
following the last argument template I
of the PCL instruction that created |
this frame). I

Contents of caller's SB (pointer to |
previous frame). 1

Contents of caller's LB. |

Contents of caller's keys. I

Word number of the location following the|
PCL that created this frame. |

Stack Frame Format
Figure 8-1

Third Edition 8-4

STACKS AND PROCEDURE CALLS

ENTRY CONTROL BLOCKS

The entry control block (ECB) identifies a procedure. When PCL
executes, it forms the effective address of the called procedure's ECB,
not of the procedure itself. The ECB contains information about the
called procedure, as well as about the expected parameters (such as
number of expected arguments, size of stack frame, and so on). Figure
8-2 shows the format and contents of the ECB.

16 17 32

I ECB.PBH
I ECB.SFSIZE
1 ECB.ARGDISP
1 ECB.LBH
I ECB.KEYSH
1 o
1 o
I o

ECB.PBL |
ECB.R00T3N |
ECB.NARGS |
ECB.LBL |

0 [
o 1
0 I
0 I

|Word in
IBlock

I 0-1

1 2

1 3

1 4

il 5

1 6-7

1 8

I 9-15

Name

ECB.PB

ECB.SFSIZE

ECB.ROOTSN

ECB.ARGDISP

ECB.NARGS

ECB.LB

ECB.KEYS

Description 1

Pointer (ring, segment, word number) to |
the f i r s t executable instruction of j
the called procedure. 1

Stack frame size to create (in words). I
Must be even. 1

Stack root segment number. If zero, |
keep same stack. 1

Displacement in new frame of where I
to build argument l i s t . I

Number of arguments expected. I

Pointer (ring, segment, word) to be I
loaded as called procedure's linkage I
base (location of called procedure's |
linkage frame less '400). 1

Keys desired by called procedure. |

Reserved, must be zero. |

Entry Control Block Format
Figure 8-2

8-5 Third Edition

DOC3060-192

INDIRECT POINTERS

If the callee expects arguments, several pointers to the arguments
should follow the PCL instruction. These pointers are called argmuent
templates (or argument pointers). They contain directions that PCL
uses to form indirect pointers to the actual arguments. Indirect
pointers are saved in a stack frame that the callee uses to reference
the arguments.

Several templates may be used in succession to form one indirect
pointer. One template may specify a level of indirection; the next, a
base register. Each template contains an S bit that determines if that
template is the last one to be used to form a single indirect pointer.
If this S bit contains 1, then the argument is the last one to be used
for this indirect pointer, and the processor should store it into the
current stack frame. If the S bit contains 0, then the indirect
pointer requires more templates.

Each template also contains an L bit to indicate if it is the last one
for the last indirect pointer. When L and S are both 1, then this
argument is the last one for the last pointer. When L is 0, other
arguments follow it. When L is 1 and S is 0, the processor forms dummy
indirect pointers. See Storing Indirect Pointers, below, for
information about these dummy indirect pointers.

Figure 8-3 shows the format of all argument templates. Figure 3-3
Chapter 3 shows the format of 32-bit and 48-bit indirect pointers.

in

4 5 6 7 8 9 10 11 16 17 32

BIT | I | 0 | BR | L | S 10000001 WORD

I Bits

1 1-4
1 5
1 6
1 7-8
1 9
1 10

1 11-16
I 17-32

Mnem

BIT
I

BR
L
S

WORD

Contents |

Bit number. 1
Indirect. 1
Reserved; must be 0. I
Base register. 1
Last template for th i s ca l l . I
Last template for th i s argument; |

store argument address. 1
Reserved; must be zero. 1
Word number. 1

Argument Template Format
Figure 8-3

Third Edition 8-6

STACKS AND PROCEDURE CALLS

GATE ACCESS

There are some Ring 0 or 1 procedures that procedures in
higher-numbered rings will want to call. Since normal read, write, and
execute access rights will not allow such inward references, these Ring
0 or 1 procedures must specify a special access right called gate
access. Gate access allows a Ring 3 procedure to safely use a specific
set of Ring 0 and 1 procedures without harming the rest of the system.

For identification, the ECBs of the procedures that allow gate accesses
are grouped in a special gate access segment. These ECBs must all have
starting addresses of 0(modl6) in this segment. If a procedure
references an improperly aligned ECB, an access fault occurs.

To call any of the procedures allowing gate accesses, the caller must
execute a PCL instruction that points to an ECB in the gate access
segment. There is no other way to call these procedures.

MAKING A PROCEDURE CALL

When PCL executes, it:

• Calculates the callee's ring number.

• Allocates a new stack frame for the callee.

• Saves the caller's state.

• Loads the callee's state.

• Calculates and stores indirect pointers for the callee's use.

This sequence of events is summarized in Figure 8-4 and described
below.

Calculating a Ring Number

When PCL begins execution, it calculates the ring number of the call.
PCL looks at the appropriate STLB entry, since it contains access
rights for the calling procedure. PCL uses these access rights to
determine if the caller has access to the callee's ECB. If the STLB
specifies read access, PCL weakens the ring number contained in the
callee's ring field to that of the caller. If the callee's ECB is in a
gate segment, PCL uses the ring field contained in words 0-1 of the
callee's ECB as the ring number.

8-7 Third Edition

DOC3060-192

Reference
correct SDW

Callee's ring #
•-Caller's ring #

c Access
violation

Callee's ring # *- ring #
in words 0 - 1 of
caller's ECB

Stack segment
for call is the
current one

Fetch stack root
from caller's
stack frame

0
Actions of PCL, Part 1

Figure 8-4a

Third Edition 8-8

STACKS AND PROCEDURE CALIS

Free pointer
words 2-3 in
segment ref.
free pointer

*—

by

Actions of PCL, Part 2
Figure 8-4b

8-9 Third Edition

DOC3060-192

Allocating a Stack

PCL looks at the contents of ECB.KOOTSN (word 3 of the ECB) to
determine the stack root segment. If ECB.ROOTSN contains zeroes, the
processor fetches the stack root number from the stack frame of the
caller. (Gate ECB's must have a nonzero stack root segment indicated
in ECB.KOOTSN.) The first two words of the stack root segment contain
the free pointer; PCL compares the number of available locations in
the segment to the contents of EGB.SFSIZE (the number of words
contained in a frame). Stack frame sizes and free pointers are always
rounded upwards to form an even value.

If the frame will fit into the locations remaining in the stack
segment, PCL starts the new frame at the location specified by the free
pointer. It also updates the contents of the free pointer so that they
point past the new frame.

If the new frame is too large to fit in the current segment, PCL
examines the contents of words 2-3 in the segment referenced by the
free pointer. If words 2-3 contain 0, a stack overflow fault occurs.

If words 2-3 contain a nonzero value, this value becomes the new free
pointer. PCL rechecks for available segment locations as it did the
first segment. If this segment cannot contain the whole frame, a stack
fault occurs. If there are enough available locations, PCL starts the
frame at the first available location.

Saving the Caller's State

The processor clears the flag word of the new frame and stores the
contents of the caller's program counter, stack base and link base
registers, and keys into the new frame. Note that the contents of the
saved program counter specify the ring and segment of the caller, and
that these saved contents point to the location immediately following
PCL.

Loading the Callee's State

PCL disables interrupts so that page faul ts , STLB faul ts , or interrupts
cannot disrupt the system while i t i s loading the ca l lee ' s s ta te .
After these are disabled, PCL loads the program counter with the
contents of ECB.PB and LB with the contents of ECB.LB. The keys are
loaded with the contents of ECB.KEYS; note, however, that b i t s 15-16
of the keys are set to 0. PCL also loads the address of the new frame
into SB.

Hiird Edition 8-10

STACKS AND PROCEDURE CALLS

Calculating Indirect Pointers

Figure 8-5 shows how the indirect pointers are formed. The text that
follows elaborates on this figure.

To form an indirect pointer, PCL first forms the ring field. It
compares the contents of the program counter's ring field and that of
the base register specified in the caller. The larger value of these
two fields becomes the ring field of the indirect pointer.

The contents of the segment field of the caller's specified base
register become the contents of the indirect pointer's segment field.
The contents of the base register's word and bit fields are added to
those of the word and bit fields specified in the argument template to
form the appropriate fields for the indirect pointer. When XB is the
base register, bits 1-4 of X (GR7 in I mode) contain the bit field, if
there is one.

When the argument template bit field is added to the XB field, the
carry out goes into the word number part of the address. Note that the
argument template bit field is used only when the argument template
indirect bit is 0.

If the argument template indirect bit is 0, the value just calculated
is the final value.

If the argument template indirect bit is 1, the value just calculated
is not the final value. PCL uses this calculated value to fetch the
indirect pointer. PCL compares the calculated value's ring field to
the caller's ring field (found in the program counter) and takes the
larger of the two as the new ring field. The contents of the segment,
word, and bit fields are the same as the contents of those just
calculated.

When an indirect pointer's fault bit contains a 1, the contents of the
argument template S bit and the pointer's first word determine the
action to be taken. If the S bit contains a 1 and the pointer's first
word is '100000, the indirect pointer is loaded onto the callee's stack
frame; all other cases result in a pointer fault.

Once PCL finds the final value generated by the template, it examines
the S bit to determine if it should store the pointer in the stack
frame as an indirect pointer, or if it should store the pointer in XB.

If S contains a 0, PCL must use at least one more template to complete
the formation of the pointer. The value calculated so far is stored in
XB. (If there is a bit field, the value is also stored in X. Bit 4 of
XB, the E bit, contains 1 when X is used.) The value calculated for
the next template is stored in XB and X again. This continues until
the S bit of one of the templates contains a 1.

8-11 Third Edition

DOC3060-192

Seg # =caller*s
BR seg #

Word # = caller's
BR word #
+ AP word #

B i t# = A P b i t #

NO YES
Fetch
indirect
pointer

Bit# <-
AP bit# +
GR7(X) bits 1-4

Calculating and Storing Argument Pointers, Part 1
Figure 8-5a

Third Edition 8-12

STACKS AND PROCEDURE CALLS

Store pointer
into next
frame location

YES

Make
dummy
pointers

NO

[STOP j

Store pointer
into XB
(and X)

^f Go back \

NO

Ignore extra
arg pointers

Calculating and Storing Argument Pointers, Part 2
Figure 8-5b

8-13 Third Edition

DOC3060-192

Storing Indirect Pointers

If S contains a 1, PCL stores the calculated indirect pointer in the
next stack frame location. If L also contains a 1, then there are no
more indirect pointers to be calculated. A 0 in L indicates that there
are more arguments to follow, so PCL proceeds with the next one.

If the number of indirect pointers produced is greater than the number
the callee expects, PCL ignores the extras.

If the number of indirect pointers produced is less than the number the
callee expects, PCL creates dummy indirect pointers and stores them in
the current frame. The format of these dummy pointers is '100000,
where bit 1 = 1 indicates a pointer fault (omitted argument pointer).
PCL stores one dummy pointer for each omitted one.

Note that the callee can reference omitted indirect pointers only to
pass them on to other new procedures; if such a reference occurs, the
new procedure will see such indirect pointers as omitted. Any use of
an omitted indirect pointer other than to pass it on causes a pointer
fault.

PCL always allocates three words in the current stack frame to store
each indirect pointer. An indirect pointer occupies all three words,
however, only if it has a nonzero bit field. If this is the case, PCL
sets the E bit for that indirect pointer to 1. If an indirect pointer
has a bit field containing 0, PCL sets the argument's E bit to 0 and
loads the indirect pointer into the first two allocated locations;
when PCL loads the next indirect pointer, it skips the third location.

THE ARGT INSTRUCTION

PCL is resumable if any interruption occurs while it is transferring
arguments. When such an interruption occurs, the program counter in
the return block contains the address of the first instruction in the
callee. If the callee does not expect arguments, its first instruction
can be anything. If arguments are expected, however, the first
instruction of the callee must always be the Argument Transfer (ARGT)
instruction. After the processor services the interrupt, control
returns to ARGT, which identifies, how many indirect pointers have yet
to be transferred, and begins the transfer anew at that point.

Note that ARGT transfers arguments only if an interrupt occurs during
PCL's execution. If this happens, ARGT completes the transfer that PCL
began. If no interrupt occurs, ARGT is not executed.

Third Edition 8-14

STACKS AND PROCEDURE CALLS

THE PRTN INSTRUCTION

After a l l arguments are transferred, control transfers to the called
procedure. The las t instruction of the called procedure must be a
procedure return instruction, FRTN. When th is called procedure
completes execution, FRTN transfers control back to the calling
procedure. The calling procedure picks up execution at the instruction
immediately following PCL and i t s arguments.

FRTN also deallocates the stack frame created when the procedure cal l
was f i r s t made. To deallocate the frame, the instruction stores the
current value of the stack base register into the free pointer. I t
then restores the ca l l e r ' s s tate by loading the ca l l e r ' s stack base and
link base registers with the values contained in the frame being
deallocated. The keys are similarly loaded, but b i t s 15-16 of the keys
are set to 0. FRTN also loads the program counter with the appropriate
address contained in the frame, but loads the program counter's ring
field with the logical OR (weaker) of the saved program counter ring
number and the current ring number. This prevents inward returns, yet
allows returns from gated cal ls to work properly.

Programming Notes

When making a procedure call, make sure that the caller, callee, and
associated ECB all contain consistent information about arguments. If
the ECB specifies no arguments, then no argument templates should
follow PCL, nor should the callee begin with ARGT. Similarly, if the
ECB specifies arguments, the associated callee must begin with ARGT,
and PCL should be followed by the correct number of argument templates
(or fewer).

Also note that PCL without argument pointers does not change the
contents of any general registers or XB. PCL with argument pointers
may alter the contents of some general registers, so do not rely on
them to be the same as they were before PCL executed. Specifically,
when calling an inner-ring procedure, do not use an indexed or an
XB-relative PCL instruction. If an asynchronous interrupt condition
occurs, the software restarts the interrupted call at the location
specified by the calling PCL. Since neither XB nor the general
registers were saved during the first try of PCL, the processor may
calculate an invalid effective address.

In addition, do not specify an XB-relative argument template unless it
is immediately preceded by at least one other template whose S bit is
0. The previous template's S bit tells the processor that another
template is to follow, and to save the current template in XB, not to
store it in memory. The processor reads in the XB-relative template,
and uses the saved contents of XB in the manipulation. If the
XB-relative template were not immediately preceded by another template
whose S bit is 0 and if the processor were to retry PCL, XB would not
contain valid contents; the calculated template would be invalid.

8-15 Third Edition

9
Process Exchange on

Single-stream
Processors

PRODUCTION

The previous chapter described how to t ransfer control from one
procedure to another. This chapter and the next discuss the process
exchange mechanism (PXM) and how i t t rans fe rs control from one process
to another. This chapter describes the PXM implemented on the
single-stream processors: the 2750, 2250, 250-11, 550-11, and 750.
The next chapter describes the PXM implemented on the dual-stream 850.

As defined in the previous chapter, a process i s a dynamic s t a t e of
execution, such as a user in a time-sharing system. To quickly service
as many processes as possible (up t o approximately 1000 a t once), the
50 Series PXM executes one process for a given length of t ime. If a
resource i s not ava i lab le or time for t h i s process i s up, the PXM
exchanges t h i s process for another, and so on. This allows many
processes to work towards completion a t the same t ime.

ELEMENTS OF THE PXM

The main elements of the process exchange mechanism (PXM) a r e :

• Three data s t ruc tu re s :

Process control blocks
Ready l i s t
Wait l i s t s

9-1 Third Edition

DOC3060-192

• Two PXM instructions:

WAIT
NOTIFY

• The dispatcher

In addition to these elements, the PXM manipulates the register file
and the process interval timer during process exchange.

PROCESS CONTROL BLOCKS

Each process has a process control block (PCB) that describes it. Each
PCB contains a minimum of 64 words and completely specfies its process
from a hardware point of view. Table 9-1 shows the format of the PCB.

A single dedicated segment contains the PCBs of all processes running
throughout the system. Bits 1-16 of word 25 in the current register
set specify the number of this segment, OWNERH. (See Table 9-6 later
in this chapter for the format of the current register set.) All
pointers and addresses in a PCB (except fault vectors and wait list
pointers) are 16 bits long and are assumed to be relative to OWNERH.
(For more information on OWNERH, see the section on User Register
Files, later in this chapter.)

PCBs generally start on 0(mod64) boundaries, but must start on at least
0(mod32) boundaries.

READY LIST

The PXM uses the ready list to indicate priorities and dispatch
processes. The elements of the ready list are:

• A series of headers that make up the actual ready list.

• A data base made up of PCBs.

• Two 32-bit registers, PPA and PPB.

Figure 9-1 and the text in the following section show the relationships
between the ready list elements.

Third Edition 9-2

PROCESS EXCHANGE

Table 9-1
PCB Format

Section Word #
(octal)

Contents

Control 1 0 | Level pointer t o BOL in ready l i s t .
1 I Link pointer to next PCB, or 0.
2-3 I Segment #/word # of the semaphore whose wait

l i s t i s current ly pointing t o t h i s PCB.
A segment # of 0 indicates t h a t t h i s PCB
i s on the ready l i s t .

Abort f lags used t o generate a process f a u l t
when t h i s PCB i s dispatched.
Bi ts 1-15: s e t by the software
Bi t 16: process in te rva l timer overflow

Pointer t o the reg i s te r s e t t h i s process
used l a s t .

6-7 I Reserved for future use.
Process | 10-11 j Process elapsed t imers . These must be
Sta te I I maintained by the software t ha t r e se t s

the l i v e in te rva l t imer.
12-15 | ETAR2 and ETAR3. These are never saved,

only res tored.
16 1 In terval t imer, b i t s 1-16.
17 I In terval t imer, b i t s 17-32.
20 I Save mask. PXM uses t h i s t o avoid saving or

res tor ing r eg i s t e r s containing zeroes .
Format of the word i s :
1-8: GR0-GR7 (8 32-bit r eg i s t e r s)
9-12: FP0-FP1 (4 32-bit r eg i s t e r s)
13-16: base r eg i s t e r s (4 32-bi t r e g i s t e r s ;

PB, SB, IB, XB)
21 I Keys.

22-61 I Storage for nonzero r e g i s t e r s . (See Save
mask, above.)

Fault I 62-63 I Fault vector . Segment #/offset t o
f au l t t ab le for Ring 0.

64-65 | Fault vector . Segment #/offset t o
f au l t t ab le for Ring 1.

66-67 I Reserved for future use.
70-71 I Fault vector . Segment #/offset t o

f au l t t ab le for Ring 3 .
72-73 | Fault vector . Segment #/offset t o

f a u l t t ab le for page f a u l t .
74-76 | Concealed f au l t stack header (FIRST, NEXT,

and LAST po in t e r s) .
77 I Reserved.

100-137 I Concealed s tack. These words can go anywhere
in segment OWNERH; they need not s t a r t a t
locat ion '100. The concealed stack can
contain as many frames as des i red.

9-3 Third Edition

DOC3060-192

Level 600
Header

Level 602
Header

Level 604
Header

Level 606
Header

Level 610
Header

Ready
List

BOL

A

EOL

c
BOL

D

EOL

E

BOL

0

EOL

0

BOL

F

EOL

F

BOL

G

EOL

K

600

600

600

602

602

606 610

610

610

610

Reacty List and Associated PCB Lis t s
Figure 9-1

Third Edition 9-4

PROCESS EXCHMX3E

Headers

The ready list itself is made up of headers, one header for each level
of priority. These headers are allocated in contiguous memory
locations, with the highest priority header contained in the lowest
numbered memory location. Each header, in turn, is made up of two
16-bit pointers. The pointers are called the beginning of list (BOL)
pointer and the end of list (EOL) pointer, and each contains the
address of a PCB in segment OWNERH.

The PCB referenced by a BOL pointer is associated with the first
process having a particular priority. The EOL pointer points to the
PCB of the last process with that particular priority.

A BQL pointer containing a 1 signals the end of the ready list, since
PCB addresses must be even. A BOL pointer containing a 0 signals an
empty level.

Ready List Data Base

The ready list data base is made up of linked lists of POBs whose
associated processes are ready to execute. There is one list defined
for each level of priority; all PCBs contained in that list have the
same level of priority. A list can contain as many processes as can
exist in the system at a time.

The first location in each PCB specifies the process' priority level by
pointing to one of the BOL pointers in the ready list. The second
location contains a forward link to the next PCB in the linked list.
For the last PCB in the linked list (that is, the last PCB in the ready
list with this level of priority), the second location contains 0.

PPA and PPB Registers

The PXM uses the pointer to process A (PPA) and pointer to process B
(PPB) registers to locate the next process to dispatch. Both registers
are 32 bits wide.

PPA always contains information about the currently active process.
Bits 17-32 contain PCBA, the address of the process' PCB. Bits 1-16
contain the level of priority, called Level A. Level A always
specifies the system's highest priority level that has an associated
PCB ready to run. This is because the system's currently running
process is always the highest priority process that is capable of
running.

PPB contains Level B and PCBB, which specify the priority level and the
PCB address, respectively, of the next process to run when execution of
the current process terminates.

9-5 Third Edition

DOC3060-192

Using PPA, PPB, and the Ready List

To show how PPA and PPB are used, suppose Process H is running when
Process J, whose priority is higher than that of Process H, needs to be
serviced. This means that Process J preempts Process H. The PXM
suspends Process H, saves the contents of PPA (which reference Process
H) in PPB, and then services Process J. When Process J completes, the
PXM checks PPB to see what process to run next. PPB identifies Process
H, and so the PXM resumes execution of Process H.

Except when bringing the system up from a cold start, software should
never alter the contents of PPA or PPB. This holds even if PCBA or
PCBB contains 0, indicating invalid register contents. Even if PCBA is
invalid, Level A specifies the highest level of priority that was
executing in the system, and this determines the starting point of a
scan to find the next process to run. When PCBA is invalid, PCBB is
guaranteed to be invalid. Note that PCBB is also invalid when the
system is idle.

Upon cold start, the cold start software loads the PLA register with
the highest level of priority in the ready list. At all other times,
however, Level A specifies the highest level of priority that was last
known to contain a process. All scans of the ready list can begin at
this last known level. Whenever the PXM needs to run a process of
higher priority than that specified in Level A, the PXM loads PPA with
that higher level.

The PXM does not maintain a pointer to the highest priority level of
the ready list. The ready list allocator that starts the PXM, however,
knows the starting address of the ready list. In addition, Level A
always points to either the highest priority level currently in the
system, or the last known highest level. This means that Level A can
be a pointer into the ready list.

If PCBB is valid, Level B points to the next process to be executed
when the current process completes. Note that the priority level of
this next process is lower than or equal to that of the currently
executing process. If PCBB is invalid, the contents of Level B are
unpredictable.

Third Edition 9-6

PROCESS EXCHANGE

WAIT LISTS

Wait lists specify a group of processes that are waiting for an event
to occur. There are two major elements of each wait list:

• A semaphore

• A data base made up of PCBs

Figure 9-2 and the t ex t in the following sect ion describe the
re la t ionsh ip between the semaphore and the wait l i s t PCBs.

Semaphores

Semaphores define an event, such as the completion of a task . The
def in i t ion of the semaphore i s known by a t l e a s t two processes, or by
one process and phantom in ter rupt code. Upon completion of the event,
a NOTIFY ins t ruc t ion changes the value of the semaphore. This change
in value may cause the PXM t o run a new process.

A semaphore cons is t s of two sequential 16-bi t memory loca t ions . The
f i r s t loca t ion contains a WAIT counter, C. If C i s grea ter than zero,
then i t specif ies the number of PCBs on the associated wait l i s t . If C
i s negative, i t specif ies the number of times the event has occurred
without running a process.

The second locat ion contains the address of the f i r s t PCB awaiting
completion of the specified event. Since a l l PCBs a re contained in
segment OWNERH, a 16-b i t pointer i s a l l t ha t i s needed t o identify a
specif ic PCB.

A semaphore can res ide anywhere in memory but segment 0. I t does not
usually res ide i n segment OWNERH.

Wait Lis t Data Base

Each wait l i s t has associated with i t a l inked l i s t of PCBs. The
processes represented by the PCBs a l l share the same semaphore; t h i s
means tha t they are a l l waiting for the same event t o occur.

Note tha t the PCBs in a wait l i s t need not have the same level of
p r i o r i t y , since the wait l i s t uses a pr ior i ty-based queuing algorithm.
This means t h a t processes with higher p r i o r i t i e s a re queued ahead of
those with lower p r i o r i t i e s .

9-7 Third Edition

DOC3060-192

Semaphore Semaphore Semaphore

Semaphores
in memory

PCB'sin
segment
OWNERH

Counter

- 4

BOL

0

Wait List and Associated PCB Lists
Figure 9-2

Third Edition 9-8

PROCESS EXCHANGE

PXM INSTRUCTIONS

Hie two notify instructions, NFYE and NFYB, and the wait instruction,
WATT, are restricted instructions. Therefore, they must be executed in
Ring 0. All three instructions are 48 bits long: bits 1-16 contain an
instruction code, and bits 17-48 contain a 32-bit address pointer to a
semaphore.

The WAIT Instruction

Figures 9-3 and 9-4 show the actions of the WAIT instruction.

As the name indicates, WATT signals the PXM to wait for an event before
executing any more of the currently running process. When WAIT
executes, the processor uses the address pointer contained in the
instruction to reference a semaphore. The processor increments the
counter contained in the addressed semaphore, then looks at the result.

If the result is less than or equal to 0, there are no other processes
waiting for the event defined by the semaphore. In this case, the
currently executing process can continue.

If the result is greater than 0, either the expected result has not
occurred, or the desired resource is not available. The processor
stops executing the current process, removes the associated PCB from
the ready list, and places the PCB on the wait list associated with the
semaphore. The PCB's priority level dictates where on the wait list
the PCB should go. If the wait list already contains PCBs with the
same priority level, the new PCB is placed after the ones already
there.

If the result is greater than +32767, a semaphore overflow fault
occurs.

Note

The processor saves only the contents of the keys, base
registers, and program counter when it adds a PCB to the wait
list. It does not save the contents of the general registers
or floating registers. After this short save the processor
makes the register set used by the exchanged process available
to the next process to run. For this reason, never assume that
the contents of the general registers after a WAIT instruction
executes are the same as they were before WAIT executed.

9-9 Third Edition

DOC3060-192

((H)) = PCB

(T1) = (PCB+1)
(PCB+1) = T2
(BOL) - T1

WLSN AND WLWN
to PCB:
turn off CP timer

I
Short save
under mask

Level A
Level B

I
PCBA = PCBB
PCBB = 0

f Dispatch j

WAIT Instruction
Figure 9-3

Third Edition 9-10

PROCESS EXCHANGE

All \
registers
saved?S

| NO

.YES
o u \ u n o / — i

Shift save
mask left

YES

Set bit in
save mask

I
Store register
inPCB

C RTN J

Save Under Mask Algorithm
Figure 9-4

9-11 Ihird Edition

DOC3060-192

The NOTIFY Instruction

Figure 9-5 shows the actions of NOTIFY.

The two notify instructions, NFYE and NFYB, perform the same sequence
of events. They differ only in the queuing algorithm used: NFYE
queues PCBs at the end of the appropriate rea<fy l i s t priori ty level,
while NFYB queues PCBs at the beginning of the appropriate priori ty
level. In the discussion that follows, NOTIFY encompasses the
operation of both instructions.

NOTIFY signals the PXM that some awaited event has occurred. When
NOTIFY executes, the processor uses the address pointer contained in
the instruction to reference a semaphore. The processor decrements the
counter contained in the semaphore by 1 and checks the resul t .

If the result i s less than 0, no process i s waiting for th is event, so
the processor continues the currently executing process. (If the
result i s less than -32768, a semaphore undeflow fault occurs.)

If the result i s greater than or equal to 0, the processor removes the
PCB at the head of the specified wait l i s t and places i t on the reacfy
l i s t . If the process associated with the PCB moved to the ready l i s t
has a higher level of priority than that of the currently executing
process, the processor will preempt the current one. However, i t does
not remove the current process" PCB from the ready l i s t . In addition,
the processor saves the contents of the preempted process' registers
before starting to execute the new process.

As the above explanation shows, NOTIFY does not always interrupt the
currently executing procedure. However, i t does always make a change
in the specified semaphore.

Third Edition 9-12

PROCESS EXCHANGE

O
X Level >y

/ empty? \ U 2
\ (BOL = 0 1 /

TYES

(EOL) - PCB

\ <*
(PCB + 1) = (BOL)
(BOL) - PCB

' '

/ CBIT \
^ C set

YES

v NO ((EOL)) = PCB
(EOL) = PCB
PCB + 1 = 0

f Dispatch J

NOTIFY Instructions
Figure 9-5

9-13 Third Edition

D0C3060-192

DISPATCHER

The operations performed by the PXM are mostly governed by the
dispatcher. This microcoded routine is responsible for:

• Deciding which process to run next.

• Assigning that process a register set.

• Managing the register file, including saves and restores.

• Turning the process timer on and off.

The section Dispatcher Operation below, describes the details of the
dispatcher's actions.

REGISTER FILES

The 9950 processor contains eight distinct register files. All other
50 Series processors have four register files. Each register file
contains 32 32-bit registers that each have a high half and a low half.
Table 9-2 shows the allocation of the register files and the absolute
memory locations each occupies.

Table 9-2
Register File Allocation

1 Register File

I RFO

1 RF1
I RF2
I RF3
I RF4*
I RF5*
1 RF6*

1 RF7*

Absolute Locs

'0-'37

'40-'77
,100-,137
'140-T77
•200- 237
•240-'277
'300-'337

'340-'377

Use 1

Microcode scratch and system I
registers (set 1 for 9950) |

32 DMA channels |
User register set 1 1
User register set 2 1
User register set 3 1
User register set 4 |
Microcode scratch and system I
registers (set 2) 1

Spare register set I

*For the 9950 processor only.

Third Edition 9-14

PROCESS EXCHftGE

Microcode Register Files

RFO and RF6 are reserved for microcode use. These registers can hold
temporary data, control information, or other such items for the
microcode to use. Some locations are defined for microdiagnostic use.
Tkble 9-3 defines the locations in the microcode register f i l e .

Tfcble 9-3a
Microcode Register File Set 1, RFO, for the 9950

Loc I Contents Loc I Contents

0

1

2

3

4

5

6

7

10

11

12

13

14

15

16

17

TRO

TR1

TR2

TR3

TR4

1R5

TR6

TR7

FR032, TR8

TR9

FR132, TRIO

TR11

REOIV, UCSADDR

RDSAVE

CFF00, C00FF

RATMP

20

21

22

23

24

25

26

27

30

31

32

33

34

35

36

37

RMASAVE

PARRBG1

PARRBG2

PARREG3

PBSAVE

SYSRB31

DSWPARITY

PSWPB

PSWKEYS

PLA, PPA

PLB, PPB

DSWRMA

DSWSTAT

DSWPB

RSAVPTR

9-15 Third Edition

DOC3060-192

Table 9-3b
Microcode Register F i l e Set 2 , RF6, for the 9950

I Loc

1 300

1 301
1 302

1 303

1 304

1 305

1 306

1 307

1 310

I 311

1 312

1 313

I 314

1 315

1 316

1 317

I Contents I

DGRO

DGRl
DGR2

DGR3

DGR4

DGR5

DGR6

DGR7

DGR10

DGR11

DGR12

DGR13

DGR14

DGR15

DGR16

DGR17

(STIBRF1) |

(STLBRF2) |
(RDMX1) |

1 LOC

1 320

1 321
i 322

1 323

1 324

I 325

1 326

1 327

1 330

1 331

1 332

1 333

1 334

1 335

! 336

1 337

Contents |

MINUS1 1

ONE32 1
KMASK, IUART 1

C3FF, C3F |

C8000 |

C0D0D, CB0B0L |

C9C00f C0080 |

CB1E0, |

C6666 I

C10K, ACK2 I

FERRET6 1

FERRET5 |

FERRET4 I

FERRET3 |

FERRET2 |

FERRET1 |

Third Edition 9-16

PROCESS EXCHANGE

Tkble 9-3c
Microcode Register File, RFO, for All Other 50 Series Systems

I Loc

1 o

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 10

1 11

1 12

1 13

1 14

I 15

1 16

1 17

Contents |

•mo |

TRl |

TR2 |

TR3 |

TR4 |

TR5 |

TR6 I

1R7 |

REMX1 |

REMX2 I

USCADDR*,REOIV#|

RSGT1 I

RSGT2 I

RECC1 |

RECC2 |

, RA3MPL# |

I LOC

I 20

1 21

I 22

1 23

1 24

1 25

I 26

1 27

1 30

1 31

1 32

1 33

1 34

I 35

I 36

1 37

Contents I

ZERO, ONE |

PBSAVE |

REMX3 I

REMX4 I

C377 1

MINUS1, MINUS2I

WWAUER |

DSWPARITY 1

PSWPB I

PSWKEYS 1

PPA, PCBA |

PPB, PCBB |

DSWRMA I

DSWSTAT |

DSWPB I

RSAVPTR I

* Used only for the 750 and 850 systems.

The locations for REOIV and RATMPL are
switched on the 2250, 250, 400, and
550-11.

9-17 Third Edition

EOC306 0-192

DMA Channel Register File

The DMA register f i le f RFl, contains 32 channel registers,
shows the format of this register f i l e .

Table 9-4

Table 9-4
DMA Register File (RFl) Format

1 LOC

I 40

1 41

! 42

1 43

1 44

1 45

1 46

1 47

I 50

1 51

I 52

1 53

I 54

1 55

1 56

1 57

Contents

DMA cell

DMA cell

DMA cell

DMA cell

DMA cell

DMA cell

DMA cell

DMA cell

DMA cell

DMA cell

DMA cell

II LOC

00 |

01 I

02 |

03 |

04 |

05 |

06 I

07 I

10 I

11 1

12 I

DMA cell 13 |

DMA cell

DMA cell

14 I

15 I

DMA cell 16 I

DMA cell 17 I

I 60

1 61

I 62

1 63

1 64

1 65

I 66

1 67

I 70

1 71

I 72

1 73

1 74

1 75

1 76

I 77

Contents |

DMA cell 20 |

DMA cell 21 |

DMA cell 22 |

DMA cell 23 |

DMA cell 24 |

DMA cell 25 |

DMA cell 26 1

DMA cell 27 I

DMA cell 30 |

DMA cell 31 1

DMA cell 32 |

DMA cell 33 |

DMA cell 34 |

DMA cell 35 |

DMA cell 36 |

DMA cell 37 1

Third Edition 9-18

PROCESS EXCHANGE

User Register Files

Table 9-6 shows the format of the user register files, RF2 through RF5,
for V, I, R, and S modes. Table 9-5 defines the terms used in Table
9-6.

Table 9-5
Definition of Register File Terms

I Name

1 GRO
1 GR1
I GR2
I GR3
I GR4
I GR5
I GR6
I GR7
1 A
1 B

1 E

1 s

1 x
I FARO

I FLRO

I FAR1

I FLRl

| FACMH

I FACMM

1 L

Contents |

General r eg i s t e r 0 |
General r eg i s t e r 1 |
General r eg i s t e r 2 I
General r eg i s t e r 3 !
General r eg i s t e r 4 I
General reg i s te r 5 j
General r eg i s t e r 6 I
General r eg i s t e r 7 I
Accumulator I
Double-precision and |

long accumulator I
extension I

Accumulator extension!
for MFL,DVL 1

Stack, a l t e rna t e |
index |

Index I
Field address |

r eg i s t e r 0 |
Field length |

r eg i s t e r 0 I
Field address I

r eg i s t e r 1 I
Fie ld length I

r eg i s t e r 1 I
Float ing accumulator, |

mantissa high 1
Float ing accumulator, |

mantissa middle I
Double-precision |

accumulator I

I Name

I FACML

I FAC
1 PB
I SB
I LB
j XB
I DTAR3

I DTAR2
I DTAR1
I DTARO
I KEYS
I MDDALS
I OWNER

I FCODE
| FADDR
| FAW #

I CPUT

1 CLKB

I FACE

1 Y

C o n t e n t s I

Float ing accumulator, |
mantissa low 1

Float ing accumulator |
Procedure base I
Stack base I
Linkage base j
Temporary base I
Descriptor t ab l e I

address , segments j
3072-4095 I

Segments 2048-3071 I
Segments 1024-2047 1
Segments 0-1023 I
Keys 1
Modals I
PCB address of the I

process t h a t owns |
the r eg i s t e r I
contents I

Faul t code 1
Fault address I
Faul t address word I

number I
Process 1024-usec |

timer 1
Uses timer uses b i t s |

1-9 1
Floating accumulator,I

exponent |
Index r eg i s t e r I

9-19 Third Edition

DOC3060-192

Table 9-6
User Register Files (RF2 through RF5)

Location
RF2f RF3, RF4, RF5 V Mode I Mode S, R Modes

100
101
102
103
104
105
106
107
110
111
112

113

114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137

r 140,
r 141,
, 142
t 143,
, 144
, 145
, 146
, 147
, 150
, 151
, 152

, 153

, 154
f 155,
r 156,
r 157,
r 160,
f 161,
r 162,
r 163,
r 164,
r 165,
r 166,
r 167,
r 170,
r 171,
r 172,
r 173,
f 174,
t 175,
r 176,
t 177,

, 200,
r 201,
, 202,
r 203,
f 204,
r 205,
r 206,
r 207,
r 210,
r 211,
r 212,

r 213,

f 214,
r 215,
f 216,
, 217,
, 220,
, 221,
, 222,
, 223,
r 224,
, 225,
, 226,
r 227,
, 230,
, 231,
r 232,
, 233,
r 234,
, 235,
- 236,
r 237,

240
241
242
243
244
245
246
247
250
251
252

253

254
255
256
257
260
261
262
263
264
265
266
267
270
271
272
273
274
275
276
277

L,A,B
E

S,Y

X
FARO
FLR0
FAR1, FACMH
and FACMM

FLR1, FACE
and FACML

PB
SB
LB
XB
DTAR3
DTAR2
OTAR1
DTAR0
KEYS/MDEftLS
CWNER

Fcora:
FADDR, FAW#
TIMER

GR0
GR1
GR2
GR3
GR4
GR5
GR6
GR7
FARO
FLR0
FAR1, FACMH
and FACMM

FLRl, FACE
and FACML

PB
SB
LB
XB
DTAR3
DTAR2
DTARl
DTAR0
KEYS/MOEftLS
CWNER
FCODE
FADER
TIMER

A, B (1,2)

S (3)

X (0)
(13)

FAC0 (4,5)

FAC1 (6)

FB
SB (14,15)
LB (16,17)
XB
DTAR3 (10)
DTAR2
DTAR1
DTfiRO
KEYS/MODALS
OWNER
FCODE (11)
FADDR (12)
TIMER

Note

User register sets RF4 and RF5 are for the 9950 only.

The twenty-fifth location in each user register set specifies OWNER,
the address of the PCB associated with the process that owns the
register set. Note that bits 1-16 of OWNER specify OWNERH, the number
of the segment containing the ready list and the PCBs. Make sure that

Third Edition 9-20

PROCESS EXCHANGE

OWNERH contains the proper value in both user register sets BEFORE
entering process exchange mode.

Directly Addressing A Register Set

To address the register file directly, you must use the LDLR/STLR
instructions. For more information, refer to the descriptions of LDLR
and STLR in Chapters 13 and 14. Some register set locations can be
addressed as memory locations in some addressing modes as well. See
the Address Traps section in Chapter 3 for more information on this
topic.

PROCESS INTERVAL TIMER

The process interval timer is a 48-bit number that represents the time
that has passed since this process began executing (or, for system
processes, the time since cold start). The timer represents time in
units of 1.024 milliseconds. Bits 1-42 of the timer represent the
time; bits 43-48 are reserved for future use.

Four PCB locations and two register file locations contain timer
information. Table 9-7 describes these locations and their contents.

Table 9-7
Timer Control Words

PCB Loc Name Contents

10-11

16

17

Elapsed Timer
(ETH, ETL)
Interval Timer
High (ITH)

Interval Timer
Low (ITL)

Total time used by th is process
in units of 1.024 msecs.

Copy of TIMERH from location
30 in the current register
se t . This value i s the two's
complement of the number of
1.024 msec intervals le f t
before the end of the
timeslice.

Bits 1-10 contain a copy of
TIMERL from location 30 in
the current register se t .
This value i s the amount of
process time used in units of
one usee. Bits 11-16 are
reserved.

9-21 Third Edition

EOC3060-192

The 550-11, the 1450, the 850, and the 9950 use a timer accurate to the
microsecond. The 2250, the 250-11, and the 750 process interval timer
is accurate to the millisecond.

The process timer represents the amount of time that has passed in the
current timeslice. The interval timer contained in the register file
locations represents the amount of time remaining in this timeslice.
Figure 9-6 shows how to use these two values to calculate the time that
has passed since the last reset.

load L with value of ET
save the current value of ET at location SET
load A with the reset value
reset the timeslice
save the reset value in CURRTS, load A with

previous reset value
find difference between new, old reset values
form 2's comp of contents of A
position for addition
add difference of reset values to contents of BT
subtract old value of EI from contents of L
L now specifies the time that has passed since
the last timer reset.

I LDL
I STL
I LDA
I RES
I IMA

I SUB
I TCA
I PIDA
| ADL
I SBL

ET
SET
RESET

CURRTS

RESET

ET
SET

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Timer Example for 1450, P850, and 9950
Figure 9-6

The 1450, the 550-11, the 850, and the 9950 support two instructions
that manipulate the process timer. Table 9-8 describes these
instructions.

Table 9-8
Process Timer Instructions

I Mnem

1 RTS

I STTM

Name

Reset
Timeslice

Store
Process Time

I Modes

1 v

1 v

Description 1

Adds the contents of A, the |
interval timer, and the |
elapsed timer and stores |
the result in the elapsed |
timer. Loads the contents j
of A into the interval j
timer. j

Stores the contents of the |
process timer into memory. |

Third Edition 9-22

PROCESS EXCHANGE

DISPATCHER OPERATION

As mentioned earlier, the dispatcher governs most of the actions of the
PXM. These can be divided into the following steps:

1. Turning off the process interval timer.

2. Choosing a process to run.

3. Selecting a user register set for that process.

4. Turning the process interval timer back on.

The paragraphs below elaborate on each of these steps.

Step 1. Turning off the Process Interval Timer

As soon as the dispatcher begins to execute, it turns off the process
interval timer. This timer is located in bits 1-16 (2250, 250-11,
550-11, and 750) or bits 1-26 (1450, 550-11, 850 and 9950) of location
'30 in the current register set. It contains a negative number
specifying the amount of time left in the current timeslice. On each
tick, this negative value is incremented by 1; when the incremented
value reaches 0, the dispatcher sets bit 16 in the PCB abort flags to
cause a process fault, signalling the end of this timeslice.

Step 2. Choosing the Next Process to Run

PCBA, contained in PPA, holds information about which process the
dispatcher should dispatch next. When the dispatcher is first
activated, it checks PCBA; if PCBA contains a nonzero value, it
specifies a valid PCB and the dispatcher will dispatch the associated
process.

If PCBA contains zero, it is invalid and the dispatcher checks PPB for
a nonzero value. If PPB is valid, the dispatcher will dispatch that
associated process.

If PPB is invalid, the dispatcher must scan the ready list for the PCB
of the next process to dispatch. The scan begins at the level
specified by Level A in PPA. If the dispatcher finds a PCB, it changes
Level A to reflect the level of the found PCB and dispatches that
process next. If it finds no PCB, the ready list is empty and the
dispatcher idles.

9-23 Third Edition

DOC3060-192

Step 3. Manipulating User Register Sets

Once the dispatcher has identified the next process to dispatch, it
must allocate a user register set to the process. Since there are only
a finite number of register sets, the dispatcher may have to swap one
register set for another; the new process will require a register set
other than that used by the last process. Figure 9-7 shows a flowchart
of the allocation algorithm the dispatcher uses. The text in this
section elaborates on the figure.

The dispatcher first checks whether the process to be dispatched owns
the current register set. It looks at the contents of bits 17-32 of
OWNER (location 25 in the current register file). These specify the
address of the PCB whose associated process owns that register set. If
OWNERL specifies the address of the PCB associated with the next
process to run, then this process owns the current register set. The
dispatcher makes no changes in the current register set before
dispatching the next process.

If OWNERL specifies the address of some other PCB, the next process to
be dispatched does not own the current register set. For 50 Series
systems, dispatcher makes the other user register set the current
register set.

For the 9950, the dispatcher reads the contents of word 5 in the PCB
associated with the next process to run to find the number of the
register set this process used last. The dispatcher checks OWNER in
the register set specified by word 5 to see if the next process to run
owns this register set. If it does, the dispatcher must make this
register set the current one. Figure 9-8 shows register set allocation
on the 9950.

If the next process to run does not own the last register set it used,
the dispatcher must choose one for it. It increments the number of the
current register set by 1 (modulo 4) to form the number of the new
register set, then makes this register set the current one.

3A. The Save Done Bit; In the case where the process does not own the
current register set, the dispatcher must load the values of the new
process1 registers into the current register set. Before it can do
this, it must determine whether it must save the old contents of the
current register set. Bit 16 of the keys contains the Save Done bit.
If this bit contains a 0, the dispatcher must save the old contents of
the current register set before restoring the new process to run.
After the save, the dispatcher loads the new data into the current
register set, resets bits 15-16 of the keys (the In Dispatcher bit and
the Save Done bit) to 0, and loads the program counter with the
contents of PB.

Third Edition 9-24

START

PROCESS EXCHANGE

YES

YES

Process
owns current

reg set?

Process
owns other

reg set?

NO

Other
reg set's

save done
bit=1?

NO

Current

reg set's
save done

bit=1?

NO

Save contents
of other
reg set

I
Restore
process into
this reg set

YES

YES

(Dispatch A
process J

Register Set Allocation Algorithm
(All Processors Except 9950)

Figure 9-7

9-25 Third Edition

DOC3060-192

YES Set that
reg set to
current reg set

Point to
reg set of
previous user

Look at
next reg
set (mod 4)

YES Point to
reg set owned
by previous user

Set next
reg set to
current reg set

Save contents
of this
reg set

J
Restore
process into
this reg set

(Dispatch ^
process J

Register Set Allocation Algorithm
for the 9950

Figure 9-8

Third Edition 9-26

PROCESS EXCHANGE

If the Save Done bit contains a 1, the old contents of the current
register set have been saved in the PCB and register file memory
locations, so no further save needs to be done before the new data is
loaded. After loading the registers, the dispatcher resets bits 15-16
of the keys and loads the program counter from PB.

3B. Saving the Current Register Set; When the dispatcher must save
the current register set before loading in new data, it saves only the
registers that contain nonzero values. The contents of these nonzero
registers are packed together and loaded into the save area. The save
mask determines which registers have had their contents saved and the
exact location of those contents in the PCB.

Only the currently active register set contains valid information in
the modals field. Whenever the processor switches register sets, the
microcode automatically copies the contents of the current modals field
into the new register set.

Step 4. Turning On the Process Interval Timer

The last thing the dispatcher must do before dispatching a process is
to turn on the process interval timer. The dispatched process begins
execution immediately after.

FETCH CYCLE TRAPS

At various points during dispatcher execution, the processor checks for
fetch cycle traps, to allow the system to handle external interrupts.
For more information about this topic, refer to Chapter 11, Interrupts,
Faults, Checks, and Traps.

SUMMARY

This chapter described the act ions t ha t occur during process exchange
for a l l single-stream processors. The next chapter describes how the
PXM i s implemented on the dual-stream 850.

9-27 Third Edition

10
Process Exchange

on the 850

The previous chapter described process exchange for the single-stream
members of the 50 Series family. On the dual-stream 850, however,
process exchange i s more complex because:

• There are two processing u n i t s , the ISUs.

• Two processes can execute a t once (one per ISU).

• The two ISUs share one se t of PCBs, one ready l i s t ,
and one se t of wait l i s t s .

This chapter e laborates on each of these po in t s . I t a l so describes the
elements of the 850 PXM, and describes the ac t ions of the 850
dispatcher .

INSTRUCTION STREAM UNITS

Before beginning t h i s discussion, note the use of two terms. This ISU
refers to the ISU on which a process of i n t e r e s t i s current ly
executing. The Other ISU designates the second system ISU. Throughout
t h i s discussion, This ISU i s assumed t o be the master ISU; The Other
ISU, the slave ISU.

As mentioned in Chapter 1, the 850 contains two ins t ruc t ion stream
un i t s , or ISUs, each of which i s equivalent t o a 750 CPU. The ISUs
operate independent of each other and a re capable of performing any
task any 750 processor can perform. The one exception i s t h a t only one

10-1 Third Edition

D0C3060-192

ISU performs I/O. This means that if This ISU is currently incapable
of performing I/O, any process running on it that wants to request I/O
service is moved to The Other ISU.

TWo Executing Processes

Since there are two ISUs per system, two independent processes can be
executing at the same time. These two processes are always the two
having the highest level of priority in the entire system. Ensuring
that the processes with the highest priority are the ones that are
selected to execute makes dual-stream process exchange more complicated
than its single-stream complement. It is further complicated by the
fact that a process can be locked to one ISU, which means that it can
only execute on a particular ISU (such as the backstop or supervisor).
See the section, The PX Lock, below, for more information about this
topic.

One Set of Process Exchange Data Structures

To aid the ISUs in selecting the highest priority processes, the 850
uses one ready list, one group of wait lists, and one group of PCBs for
both ISUs. This means that an ISU has to scan only one list to
determine the processes available to execute. It also means the system
has to maintain only one set of information, eliminating the need to
check and update any duplicates. In addition, it means that a process
not locked to one ISU may execute faster, since whichever ISU becomes
available first can execute it.

850 PROCESS EXCHANGE ELEMENTS

The data structures of the 850 PXM include:

• PCBs

• Ready l i s t

• Wait l i s t s

• WATT and NOTIFY ins t ruc t ions

• Dispatcher

Like its single-stream counterpart, the 850 PXM also manipulates the
register file and the process interval timer. In addition, the 850 PXM
uses the value CPUNUM and the PX lock to facilitate its operations.

Third Edition 10-2

PROCESS EXCHANGE ON THE 850

The CPUNUM

CPUNCJM i s a 16-b i t number stored in b i t s 1-16 of loca t ion '33 of the
current r eg i s t e r s e t . This number dis t inguishes the two ISUs. CPUNCJM
contains '41004 to represent the This ISU and '102010 to represent The
Other ISU.

The PX Lock

The PX lock ensures that only one ISU at a time has access to and can
modify the contents of the process exchange data structures. This lock
is a 16-bit number. When the lock contains 0, then either ISU can
claim the right to access the structures. When it does not contain 0f

the lock contains the same value as CPUNUM; i.e., the ID for one of
the ISUs. Only the ISU specified by the lock can access the
structures; the second ISU must wait until the first ISU is through
its current task before gaining access.

PCBs

The process control block format for the 850 is nearly identical to
that of the single-stream PCBs. Only a few locations contain added
information, as shown in Table 10-1.

OWNERH (bits 1-16 of location 25 in the current register set) specifies
the segment containing all the PCBs. Each PCB contains at least 64
locations and must be aligned on a 128-byte boundary. The starting
address of the PCB is also the process ID.

No PCB (or any other data structure the PXM uses) should be contained
in locations 0-'37 of a segment. Each addressing mode handles address
traps differently; avoiding these locations ensures that all
addressing modes handle process exchange in the same way.

10-3 Third Edition

DOC3060-192

Table 10-1
PCB Format for the 850

Section Word #
(octal)

Contents

Control 0

1

2-3

Process
State

6-7

10-11

Level pointer to BOL in ready list.

Link pointer to next PCB, or 0.

Segment #/offset of the semaphore on whose
wait list this process is currently.
A segment # of 0 indicates that this PCB
is on the ready list.

Abort flags used to generate a process fault
when this PCB is dispatched.
Bits 1-15: Set by the software.
Bit 16: Process interval timer overflow.

Bits 1-4: Temporarily restrict process
from running on one of the ISUs:
0000 = no restrictions
0100 = bar from This ISU
1000 = bar from The Other ISU

Bit 5: Reserved for future use.
Bits 6-7: If 01, this process last ran on

This ISU; if 10, The Other ISU.
Bit 8: If 0, the registers for this

process has not been saved in
the PCB. If 1, the registers
have been saved in the PCB.

Bits 9-11: Indicates which register set
this process used last. Uses
the same format as the modals
CRS field.

Bit 12: Reserved for future use.
Bit 13-16: Process is locked to:

0000 = neither ISU
0100 = This ISU
1000 = The Other ISU

Reserved for future use.

Process elapsed timers. This value is added
to contents of PCB location '16 to give
the number of msec this process has run.
RTS can alter this location.

12-15 DTAR2 and DTAR3.
only restored.

These are never saved,

Third Edition 10-4

PROCESS EXCHANGE ON THE 850

Table 10-1 (continued)
PCB Format for the 850

I Section | Word #
I | (octal)

1 1 16

1 1 17

1 1 20

1 1 21

I 1 22-61

I Fault | 62-63

1 1 64-65

1 66-67

1 I 70-71

1 1 72,73

I I 74-76

II 1 77

1 | 100-137

Contents I

In terval t imer, b i t s 1-16. 1

In terval t imer, b i t s 17-32. 1

Save mask. PXM uses t h i s t o avoid saving or |
res tor ing r e g i s t e r s containing zeroes. I
Format of the word i s : 1

1-8: GR0-GR7 (8 32-bi t r eg i s t e r s) |
9-12: FP0-FP1 (4 32-bi t r eg i s t e r s) j
13-16: base r e g i s t e r s (4 32-bi t r e g i s t e r s |

FB, SB, IB, XB) i

Keys. 1

Storage for nonzero r e g i s t e r s . (See mask, 1
above.) 1

Faul t vector . Segnent #/offset t o I
f au l t t ab le for Ring 0. 1

Faul t vec tor . Segment #/offset t o I
f a u l t t ab le for Ring 1. 1

Reserved for future use. 1

Faul t vector . Segment #/offset t o I
f au l t t ab le for Ring 3 . 1

Faul t vector . Segment #/offset t o |
f au l t t ab le for page f a u l t . 1

Concealed f au l t stack header (FIRST, NEXT, j
and LAST p o i n t e r s) . 1

Reserved. 1

Concealed s tack. These words can go anywhere)
in segment CWNERH; i . e . , they do not have |
t o s t a r t a t locat ion '100. The concealed |
stack can contain a s many frames as |
desired. I

10-5 Third Edition

DOC306 0-192

Ready List and Wait Lists

The wait lists used in the 850 are identical to those found in the
other 50 Series processors. The ready list is also identical except
for the process exchange registers it uses.

Each ISU contains four process exchange registers. Two specify
information about the currently running processes, and two specify
information about the next processes to run. All four are 32 bits
wide.

MY_J>PA and 0THER_PPA define either the currently running process, or
the process that Is about to run. MO>PA represents this process for
This ISU; OTHER_PPA, for The Other ISU. Bits 1-16 of each register
contain the process* level of priority; bits 17-32, the starting
address of that process' PCB. Bits 1-16 of each register are
guaranteed to always point to the ready list priority level that
contains the highest priority process that is able to execute for the
appropriate ISU.

The MY_J>PNEXT register specifies the next process to run on This ISU;
OTHER_J>PNEXT, for The Other ISU. Like their single-stream counterpart
(PPB), bits 1-16 specify the priority level of the next process to run,
and bits 17-32 identify the PCB of this process. A nonzero value in
bits 1-16 indicates valid contents.

WAIT and NOTIFY Instructions

These instructions perform the same basic functions as their
single-stream counterparts. However, their tasks also include
obtaining the PX lock and loading the PXM registers with the correct
information so that each ISU can correctly determine its own state and
that of the second ISU. Figures 10-1 and 10-2, together with the text
in this section, give simplified versions of how the 850 WATT and
NOTIFY instructions work.

WAIT: WAIT tells the PXM to wait for an event to occur before
executing more of the currently active process. The address pointer
contained in WAIT specifies a semaphore on which the process is to
wait. WAIT obtains the PX lock, then increments the semaphore count by
1.

If the incremented value is less than or equal to 0, WATT releases the
PX lock arid performs no other actions. If the incremented value is
greater than 0, WAIT removes the process' PCB from the ready list and
places it on the appropriate wait list acording to the process'
priority. WAIT loads locations 2-3 of the process' PCB with the
semaphore address and saves the process' base registers into its PCB.

After the short save, WATT either runs the next process, if it knows
it, or invokes the dispatcher to choose a new process to run.

Third Edition 10-6

PROCESS EXCHANGE ON THE 850

Get PX lock.
Count <- Count +1

YES

Remove process' PCB
from ready list. Place
it on appropriate
wait list

I
Put semaphore address
in PCB locations 2-3.
Save registers in PCB

850 WAIT Instruction
Figure 10-1

10-7 Third Edition

DOC3060-192

Get PX lock.
Count <- Count - 1

Halt execution
of currently
running process.

I
Remove first process'
PCB from wait list.
Put it on ready list

Determine 2 highest
priority processes.
Run them.

T
DONE

Release PX
lock

DONE

Call dispatcher

The 850 NDTIFY Instruction
Figure 10-2

Third Edition 10-8

PROCESS EXCHANGE ON THE 850

NOTIFY; The 850 NOTIFY is significantly more complex than the
single-stream WAIT. Its purpose is deceptively easy to state: NOTIFY
ensures that the two currently running processes in the system are the
two highest priority processes that are able to run. To do this,
NOTIFY notifies the process that is at the top of the associated
semaphore's wait list, then compares the priority level of this process
with those of the two processes currently running.

Step 1. Finding a Process to Notify; When it executes a NOTIFY
instruction, the PXM first acquires the PX lock. It then uses the
pointer contained in the NOTIFY to reference a semaphore and decrement
the semaphore count by 1. If the decremented value is less than 0, the
PXM releases the PX lock and the NOTIFY is done.

If the decremented value is greater than or equal to 0, then the PXM
must notify a process. It ceases to execute the current process and
removes the first PCB on the semaphore's wait list. It places the PCB
at the beginning or end of the appropriate level of the ready list as
indicated by the NOTIFY.

Step 2. Choosing a Process to Run; The PXM must now choose a new
process to run. If the contents of MY_J>PNEXT are invalid, control
transfers to the dispatcher, which determines the next process to run.

If the contents of MY_PPA are valid, the PXM must decide if the process
it just notified is of higher priority than either of the processes
currently executing. Six cases exist:

A<C and B<C
C<B<A
C<A<B
C<A=B
A<C<B
B<C<A

where A is the process currently running on This ISU, B is the process
currently running on The Other ISU, and C is the process that was just
notified.

These cases can become quite involved, depending on where each of the
three processes can run, and depending on what actions the PXM has
taken previously. This discussion will explain two simple examples.

Suppose the first case were true. This means that C has the lowest
priority of the three processes and will not be run. All the PXM needs
to do is to decide on which ISU C is to be run.

If C can be run on only one ISU and has a higher priority than the
process that ISU is to execute next (as specified in that ISU's
MY_PPNEXT register), the PXM updates that ISU's MY_J>PNEXT register so
that it points to C. Therefore, that ISU will execute C next.

10-9 Third Edition

DOC3060-192

If C can be run on either ISU, the PXM updates MYJPPNEXT and
OfIHER_PPNEXr on both ISUs so that C will execute as soon as either ISU
is free.

As another example, suppose case 2, C<B<A, were true. Here C has the
highest priority of all, and should run on This ISU, if possible. A
simplified algorithm for this case is shown in Figure 10-3.

If C can run on This ISU
then if A can run on The Other ISU

then if oraER_PPNEXT is of lower priority than A
then invalidate OTHER_PPNEXT

set MYJ>PA to A
set PPA to C and go to the dispatcher.

If C can run on The Other ISU,
*** then if The Other ISU has received the most recent scan

then send this scan message. Scan identifies C as the
process to consider running;

else if priority of process in last scan is greater than C's
then return;
If priority of process in last scan is less than C's
then go to *** above;
If priority of process in last scan equals C's
then call dispatcher to scan ready list to

pick up the process queued first and return.

Sample NOTIFY Algorithm
Figure 10-3

Dispatcher

Like its single-stream counterpart, the 850 dispatcher selects the next
process to run and sets up the registers and conditions that process
needs to run. The section, Dispatcher Operation, below, explains its
actions.

Register Sets

Each ISU contains a register f i l e identical to the single-stream
register f i l e . Each contains two user register sets designated as the
current register set (CRS) and the other register set (ORS). Both of
these have tEi" same format as the user register sets on the
single-stream processors.

Third Edition 10-10

PROCESS EXCHANGE ON THE 850

Microsecond Timer

The 850 process timer is accurate to the microsecond. It is contained
in two registers, TIMERH and TIMERL. TIMERH contains the two's
complement of the millisecond portion of the clock. Bits 1-10 of
TIMERL contain the microsecond part. Bits 11-16 of TIMERL are never
changed.

Every 1.024 milliseconds the microsecond time overflows, causing a
fetch cycle trap. The contents of TIMERH are incremented; when the
contents of TIMERH overflow, a process abort fault occurs and stops the
current process from being executed.

DISPATCHER OPERATION

When a process completes execution or is aborted, the dispatcher begins
to execute to select the next process to run. This discussion assumes
that the PX lock contains the number of This ISU, so This ISU has the
right to access the PXM data structures.

Step 1. Finding a Process to Run

The dispatcher first checks the contents of MY_J>PA. If bits 17-32 are
0, the contents are invalid, as are the contents of PPNEXT. To find
the next process to run, the dispatcher scans the ready list beginning
at the level specified in bits 1-16 of MY_J>PA.

The dispatcher scans the ready list until it finds the first process
that is neither locked from This ISU, nor currently running on The
Other ISU. Any processes the dispatcher finds during the scan that are
temporarily locked from This ISU are unlocked by setting the lock field
in the process1 PCB location 5 to 0. If the ready list contains no
suitable process, the dispatcher releases the PX lock.

If the dispatcher finds a process on the ready list to run, it next
checks for two things:

• Does the OTHER_J>PNEXT point to this process?

• Has This ISU sent a scan message to The Other ISU suggesting
that The Other ISU run this process?

If the OTHER_PPNEXT points to this process, This ISU will not run this
process. It will be run at a later date on The Other ISU.

If a scan message was sent, the dispatcher invalidates the message so
that The Other ISU will not run this process. Once the message is
invalidated, or if no such message was sent, the dispatcher loads
MY_j>PA with the level and PCB starting address of this process.

10-11 Third Edition

EOC3060-192

Step 2. Locating Register Values and a Register Set

Once MY_J*PA contains valid information, the dispatcher must locate the
register values this process needs for execution, and must find a
register set to contain them. The values can be in one of three
places:

• In a register set on This ISU

• In a register set on the Other ISU

• In the process1 PCB

The dispatcher checks the CRS field in the process" PCB to see if
either of This ISU's register sets or either of The Other ISU's
register sets already contain the process' register values. If either
of This ISU's register sets do, the dispatcher makes that set the CRS.

If either of The Other ISU's register sets contain the process' values,
the dispatcher sends a message to The Other ISU telling it to save the
contents of that register set into the process' PCB. The dispatcher
then releases the PX lock so that The Other ISU can save the values.
After a short time, This ISU regains the PX lock and tries to choose a
register set from the beginning.

If none of the register sets on either ISU already contains the
process' register values, the dispatcher must load them from the
process1 PCB. The dispatcher chooses a register set on This ISU by
checking the Save Done bit of both the CRS and ORS.

If the Save Done Bit of the CRS contains a 1, the CRS is available.
The dispatcher loads the process1 values from the PCB into the CRS.

If the CRS is not available, the dispatcher checks the Save Done bit of
the ORS. If the Save Done bit contains a 1, the dispatcher makes ORS
the CRS, then loads in the process' register values.

If neither the CRS nor the ORS is available (both Save Done bits
contain 0), the dispatcher saves the contents of the ORS into the
appropriate PCB, makes ORS the CRS, then loads the process' register
values into it.

Step 3. Updating Information and Running the New Process

After choosing and loading (if necessary) a register set, the
dispatcher loads location 5 of the process' PCB with the ID of the ISU
on which the process most recently ran. It also loads the PCB with the
location of the process' register values, and sets bits 15-16 of the
keys to 0. The dispatcher then releases the PX lock and enables the
microsecond timer. The new process begins to execute.

Third Edition 10-12

PROCESS EXCHANGE ON THE 850

SUMMARY

This chapter explained how the dual-stream 850 processor performs
process exchange. The next chapter describes how al l members of the 50
Series family handle interrupts, faults, checks, and traps.

10-13 Third Edition

11
Interrupts, Faults,
Checks, and Traps

Most of the time, the processor executes instructions contained in one
process, then goes on to those contained in another. At some point,
however, another part of the system may require service; when this
happens, the processor has to break the flow of control within the
currently running process and service whatever has interrupted. This
chapter describes the types of breaks that can occur, and how the 50
Series processors service them.

BREAKS

Breaks in execution can be caused by four events:

• An interrupt

• A fault

• A check

• A trap

The first three types of events are breaks in software execution. The
last, the trap, is a break in microcode execution.

11-1 Third Edition

DOC3060-192

The way in which the processor services a break depends on its type and
on the current process exchange mode of the machine. When the PXM is
disabled, the processor handles all software breaks in the same way.
Interrupts, checks, and faults all vector through a dedicated Sector 0
location to reach their handlers.

When the PXM is enabled, the processor handles each software break with
a different protocol. Table 11-1 defines the software breaks and
briefly describes the protocols that the machine uses to service them.

Microcode breaks are handled differently. When a trap occurs, it may
cause a software break, which the processor services to clear the
microcode break. If no software break is necessary, the processor
handles the microcode break in a fashion transparent to the currently
executing process.

Table 11-1
Summary of Software Breaks

I Break

I Interrupt

1 Fault

I Check

Definition

The processor receives
a signal from an
external device
requiring service.

The currently executing
software requires
software intervention.

The processor detects
an internal consis­
tency problem requiring
software intervention,
such as an integrity
violation, a reference
to a nonexistent memory
module, or a power
failure.

How Serviced 1

The currently executing I
software does not usually I
cause an interrupt. Code |
especially designed for the|
purpose services the 1
interrupt outside the |
context of the currently 1
executing process. 1

The currently executing I
software usually handles a |
fault by mirroring a 1
procedure call to fault I
code. This code services |
the fault within the 1
context of the current I
process. 1

As with interrupts, code I
designed especially for 1
the purpose services the I
check outside the context 1
of the currently executing I
process. 1

Third Edition 11-2

INTERRUPTS, ETC.

INTERRUPTS

Interrupts take one of two forms: external interrupts, or memory
increment interrupts. (Memory increment interrupts are not supported
on the 9950.) As mentioned above, actions depend on whether the PXM is
enabled or disabled.

External Interrupts, PXM Disabled

If an external interrupt occurs when the PXM is disabled, the processor
uses either the address specified by the controller (vectored interrupt
mode) or the contents of location '63 (standard interrupt mode) to
reference a vector in segment 0. This vector points to the interrupt
response code (IRC), which is also located in segment 0.

To reach the IRC, the processor jumps indirectly through the vector, as
if it had executed a JST instruction in 64R mode. The JST saves the
current contents of the program counter in the location specified by
the vector contents before transferring control to the IRC. IRC
execution begins at the location specified by the vector plus 1.

Interrupts are disabled when the IRC begins execution, but all other
keys and modals remain unchanged. In vectored mode, the IRC must clear
the active interrupt before reenabling interrupts. After the clear,
the IRC reenables interrupts, saves the current contents of any
register it intends to use, and completes the rest of its operation.
When it is done, it transfers control back to the location whose
address is contained in the first IRC location.

In standard interrupt mode, only one IRC can execute at a time, so the
IRC has nothing to clear or save (other than the contents of any
registers it intends to use) before reenabling interrupts. As in
vectored mode, the IRC completes the rest of its operation and
transfers control back to the location whose address is contained in
the first IRC location.

External Interrupts, PXM Enabled

If an external interrupt occurs when the PXM is enabled, the processor
uses the address sent by the controller as a 16-bit offset into the
interrupt segment, segment 4. The microcode saves the current value of
PB and the keys in the phantom code scratch registers — PSWPB and
PSWKEYS, respectively — turns off the microsecond timer, and inhibits
interrupts. The address mode is then set to 64V, Ring 0 is entered,
and interrupts are disabled — i.e., bits 1-16 of PB are set to 4, the
keys are set to '14000, and the E (Enable Interrupt) bit of the modals
is reset to 0. The IRC in segment 4 (called the immediate IRC, or
phantom interrupt code) begins to execute.

11-3 Third Edition

DOC3060-192

Phantom Interrupt Code; Phantom interrupt code gives the processor a
chance either to perform a trivial task to service the interrupt, or,
as happens most often, merely to notify the real interrupt handler. It
is usually only a few instructions long. An example of what the
phantom interrupt code might look like is shown in Figure 11-1.

I Code Purpose

I Perform trivial
I task

1 Notify

Code Sequence

STA address
EIO address

ABQ address

LDA address
IRTC

INBC address

Comments I

Save A register. |
Read a 16-bit quantity I
from a device. 1

Add entry to the bottom |
of a queue. 1

Restore A register. |
Clear interrupt from I/O I
bus, enable interrupts,!
and return to normal j
execution. |

Notify a process, clean |
up the I/O bus, and |
enable interrupts. I

Sample Phantom Interrupt Code Sequences
Figure 11-1

Some restrictions govern phantom interrupt code. Since it has no PCB
that PPA can reference, it does not belong to a process. Also, phantom
interrupt code saves only PB and the keys. If another interrupt were
to occur before the phantom interrupt code completed service to a
previous interrupt, the contents of PSWPB and PSWKEYS would be
overwritten, destroying information about the first interrupt.
Therefore, interrupts must remain inhibited until the phantom interrupt
code completes.

Because of these restrictions, the phantom interrupt code can
completely service only very simple interrupts. If more complete
service is required, the phantom interrupt code only turns off the
controller's interrupt mask, clears the currently active interrupt, and
notifies the real interrupt handler.

Returning From an External Interrupt; When the IRC completes, it
issues either an interrupt return (IRTN, IRTC) if completely finished
or an interrupt notify (INEN, INEC, INBN, INBC) to notify the real
interrupt handler. The IRTN restores the keys and PB with the saved
contents of PSWKEYS and PSWPB, respectively, and enables interrupts,
leaving the machine state as it was before the interrupt. (Restoring

Third Edition 11-4

INTERRJPTS, ETC.

the keys also restores the addressing mode to what it was before the
interrupt.) The interrupt notify (INOTIFY) instructions put the
machine back to the pre-interrupt state by reloading PB and the keys
from PSWPB and PSWKEYS, enabling interrupts, and executing the
appropriate notify instruction. This allows the process exchange
mechanism to work as if the phantom interrupt code did not happen,
returning to the code originally interrupted.

All phantom interrupt code sequences must clean up the I/O bus by
issuing a CAI signal before interrupts are reenabled. This can be done
by using IRTC, INEC, or INBC instructions as appropriate.
Alternatively, a CAI can be issued in the IRC before exiting phantom
interrupt code through an IRTN, INEN, or INBN instruction as
appropriate.

Memory Increment Interrupt

Service for this interrupt is always the same, regardless of the
process exchange mode. The processor uses the address supplied by the
controller as a 17-bit offset into either of the I/O segments, 0 or 1
(if in mapped I/O). This offset addresses a halfword whose contents
the processor increments by 1. If the incremented value does not equal
0, the processor does nothing more and returns.

If the incremented value does equal 0, the processor generates an
end-of-range (EOR) signal on the I/O bus and returns. The requesting
device typically generates an external interrupt when the EOR is
generated.

Unlike the external interrupt, the memory increment interrupt cannot be
masked out and can occur at any fetch cycle break.

Note that memory increment interrupts are not supported on the 9950.

Returning From a Memory Increment Interrupt; While the PXM mode does
not affect service of this interrupt, it does determine where the
processor returns to upon service completion. When the PXM is enabled,
the processor returns to the fetch cycle or the dispatcher, depending
on where the interrupt occurred. In the case of the dispatcher, the
processor always returns to the top of the dispatcher and does not
change the PB or KEYS.

When the PXM is disabled, the processor always returns to the fetch
cycle.

11-5 Third Edition

DOC3060-192

FAULTS

Faults occur when software tries to perform an action that cannot
complete without special help. Examples of faults are page faults
(where a reference is made to a page not currently loaded in physical
memory) and stack overflow or underflow. In all, there are eleven
classes of faults that can occur. Table 11-2 summarizes these classes
and their subdivisions, and shows the corresponding fault that occurs
on the Prime 300.

Table 11-2
Fault Classes

I Fault

I RXM

I Process

I Page

1 SVC

1 UII

I ILL

1 Semaphore
I (9950 only)

I Access

I Arithmetic

I Stack

I Segment

j Pointer

50 Series Systems

Restrict mode violation

Abort flags word does not
equal 0 in PCB on
dispatch

Page fault (page not in
memory)

Supervisor call (superceded
by direct entry calls)

Unimplemented instruction

Illegal instruction

Semaphore overflow or
underflow

Violation of segment
access rights

All FLEX, DEX, and IEX
(arithmetic exceptions)

Stack overflow/underflow

1: Segment # too big
(SDT too short)

2: Missing segment (SEW
fault bit set)

Fault bit in pointer set

Prime 300 I

Same |

n/a I

Same I

Supervisor call |

Same I

Same 1

n/a I

Page write violation |

FLEX I

Procedure stack |
(S reg) underflow I

n/a 1

n/a 1

n/a 1

Third Edition 11-6

INTERRUPTS, ETC.

Fault Handler

The software routine that services faults is called the fault handler.
It is made up of two parts: a group of entrances (one entrance for
each type of fault) and a common fault routine. When a fault occurs,
execution begins at the entrance for that fault type. The entrance
microcode sets up conditions applicable to the fault, then transfers
control to the common handler. This arrangement provides service for
several types of faults while avoiding the expense of many different
handlers.

There are four elements in the fault mechanism:

• Four fault vectors

• Four fault tables

• The Call Fault Handler (CALF) instruction

• The concealed stack

The microcode routine uses these four elements to convert faults into
procedure calls to the various service routines.

Fault Vectors

The fault vectors occupy locations *62-'65 and '70-*73 in the PCB.
Each vector contains the address of a fault table. (See Fault Tables,
below.) The format of the vectors is identical to that of a 32-bit
indirect pointer, as shown in Figure 3-3 in Chapter 3.

The vectors provide a choice of how to handle a particular fault. For
example, one process may need to have Ring 0 service a pointer fault,
while another process defines its own routines in the current ring to
do the service. Since the vectors are located in the process' PCB,
different vectors can be specified for processes that need different
service. Table 11-3 describes the PCB locations that contain the
vectors.

11-7 Third Edition

DOC3060-192

Table 11-3
PCB Fault Vector Locations

PCB Loc

'62-'63

'64-'65

'70-'71

•72-'73

Contents 1

Ring 0 fault vector 1

Ring 1 fault vector |

Ring 3 fault vector I

Page fault fault vector I

A separate vector is devoted to page faults, even though page faults
require Ring 0 service. This allows a system to specify a universal
page fault handler to handle all page faults that occur within the
system. If a system uses a universal page fault routine, make sure
that all page fault vectors for processes currently within the system
contain the address of this universal routine, rather than some other
Ring 0 routine.

When a fault occurs, the program counter is loaded with the fault
vector in the PCB, including the ring number. This means that fault
code is not automatically executed in either Ring 0 or the current
ring: the code in the fault tables may either weaken the ring or go
through a gate to strengthen the ring.

Fault Tables

Each fault vector points to a fault table. Each table contains 11
8-byte entries, each entry corresponding to one of the types of faults.
Table 11-4 lists information about the fault table.

The fault table for page faults must always be located in physical
memory. A page fault must never result in an unresolved chain of page
faults. For these reasons, the fault table for Ring 0 must exist in a
defined segment. If it does not, it is possible to have an infinite
number of segment faults occurring recursively, since the Ring 0 fault
table for each fault never references a valid segment.

Third Edition 11-8

INTERRUPTS, ETC.

1 Fault

I RXM
I Process
I Page
1 SVC
I UII
I Semaphore
I (for 9950
1 only)

I ILL
j Access
1 Arith.

1 Stack
I Segment

I Pointer

Num

1 o
1
2
3
4
5

10
11
12

13
14

15

Offset

0
4
•10
•14
•20
•24

•40
144

'50

'54
'60

•64

Table 11-4
Fault Information

I Vector
1 Loc

I '62
1 »63

'64
•65
•66
•67

'72
'73
•74

•75
»76

•77

FCODEH

0
ABFLAGS
0
0

Cur RPL
Underflow

$0;
Overflow

$1
Cur RPL
0

See Table
11-10
0

ETAR: 1;
SEW: 2
PCL:
•100000;

Else the
indirect
adr of
faulting
pointer

FADER

Adr

Adr
—

Adr
Adr of
Sema­
phore

Adr
Adr
Adr

Adr
Adr

Pt Adr

Ring

Cur
0
0
Cur
Cur
0

Cur
0
Cur

Cur
0

Cur

Saved |
PB 1

Backed |
Cur j
Backed |
Cur !
Backed |
Backed |

Backed j
Backed |
Cur I

Backed j
Backed I

Backed I

The CALF Instruction

Each entry in the fault table can contain any type of instruction, but
usually the instruction is either a HLT or a CALF instruction. When
the entry contains a HLT, the machine stops every time the fault
corresponding to that entry occurs.

When the fault table entry contains a CALF instruction, the format of
the entry is as shown in Table 11-5. Note that bytes 3-6 of CALF
contain a pointer to the ECB of a fault routine. CALF uses this
pointer to transfer control to the fault routine as if the transfer
were a normal procedure call. The advantages of this are described in
Servicing a Fault, below.

11-9 Third Edition

DOC3060-192

Table 11-5
Format of Fault Table Entries

Contents

CALF instruction. Bytes 3-6
contain a pointer to the ECB
of a software fault handler.

Reserved.

CALF performs a normal procedure call where no arguments are expected
by the callee. If the callee's ECB specifies arguments, then dummy
arguments are substituted and loaded into the stack frame.
8 for information about dummy arguments.

See Chapter

The rest of this section describes how a fault is
associated fault vector contains a CALF instruction.

handled if the

The Concealed Stack

When a fault occurs, the state of the system at the time of the fault
must be saved before the fault can be serviced. The processor uses the
concealed stack to save information about the system state at the time
of a fault.

Information is stored in the concealed stack in frames. Each frame
contains 12 bytes of information, as shown in Table 11-6.

Table 11-6
Concealed Stack Frame Format

I Word

I 0-1

1 2

1 3

I 4-5

Contents 1

Program counter, (segment #/offset) I

Keys 1

Fault code 1

Fault address (segnent #/offset) |

Third Edition 11-10

INTERRUPTS, ETC.

Six bytes of the PCB keep t rack of the concealed stack frames. These
bytes contain the addresses of the f i r s t , l a s t and next avai lable
frames i n the concealed s tack. Table 11-7 describes these loca t ions .

Table 11-7
Contents of PCB Concealed Stack Locations

LOC

•74

'75

'76

•77+

Name

FIRST

NEXT

LAST

Description I

Pointer to the first frame in the concealed stack. |

Pointer to the next frame to be used. |

Pointer to the last frame in the concealed stack. I

Up to 6 6-word concealed stack frames. 1

The processor uses a separate stack for f au l t s in order t o simplify
handling chains of f a u l t s . Frequently the CALF ins t ruc t ion for one
f au l t can generate another f au l t , such as a segment f a u l t , when i t
t r i e s t o c a l l the f a u l t handler. The CALF for t h i s f a u l t may in turn
cause another f a u l t , and so on. Instead of using the current segment's
stack t o contain the information about a l l of these f a u l t s , the
concealed stack i s used. Since the concealed stack i s located in the
PCB, the f au l t handler can eas i ly access i t , and the re i s no danger of
using data from anything other than a f au l t frame.

Note t ha t i f a chain of f au l t s occurs, the processor services them in
reverse order: the l a s t f a u l t t o occur i s the f i r s t t o be serviced.

The concealed stack can accommodate a chain of up t o n f a u l t s , (n = 6
in PRIMDS), one f au l t per concealed stack frame. Make sure t h a t the
concealed stack contains enough frames t o allow for the longest chain
of f au l t s t ha t can occur. Since the concealed stack i s c i r c u l a r , i f
one more f au l t occurs than there are concealed stack frames, the frame
for the l a t e s t f au l t w i l l overwrite t ha t of the f i r s t f a u l t . For
example, suppose the concealed stack contains only four frames, and the
chain of f au l t s t ha t occurs i s :

pointer (link) fault->segment fault->stack fault->segment->page f a u l t

The frame for the page f a u l t overwrites t h a t of the l ink f a u l t frame.
The concealed stack no longer contains the proper information about the
l ink f au l t frame, so the l ink f au l t w i l l never be serviced.

11-11 Third Edition

DOC3060-192

Servicing a Fault

As with interrupts, the type of fault service that the processor
performs depends on whether the PXM i s enabled or not. If the PXM i s
disabled, i t handles a l l faults in the same way. I t saves the contents
of the program counter, disables interrupts for one instruction (if the
fault i s ultimately to be serviced by a Ring 0 handler only) and jumps
indirectly (JST) through a fault vector to the appropriate handler.

If the PXM is enabled, the processor must perform a more complex
routine:

1. Set up a concealed stack frame.

2. Change the addressing mode to 64V.

3 . Select a fault vector.

4. Set PB so that i t points to the proper fault table entry.

When a fault occurs, the processor identifies the fau l t ' s type by
indexing into the fault table. (See Table 11-4;) After identifying
the type of fault , the processor uses NEXT to load the next available
concealed stack frame with information about the faul t . I t updates
NEXT to point to the next available frame, then sets the machine
addressing mode to 64V (if necessary), and references the appropriate
fault vector.

The fault vector contains the starting address of a fault table. The
processor adds the offset corresponding to the type of fault to th is
starting address to form the address of a table entry. This entry
contains a CALF instruction that points to the ECB of a fault routine.
If the fault i s ultimately to be serviced by a Ring 0 fault handler,
interrupts are disabled for one instruction to allow the CALF
instruction to execute. If a handler in another ring i s to service the
fault , no such interrupt disable occurs.

When the CALF instruction begins to execute, i t allocates a stack frame
on the current segment's stack and loads i t with the information shown
in Table 11-8. Note that CALF gets much of th is information from the
current concealed stack frame.

After loading the concealed stack frame into the current segment's new
procedure stack, CALF pops the most recent frame from the concealed
stack and sets the flag word to 1. Control i s transferred to the
entrance specified in the ECB.

Third Edition 11-12

INTERRUPTS, ETC.

Table 11-8
Format of CALF Stack Frame

I Word

1 o

1! 1

1 2-3

I 4-5

i 6-7

! 8

1 9

1 10

I 11-12

1 13-15

Contents I

Flag b i t s . CALF sets th is word I
to 1. |

Stack root segment number. I

Return pointer. This i s the value I
of PB found in the current 1
concealed stack frame. |

SB. This value i s unchanged. |

LB. This value i s unchanged. |

Keys. This i s the value of |
the keys found in the |
current concealed stack frame. I

Address of the location following |
the ca l l . |

Fault code. 1

Fault address. |

Reserved. I

When the handler completes, the ERTN instruction transfers control to
the location specified in words 2-3 in the current segment stack frame.
Note that words 2-3 contain the saved PB value shown in Table 11-4.
This value and the type of fault that occurred determine the actions of
the processor after it completes fault service. (For example, the
processor might retry the instruction that caused the fault.)

The ECB specified by the stack frame in the current segnent's stack
must not specify any arguments. It can be a gate or not.

Summary of Fault Qasses

Table 11-4 listed the eleven types of faults. Table 11-9 briefly
describes what causes each type.

11-13 Third Edition

DOC3060-192

Table 11-9
Summary of Fault Classes

1 Fault

I RXM

1 Process

I Page

1 UII

1 Semaphore
1 (9950 only)

1 ILL

1 Access

I Arithmetic

I Stack

| Segment

I Pointer

Cause

Non-ring 0 process
tries to execute a
restricted instruction
when restricted mode
is enabled.

Word 4 in the PCB does
not contain 0 upon
dispatch.

Reference made to page
with missing bit reset
to 0. This usually
indicates that the
page is not in physical
memory.

Processor tries to
execute an instruction
that is not implemented
on this machine.

A semaphore has either
overflowed due to too
many notifies, or has
underflowed due to too
many waits.

Processor tries to
execute an illegal
instruction.

Reference made to
a segment without the
proper access rights.

Integer, decimal, or
floating-point
exceptions.

Stack overflow or
underflow has occurred.

Either the specified
segment number is too
big, or the segment
is missing.

The fault bit in the
specified pointer is 1
indicating an invalid
pointer.

Source of Fault I

Hardware; from j
microcode |
independent action I
code. I

Dispatch microcode I
test. I

STLB update microcode 1
test. I

Decode net or I
microcode branch. 1

NOTIFY or WATT I
microcode. I

Decode net or |
microcode branch. |

STLB update microcode |
test. |

If IEX, hardware; if |
not, explicit I
microcode test. I

PCL microcode. I

STLB update microcode j
test. 1

IP processing in I
ARGT fetch I
microcode. 1

Third Edition 11-14

INTERHJPTS, ETC.

Arithmetic Exceptions

The arithmetic exceptions (integer, floating-point, and decimal)
require more explanation than is given in Table 11-9. These three
exceptions determine what type of action occurs when an arithmetic
overflow, divide by zero, or other such condition exists. Three bits
in the keys select what action should occur:

• Bit 7 in the keys specifies the action that is to occur if a
floating-point exception occurs.

• Bit 8 determines the action that should follow an integer
exception.

• Bit 11 determines the action that should follow a decimal
exception.

When any of these exceptions occur, the processor checks the value of
the corresponding bit in the keys. In the case of integer and decimal
exceptions, a 0 in the corresponding bit tells the processor only to
set CBIT to 1. When the corresponding bit in the keys contains a 1,
the processor not only sets CBIT to 1, but also loads three
registers — FGODEL, PCODEH, and FADDR — with appropriate values, and
services the fault.

The processor takes the same actions when a floating-point exception
occurs, except that when bit 7 in the keys contains a 1, the processor
only sets CBIT to 1. When bit 7 contains a 0, the processor both sets
CBIT to 1 and services the exception.

FADDR, FOODEH, and FOODEL are located in the user register file. When
the processor loads these registers, FOODEL always contains a '50,
which indicates that an arithmetic fault has occurred. FOODEH contains
a code that identifies the specific exception that has occurred. FADDR
contains a pointer to the instruction that caused the exception, a
pointer to the address used by the faulting instruction, or 0. Table
11-10 lists the codes and the faults they indicate.

On all 50 Series processors except the 9950, 850, and 750, when an
integer overflow exception occurs, the resulting fault takes place
before the next instruction is started. The program counter points to
the next instruction suitable for execution. If, however, an ECCC
check becomes pending at the same time as the integer exception, that
integer exception will be lost. On a 750 or 850, from 1 to 4
instructions are executed before the integer overflow occurs, except in
the case of divide by zero, which always points to the next
instruction.

11-15 Third Edition

DOC3060-192

Table 11-10
Arithmetic Exception Codes

I Data Type

1 Single
I precision
I floating-
I point

I Double
I precision
I floating-
1 point

1 Integer

1 Decimal

Exception Type

Exponent overflow

Divide by 0

Store exception on
FST instruction

INT exception

Intrinsic function
exception

Overflow or
underflow

Divide by 0

Intrinsic function
exception

Integer overflow
Divide by 0

Decimal overflow

Divide by 0

Conversion
exception

FCODEH

$100

$101

$102

$103

$500

$200

$201

$600

$300
$301

$700
$704*
$701

$702

FADDR |

Address of faulting I
instruction I

Address of faulting |
instruction I

Memory address used |
by FST I

Address of faulting I
instruction |

Address of faulting |
instruction I

Address of faulting |
instruction I

Address of faulting I
instruction |

Address of faulting I
instruction I

0 1
Address of faulting I
instruction I

Address of faulting I
instruction I

Address of faulting |
instruction j

Address of faulting I
instruction 1

*For 2250, 250, 150, 250-11, 450, and 1450-11.

Third Edition 11-16

INTERRUPTS, ETC.

CHECKS

The las t section described how problems in a process or procedure cause
faul ts . When problems arise with the s ta te of the system i tself , a
check occurs. These problems may not be visible to the currently
executing procedure, or they may be serious enough to terminate the
entire system's operation. There are four types of checks:

• Power failure

• Environment (9950 only)

• Memory parity error

• Machine check

• Missing memory module

The power supply for the system initiates a power failure check when AC
power fails. The check indicates that 20 milliseconds of DC power
remains before all power is gone.

Environmental checks were described in Chapter 1 and apply only to the
9950. They include UPS battery, cabinet or processor board
overtemperature, and air flow failure. Environmental checks use the
same check vector and DSWSTAT as power failures. In addition, each
environmental check has its own check code:

Processor board temperature $01
Cabinet temperature $02
Air flow $04
UPS battery $08

An environmental check code is stored in register 26L (CHKREG). This
register is valid only after a processor check has been issued. (All
other checks store 0 in this register.)

The memory error checking logic issues a memory parity error check when
it detects a memory parity error or an uncorrected error correction
code (ECCU) error. The CPU issues a machine check when it detects an
internal parity error. The MCU initiates a missing memory module check
when a program tries to access nonexistent physical memory.

Check Handler

Like the fault handler, the check handler is made up of a group of
entrances, one for each type of check, and a common check routine. To
service checks, it uses a check header, check vectors, a diagnostic
status word, and the MCM field of the modals.

11-17 Third Edition

D0C3060-192

Check Header; The 50 Series processors use an eight-word save area in
memory to contain information about the system. This check header i s
located in segment 4 (the interrupt segment). Table 11-11 shows the
format of the check block.

Table 11-11
Check Header Format

Word I Contents

0-1 | PBH, PBL

2-3 | KEYSH, KEYSL (modals)

4-7 j Software code
I (possibly a
I JST instruction)

Check Vectors; Segment 0 locations starting a t '200 can contain the
four check vectors. Check vectors are 16-bit indirect pointers with
the format shown in Figure 3-4. The 50 Series processors use these
vectors in check handling only when PXM mode i s disabled.

Diagnostic Status Word: The 50 Series processors also use a group of
32-bit registers collectively called the diagnostic status word (DSW).
The check handler uses the DSW as a source of information about the
system as i t was when the check occurred. The format of the each DSW
register i s shown in the following tables:

DSW Register

DSWPARITY
DSWPARITY
DSWSTAT
DSWSTAT
DSWRMA
DSWPB

System

9950
750 and 850
9950
Rest of 50 Series
All 50 Series
All 50 Series

Note

Table

11-12
11-13
11-14
11-15
11-16
11-16

DSWPARITY i s used only with 9950, 750, and 850 systems.

Third Edition 11-18

INTERRUPTS, ETC.

Table 11-12
Format of DSWPARITY Register for 9950

I Bits

I 1

! 2

1 3-8

1 9
! 10

1 11

! 12

I 13

1 14

1 15

! 16

Name

RCCPER

IOPER

Parity Error
Code

—

BBH Left
Parity

Byte
Error

BBH ri^it Byte
Parity

BBL Left
Parity

Error
Byte
Error

BBL Right Byte
Parity Error

BAH Parity
Error

BAL Parity
Error

BAE Parity
Error

Description 1

If 1, the control store detected an RCC 1
parity error. Sets bits 3-8 of I
DSWPARITY to reflect the state of 1
parity error: 1
Bits 3-5: encoding of RCC parity error |

bits 1-8 1
Bit 6: logical OR of RCC parity I

bits 1-8 1
Bit 7: RCC parity error bit 9 1
Bit 8: 0 1

If 1, the control store detected an I/O I
parity error. Sets bits 3-8 of I
DSWPARITY to reflect the state of I
the I/O parity error: 1
Bit 3: error is in left byte of I

either BPA or BPD 1
Bit 4: error is in right byte of |

either BPA or BPD 1
Bit 5: CPU detected a parity error I

on BPD 1
Bit 6: CPU detected a parity error |

on BPA 1
Bit 7: controller detected a parity |

error on BPD 1
Bit 8: controller detected a parity I

error on BPA 1
Specifies information about the RCC or I
or I/O parity error that occurred. I
See bits 1 and 2 above for specifics. |

Currently unused. 1
If 1, the El board detected a parity I
error on BBH, left byte. |

If 1, the El board detected a parity 1
error on BBH, right byte. 1

If 1, the El board detected a parity |
error on BBL, left byte. I

If 1, the El board detected a parity |
error on BBL, right byte. I

If 1, the El board detected a parity |
error on BAH. 1

If 1, the El board detected a parity I
error on BAL. 1

If 1, the El board detected a parity I
error on BAE. |

11-19 Third Edition

DOC3060-192

Table 11-12 (continued)
Format of DSWPARITY Register for 9950

Bits Name Description

17 BD Parity
Error

18 Memory Data
Parity Error

19 Memory Address
Parity Error

24

25

26-28

MC ECCU
Error

I Unit Error

I Unit Error
Bits

29

30-32

S Unit Error

S Unit Error
Bits

If lr the memory control unit detected
a parity error on BD. Sets bits 20-23
to reflect the error's location.
Bit 20: BDHr left byte
Bit 21: BDH, right byte
Bit 22: BDL, left byte
Bit 23: BDLf r i ^ i t byte

If 1, the memory control unit detected a
latched memory data error. Sets b i t s
20-23 of DSWPARITY to reflect the
error's location:
Bit 20: LMDH, left byte
Bit 21: LMDH, right byte
Bit 22: LMDL, left byte
Bit 23: LMDLf right byte

If 1, the memory control unit detected
a latched memory address error. Sets
bits 20-23 of DSWPARITY to reflect
the error's location:
Bit 20: MCADDR, high byte
Bit 21: MCADDR, low byte
Bit 22: MCADDR, extended byte
Bit 23: unused

If 1, the memory control unit detected
an ECC uncorrectable error.

If 1, the I unit detected an error.
Bits 26-28 describe the error:

000: no error
001: currently unused
010: currently unused
011: decode net, right byte
100: decode net, left byte
101: base register file high
110: base register file low
111: index register file

If 1, the S unit detected an error.
Bits 30-32 describe the error:

000: PID or STIB control bits
001: IBPA out of STIB in error
010: cache index, right 16 bits
011: cache index, left 16 bits
100: cache data high side
101: cache data low side
110: LBVA out of STIB in error
111: branch cache parity error

Third Edition 11-20

INTERRUPTS, ETC.

Table 11-13
Format of DSWPARITY Register for 750/850 Processors

I Bits

I 1

1 2

I 3

1 4

I 5-7

1 8

1 9

1 10

1 11

1 12

1 13

1 14

Name

RPA Parity
Error, Type 1

RPA Parity
Error, Type 2

Burst-mode EMx
Parity Error

EMx I/O Parity
Error

J Board Parity
Errors

RCM Parity
Error

ECCC Error

Prefetch Board
Parity Error

BPA Input
Parity Error

RDX Parity
Error

Register File
Parity Error

REA Parity
Error

Description 1

If 1, the control store has detected a I
parity error as follows: 1

EMx input E6: BPD or Burst- R0, R2 j
EMx input E5: BPD or Burst- 1

R0, Rl, R2, R3 I
EMx output: BMD I

If 1, EMx input E6: BPD or Burst- Rl, R3 |
EMx input E5: BPD 1
EMx output: BMA j

If 1, the control store detected a I
EMx burst mode parity error. j

Setting specifies that the control store |
detected a EMx parity error as follows: |
0: EMx input 1
1: EMx output 1

The J board detected a parity error I
as follows: 1

000: peripheral reports BPD error |
(output) 1

001: base register file high 1
010: memory reports BMD error (write)|
011: prefetch buffer address |
100: peripheral reports BPA error I

(output) 1
101: base register file low I
110: memory reports BMA error I
111: prefetch buffer instruction. j

If 1 and no board reported an error, then I
an RCM parity error has been detected. 1

If 1, memory detected an ECC j
uncorrectable error on read. |

If 1, prefetch board parity error. I

If 1, BPA input parity error (EMx or |
interrupt). I

If 1, RDX parity error when most I
recently closed. j

If 1, register file parity error. 1

If 1, REAH or REAL parity error. 1

11-21 Third Edition

DOC3060-192

Table 11-13 (continued)
Format of DSWPARITY Register for 750/850 Processors

I Bits

1 15

I 16

1 17

1 18

1 19

1 20

1 21

I 22

I 23

1 24

I 25

I 26

1 27

I 28

1 29

I 30

I 31-32

Name

DMx Cycle
Parity Error

AP Board
Parity Error

C Board
Parity Error

BMD Input Even
Parity Error

BMD Input Odd
Parity Error

Missing Memory
Module

BMA Parity
Error

RMA Increment

BMA15
Indicator

BMA16
Indicator

ECCU Error

ECCC Error

Cache Index
Parity Error

Cache Data
Odd Word
Parity Error

Cache Data
Even Word
Parity Error

Cache Cycle
Purpose

—

Description 1

If 1, parity error occurred during I
DMx cycle. 1

If 1, AP board detected parity error. 1

If 1, C board detected parity error. |

If lr BMD input even word parity error. I

If 1, BMD input odd word parity error. 1

If 1, missing memory module at cache I
miss. j

If 1, memory detected BMA parity error I
at cache miss. 1

If 1, RMA was incremented at time of I
parity error (cache miss). I

Setting of BMA15 indicator at time of I
parity error (cache miss). I

Setting of BMA16 indicator at time of I
parity error (cache miss). I

If 1, memory reports an ECC 1
uncorrectable error on a cache miss. |

If 1, memory reports an ECC correctable I
error on a cache miss. 1

If 1, cache index parity error on 1
cache read. 1

If 1, cache data odd word parity error I
on cache read. 1

If 1, cache data even word parity error |
on cache read. 1

Specifies the purpose of the cache cycle I
at the time of the error: 1
0: prefetch 1
1: execute I

Currently unused. 1

Third Edition 11-22

INTERRUPTS, ETC,

Table 11-14
Format of DSWSTAT Register for 9950 Processor

I Bits

I 1
1 2
1 3

1 4

1 5

1 6
1 7
1 8

1 9

1 10

1 11

1 12

I 13-14

1 15

1 16

I 17-23

I 24

1 25
1 26-32

Name

Check Immediate
Machine Check
Memory Parity

Missing Memory
Module

El Unit

S Unit
I Unit
MC Unit

ECCU

ECCC

CS Unit

RCM Parity

RPBU

EMx Operation

I/O Operation

ECC Syndrome
Bits

Memory Module
Number

RMA Invalid
—

Description 1

If lr the check was taken immediately. I
If 1, a machine check occurred. I
If 1, a memory parity error caused I
the check. 1

If 1, a missing memory module caused j
caused the check. I

If lr the El board reported a parity I
error. 1

If 1, the S unit reported a parity error.|
If 1, the I unit reported a parity error.|
If 1, the memory controller unit reported|
a parity error. 1

If bits 3 and 9 are both 1, the memory I
parity error was ECC uncorrectable. I

If bits 3 and 10 are both 1, the memory I
parity error was ECC correctable. I

If 1, the control store board reported |
a parity error. 1

If 1, an RCM parity error was detected |
by the control store board. I

Specifies the RP backup count at the i
time of the error. 1

If 1, a EMx transfer was in progress |
when the error occurred. I

If 1, an I/O operation was in progress |
when the error occurred. 1

If a memory parity error occurred, I
these bits describe the error. I
See Table 11-18. 1

If a memory error occurred, this bit |
identifies the interleaved memory I
module that contained the error (bit |
15 of address at time of error). I

If 1, the contents of DSWRMA are invalid.|
Currently unused. I

11-23 Third Edition

DOC3060-192

Table 11-15
Format of DSWSTAT Register for Rest of 50 Series Systems

1 Bits

1 1
1 2
1 3

1 4

! 5-7

1 8

1 9

1 10

1 11

1 12-14

1 15

1 16

1 17-22

I 23
1 24

1 25
1 26*

I 27-32*

Name

Check Immediate
Machine Check
Memory Parity

Missing Memory
Module

Machine Check
Code

RCM

ECCU

ECCC

BUNV

RPBUP

DMx Operation

I/O Operation

ECC Syndrome
Bits

—

Memory Module
Number

RMA Invalid
U-verify Pass

U-verify Test
Failure

Description I

If lr the check was taken immediately. |
If lf a machine check occurred. j
If 1, a memory parity error caused the 1
check. 1

If 1, a missing memory module error I
caused the check. I

The hardware detected the cause of the I
trap as follows: I

000: peripheral reports BPD error |
(output) 1

001: rase register file high |
010: memory reports BMD error (write) I
011: prefetch buffer address |
100: peripheral reports BPA error 1

(output) I
101: base register file low I
110: memory reports BMA error 1
111: prefetch buffer instruction I

Control unit memory — this bit is reset I
when an error is detected. I

If bits 3 and 9 are both 1, the memory j
parity error was ECC uncorrectable. |

If bits 3 and 10 are both 1, the memory |
parity error was ECC correctable. I

If 1, the RP backup count in bits 12-13 I
is not valid. |

Specifies the RP backup count, which is |
the amount DSWPB was incremented in j
the current instruction. 1

If 1, a DMx transfer was in progress |
when the error occurred. I

If 1, an I/O operation was in progress |
when the error occurred. I

If a memory parity error occurred, I
these bits describe the error. I
See Table 11-18. 1

Currently unused. 1
If a memory error occurred, this bit I
identifies the interleaved memory I
module that contained the error (bit I
15 of address at time of error). I

If 1, the contents of DSWRMA are invalid. I
U-verify pass number as follows: I
0: first pass (check mode off) 1
1: second pass (check mode on) 1

If set, contains the number of a failed I
u-verify test. 1

Third Edition 11-24

INTERHJPTS, ETC.

Note t o Table 11-15

* Valid for 750 and 850. For r e s t of 50 Se r i e s : b i t 26 i s
unused; b i t 27 i s the u-verify pass number; and b i t s
28-32 are the u-verify t e s t f a i lu re number.

Table 11-16
Format of the DSWRMA and DSWPB Registers for All 50 Ser ies Systems

Bi t s I Name I Description

1-32

1-32

DSWRMA
(Memory

Address
Register)

DSWPB
(Extended
Program Counter

— r ing ,
segment,
word)

Contains b i t s 1-13 of a 23-bi t physical
address a t the time of the e r r o r .

Valid: If an ECCC, ECCO, or missing
memory module check occurred.

Inval id: If any other checks occurred,
or i f no check occurred.

In the event of mult iple checks,
DSWRMA i s the RMA of the missing
memory module check, if the re i s one.
If not , i t i s the RMA of the machine
or ECC-uncorrected check (they are
mutually exclusive) if the re i s one.
If not , i t i s the RMA of the
ECC-corrected check.

Always va l id . In the event of mult iple
checks, DSWPB i s the program counter
of the missing memory module check,
i f there i s one. If not , i t i s the
program counter of the machine or
ECC-uncorrected check (which are
mutually exclusive) if the re i s one.
If not , i t i s the program counter
of the ECC-corrected check.

Each time the processor performs a check (except for power fa i lure) i t
se t s par t i cu la r r eg i s t e r f i l e locat ions t o r e f l ec t the contents of the
DSW, as shown in Table 11-17.

11-25 Third Edition

DOC3060-192

Table 11-17
DSW Value After Checks

I RF LOC

I '27*

I '34*

1 '35*

1 '36*

Contents 1

DSWPARITY I
(750 f 850 I
and 9950 I
only) |

DSWRMA I

DSWSTAT |

DSWPB |

* These are absolute locations in the register file.

MCM Field: The 50 Series processors use the MCM field (bits 15-16) of
the modals to determine what kind of check reporting to do. Table
11-18 shows the possible modes of reporting.

Table 11-18
Modes of Check Reporting

Reporting Mode

No reporting.

Report uncorrected memory errors
(ECCU) only.

Report fatal (ECCU, machine checks,
and missing memory module) errors
only. (This state is called quiet
mode.)

Report all errors.

Third Edition 11-26

INTERRUPTS, ETC.

Check Handler Operation

As with faults, the type of check service provided depends on whether
the PXM is enabled or not when the check occurs. If the PXM is
disabled, the processor sets the MCM field in the modals to 0, then
jumps indirectly (JST) through the appropriate check vector to the
check routine.

If the PXM is enabled, the processor:

1. Sets up a check header.

2. Inhibits the machine.

3. Switches to 64V mode.

4. Sets the MCM field to 0 (2 if ECCU).

5. Transfers control to the check handler.

The software must clear the DSW after each check. This ensures that
the processor does not use old data when servicing future checks.

The DSW is large enough to contain data about one of each type of check
before the handler takes control. However, the values of RMA and PB
for the last check only are saved.

To determine which check stored RMA and PB, use DSWSTAT to determine
which checks have occurred:

• If a missing memory module check, machine check, or ECCU memory
check occurred, RMA and PB reflect values stored by that check.
These three checks are mutually exclusive, and are guaranteed to
be the most recent check that occurred.

• If any other check occurred, RMA and PB reflect values stored by
the ECCC check that occurred most recently.

Table 11-19 summarizes some information about each check.

11-27 Third Edition

DOC3060-192

Table 11-19
Types of Checks

I Type of Check

I Power failure

1 Environment
I (9950 only)

I Memory parity

I Machine check

I Missing memory
I module

Header Loc*

'200

•200

'270

•300

•310

Handler Loc*

•204

'204

'274

'304

•314

Effect on DSW |

Does not set I
DSW. I

Does not set I
DSW. I

Sets DSW. I

Sets DSW. I

Sets DSW. 1

* These are locations in Segment 4.

Check Trap

Some checks cause a microcode trap when they occur. When th is happens,
the action taken depends on the type of microcode that was trapped.
Table 11-20 shows the checks that can cause traps and the actions that
occur.

Note that the f i r s t and second categories l i s ted in Table 11-20 always
leave the I/O bus clean.

Third Edition 11-28

INTERFUPTS, ETC.

Table 11-20
deck-produced Traps and Their Actions

I Event

I Missing Memory Module,
1 ECC Uncorrectable, or
I Machine Check during
1 I/O (EMx, PIO,
I interrupt processing,
j excepting machine
I check for RCM parity)

I ECC Correctable Error
| (not during I/O)

I Power Failure;
I Environment
I (9950 only)

j All other checks

Actions I

9950: 1
Error is ignored until all current |
requests for EMx and I/O are j
processed, and then the check is j
taken immediately. 1

Rest of 50 Series: 1
Sets end-of-instruction flag to 1; |
sets REOIV to the proper offset or |
vector; sets MCM to 00; executes |
microcode return to the trapped |
microcode step. Note that j
correctable memory errors are |
ignored during I/O. 1

9950: 1
Action is deferred until the next I
fetch cycle, and then a check |
is taken. 1

Rest of 50 Series: 1
Sets end-of-instruction flag to 1; j
sets REOIV to the proper offset or I
vector; sets MCM to 2; executes |
microcode return to the trapped |
microcode step. I

All 50 Series: 1
Action is deferred until the next j
fetch cycle, and then a check is |
taken. 1

All 50 Series: 1
Software check occurs immediately, j

TRAPS

Traps are breaks in microcode execution. When a trap occurs, the
processor takes the current microcode location where the trap occurred
and goes to the predetermined microcode location that handles traps.
The processor handles the trap, then retries the microcode location
where the trap originally occurred.

Traps are separated into two groups. Gl traps occur during references
to parts of memory. G2 traps are hardware related and encompass
several subgroups. Table 11-21 lists the traps in both groups and the
further subgroups.

11-29 Third Edition

DOC3060-192

The traps are l i s ted in order of priori ty, from highest to lowest. G2
traps always have higher priority than Gl traps do. Within the G2
group, missing memory module traps have the highest pr ior i ty .

Table 11-21
Types of Traps and Their Priori t ies

Type | Individual Trap | Causes and Actions

Gl

G2

32-bit or 16-bit
read address
trap

STLB miss

Access
violation

Page modified
trap

Missing memory
module

If a memory reference instruction forms an
EA between 0-*7 (V mode) or 0-'37 (S and
R mode), the addressed location i s in the
current user register f i l e , not memory.
When such an address i s calculated, this
trap aborts the memory read and loads a
cache entry with the contents of the
addressed register. The cache i s marked
invalid but the cache's use once b i t i s
set to 1 so that a cache h i t occurs when
the microstep i s retr ied. A cache miss
occurs on the next reference to th is
cache entry.

This trap aborts the step. The STIB miss
translates the virtual address to a
physical one, then puts the translation
into the STIB. The step i s retr ied after
the translation i s loaded into the STIB.

A procedure t r i e s to reference a memory
location for which i t has insufficient
access r ights. This trap causes an
access violation faul t .

This trap occurs during each step that
writes into a physical page whose
modified bi t (in the page's STIB entry)
contains 0. This trap sets the modified
b i t to 1 so that future writes to th i s
page do not cause other t raps.

If no memory board responds to a memory
read or write request, th i s t rap occurs.
Actions taken as a result of th is trap
depend on the operating system.

Third Edition 11-30

INTERRUPTS, ETC,

Table 11-21 (continued)
Types of Traps and Their Priorities

Type | Individual Trap | Causes and Actions

Machine check

Write address
trap

Integer
exception

Branch cache
problem

EMx requests

Fetch cycle
traps:

CPU timer
overflow

Diagnostic
processor
interrupts*

Indicates a parity error or an ECCU.
DSWPARITY indicates the type of parity
error that occurred. See Checks in this
chapter for more information. This, is a
fatal trap.

Specifying an address within the range 0-'7
(V Mode) or 0-'37 (S or R mode) as a
write address causes this trap. This
trap aborts the write to memory but
otherwise allows the operation to
to complete.

The current instruction caused an integer
exception. This trap causes an integer
exception fault.

A branch cache hit occurs during execution
of something other than a branch
instruction.

If a controller wants to request a EMX
transfer, this trap transfers control to
the EMx microcode.

Allows the processor to perform several
steps between microsteps.

The microsecond timer overflows. This trap
increments the contents of TIMER by 1.
If the incremented value of TIMER does
not overflow, execution continues. If it
does overflow, this trap sets the process
abort flag in the process' PCB to 1.

The diagnostic processor sends a command to
the processor. The microcode reads the
command and decodes it.

9950 and 2250 only

11-31 Third Edition

DOC3060-192

Table 11-21 (continued)
Types of Traps and Their Priori t ies

Type | Individual Trap | Causes and Actions

ECCC

External
interrupts

Memory
increment
interrupts

Program
interval
timer

End-of-
instruction
trap

Power failure

Restricted
instruction
trap

Error correcting codes on the memory boards
note when single bit errors in MDS memory
occur. This trap notes the address where
such an error occurred and the value of
that address' syndrome bits. The
syndrome bits show which bit in that
location is in error. See Table 11-18
for information about syndrome bit values
for single bit errors.

Point where a device requested service.
This trap causes an external interrupt.
(See Interrupts in this chapter for more
information.)

Point where a controller requested service.
This trap causes a memory increment
interrupt. (See Interrupts in this
chapter for more information.)
Not used for 9950.

If the timer is enabled, it causes an
interrupt. The timer places a vector on
the address bus for PRIMDS.

A parity error occurred on an I/O transfer.
Not used for 9950.

AC power failed. This trap causes a power
failure check. (See Checks in this
chapter for more information.)

This trap causes a fault when a process
tries to execute a restricted instruction
in a ring other than Ring 0.

Third Edition 11-32

INTERRUPTS, ETC.

Read Address Trap

If the effective address calculated by a memory reference instruction
is within the range 0-*7 (V mode) or 0-'37 (S and R mode), inclusive,
the addressed location is in the current user register file, not in
memory. When such an address is calculated, this trap aborts the
memory read and loads a cache cell with the contents of the addressed
register. The cache is marked invalid but the cache's use once bit is
set to 1 so that a cache hit occurs when the microstep is retried. The
cache miss occurs on the next reference to this cache cell.

STLB Miss

When an STLB miss occurs, this trap aborts the step. The STLB miss
translates the virtual address to a physical one, then puts the
translation into the STLB. The step is retried after the translation
is loaded into the STLB.

Access Violation

If one procedure tries to call another and an access violation occurs,
this trap causes an access violation fault.

Page Modified

This trap occurs during each step that writes into a physical page
whose modified bit (in the page's STLB entry) contains a 0. This trap
sets the modified bit to 1 to indicate the presence of information that
must be saved.

Missing Memory Module

If no memory board responds to a memory read or write request, this
trap occurs. A missing memory module check alerts the operating system
to this trap's occurrence; resulting actions depend on the operating
system.

11-33 Third Edition

DOC3060-192

Error Correcting Code

Error correcting codes on the memory boards note when single bit errors
in MOS memory occur. This trap notes the address where such an error
occurred and the value of that address1 syndrome bits. The syndrome
bits show which bit in that location is in error. Tables 11-22 and
11-23 show the values of the syndrome bits and the single bit errors
they indicate for the 9950 and the rest of the 50 Series systems,
respectively.

Table 11-22
Syndrome Bits for 9950 Processor

1 Check Bits
1 6543210

I 0000000
I 0000001
1 0000010
I 0000100
I 0001000
1 0010000
I 0100000
1 1000000
1 0000111
I 1100001
I 1100010
I 0100011
I 1100100
I 0100101
I 0100110
1 1100111
I 1101000
1 0101001
I 0101010
I 1101011

Bit in Error j

No error I
Check bit 0 I
Check bit 1 I
Check bit 2 |
Check bit 3 |
Check bit 4 I
Check bit 5 1
Check bit 6 j
Word bit 01 I
Word bit 02 I
Word bit 03 |
Word bit 04 |
Word bit 05 |
Word bit 06 1
Word bit 07 I
Word bit 08 |
Word bit 09 I
Word bit 10 I
Word bit 11 |
Word bit 12 I

I Check Bits
I 6543210

1 0101100
I 1101101
I 1101110
I 0101111
I 1110000
1 0110001
I 0110010
I 1110011
I 0110100
I 1110101

I mono
I 0110111
I 0111000
I 1111001
I 1111010
I 0111011
I 1111100
I 0111101
I 0111110
1 1111111

Bit in Error |

Word bit 13 I
Word bit 14 I
Word bit 15 |
Word bit 16 1
Word bit 17 1
Word bit 18 I
Word bit 19 1
Word bit 20 I
Word bit 21 I
Word bit 22 1
Word bit 23 j
Word bit 24 |
Word bit 25 I
Word bit 26 1
Word bit 27 1
Word bit 28 I
Word bit 29 I
Word bit 30 I
Word bit 31 1
Word bit 32 |

Third Edition 11-34

INTERRUPTS, ETC.

Table 11-23
Syndrome Bits for the Rest of the 50 Series

1 Check Bits
1 123456

! OOOOOX
1 00001X
1 00010X
1 000111
I 00100X
I 001011
I 001101
I 001111
I 01000X
I 01001X
I 01010X
I 010111
I 011001
I 011011
I 011101
1 011111

Bit in Error |

Multiple bits |
Multiple bits |
Multiple bits |
Word bit 15 |
Multiple bits |
Word bit 14 |
Word bit 13 1
Word bit 09 |
Multiple bits I
Multiple bits |
Multiple bits |
Word bit 12 |
Word bit 16 j
Word bit 11 |
Word bit 10 I
Right parity/ |
check bit 1 I

Note to T

1 Check Bits
I 123456

1 10000X
I 100011
I 10010X
1 100111
I 10100X
1 101011
I 101101
I 101111
1 110001
1 110011
I 110101
I 110111
I 111001
I 111011
I 111101
1 111111
I 111110

able 11-23

Bit in Error |

Multiple bits I
Word bit 07 1
Multiple bits |
Word bit 03 I
Multiple bits |
Word bit 02 I
Word bit 01 I
Check bit 2 I
Word bit 08 I
Word bit 06 I
Word bit 05 I
Check bit 5 I
Word bit 04 |
Check bit 4 I
Check bit 3 1
Overall parity|
No error 1

X means undefined.

Machine Check

This trap, like that for missing memory module, indicates a serious
problem with the system. It may indicate faulty components, noise, or
a timing problem. This is a fatal trap.

Write Address Trap

Specifying an address within the range 0-'7 (V mode) or 0-'37 (S or R
mode) as a write address causes this trap. This trap aborts the write
to memory but otherwise allows the operation to complete.

EMx

If a controller wants to request a EMx transfer, this trap transfers
control to the EMx microcode.

11-35 Third Edition

DOC3060-192

Fetch Cycle Traps

Fetch cycle traps occur only at the end of the first microstep of a
Prime assembly language instruction. They are caused by a program
interval timer overflow, external interrupts, and power failures.

These traps occur only after the first step of an assembly language
instruction has completed. This guarantees that the previous assembly
language instruction has completed execution.

Restricted Instruction

This trap causes a fault when a process tries to execute a restricted
instruction in a ring other than Ring 0.

Summary of Software Breaks Caused by Traps

As mentioned above, some of the traps listed in Table 11-21 cause
software breaks. Table 11-24 shows which traps cause additional breaks
and the types of breaks that can occur.

Third Edition 11-36

INTERRUPTS, ETC,

Table 11-24
Software Breaks Caused By Traps

I Traps

I Missing memory module;
1 ECCU, machine check, and
1 other parity errors

I External interrupt,
I memory increment interrupt,
I program interval timer
I interrupt

j Integer exception,
I access violation,
I restrict mode violation

I STUB miss

I Power failure, ECCC

| All other traps

Additional Software Break I

No additional break occurs. I
These traps are reported to I
the operating system via a I
check; the operating system |
takes an appropriate action. I

Interrupt occurs. |

Fault occurs. I

Page fault, segnent fault |
may occur. 1

Check occurs. 1

No additional action occurs. 1

INTERVAL CLOCK

The 2250 uses a 500 Hz interval clock to drive the PRIMOS clock
process. The clock generates a timing pulse every 2 milliseconds. The
9950 uses a 250 Hz interval clock.

If the interval clock is enabled, a fetch cycle trap occurs when a
timing pulse occurs. The fetch cycle trap causes an external
interrupt, if interrupts are enabled on the machine, the processor
services the interrupt and updates the pointers in the clock process.
If interrupts are disabled, the interrupt is ignored.

Table 11-25 lists the instructions that control the interval clock.

11-37 Third Edition

DOC3060-192

Table 11-25
Instructions Affecting the Interval Timer

1 Mnem

1 INA

1 INA

1 OCP

I OCP

1 OTA

I OTA

1 SKS

'1120

'1320

'0020

•0220

'0720

'1320

•0020

Name

Input to A

Input to A

Output Control
Pulse
Output Control
Pulse
Output from A

Output from A

Skip on
Condition Met

Modes

S,R,V

S,R,V

SrR,V

S,R,V

S,R,V

SfR,V

SfR,V

Description |

Loads the ID of the I
controller into A. 1

Loads the contents of |
the interrupt vector j
into A. I

Starts the interval I
timer. I

Stops the interval |
timer. |

Transfers data from A |
into the control |
register. I

Transfers data from A |
into the interrupt I
vector. I

Skips if the interval |
timer is not j
interrupting. |

SUMMARY

This chapter described four kinds of breaks in execution that can
occur, and how the 50 Series processors handle them. Traps are breaks
in microcode execution. Checks indicate hardware consistency problems;
faults indicate software exception conditions. External devices issue
interrupts when they desire service. The next chapter, Input/Output,
shows how external devices issue interrupts, and how the 50 Series
processors handle these requests for service.

Third Edition 11-38

12
Input/Output

The previous chapter discussed the various types of breaks that can
occur in program execution. The I/O system is closely related to these
breaks, since data transfers between the processor and other parts of
the system usually include some type of break. Depending on the type
of transfers and the device, the I/O system can perform a wide variety
of functions applicable to many situations.

I/O on the 50 Series processors is divided into three types:

• Programmed I/O (PIO)

• Direct memory (DMx)

• Interrupts

These three types of I/O differ in what in i t ia tes the action. For PIO,
the processor issues a command to a device, which performs the desired
action. For DMx transfers, a controller requests service from the
processor, which provides the service on a priori ty basis. For
interrupts, the controller again a ler ts the processor to a situation
that requires the processor's attention. Chapter 11 discussed
interrupts and how the processor deals with them. This chapter
describes PIO and DMx.

12-1 Third Edition

DOC3060-192

PROGRAMMED I/O

PIO i s I/O performed fcy a program. This means that the instruments
used to perform PIO are instructions. These instructions:

• Send control information to a peripheral device.

• Test devices for skip conditions.

• Move data between a device and the CPU.

The PIO instructions use one of two formats. In S and R mode, four PIO
instructions (OCP, SKS, INA, OTA) are available for use. They have the
format shown in Figure 12-1.

2 3 6 7 10 11 16

TYPE | 1100 | FUNCTION | DEVICE CODE

INA, OCP, OTA, SKS Operative Format
Figure 12-1

For these four instructions, the operative (the part that the processor
actually executes to perform the desired action) is the instruction
itself. A different arrangement exists for V mode PIO.

In V mode, the processor cannot directly execute INA, OCP, OTA, or SKS.
Instead, it must use an EIO instruction, which forms an effective
address. The processor executes bits 1-16 of this effective address as
a PIO instruction. These bits (the operative of the EIO instruction)
should specify one of the four PIO instructions described above. The
upper drawing in Figure 12-2 shows the format of the EIO instruction;
the lower drawing shows the format the processor uses to interpret the
EIO operative.

Third Edition 12-2

INHJT/OOTHJT

I 1

1 1 I

1 1

2

1 x

2

I | TYPE |

3 11

I 110011000

12 13 14 15 16

I Y | 01 | BR

EIO Instruction Format

3 6 7 10 11

EXTENSION | FUNCTION | DEVICE

17 32 I

I DISP 1 1

16 I

CODE | 1

j EIO Operative Format 1

EIO Formats
Figure 12-2

Note that both the S and R mode PIO operatives and the V mode operative
have the same basic format. In both cases, bits 1-6 specify tfie
operation the processor is to perform. Bits 1-2 always identify the
basic type of operation to be performed, as shown in Table 12-1.

Table 12-1
Basic I/O Operations

Type | Inst | Name

00 I OCP I Output control pulse
01 I SKS I Skip if condition satisfied
10 | M | Input to A
11 I OTA | Output from A

Bits 3-6 have different meanings in different modes. In S and R modes,
these bits are set to 1100. In V mode, bits 3-6 specify an extension
to the type field. The processor may use this field to distinguish
between controllers that require different types of service, or between
different software implementations. This feature has yet to be
completely defined.

12-3 Third Edition

DOC3060-192

In all three modes, the function field (bits 7-10) specifies one of 16
device-dependent commands. Each controller defines the function codes
that it uses for each of the four basic PIO operations. For example,
the controller for one device might use INA with a function field of 0
to load data into A, INA with a function field of 1 to load a device ID
into A, and INA with a function field of 3 to load status into A.

In all three modes, bits 11-16 specify a device address that identifies
a controller and its implementation. Tables 12-5 and 12-6, at the end
of this chapter, show these device addresses.

PIO Operative Actions

The processor performs the same actions for each identical PIO
operative, regardless of the mode of the machine. This means that the
INA operation specified ty EIO in V mode results in the same actions as
does the INA directly executed in S and R modes. After performing the
operation, however, the processor indicates the success or failure of
the operation in different ways, depending on the mode. The
descriptions below explain the actions of each operation, as well as
how the processor indicates success or failure for each mode.

INA; INA is enabled over BPA. If the specified device is not ready
and does not have device address *20, the instruction ends. If the
device is ready, or has device address '20, the device responds ready
and data is read over BPD. In V mode, the condition codes reflect
success or failure as shown in Table 12-2.

In S and R mode when the device address is not '20, the processor
indicates success fcy incrementing the contents of the program counter
fcy 1; when the device address is '20, no increment occurs.

Note that for device address '20 the data can have bad parity. INAs to
device address '20 ignore the data parity and generate their own
correct parity. INAs to device addresses other than '20, however, do
check the data parity and indicate a BPD parity error if the parity is
incorrect.

Table 12-2
Effect of EIO on Condition Codes

CC I Meaning

EQ | Successful INA, OTA, or SKS instruction
NE | Unsuccessful INA, OTA, OR SKS;

I any OCP

Third Edition 12-4

INPUT/OUTPUT

OTA: OTA is enabled over BPA. If the specified device is not ready
and does not have device address '20, the instruction ends. If the
device is ready, or has device address '20, the device responds ready
and data in A is sent over BPD to the device. In V mode, the condition
codes reflect success or failure as shown in Table 12-2.

In S and R mode when the device address is not '20, the processor
indicates success by incrementing the contents of the program counter
by 1; when the device address is '20, no increment occurs.

SKS; SKS is enabled over BPA. If the specified device is not ready,
the instruction ends. If the device is ready, the processor indicates
success in V mode by setting the condition codes, as shown in Table
12-2, regardless of the device address.

If the device is ready, the processor indicates success in S and R mode
by incrementing the contents of the program counter by 1, regardless of
the device address.

OCPi OCP is enabled over BPA. The specified device performs the
specified command and the instruction ends. Note that OCP never
indicates success or failure.

EMX

While PIO operations are suitable to use when only small amounts of
data need to be transferred, they are typically not suitable for
multiple word transfers. Each time PIO transfers data, the processor
must execute several instructions for each transferred word. This
ratio of control instructions to transferred data makes the transfer of
blocks of data rather slow. EMx operations allow devices to access
memory directly, rather than by using software. This cuts down on the
amount of processor time required to perform the transfer, and allows
the transfer to occur without specific software attention.

EMx Transfers

There are four types of EMx transfers:

• EMA, or direct memory access

• EMC, or direct memory channel

• EMT, or direct memory transfer

• EMQ, or direct memory queue

12-5 Third Edition

DOC3060-192

All of these transfers occur in three phases. The request to transfer
occurs during the request phase. The CPU receives the transfer address
during the address phase. The data i s transferred during the data
phase.

To make any DMx request, the controller desiring the transfer sends a
DMx request to the processor. This request wil l be serviced when:

• The processor issues a EMx request enable.

• There are no other EMx requests pending from devices with a
higher priority (a lower slot number).

If the request from this controller has the highest priori ty, the
processor recognizes i t . The controller sends an address on BPA and
control information on the mode l ines. The mode l ines request the
specific type of EMx transfer, which in turn defines how the address
line information i s to be interpreted.

After receiving the control information, the processor strobes the data
as appropriate over BPD. The processor sends an end-of-range (EOR)
signal, if appropriate, at the end of the block transfer.

The length of time between when a device requests service and when the
processor responds depends on two things:

• How many requests of higher priority are already pending.

• What the processor i s doing when the device makes i t s request.

A device must wait until the processor services a l l requests of higher
priority. This means that the device with the highest priori ty in the
system can preempt service to any other device, and may completely
occupy the processor if i t transfers data a t the maximum rate.

Though the processor can pause between instructions or a t selected
points within instruction execution, i t cannot stop immediately each
time a request for a transfer occurs. Also, the processor cannot
service requests when servicing interrupts or phantom interrupt code.
This means that even the highest priority device in the system may have
to wait less than 7 microseconds if the processor i s busy. Once the
processor transfers the f i r s t word, however, i t transfers the rest of
the words in the block as fast as possible. At the maximum speed, note
that the processor cannot process anything else a t the same time.

Third Edition 12-6

INHJT/OOTRJT

Mapped I/O

When a controller specif ies the transfer starting address, i t can
specify a virtual address or a physical one. The processor i s using
absolute I/O when the address specified i s a physical one. When the
controller specif ies a virtual address, the processor i s using mapped
I/O.

Mapped I/O allows the limited addressing range of DMx transfers to
address a l l of physical memory. It i s especially useful when
transferring several contiguous pages in virtual memory to physical
locations that may not be contiguous. For example, suppose the
processor wants to transfer four contiguous pages of data in virtual
memory to a device. As shown in Figure 12-3, mapped I/O allows the
system to map the four pages to any four available pages, instead of
requiring one four-page block.

Virtual
Memory

Pagefl

Pagel

Page 2

Page 3

IOTLB

Page 0 data

Page 1 data

Page 2 data

Page 3 data

Physical
Memory

Page 3

Pagel

Page0

Page 2

Mapped I/O
Figure 12-3

12-7 Third Edition

DOC3060-192

The IOTIB contains the information needed to map the transfer addresses
to physical memory locations. The IOTIB forms half of the
virtual-to-physical address mapping hardware. (The STTJ3 i s the other
half.) I t contains 64 entries (128 for the 9950). Table 12-3 shows
the contents of each JOTIB entry.

Table 12-3
IOTIB Entry Format

I Number of Bits

1 1 750,
1 9950 I 850

1 13 I 12

1 1 1 1

! 3 I 3

I 2250,
1450,
550-11

12

1

2 (0 for
2250)

Contents

Physical
page number

Valid bit

MBIO bits

Description I

Specifies a physical page in |
either of the I/O segments.|

Indicates if this entry I
contains old data. I

Specifies the cache leaf to |
invalidate when writing to |
memory. 1

Note that 3 MBIO bi ts are used for an 8-leaf cache; 2 MBIO bi ts for a
4-leaf cache. These MBIO bits determine which eighth or fourth of the
cache, respectively, to invalidate after a memory write. Since the
cache of the 9950, 750, or 850 contains 16K bytes, i t can contain
mapping information about 8 entries of physical memory, each having the
same page offset. The cache of the 1450 and 550-11 has 8K bytes and

4 entries of physical memory. The
only the modified entry to be
rather than each of the 4 or 8

can hold mapping information for
MBIO bi ts allow the information for
invalidated after a memory write,
possible places.

Each IOTLB entry contains mapping information for one page of the I/O
segments. Entry 0 contains mapping information about page 0 of segment
0; entry 64, about page 0 of segment 1.

The IDTLB allows the I/O address translation during EMx to be done
swiftly because information about the translation i s always guaranteed
to be in the IOTIB. If the processor were to rely on the STUB, an ST1B
miss could occur and the transfer would f a i l . Preloading the IOTIB i s ,
therefore, essential before ini t iat ing I/O.

Third Edition 12-8

INHJT/OUTHJT

The LETT instruction loads the IDTLB entries with transfer information.
On all machines except the 2250, this instruction must be used before
any transfer occurs so that the processor maps virtual pages to the
desired physical ones. The 2250 has no leaf bits because the cache is
exactly the size of a page. On the 2250, loading the IOTIB is done by
accessing the appropriate page in segment 0 by an instruction, such as
LDA, before any transfer.

DMA

EMA is useful for bulk data transfers when speed is important. Maximum
rates of transfer for DMA and the other DMx transfers for the 9950 are
shown in Table 12-4; maximum transfer rates for all other processors
are shown in Table 12-5.

The register file contains the DMA register set occupying locations
'40-'77. These locations contain direct memory channels 0-'37,
respectively, that allow devices to access memory with a minimum of
processor intervention.

Making a DMA Request: To perform a DMA transfer, a program must:

1. Set up a DMA cell.

2. Tell the controller to perform the transfer.

A DMA cell i s one 32-bit location in the register f i l e . Bits 1-12 of
this location contain the two's complement of the to ta l number of
halfwords to be transferred. This means that the largest block of
halfwords that can be transferred on a single channel i s 4096; to
transfer more requires more than one channel.

The use of b i t s 13-32 depends on the machine and on whether mapped I/O
mode or physical I/O mode i s being used. In physical I/O mode, bi ts 13
and 14 are reserved; b i t s 15-32 supply the physical address of the
f i r s t location to transfer.

12-9 Third Edition

DOC3060-192

Table 12-4
EMx Transfer Rates on the 9950

1 Type

I DMA

| DMC

I DMT

1 DMQ

I Burst
I mode

Transfer

Input
Output

Input
Output

Input
Output

Input
Output

Input
Output

Maximum Speed I

2.4 Mbytes/sec I
2.0 Mbytes/sec I

1.2 Mbytes/sec* I
1.1 Mbytes/sec* |

2.8 Mbytes/sec* |
2.2 Mbytes/sec* |

300 Kbytes/sec* |
300 Kbytes/sec* |

9.4 Mbytes/sec |
6.0 Mbytes/sec |

* This i s an approximate value.

Table 12-5
DMx Transfer Rates for Rest of 50 Series

1 Type

1 DMA

I DMC

| DMT

1 DMQ

I Burst
I mode

Transfer

Input
Output

Input
Output

Input
Output

Input
Output

Input
Output

Maximum Speed 1

2.5 Mbytes/sec 1
2.5 Mbytes/sec I

1.0 Mbytes/sec* 1
1.0 Mbytes/sec* |

2.5 Mbytes/sec* |
2.5 Mbytes/sec* 1

280 Kbytes/sec* 1
280 Kbytes/sec* I

8.0 Mbytes/sec I
5.6 Mbytes/sec I

*This i s an approximate value.

Third Edition 12-10

INHJT/OUTPUT

When mapped I/O mode i s being used on the 9950, b i t 16 s e l ec t s I/O
segnent 0 or 1; b i t s 17-32 specify the offse t wi thin the segment a t
which the t ransfer i s t o begin. Bi ts 13-15 are reserved.

When mapped I/O mode i s used on other machines, b i t s 13-16 are
reserved; b i t s 17-32 designate the offset within segment 0 of the
f i r s t (or next) locat ion t o t rans fe r .

12 13 14 15 32

|2's CQMP WORD COUNT | RESERVED | ADDRESS WHERE TRANSFER BEGINS|

Physical I/O Mode

12 13 15 16 17 32

i2's OOMP WORD COUNT | RESERVED | SEG NO | OFFSET FOR START OF TRANSFERl

Mapped i/o Mode: 9950

1 12 13 16 17 32

12's OOMP WORD COUNT | RESERVED | OFFSET FOR START OF TRANSFERl

Mapped I/O Mode: Other Machines

Format of DMA Control Word
Figure 12-4

12-11 Third Edition

DOC3060-192

Servicing a DMA Request; When a controller wants to make a transfer,
it signals tEe processor over BPA for memory access via a requested
channel. Normally, the processor acts on the request one microstep
after the request arrives. If only one request is pending, the
processor services it immediately. If more than one is pending, the
processor services the request from the device mounted in the lowest
numbered I/O slot first, then it services the request from the device
in the next lowest slot, and so on.

Note that when the processor pauses to service a request, it services
all pending requests before resuming instruction execution or servicing
an interrupt.

Once the processor has selected a request for service, it fetches the
contents of the word to transfer and either sends them over the bus, or
stores them at the address specified by the channel. It then
increments the values of the word count and transfer address by 1. If
the incremented value of the word count is 0, the processor issues an
BOR signal. A word count of any other value means that there are more
words to transfer.

At the end of each request, the word count specifies the number of
words left to transfer and the transfer address specifies the address
of the next word to transfer. At the normal end of the transfer, the
word count contains a 0 and the transfer address specifies the address
of the last word transferred plus 1.

PMC

EMC operates in much the same way as EMA does. The differences a re
tha t EMC provides a t o t a l of 32,768 channels ra ther than j u s t 32, and
t ha t data blocks can contain up t o 64K words. Also, the EMC transfer
r a t e i s much slower than t h a t for EMA since EMC performs th ree memory
operations per t ransfer versus one for EMA.

EMC operations require a control word j u s t as EMA operations do. The
EMC control word, however, i s not contained in the current r eg i s t e r
f i l e , but in a 32-bi t memory location in the range of 0-*177776. Bi ts
1-16 of the control word contain the 16-bi t address of the next word t o
be t ransferred; b i t s 17-32, the 16-bi t address of the l a s t word t o be
t ransferred. (See Figure 12-5.) The EMC control word must be aligned
on an even word boundary.

1 16 17 32

| ADR OF NEXT WORD TO TRANSFER | ADR OF LAST WORD TO TRANSFER |

Format of EMC Control Word
Figure 12-5

Third Edition 12-12

INRJT/CUTPUT

As in EMA service, a controller uses BPA to request the processor for
memory access via a specified channel. When the processor can break
i t s execution, i t services any pending requests. If more than one
request i s pending, the processor services the request of the device
mounted in the lowest numbered slot f i r s t , then others in order of
their priori ty.

Once i t has selected a request to service, the processor either reads
or writes the contents of the location specified in b i t s 1-16 of that
channel's control word. After the read or write, the processor
increments the contents of bi ts 1-16 by 1. If the value before the
increment equals the contents of bi ts 17-32 in the control word, the
processor issues an BOR signal. If the two values are not equal, then
there are more words to transfer.

At the end of each request, b i ts 1-16 of the control word point to the
next word to transfer. At the normal end of the transfer, b i t s 1-16
point to the l as t transferred location plus 1.

EMT

EMT transfers are used by controllers that do not need an external
control word stored in memory or in the register file. Since the
controller specifies all the information necessary to perform the
transfer, all channel control functions can overlap with processor and
memory functions at a speed equivalent to that of EMA transfers. EMT
transfers are useful when manipulating tumble tables and channel
programs.

When a controller wants to request a EMT transfer, it uses BPA to ask
the processor for memory access. When the processor can service the
request, it transfers words to or from the controller. The address
specified by the controller is either the source or the destination of
the data to transfer, depending on the transfer direction.

EMQ

Chapter 6, Datatypes, defined queues, their parameters, and how they
are manipulated. As noted there, one of their uses i s as a storage
device. EMQ operations use physical memory queues to hold data
traveling between device and processor.

To make a EMQ request, the controller uses BPA to ask the processor for
queue access via a selected QCB. (The QCB address specified over BPA
must be aligned on a four-word boundary.) For an input operation, the
processor adds the contents of the word a t the specified address to the
bottom of the queue (equivalent to an ABQ), if there i s room. If there
i s no room, the processor sends an BOR signal to the controller.

12-13 Third Edition

DOC3060-192

For an output operation, the processor removes the word from the top of
the queue (equivalent to an RTQ) and transfers i t to the specified
address. If the queue contains no words, the processor issues an BOR
to the controller, as well as a word of zeroes. Note, however, that i f
the processor removes the last word from a queue, i t does not signal
the controller when i t removes the word.

DMQ i s fully interlocked with the queue manipulation instructions shown
in Chapter 6.

Burst Mode I/O

Burst mode i s used only with 750, 850, and 9950 systems.

Burst mode operations are similar to DMA transfers because they are
both set up the same way. Like EMA, burst mode sets up a DMA cel l and
te l l s the controller what to transfer. The difference i s that burst
mode transfers four 16-bit quantities of data in each transfer, rather
than just one. This makes burst mode efficient for transferring large
blocks of data. The EMA range count and address are both incremented
by 4 each transfer.

The data to be transferred can be arbitrarily aligned in memory.
However, burst mode will operate as ordinary DMA at ordinary DMA rates
unless the data i s aligned on 64-bit boundaries and there are at least
64 bits lef t in the range.

The controllers do not request burst mode transfer unless they have 64
bits or more of data to transfer. If the controllers have been doing a
burst mode transfer but have, for example, 32 bits le f t , they request
two ordinary DMA transfers to the same channel.

Third Edition 12-14

INHJT/ajTHJT

Table 12-5
Device Address Assignments

I Device
j Address

1 '00
I '01
I '02
1 '03

I '04
I '05

I '06
1 '07
I '10

1 '11
I '12
I '13
I '14
I '15

i '16
1 '17
I '20

I '21
1 '22
I '23
I »24
I *25
1 '26 I
1 '27
1 '30
I '31
I '32
I '33
I '34
I '35
I '36
I '37
I '40
I '41
1 '42
1 '43 I
1 '44 |
1 '45 |
1 '46 I
1 '47

Controller
Model

3000
3000
3100

3000
3100

7000
7040
———

4300
4020
4020
5000

5000
5000
3000

4002
4004/5/6
4004/5/6
2076 & 461

4000
4004/5/6
4004/5/6
3007
3025
5000

3009/3008
3009/3008
5000

6000 & 6005
6020
6020
6040
6040
6060
6080
7040

Device Description 1

Paper tape reader i
Paper tape punch 1
URC #1 (unit record controller): 1
line printer, card reader, card punch I

System terminal 1
URC #2: line printer, card reader, 1
card punch 1

IPC (interprocessor communications board) 1
Primenet node controller #1 1
ICS2 #1 or ICSl (See Table 12-6 for number.) |

(intelligent communications subsystem) I
ICS2 #2 or ICSl (See Table 12-6 for number.) |
Floppy disk 1
Magnetic tape #2 1
Magnetic tape #1 1
AMLC #5 (asynchronous multiline controller) i
or ICSl (See Table 12-6 for number.) 1

AMLC #6 or ICSl (See Table 12-6 for number.) I
AMLC #7 or ICSl (See Table 12-6 for number.) |
Control panel, RTC (realtime clock), SOC I

(system option controller) 1
Disk option B' 1
Disk controller #3 1
Disk controller #4 1
Writeabie control store 1
Disk option B 1
Disk controller #1 1
Disk controller #2 1
Buffered parallel I/O channel #1 1
Buffered parallel I/O channel #2 1
AMLC #8 or ICSl (See Table 12-6 for number.) I
Versatec/Gould printer plotter 1
Versatec/Gould printer plotter I
AMLC #4 or ICSl (See Table 12-6 for number.) I
ICSl #1 1
ICSl #2 1
PRIMAD (AIS, analog input system) 1
Digital input #1 (DIS) 1
Digital input #2 1
Digital output #2 (DOS) I
Digital output #2 |
Digital to analog (AOS, analog output system) |
Computer products interface I
Primenet node controller #2 |

12-15 Third Edition

DOC3060-192

Table 12-5 (continued)
Device Address Assignments

1 Device
I Address

1 '50

1 '51
1 '52
I '53
1 '54
1 '55
1 »56
1 '57
1 '60
1 '61
1 '62
1 '63
1 '64
1 '65
1 '66
1 '67
1 '70
1 '71
1 '72
1 '73
1 '74
1 '75
1 '76
1 '77

Controller
Model

5300

5300
5000
5000
5000
5400
5200

7000
7000
7000
7000
7000
7000
7000
7000

Device Description 1

HSSMLC #1 (high speed synchronous multiline |
controller) or MDLC (multiple data link |
controller) 1

HSSMLC #2 or MDLC 1
AMLC #3 or ICSl (See Table 12-6 for number.) I
AMLC #2 1
AMLC #1 1
Multiple autocall 1
SMLC (synchronous multiline controller) I

General purpose interface board I
General purpose interface board I
General purpose interface board I
General purpose interface board |
General purpose interface board I
General purpose interface board 1
General purpose interface board 1
General purpose interface board I
Reserved for specials I
Reserved for specials 1
Reserved for specials 1
Reserved for specials 1
Reserved for specials I
Reserved for controllers using T$GPPI 1
Reserved for controllers using T$GPPI 1
I/O bus tester 1

Third Edition 12-16

INHJT/OUTEUT

Table 12-6
ICSl Number and Address Assignments

1 ICSl
I Number

1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8

Device Address (Dependent on Number of ICS2s Configured) |

No ICS2s | 1 ICS2 | 2 ICS2s |

'36 | *36 I '36 1
•37 1 '37 1 '37 1
»10 | '11 I '32 I
'11 ! '32 | '17 1
'32 I '17 1 '16 1
'17 I '16 I '15 I
•16 I '15 I '35 I
•15 | '35 I '52 I

12-17 Third Edition

13
S, R, and V Mode

Instruction Dictionary

INTRODUCTION

This chapter contains descriptions for all 50 Series instructions used
in S, R, and V modes. In the description of each instruction, you will
find:

• The instruction mnemonic followed by any arguments.

• The name of the instruction.

• The bit format of the instruction.

• The modes for which the instruction is valid.

• Detailed information describing the instruction's action.

• Information about how the instruction affects LINK, OBIT, and
the condition codes.

Notation Conventions

Several abbreviations and symbols are used throughout this dictionary,
Table 13-1 defines the dictionary notation.

13-1 Third Edition

DOC3060-192

Table 13-1
Dictionary Notation

I Symbol

1 A

1 ADDRESS

I AP

1 B

1 BR

I CB

1 CBIT

I DAC

1 E

I EA

1 F

I FAC

I FAR

I FLR

1 I

1 L

I LINK

1 QAC

1 skip

1 X

Meaning 1

The A register. 1

Encompasses all the elements needed to specify an |
effective address. This term is used because various |
types of addressing require you to specify the elements |
in different orders (such as indirect or pre- and |
post-indexing). 1

Address pointer. 1

The B register. 1

Base register. 1

Class bits. 1

Bit 1 of the keys. 1

The double precision floating-point accumulator with 48 |
bits of mantissa and 16 bits of exponent. |

The E register. 1

Effective address. 1

Floating-point accumulator. 1

The single precision floating-point accumulator with 48 |
bits of mantissa and 16 bits of exponent. I

Field address register. 1

Field length register. 1

Indirect bit.

The 32 bit L register. 1

Bit 3 of the keys. 1

The quad precision floating-point accumulator with 96 I
bits of mantissa and 16 bits of exponent. 1

Skip the next 16-bit word before continuing execution. 1

The X register (indexing). 1

Third Edition 13-2

S, R, and V MDDE

Table 13-1 (continued)
Dictionary Notation

Symbol

XB

Y

m\n

[]

Meaning

Auxiliary base register.

The Y register (indexing).

Specifies the number of bits, n, occupied by a field, m.

Specifies an optional argument.

Resumable Instructions

Some assembly language instructions are resumable. When an interrupt
occurs during instruction execution, the processor usually services the
interrupt, then restarts the interrupted instruction from the
beginning. Some instructions, however, are too long or too complex for
this to be desirable. When an interrupt occurs during one of these
resumable instructions, the processor preserves the state of the
interrupted instruction, handles the interrupt, then resumes the
instruction at the point where the interrupt occurred. Table 13-2
lists the resumable assembly language instructions.

Table 13-2
Resumable Instructions

I Instructions |

1 ARGT
I XDTB
I XMV
I ZMV

XAD
XDV
ZCM
ZMVD

XBTD
XED
ZED
ZTRN

XCM |
XMP |
ZFIL |
STEX |

13-3 Third Edition

DOC3060-192

Storing Data into the 9950 Instruction Stream

After any instruction that stores data into memory, you must wait five
instructions before executing data. If in doubt about the next five
instructions (temporally) to be executed, a mode change instruction to
the current addressing mode, such as E64V, allows the stored data to be
executed.

Instruction Formats

All S, R, and V mode instructions belong to one of the following
instruction types:

• S and R Mode Memory Reference, Short

• V Mode Memory Reference, Short

• R Mode Memory Reference, Long

• V Mode Memory Reference, Long

• V Mode Generic AP (Address Pointer)

• S, R, and V Mode Generic Type A

• S, R, and V Mode Generic Type B

• S, R, and V Mode Shift

• S, R, and V Mode Skip

The format of each instruction type is shown in Figure 13-1.

Short and long memory reference instructions have an opcode in bits
3-6. The value of this opcode ranges from 1 to '17, inclusive, with
the exception of '14, which is reserved for I/O. For opcode '15, the X
bit is part of the opcode.

In addition, long memory reference instructions have an opcode
extention contained in bits 13-14. Generic AP instructions have a
generic A or B format (where bits 7-16 contain the opcode extension)
followed by a 32-bit address pointer.

Generic A and B, shift, and skip instructions are 16 bits long, all of
which form an opcode. The values of bits 1 and 2 determine the basic
instruction type: 11 for Generic A, 00 for Generic B, 01 for shifts,
and 10 for skips. Bits 3-6 contain 0. Bits 7-16 contain an opcode
extension. For shifts, bits 10-16 of the opcode extension contain the
two's complement of the number of shifts to perform.

Third Edition 13-4

S, R, and V NODE

1 2 3 6 7 16

I I | X | OP | DISPLACEMENT |

S and R Memory Reference, Short

1 2 3 6 7 8 16

I I I X | OP I 1 I DISPLACEMENT I

V Memory Reference, Short

1

1 I

2 3 6 7 12

X | OPCDDE | 110000

13 14 15 16 17 32

| OPEX | CB | [OPTIDNAL DISP] 1

R Mode Memory Reference, Long (Extended) Format

1

1 I

2 3 6

I X | OPCODE

7 11

I 11000

12

1 Y

13 14 15 16 17 32

I OPEX | BR | DISPLACEMENT I

33 48

AUGMENT CODE*

V Mode Memory Reference, Long Displacement Format

*For quad operations only.

S, R, V Mode Instruction Formats
Figure 13-1

13-5 Third Edition

DOC3060-192

16

GENERIC A OR B

17 20 21 22 23 24 25 32 33 48

BIT | I | 0 | BR | 00000000 | OFFSET I

Generic AP Format

1 6 7 16

I 110000 | OPCODE EXT |

S, R, V Modes Generic A Format

1 6 7 16

I 000000 | OPCODE EXT I

S, R, V Modes Generic B Format

1 6 7 16

I 010000 | OPCODE EXT |

S, R, V Mode Shift Format

1 6 7 16

I 100000 | OPCODE EXT |

S, R, V Mode Skip Format

Sr R, and V Mode Instruction Formats
Figure 13-1 (continued)

Third Edition 13-6

S, R, and V MDDE

INSTRUCTIONS

^ A1A
Add 1 to A
1 1 0 0 0 0 1 0 1 0 0 0 0 1 1 0 (S, R, V mode form)

Adds 1 to the contents of A and stores the result in A. If A initially
contains (2**15)-lf an integer exception occurs and the instruction
loads -(2**15) into A. If no integer exception occurs, the instruction
resets CBIT to 0. LINK contains the carry-out bit. The condition
codes reflect the result of the operation. (See Table 5-3.)

If an integer exception occurs and bit 8 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 11
for more information.

• A2A
Add 2 to A
1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 (S, R, V mode form)

Adds 2 to the contents of A and stores the result in A. If A initially
contains (2**15)-1 or (2**15-2), an integer exception occurs and the
instruction loads -(2**15) or -(2**15)+1, respectively, into A. If no
exception occurs, the instruction resets CBIT to 0. LINK contains the
carry-out bit. The condition codes reflect the result of the
operation. (See Table 5-3.)

If an integer exception occurs and bit 8 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 11
for more information.

• ABQ address
Add Entry to Bottom of Queue
1 1 0 0 0 0 1 1 1 1 0 0 1 1 1 0 (V mode form)
AP\32

Adds the entry contained in A to the bottom of the queue referenced by
the AP. (AP points t o the queue's QCB.) Sets the condition codes t o
re f l ec t EQ if the queue i s f u l l , or to NE if not f u l l . Leaves the
values of CBIT and LINK unchanged. See Chapters 5 and 12 for more
information about queues and queue operat ions.

13-7 Third Edition

DOC3060-192

^ ACA
Add CBIT to A
1 1 0 0 0 0 1 0 1 0 0 0 1 1 1 0 (S, R, V mode form)

Adds the value of CBIT to the contents of A and stores the result in A.
If the initial value of A is (2**15)-1 and CBIT is 1, the instruction
loads -(2**15) into A and an integer exception occurs. If no integer
exception occurs, the instruction resets CBIT to 0. The condition
codes reflect the result of the operation. (See Table 5-3.) LINK
contains the carry-out bit.

If an integer exception occurs and bit 8 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 11
for more information.

Note

This instruction adds CBIT to bit 16 of A.

• AID address
Add
I X 0 1 1 0 1 1 0 0 0 Y 0 0 BR\2 (V mode long)
DISPLACEMENT^

1 X 0 1 1 0 1 1 0 0 0 0 0 0 CB\2 (R mode long)
[DISPLACEMENT\16]

I X 0 1 1 0 DISPLACEMENTS (S mode; R, V mode short)

Calculates an effective address, EA. Fetches the 16-bit contents of
the location specified by EA and adds them to the contents of A.
Stores the results in A.

If the resulting sum is less than or equal to (2**15)-1 and greater
than -(2**15), the instruction resets CBIT to 0. If the sum is greater
than or equal to 2**15, an integer exception occurs and the instruction
loads -(2**15)-1 into A. If the sum is less than or equal to
-(2**15)-1, an integer exception occurs and the instruction loads
+(2**15)-1 into A.

If an integer exception occurs and bit 8 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 11
for more information.

At the end of the operation, LINK contains the carry-out bit. The
condition codes reflect the result of the operation. (See Table 5-3.)

Third Edition 13-8

Sf R, and V MDDE

^ ADL address
Add Long
I X 0 1 1 0 1 1 0 0 0 Y 1 1 BR\2 (V mode form)
DISPLACEMENT\16

Calculates an effective address, EA. Fetches the 32-bit contents of
the location specified by EA and adds them to the contents of L.
Stores the results in L.

If the resulting sum is less than or equal to (2**31)-1 and greater
than or equal to -(2**31), the instruction resets CBIT to 0. If the
sum is greater than or equal to (2**31), an integer exception occurs
and the instruction loads - (2**31)-1 into L. If the sura is less than
or equal to -(2**31)-1, an integer exception occurs and the instruction
loads +(2**31) -1 into L.

If an integer exception occurs and bit 8 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 11
for more information.

At the end of the operation, LINK contains the carry-out bit. The
condition codes reflect the result of the operation. (See Table 5-3.)

• ADLL
Add LINK to L
1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 (V mode form)

Adds the contents of LINK to the contents of L and stores the result in
L. If the initial value of L is (2**31)-1 and LINK is 1, an integer
exception occurs and the instruction loads -(2**31) into L. If no
integer exception occurs, the instruction resets CBIT to 0. The
condition codes reflect the result of the operation. (See Table 5-3.)
LINK contains the carry-out bit.

If an integer exception occurs and bit 8 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 11
for more information.

Note

This instruction adds the value of LINK to bit 32 of L.

13-9 Third Edition

DOC3060-192

• ALFA far
Add L to FAR
0 0 0 0 0 0 1 0 1 1 0 0 F 0 0 1 (V mode format)

Adds the offset contained in L to the word and bit number fields of FAR
and stores the result in the specified FAR. The values of the
condition codes remain unchanged. Leaves the values of LINK and CBIT
indeterminate.

Figure 13-2 shows the format of L and the specified FAR for this
instruction.

12 13 32

UNUSED 1 OFFSET

Format of L

16 17 32 33 36

RING, SEG | WORD # | BIT #

Format of FAR

L and FAR Format for ALFA
Figure 13-2

P* ALL n
A Left Logical
0 1 0 0 0 0 1 1 0 0 N\6 (S, R, V mode form)

Shifts the contents of A left the appropriate number of bits, bringing
0s into bit 16. CBIT contains the value of the last bit shifted out;
the values of the other bits shifted out are lost. The value of LINK
is indeterminate. Leaves the values of the condition codes unchanged.
See Chapter 5 for more information about shifts.

N contains the two's complement of the number of shifts to perform.
N contains 0, the instruction performs 64 shifts.

If

Third Edition 13-10

S, R, and V MDDE

• ALR n
A Left Rotate
0 1 0 0 0 0 1 1 1 0 N\6 (S, R, V mode form)

Shifts the contents of A to the left, rotating bit 1 into bit 16.
Stores the result in A. CBIT contains the value of the last bit
rotated into bit 16. The value of LINK is indeterminate. Leaves the
values of the condition codes unchanged. See Chapter 5 for more
information about shifts.

N contains the two's complement of the number of shifts to perform. If
N contains 0, the instruction performs 64 shifts.

• ALS n
A Arithmetic Left Shift
0 1 0 0 0 0 1 1 0 1 N\6 (S, R, V mode form)

Shifts the contents of A to the left, bringing 0s in on the right.
Stores the result in A. If bit 1, the sign bit, changes state, the
shift has resulted in a loss of significance and produces an integer
exception. If no integer exception occurs, the instruction resets CBIT
to 0. The value of LINK is indeterminate. Leaves the values of the
condition codes unchanged. See Chapter 5 for more information about
shifts.

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 11
for more information.

• ANA address
AND to A
I X 0 0 1 1 1 1 0 0 0 Y 0 0 BR\2 (V mode long)
DISPLACEMENT\16

1 X 0 0 1 1 1 1 0 0 0 0 0 0 CB\2 (R mode long)
[DISPLACEMENT\16]

I X 0 0 1 1 DISPLACEMENTXIO (S mode; R, V mode short)

Calculates an ef fec t ive address , EA. Logically MDs the 16-bi t
contents of the locat ion specified by EA with the contents of A and
s tores the r e s u l t in A. Leaves the values of LINK, CBIT, and the
condition codes unchanged.

13-11 Third Edition

DOC3060-192

• ANL address
And to A Long
I X 0 0 1 1 1 1 0 0 0 Y 1 1 BR\2 (V mode form)

Calculates a 32-bit effective address, EA. Logically ANDs the 32-bit
contents of the location specified by EA with the contents of L and
stores the result in L. Leaves the values of LINK, CBIT, and the
condition codes unchanged.

^ ARGT
Argument Transfer
0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 (V mode form)

Transfers arguments from a source procedure to a destination procedure.
ARGT is fetched and executed only when the argument transfer phase of a
procedure call (PCL) instruction is interrupted or faulted.

To perform a procedure call and argument transfer, the source procedure
must contain the PCL instruction followed by a number of argument
templates. The destination procedure must begin with the ARGT
instruction. When the PCL instruction is executed, control transfers
to the destination procedure, and the ARGT instruction uses the
templates to form the actual arguments. The arguments are stored in
the new stack frame as they are computed. At the end of the ARGT
instruction, the values of LINK, CBIT, and the condition codes are
indeterminate.

Note that ARGT must be the first executable instruction in any
destination procedure that will use arguments. For those procedures
whose entry control blocks specify zero arguments, omit ARGT.

For more information about argument transfers, refer to the section on
procedure calls in Chapter 8.

• ARL n
A Right Logical
0 1 0 0 0 0 0 1 0 0 N\6 (S, R, V mode form)

Shifts the contents of A right the appropriate number of bits , bringing
0s into bit 1. CBIT contains the value of the last bit shifted out;
the values of the other bits shifted out are lost . The value of LINK
i s indeterminate. Leaves the values of the condition codes unchanged.

N contains the two's complement of the number of shifts to perform. If
N contains 0, the instruction performs 64 shifts.

Third Edition 13-12

S r Rr and V MDDE

^ ARR n
A Right with Rotate
0 1 0 0 0 0 0 1 1 0 N\6 (Sf Rr V mode form)

Shifts the contents of A to the r igh t , ro ta t ing b i t 16 in to b i t 1 .
CBIT contains the value of the l a s t b i t ro ta ted in to b i t 1 . The value
of LINK i s indeterminate. Leaves the values of the condition codes
unchanged.

N contains the two's complement of the number of sh i f t s t o perform. If
N contains 0, the ins t ruc t ion performs 64 s h i f t s .

• ARS n
A Right Shif t
0 1 0 0 0 0 0 1 0 1 N\6 (S, R, V mode form)

Shifts the contents of A t o the r igh t a r i thmet ica l ly , sh i f t ing copies
of b i t 1, the sign b i t , in to the vacated b i t s . CBIT contains the value
of the l a s t b i t shi f ted out ; the values of the other b i t s shif ted out
are l o s t . The value of LINK i s indeterminate. Leaves the values of
the condition codes unchanged.

N contains the two's complement of the number of sh i f t s t o perform. If
N contains 0, the ins t ruc t ion performs 64 s h i f t s .

• ATQ address
Add Entry to Top of Queue
1 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 (V mode form)
AP\32

Adds the entry contained in A to the top of the queue referenced by the
AP. (AP points t o the queue's QCB.) Sets the condition codes t o
re f l ec t EQ if the queue i s f u l l , or t o NE if not f u l l . Leaves the
values of CBIT and LINK unchanged. For more information about queues
and queue manipulation, see Chapters 5 and 12.

13-13 Third Edition

DOC3060-192

• BCEQ address
Branch on Condition Code EQ
1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 0 (V mode form)
ADDRESS\16

If the condition codes re f lec t equal t o 0 r the ins t ruc t ion loads the
specified address in to the program counter. This address must be
within the current segment. If the condition codes r e f l ec t some other
condition, execution continues with the next ins t ruc t ion . Leaves the
values of LINK, (BIT, and the condition codes unchanged.

• BOGE address
Branch on Condition Code GE
1 1 0 0 0 0 1 1 1 0 0 0 0 1 0 1 (V mode form)
ADDKESS\16

If the condition codes re f lec t greater than or equal t o 0, the
ins t ruc t ion loads the specified address in to the program counter. This
address must be within the current segment. If the condition codes
r e f l ec t some other condition, execution continues with the next
ins t ruc t ion . Leaves the values of LINK, (BIT, and the condition codes
unchanged.

^ BOGT address
Branch on Condition Code GT
1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 (V mode form)
ADDRESS\16

If the condition codes re f lec t greater than 0, the ins t ruc t ion loads
the specified address in to the program counter. This address must be
within the current segment. If the condition codes r e f l ec t some other
condition, execution continues with the next in s t ruc t ion . Leaves the
values of LINK, (BIT, and the condition codes unchanged.

• BCLE address
Branch on Condition Code LE
1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 (V mode form)
ADDRESS\16

If the condition codes re f lec t l e s s than or equal t o 0, the ins t ruc t ion
loads the specified address in to the program counter. This address
must be within the current segment. If the condition codes r e f l ec t
some other condition, execution continues with the next ins t ruc t ion .
Leaves the values of LINK, (BIT, and the condition codes unchanged.

Third Edition 13-14

S, R, and V MDDE

• BCLT address
Branch on Condition Code LT
1 1 0 0 0 0 1 1 1 0 0 0 0 1 0 0 (V mode form)
ADERESS\16

If the condition codes r e f l ec t l e s s than 0, the ins t ruc t ion loads the
specified address i n to the program counter. Tliis address must be
within the current segment. If the condition codes r e f l ec t some other
condition, execution continues with the next in s t ruc t ion . Leaves the
values of LINK, CBIT, and the condition codes unchanged.

• BCNE address
Branch on Condition Code NE
1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 (V mode form)
ADERESS\16

If the condition codes reflect not equal to 0, the instruction loads
the specified address into the program counter. This address must be
within the current segment. If the condition codes reflect some other
condition, execution continues with the next instruction. Leaves the
values of LINK, CBIT, and the condition codes unchanged.

• BCR address
Branch on CBIT Reset to 0
1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 1 (V mode form)
ADERESS\16

If CBIT has the value 0, the instruction loads the specified address
into the program counter. This address must be within the current
segment. If CBIT has the value 1, execution continues with the next
instruction. Leaves the values of LINK, CBIT, and the condition codes
unchanged.

• BCS address
Branch on CBIT Set to 1
1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 (V mode form)
ADDRESS\16

If CBIT has the value 1, the ins t ruc t ion loads the specif ied address
in to the program counter. This address must be within the current
segment. If CBIT has the value 0, execution continues with the next
ins t ruc t ion . Leaves the values of LINK, CBIT, and the condition codes
unchanged.

13-15 I h i r d Edition

DOC3060-192

• BDX address
Branch on Decremented X
1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 (V mode form)
ADDRESS\16

Decrements the contents of X by one and stores the result in X. If the
decremented value is not equal to 0, loads the specified address into
the program counter. This address must be within the current segment.
If the decremented value is equal to 0, execution continues with the
next instruction. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

• BDY address
Branch on Decremented Y
1 1 0 0 0 0 0 1 1 1 0 1 0 1 0 0 (V mode form)
ADDRESS\16

Decrements the contents of Y by one and stores the result in Y. If the
decremented value is not equal to 0r loads the specified address into
the program counter. This address must be within the current segment.
If the decremented value is equal to 0, execution continues with the
next instruction. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

^ BEQ address
Branch on A Equal to 0
1 1 0 0 0 0 0 1 1 0 0 0 1 0 1 0 (V mode form)
ADDRESS\16

If the contents of A are equal t o 0, the ins t ruc t ion loads the
specified address in to the program counter. This address must be
within the current segment. If the A contents a re not equal t o 0,
execution continues with the next ins t ruc t ion . The condition codes
contain the r e s u l t of the comparison. (See Table 5-3.) Leaves the
values of LINK and CBIT unchanged.

• BFEQ address
Branch on Floating Accumulator Equal t o 0
1 1 0 0 0 0 1 1 1 0 0 0 1 0 1 0 (V mode form)
ADDRESS\16

If the contents of the f loat ing accumulator are equal t o 0, the
ins t ruc t ion loads the specified address in to the program counter. This
address must be within the current segment. If the f loa t ing
accumulator contents are not equal t o 0, execution continues with the
next ins t ruc t ion . The condition codes contain the r e s u l t of the
comparison. (See Table 5-3.) Leaves the values of LINK and CBIT
unchanged.

Third Edition 13-16

Sf R, and V MDDE

• BPGE address
Branch on Float ing Accumulator Greater Than or Equal t o 0
1 1 0 0 0 0 1 1 1 0 0 0 1 1 0 1 (V mode form)
ADDRESS\16

If the contents of the f loa t ing accumulator are greater than or equal
t o 0, the ins t ruc t ion loads the specified address i n to the program
counter. This address must be within the current segment. If the
f loa t ing accumulator contents a re l e s s than 0, execution continues with
the next ins t ruc t ion . The condition codes contain the r e s u l t of the
comparison. (See Table 5-3.) Leaves the values of LINK and CBIT
unchanged.

• BPGT address
Branch on Floating Accumulator Greater Than 0
1 1 0 0 0 0 1 1 1 0 0 0 1 0 0 1 (V mode form)
ADDRESS\16

If the contents of the f loa t ing accumulator a re greater than 0, the
ins t ruc t ion loads the specif ied address in to the program counter. This
address must be within the current segment. If the f loat ing
accumulator contents a re l e s s than or equal t o 0, execution continues
with the next in s t ruc t ion . The condition codes contain the r e s u l t of
the comparison. (See Table 5-3.) Leaves the values of LINK and CBIT
unchanged.

• BFLE address
Branch on Floating Accumulator Less Than or Equal t o 0
1 1 0 0 0 0 1 1 1 0 0 0 1 0 0 0 (V mode form)
ADDRESS\16

If the contents of the f loa t ing accumulator are l e s s than or equal t o
0, the ins t ruc t ion loads the specified address i n t o the program
counter. This address must be within the current segment. If the
f loa t ing accumulator contents a re greater than 0, execution continues
with the next i n s t ruc t ion . The condition codes contain the r e s u l t of
the comparison. (See Table 5-3.) Leaves the values of LINK and CBIT
unchanged.

13-17 Third Edition

DOC3060-192

• BFLT address
Branch on Floating Accumulator Less Than 0
1 1 0 0 0 0 1 1 1 0 0 0 1 1 0 0 (V mode form)
ADDRESS\16

If the contents of the f loat ing accumulator are l e s s than 0, the
ins t ruc t ion loads the specified address in to the program counter. This
address must be within the current segment. If the f loa t ing
accumulator contents are greater than or equal t o 0f execution
continues with the next ins t ruc t ion . The condition codes contain the
r e s u l t of the comparison. (See Table 5-3.) Leaves the values of LINK
and CBIT unchanged.

• BFNE address
Branch on Floating Accumulator Not Equal t o 0
1 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 (V mode form)
ADORESS\16

If the contents of the f loat ing accumulator a re not equal t o 0, the
ins t ruc t ion loads the specified address in to the program counter. This
address must be within the current segment. If the f loat ing
accumulator contents a re equal t o 0, execution continues with the next
ins t ruc t ion . The condition codes contain the r e s u l t of the comparison.
(See Table 5-3.) Leaves the values of LINK and CBIT unchanged.

• BGE address
Branch on A Greater Than or Equal t o 0
1 1 0 0 0 0 0 1 1 0 0 0 1 1 0 1 (V mode form)
ADERESS\16

If the contents of A are greater than or equal t o 0 r the ins t ruc t ion
loads the specified address in to the program counter. This address
must be within the current segment. If the A contents a re l e s s than 0,
execution continues with the next ins t ruc t ion . The condition codes
contain the r e s u l t of the comparison. (See Table 5-3.) Leaves the
values of LINK and CBIT unchanged.

• BGT address
Branch on A Greater Than 0
1 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1 (V mode form)
ADDRESS\16

If the contents of A are greater than 0, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the A contents are less than or equal
to 0r execution continues with the next instruction. The condition
codes contain the result of the comparison. (See Table 5-3.) Leaves
the values of LINK and CBIT unchanged.

Third Edition 13-18

S, R, and V MDDE

• BIX address
Branch on Incremented X
1 1 0 0 0 0 1 0 1 1 0 1 1 1 0 0 (V mode form)
ADDRESS\16

Increments the contents of X by one and stores the result in X. If the
incremented value is not equal to 0, loads the specified address into
the program counter. This address must be within the current segnent.
If the incremented value is equal to 0, execution continues with the
next instruction. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

^ BIY address
Branch on Incremented Y
1 1 0 0 0 0 1 0 1 1 0 1 0 1 0 0 (V mode form)
ADERESS\16

Increments the contents of Y by one and stores the result in Y. If the
incremented value is not equal to 0, loads the specified address into
the program counter. This address must be within the current segment.
If the incremented value is equal to 0, execution continues with the
next instruction. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

^ BLE address
Branch on A Less Than or Equal t o 0
1 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 (V mode form)
ADDRESS\16

If the contents of A are l e s s than or equal t o 0, the ins t ruc t ion loads
the specified address i n t o the program counter. This address must be
within the current segment. If the A contents a re greater than 0,
execution continues with the next ins t ruc t ion . The condition codes
contain the r e s u l t of the comparison. (See Table 5-3.) Leaves the
values of LINK and CBIT unchanged.

• BLEQ address
Branch on L Equal t o 0
1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 (V mode form)
ADDRESS\16

If the contents of L are equal t o 0, the ins t ruc t ion loads the
specified address in to the program counter. This address must be
within the current segment. If the L contents a re not equal t o 0,
execution continues with the next ins t ruc t ion . The condition codes
contain the r e s u l t of the comparison. (See Table 5-3.) Leaves the
values of LINK and CBIT unchanged.

13-19 Third Edition

DOC3060-192

• EDGE address
Branch on L Greater Than or Equal t o 0
1 1 0 0 0 0 0 1 1 0 0 0 1 1 0 1 (V mode form)
ADDRESS\16

If the contents of L are greater than or equal t o 0f the ins t ruc t ion
loads the specified address in to the program counter. This address
must be within the current segnent. If the L contents a re l e s s than 0,
execution continues with the next ins t ruc t ion . The condition codes
contain the r e s u l t of the comparison. (See Table 5-3.) Leaves the
values of LINK and (BIT unchanged.

^ BLGT address
Branch on L Greater Than 0
1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 (V mode form)
ADCRESS\16

If the contents of L are greater ttian 0, the ins t ruc t ion loads the
specified address i n to the program counter. This address must be
within the current segment. If the L contents a re l e s s than or equal
to 0 f execution continues with the next ins t ruc t ion . The condition
codes contain the r e su l t of the comparison. (See Table 5-3.) Leaves
the values of LINK and (BIT unchanged.

^ BLLE address
Branch on L Less Than or Equal t o 0
1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 (V mode form)
ADDRESS\16

If the contents of L are l e s s than or equal t o 0 , the ins t ruc t ion loads
the specified address in to the program counter. This address must be
within the current segment. If the L contents a re greater than 0,
execution continues with the next ins t ruc t ion . The condition codes
contain the r e s u l t of the comparison. (See Table 5-3.) Leaves the
values of LINK and (BIT unchanged.

• BLLT address
Branch on L Less Than 0
1 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 (V mode form)
ADERESS\16

If the contents of L are l e s s than 0, the ins t ruc t ion loads the
specified address in to the program counter. This address must be
within the current segment. If the L contents a re greater than or
equal t o 0, execution continues with the next ins t ruc t ion . The
condition codes contain the r e su l t of the comparison. (See Table 5-3.)
Leaves the values of LINK and (BIT unchanged.

Third Edition 13-20

S, R, and V MDDE

• BLNE address
Branch on L Not Equal t o 0
1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 (V mode form)
ADERESS\16

If the contents of L are not equal to 0, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the L contents are equal to 0,
execution continues with the next instruction. The condition codes
contain the result of the comparison. (See Table 5-3.) Leaves the
values of LINK and GBIT unchanged.

^ BLR address
Branch on LINK Reset to 0
1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 (V mode form)
ADDRESS\16

If LINK has the value 0f the instruction loads the specified address
into the program counter. This address must be within the current
segment. If LINK has the value 1, execution continues with the next
instruction. Leaves the values of LINK, CBIT, and the condition codes
unchanged.

^ BLS address
Branch on LINK Set to 1
1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0 (V mode form)
ADERESS\16

If LINK has the value 1, the instruction loads the specified address
into the program counter. This address must be within the current
segnent. If LINK has the value 0, execution continues with the next
instruction. Leaves the values of LINK, CBIT, and the condition codes
unchanged.

• BLT address
Branch on A Less Than 0
1 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 (V mode form)
ADERESS\16

If the contents of A are l e s s than 0, the ins t ruc t ion loads the
specified address i n to the program counter. This address must be
within the current segment. If the A contents a re greater than or
equal t o 0, execution continues with the next i n s t ruc t ion . The
condition codes contain the r e s u l t of the comparison. (See Table 5-3.)
Leaves the values of LINK and CBIT unchanged.

13-21 Third Edition

DOC3060-192

• BMEQ address
Branch on Magnitude Condition EQ
1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 0 (V mode form)
ADDRESS\16

Performs the same operation as the BCEQ ins t ruc t ion , except t h a t i t
allows the r e s u l t t o be evaluated as unsigned.

• BMGE address
Branch on Magnitude Condition GE
1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0 (V mode form)
ADDRESS\16

Performs the same function as the BLS ins t ruc t ion does, except t h a t i t
allows the r e s u l t t o be evaluated as unsigned.

• BMST address
Branch on Magnitude Condition GT
1 1 0 0 0 0 1 1 1 1 0 0 1 0 0 0 (V mode form)
ADERESS\16

If LINK i s 1 and the condition codes re f l ec t not equal t o 0, the
ins t ruc t ion loads the specified address i n to the program counter. This
address must be within the current segment. If some other condition
e x i s t s , execution continues with the next in s t ruc t ion . Leaves the
values of CBrr, LINK, and the condition codes unchanged.

^ BMLE address
Branch on Magnitude Condition LE
1 1 0 0 0 0 1 1 1 1 0 0 1 0 0 1 (V mode form)
ADDRESS\16

If LINK i s 0 or the condition codes re f lec t equal t o 0, the ins t ruc t ion
loads the specified address in to the program counter. This address
must be within the current segment. If some other condition e x i s t s ,
execution continues with the next ins t ruc t ion . Leaves the values of
CBIT, LINK, and the condition codes unchanged.

^ BMLT address
Branch on Magnitude Condition LT
1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 (V mode form)
ADDRESS\16

Performs the same function as the BLR ins t ruc t ion does, except t h a t i t
allows the r e s u l t t o be evaluated as unsigned.

Third Edition 13-22

S r R, and V NODE

• BMNE address
Branch on Magnitude Condition NE
1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 (V mode form)
ADCRESS\16

Performs the same function as the BLNE ins t ruc t ion does, except t h a t i t
allows the r e s u l t t o be evaluated as unsigned.

• BNE address
Branch on A Not Equal to 0
1 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 (V mode form)
ADDRESS\16

If the contents of A are not equal t o 0, the ins t ruc t ion loads the
specified address i n to the program counter. This address must be
within the current segment. If the A contents a re equal t o 0,
execution continues with the next ins t ruc t ion . The condition codes
contain the r e s u l t of the comparison. (See Table 5-3.) Leaves the
values of LINK and CBIT unchanged.

13-23 Third Edition

DOC3060-192

^ CAI
Clear Active Interrupt
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 (S, R, V mode form)

Clears the current active interrupt. Effective only in vectored
interrupt mode. Inhibits interrupts for one instruction. Leaves the
values of LINK, (BIT,and the condition codes unchanged.

Note

This is a restricted instruction.

^ CAL
Clear A Left Byte
1 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 (S, R, V mode form)

Clears the left byte of A to 0. Leaves the values of LINK, (BIT, and
the condition codes unchanged.

• CALF address
Call Fault Handler
0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 (V mode form)
AP\32

The address pointer in this instruction is to the ECB of a fault
routine. The instruction uses this pointer to transfer control to the
fault routine as if the transfer were a normal procedure call. The
values of (BIT, LINK, and the condition codes are indeterminate. See
Chapter 11 for more information.

^ CAR
Clear A Right Byte

1 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 (S, R, V mode form)

Clears the right byte of A to 0. Leaves the values of LINK, (BIT, and
the condition codes unchanged.

Third Edition 13-24

S, R, and V MODE

^ CAS address
Compare A and Skip
I X 1 0 0 1 1 1 0 0 0 Y 0 0 BR\2 (V mode long)
DISPLACEMENTS

1 X 1 0 0 1 1 1 0 0 0 0 0 0 CB\2 (R mode long)
[DISPLACEMENT\16]

I X 1 0 0 1 DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effect ive address, EA. Compares the contents of the A
reg i s t e r t o the contents of the locat ion specified by EA and skips as
follows:

Condition Skip

Contents of A > contents of EA. No skip .

Contents of A = contents of EA. Skip one word.

Contents of A < contents of EA. Skip two words.

LINK contains the carry-out b i t . The value of (BIT i s unchanged. The
condition codes r e f l ec t the r e s u l t of the operat ion. (See Table 5-3.)

^ CAZ
Compare A With 0
1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 (S, R, V mode form)

Compares the contents of A with 0. Skips as follows:

Condition Skip

Contents of A > 0. No skip.

Contents of A = 0. Skip one word.

Contents of A < 0. Skip two words,

LINK contains the carry-out b i t . The value of CBIT remains unchanged.
The condition codes r e f l ec t the r e s u l t of the operation. (See Table
5-3.)

13-25 Third Edition

DOC3060-192

• CEA
Compute Effective Address
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 (S, R mode form)

Interprets the contents of A as a 16-bit indirect address in the
current addressing mode. Calculates an effective address, EA, from the
indirect address and loads the final address into A. Leaves the values
of LINK, CBIT, and the condition codes unchanged.

^ CGT
Computed GOTO
0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 0 (V mode form)
INTEGER N\16
BRANCH ADDRESS 1\16
• •
BRANCH ADDRESS (N-l)\16

If the contents of A are greater than or equal to 1 and less than the
specified integer N that follows the opcode, the instruction adds the
contents of A to the contents of title program counter to form an
address. (The program counter points to the integer N following the
opcode.) Loads the contents of the location specified by this address
into the program counter. If the contents of A are not within this
range, the instruction adds integer N to the contents of the program
counter and stores the result in the program counter. The values of
CBIT, LINK, and the condition codes are indeterminate.

Note

Each of the branch addresses following the instruction
specifies a location within the current procedure segment.

• CHS
Change Sign
1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 (S, R, V mode form)

Complements b i t 1 of A. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

^ CLS
Compare Long and Skip
I X 1 0 0 1 1 1 0 0 0 Y 1 1 BR\2 (V mode form)
DISELACEMENT\16

Calculates an effect ive address, EA. Compares the contents of L t o the
contents of the 32-bi t locat ion specified by EA and skips as follows:

Third Edition 13-26

S, R, and V M3DE

Condition Skip

Contents of LINK > contents of EA. No skip .

Contents of LINK = contents of EA. Skip one word.

Contents of LINK < contents of EA. Skip two words.

LINK contains the carry-out b i t . The value of CBIT i s unchanged. The
condition codes r e f l ec t the r e s u l t of the operation. (See Table 5-3.)

^ CMA
Complement A
1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 (S, R, V mode form)

Forms the one 's complement of the contents of A by inver t ing the value
of each b i t , and s to res the r e s u l t in A. Leaves the values of LINK,
CBIT, and the condition codes unchanged.

• CRA
d e a r A t o 0
1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 (S, R, V mode form)

Clears the contents of A to 0. Leaves the values of CBIT, LINK, and
the condition codes unchanged.

^ CRB
Clear B to 0
1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 (S, R, V mode form)
1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0

Clears the contents of B to 0. Leaves the values of CBIT, LINK, and
the condition codes unchanged.

Note

Opcode 140014 executes both a CRB and a FDBL. This i s a
conversion a id for P300 programs. This opcode should not be
used; i t i s implemented for compat ib i l i ty ' s sake only.

13-27 Third Edition

DOC3060-192

• CRE
Clear E to 0
1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 (V mode form)

Clears the contents of E to 0. Leaves the values of LINK, (BIT, and
the condition codes unchanged.

^ CREP address
Call Recursive Entry Procedure
1 X 1 0 0 0 1 1 0 0 0 0 1 0 CB\2 (R mode form)
[DISPLACEMENT\16]

Increments the contents of the program counter and loads the r e s u l t
in to the locat ion following the one specified by the current value of
the R mode stack poin ter . Calculates an effect ive address , EA, and
loads i t in to the program counter. Execution continues with the
locat ion specified by the new value of the program counter.

This ins t ruc t ion performs subroutine linkage for reentrant or recursive
procedures. CREP s tores the return address in the second word of a
stack frame created by the ENTR ins t ruc t ion , ra ther than in the
dest inat ion address as JST does.

^ CRL
Clear L to 0
1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 (S, R, V mode form)

Clears the contents of L to 0, Leaves the values of CBIT, LINK, and
the condition codes unchanged.

^ CRLE
Clear L and E t o 0
1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 (V mode form)

Clears the contents of E and L to 0. Leaves the values of LINK, CBIT,
and the condition codes unchanged.

^ CSA
Copy Sign of A
1 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 (S, R, V mode form)

Sets CBIT equal t o the value of b i t 1 of A and c l ea r s b i t 1 of A t o 0 .
The value of LINK i s indeterminate. Leaves the values of the condition
codes unchanged.

Third Edition 13-28

S, R, and V NODE

^ DAD address
Double Add
1 X 0 1 1 0 1 1 0 0 0 0 0 0 CB\2 (R mode long)
[DISPIiACEMENT\16]
I X 0 1 1 0 DISPLACEMENT\10 (S, R mode form)

Calculates an effect ive address, EA. Fetches the 31-bi t contents of
the locat ion specified by EA and adds them to the 31-bi t contents of A
and B. Stores the r e s u l t in A and B.

If the r e s u l t i s greater than or equal t o 2**30, an integer exception
occurs and the ins t ruc t ion loads b i t 1 of A with a 1, and b i t s 2-16 of
A and b i t s 2-16 of B with (resu l t - (2**30)). Bit 1 of B contains 0 .

If the r e s u l t i s l e s s than -(2**30), an integer exception occurs and
the ins t ruc t ion loads b i t 1 of A with a 0 and b i t s 2-16 of A and b i t s
2-16 of B with the negative of (resu l t + (2**30)). Bit 1 of B contains
0. If no integer exception occurs, CBIT i s r e se t t o 0 .

If an integer exception occurs and b i t 8 of the keys contains a 0, the
ins t ruc t ion se t s CBIT to 1 . If b i t 8 contains a 1, the ins t ruc t ion
se t s CBIT to 1 and causes an integer exception f a u l t . See Chapter 11
for more information.

At the end of the ins t ruc t ion , LINK contains the carry-out b i t . The
condition codes r e f l ec t the r e s u l t of the operat ion. (See Table 5-3.)

Notes

1 . Bi t 17 of each 31-bi t integer must be 0 . If nonzero,
unpredictable r e s u l t s w i l l occur.

2 . This ins t ruc t ion executes in double precis ion mode only.

^ DBL
Enter Double Precision Mode
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 (S, R mode form)

Enters double precis ion mode by se t t i ng b i t 2 of the keys t o 1 .
Subsequent LDA, STA, ADD, and SUB ins t ruc t ions manipulate 31-bi t
in tegers and a re in te rpre ted as DLD, D3T, DAD, and D3B, respect ive ly .
Leaves the values of LINK, CBIT, and the condition codes unchanged. In
V or I mode, b i t 2 of the keys has no e f fec t .

13-29 Third Edition

DOC3060-192

^ DFAD address
Double Precision Floating Add
I X 0 1 1 0 1 1 0 0 0 Y 1 0 BR\2 (V mode long)
DISPLACEMENT\16

1 X 0 1 1 0 1 1 0 0 0 0 1 0 CB\2 (R mode long)
[DISPLACEMENTS]

Calculates an effect ive address, EA. Adds the double precis ion number
in the locat ion specified by EA to the 64-bit contents of the DAC.
(See Chapter 6 for more information.) Normalizes the r e s u l t and loads
i t in to the DAC. An overflow causes a f loat ing-point exception. If no
f loat ing-point exception occurs, (BIT i s r ese t t o 0. The values of
LINK and the condition codes are indeterminate.

For 750 and 850 processors, exponent underflow i s detected, but
exponent overflow i s not .

If a f loat ing-point exception occurs and b i t 7 of the keys contains a
1, the ins t ruc t ion se t s (BIT to 1 . If b i t 7 contains a 0 , the
ins t ruc t ion se t s (BIT t o 1 and causes a f loat ing-point exception f a u l t .
See Chapter 11 for more information.

^ DFCM
Double Precision Floating Complement
1 1 0 0 0 0 0 1 0 1 1 1 1 1 0 0 (R, V mode form)

Forms the two's complement of the double precis ion number in the DAC
and normalizes i t i f necessary. (See Chapter 6.) Stores the r e s u l t in
the DAC. An overflow causes a f loat ing-point exception. If no
f loat ing-point exception occurs, (BIT i s r e se t t o 0 . The values of
LINK and the condition codes are indeterminate.

If a f loat ing-point exception occurs and b i t 7 of the keys contains a
1 , the ins t ruc t ion se t s (BIT to 1 . If b i t 7 contains a 0, the
ins t ruc t ion se t s (BIT to 1 and causes a f loat ing-point exception f a u l t .
See Chapter 11 for more information.

Third Edition 13-30

S r R, and V NDDE

• DPCS address
Double Precision Floating Point Compare and Skip
I X 1 0 0 1 1 1 0 0 0 Y 1 0 BR\2 (V mode long)
DISPLACEMENT^

1 X 1 0 0 1 1 1 0 0 0 0 1 0 CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effect ive address, EA. Compares the contents of the DAC
(explained in Chapter 6) t o the contents of the 64-bi t locat ion
specified by EA and skips as follows:

Condition Skip

DAC contents > EA contents . No skip .

DAC contents = EA contents . Skip one word.

DAC contents < EA contents . Skip two words.

The values of (BIT, LINK, and the condition codes a re indeterminate,

• DFDV address
Double Precision Floating Point Divide
I X 1 1 1 1 1 1 0 0 0 Y 1 0 BR\2 (V mode long)
DISPLACEMENT\16

1 X 1 1 1 1 1 1 0 0 0 0 1 0 CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effect ive address, EA. Divides the contents of the DAC
by the contents of the locat ion specified by EA. (See Chapter 6.)
Normalizes the r e s u l t and s tores the whole quot ient in the DAC. An
overflow or a divide by 0 causes a f loat ing-point exception. If no
f loat ing-point exception occurs, CBIT i s r e se t t o 0. The values of
LINK and the condition codes are indeterminate.

If a f loat ing-point exception occurs and b i t 7 of the keys contains a
1, the ins t ruc t ion se t s CBIT to 1. If b i t 7 contains a 0, the
ins t ruc t ion se t s CBIT t o 1 and causes a f loat ing-point exception f a u l t .
See Chapter 11 for more information.

13-31 Third Edition

DOC3060-192

• DFLD address
Double Precision Floating Point Load
I X 0 0 1 0 1 1 0 0 0 Y 1 0 BR\2 (V mode long form)
DISPLACEMENT\16

1 X 0 0 1 0 1 1 0 0 0 0 1 0 CB\2 (R mode long form)
[DISPLACEMENT\16]

Calculates an effect ive address, EA. Loads the 64-bi t contents of the
locat ion specified by EA in to the DAC. (See Chapter 6.) Leaves the
values of LINK, (BIT, and the condition codes unchanged.

Note

This ins t ruc t ion does not normalize the r e s u l t before loading
i t in to the DAC.

^ DFLX address
Double Precision Floating Point Load Index
I 0 1 1 0 1 1 1 0 0 0 Y 1 0 BR\2 (V mode long)
DISPLACEMENTS^

1 0 1 1 0 1 1 1 0 0 0 0 1 0 CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effect ive address, EA. Loads the index r e g i s t e r , X, with
four tiroes the 16-bi t contents of the locat ion specif ied by EA. Leaves
the values of (BIT, LINK, and the condition codes unchanged.

Note

This ins t ruct ion cannot do indexing.

^ DFMP address
Double Precision Floating Point Multiply
I X 1 1 1 0 1 1 0 0 0 Y 1 0 BR\2 (V mode long)
DISPLACEMENT\16

1 X 1 1 1 0 1 1 0 0 0 0 1 0 CB\2 (R mode long)
[DISPLACEMENT^]

Calculates an effect ive address, EA. Multiplies the contents of the
DAC by the 64-bi t contents of the location specified by EA. (See
Chapter 6.) Normalizes the r e su l t , if necessary, and s tores i t in the
DAC. An overflow causes a f loat ing-point exception. If no
f loat ing-point exception occurs, (BIT i s r e se t t o 0 . The values of
LINK and the condition codes are indeterminate.

Third Edition 13-32

S, R, and V MDDE

If a f loat ing-point exception occurs and b i t 7 of the keys contains a
1 , the ins t ruc t ion s e t s OBIT to 1 . If b i t 7 contains a 0, the
ins t ruc t ion se t s (BIT t o 1 and causes a f loa t ing-point exception f a u l t .
See Chapter 11 for more information.

^ DFSB address
Double Precision Floating Point Subtract
I X 0 1 1 1 1 1 0 0 0 Y 1 0 BR\2 (V mode long)
DISPLACEMENT\16

1 X 0 1 1 1 1 1 0 0 0 0 1 0 03\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effect ive address, EA. Subtracts the 64-bi t contents of
the loca t ions specif ied by EA from the contents of the DAC. (See
Chapter 6.) Loads the r e s u l t in the DAC. An overflow causes a
f loat ing-point exception. If no f loat ing-point exception occurs, (BIT
i s r e se t t o 0. The values of LINK and the condition codes are
indeterminate.

For 750 and 850 processors , exponent underflow i s detected, but
exponent overflow i s no t .

If a f loat ing-point exception occurs and b i t 7 of the keys contains a
1, the ins t ruc t ion se t s CBIT to 1 . If b i t 7 contains a 0, the
ins t ruc t ion se t s (BIT to 1 and causes an integer exception f a u l t . See
Chapter 11 for more information.

• DFST address
Double Precision Floating Point Store
I X 0 1 0 0 1 1 0 0 0 Y 1 0 BR\2 (V mode long)
DISPLACEMENT\16

1 X 0 1 0 0 1 1 0 0 0 0 1 0 CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Stores the contents of the DAC
into the location specified by EA. (See Chapter 6.) Leaves the values
of LINK, (BIT, and the condition codes unchanged.

Note

This ins t ruc t ion does not normalize the r e s u l t before loading
i t in to the specif ied memory locat ion.

13-33 Third Edition

DOC3060-192

• DIV address
Divide
1 X 1 1 1 1 1 1 0 0 0 0 0 0 CB\2 (R mode long)
[DISPLACEMENT^]

I X 1 1 1 1 DISPLACEMENT\10 (S mode; R mode short)

Calculates an effect ive address, EA. Divides the 31-tai.t contents of A
and B by the 16-bi t contents of the locat ion specif ied by EA. Stores
the 16-bi t quotient in A and the 16-bit remainder in B. The sign of
the remainder equals the sign of the dividend.

Overflow occurs when the quotient i s l e s s than -(2**15) or greater than
(2**15)-1. An overflow or a divide by 0 causes an integer exception.
If no integer exception occurs, CBIT i s r e se t t o 0. This ins t ruc t ion
leaves the values of LEJK and the condition codes indeterminate.

If an integer exception occurs when b i t 8 of the keys contains a 1, the
ins t ruc t ion se t s CBIT to 1. If b i t 8 contains a 0, the ins t ruc t ion
se t s CBIT to 1 and causes an integer exception f a u l t . See Chapter 11
for more information.

• DIV address
Divide
I X 1 1 1 1 1 1 0 0 0 Y 0 0 BR\2 (V mode long)
DISPLACEMENT\16

I X 1 1 1 1 DISELACEMENT\10 (V mode short)

Calculates an effect ive address, EA. Divides the contents of L by the
16-bi t contents of the location specified by EA. Stores the 16-bi t
quotient in A and the 16-bit remainder in B. The sign of the remainder
equals the sign of the dividend.

When the quotient i s l e s s than -(2**15) or greater than (2**15)-1, an
overflow occurs, causing an integer exception. A divide by 0 a lso
causes an integer exception. If no integer exception occurs, CBIT i s
r e se t t o 0. This ins t ruct ion leaves the values of LINK and the
condition codes indeterminate.

If the integer exception occurs when b i t 8 of the keys i s 0, the
ins t ruc t ion se t s CBIT to 1. If b i t 8 i s 1, the ins t ruc t ion se t s CBIT
to 1 and causes an integer exception f a u l t . See Chapter 11 for more
information.

Third Edition 13-34

S, R, and V MDDE

• DLD
Double Load
1 X 0 0 1 0 1 1 0 0 0 0 0 0 CB\2 (R mode long)
[DISPLACEMENT\16]

I X 0 0 1 0 DISPLACEMENT\10 (S mode; R mode short)

Calculates an effect ive address, EA. Loads the 16-bi t contents of the
locat ion specified by EA in to A, and the 16-bi t contents of the
locat ion specified by EA+1 into B. Leaves the values of CBIT, LINK,
and the condition codes unchanged.

Note

This ins t ruc t ion executes only in double precis ion mode.

^ DRN
Double Round from Quad
0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 (V mode form)

Converts the value in QAC to a double precision f loa t ing-poin t number.
If QAC contains 0, the ins t ruc t ion ends. If b i t s 50-96 of QAC are not
0, or b i t 48 of QAC contains 1, the ins t ruc t ion adds the value of b i t
49 to t h a t of b i t 48 (unbiased round) and c lea rs b i t s 49-96 of QAC t o
0. If any other condition e x i s t s , no unbiased rounding occurs but b i t s
49-96 of QAC are s t i l l cleared t o 0. After any rounding and clear ing
occurs, the ins t ruc t ion normalizes the r e s u l t and loads i t i n to b i t s
1-64 of QAC.

If no f loa t ing-point exception occurs, the ins t ruc t ion r e se t s CBIT to
0 . The values of LINK and the condition codes are indeterminate.

If a f loat ing-point exception occurs and b i t 7 of the keys contains a
1, the ins t ruc t ion se t s CBIT to 1 . If b i t 7 contains a 0, the
ins t ruc t ion se t s CBIT to 1 and causes a f loa t ing-point exception f a u l t .
See Chapter 11 for more information.

Note

If t h i s ins t ruc t ion i s used for any system but the 9950, an
unimplemented ins t ruc t ion (UII) fau l t occurs. (See Chapter
11.)

13-35 Third Edition

DOC3060-192

• DRNM
Double Round from Quad towards Negative In f in i ty
1 1 0 0 0 0 0 1 0 1 1 1 1 0 0 1 (V mode form)

Converts the value in QAC to a double precision f loa t ing-poin t number.
If QAC contains 0, the ins t ruc t ion ends. If b i t s 49-96 of QAC contain
0s, the ins t ruc t ion ends. In any other case, the ins t ruc t ion c lears
b i t s 49-96 to 0, normalizes the r e s u l t , and places i t in b i t s 1-64 of
QAC.

If no f loat ing-point exception occurs, the ins t ruc t ion r e se t s (BIT to
0. The values of LINK and the condition codes a re indeterminate.

If a f loat ing-point exception occurs and b i t 7 of the keys contains a
1, the ins t ruc t ion se t s CBIT to 1 . If b i t 7 contains a 0 , the
ins t ruc t ion se t s (BIT to 1 and causes a f loat ing-point exception f a u l t .
See Chapter 11 for more information.

Note

If this instruction is used for any system but the 9950, an
unimplemented instruction (UII) fault occurs. (See Chapter
11.)

^ DRNP
Double Round from Quad towards Posit ive In f in i ty
0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 (V mode form)

Converts the value in QAC to a double precision f loa t ing-point number.
If QAC contains 0, the ins t ruct ion ends. If b i t s 49-% of QAC contain
0s, the ins t ruc t ion ends. In any other case, the ins t ruc t ion adds 1 to
the value contained in b i t 48 of QAC, c lears b i t s 49-96 to 0, the
ins t ruc t ion normalizes the r e su l t and places i t in b i t s 1-64 of QAC.

If no f loat ing-point exception occurs, the ins t ruc t ion r e se t s CBIT to
0. The values of LINK and the condition codes are indeterminate.

If a f loat ing-point exception occurs and b i t 7 of the keys contains a
1, the ins t ruc t ion se t s CBIT to 1. If b i t 7 contains a 0, the
ins t ruc t ion se t s CBIT to 1 and causes a f loat ing-point exception f a u l t .
See Chapter 11 for more information.

Note

If t h i s ins t ruc t ion i s used for any system but the 9950, an
unimplemented ins t ruc t ion (UII) fau l t occurs. (See Chapter
11.)

Third Edition 13-36

Sf R, and V MDDE

^ DRNZ
Double Round from Quad towards Zero
0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 (V mode form)

Converts the value in QAC to a double precision f loa t ing-poin t number.
If QAC contains 0, the ins t ruc t ion ends. If b i t s 49-96 of QAC contain
0s and b i t 1 contains 1, the ins t ruc t ion adds 1 to the value contained
in b i t 48 of QAC, c lea rs b i t s 49-96 to 0, normalizes the r e s u l t and
places i t in b i t s 1-64 of QAC. If any other condition e x i s t s , no
rounding occurs.

If no f loat ing-point exception occurs, the ins t ruc t ion r e se t s CBIT to
0. The values of LINK and the condition codes are indeterminate.

If a f loat ing-point exception occurs and b i t 7 of the keys contains a
1, the ins t ruc t ion se t s CBIT to 1 . If b i t 7 contains a 0, the
ins t ruc t ion se t s CBIT t o 1 and causes a f loat ing-point exception f a u l t .
See Chapter 11 for more information.

Note

If this instruction is used for any system but the 9950, an
unimplemented instruction (UII) fault occurs. (See Chapter
11.)

^ DRX
Decrement and Replace X
1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 (S, R, V mode form)

Decrements the contents of X by 1 and stores the result in X. Skips
the next memory location if the decremented value is 0. Leaves the
values of LINK, CBIT, and the condition codes unchanged.

^ DSB address
Double Subtract
1 X 0 1 1 1 1 1 0 0 0 0 0 0 CB\2 (R mode long)
[DISPLACEMENT\16]

I X 0 1 1 1 DISPLACEMENT\10 (S mode; R mode short)

Calculates an effect ive address, EA. Fetches the 31-bi t integer
contained in the locat ions specified by EA and EA+1 and subt rac ts i t
from the 31-bi t integer contained in A and B. Stores the r e s u l t in in
A and B.

If the r e s u l t i s greater than or equal t o 2**30, an integer exception
occurs and the ins t ruc t ion loads b i t 1 of A with 1, and b i t s 2-16 of A
and 2-16 of B with the absolute value of (resu l t - (2**30)). Bit 1 of
B must be 0 .

13-37 Third Edition

DOC3060-192

If the r e s u l t i s l e s s than -(2**30), an integer exception occurs and
the ins t ruc t ion loads b i t 1 of A with a 0, and b i t s 2-16 of A and b i t s
2-16 of B with the negative of (resu l t + (2**30)). Bit 1 of B must be
0.

If no integer exception occurs, CBIT i s r e se t t o 0. At the end of the
ins t ruc t ion , LINK contains the borrow b i t . The condition codes re f l ec t
the r e s u l t of the operation. (See Table 5-3.)

If an integer exception occurs and b i t 8 of the keys contains 0, the
ins t ruc t ion se t s CBIT to 1. If b i t 8 contains a 1, the ins t ruc t ion
se t s CBIT to 1 and causes an integer exception f a u l t . See Chapter 11
for more information.

Notes

1. Bit 17 of each 31-bit integer must be 0 or indeterminate
results occur.

2. This instruction executes in double precision mode only.

3. To negate a 3Hsit integer, subtract it from 0.

^ EST address
Double Store
1 X 0 1 0 0 1 1 0 0 0 0 0 0 CB\2 (R mode long)
[DISHiACEMENT\16]

I X 0 1 0 0 DISPLACEME3tfT\10 (S mode; R, V mode short)

Calculates an effect ive address, EA. Stores the contents of A a t the
locat ion specified by EA, and the contents of B a t the locat ion
specified by EA+1. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

Note

This ins t ruc t ion executes only in double precision mode.

Third Edition 13-38

S, R, and V MDDE

• DVL address
Divide Long
I X 1 1 1 1 1 1 0 0 0 Y 1 1 BR\2 (V mode long)
DISPLACEMENT\16

Calculates an effect ive address, EA. Divides the 64-bi t contents of L
and E by the 32-bi t contents of the locat ion specif ied by EA. Stores
the quotient in L and the remainder in E. An overflow or divide by 0
causes an integer exception. If no integer exception occurs, CBIT i s
r e se t to 0. The values of LINK and the condition codes are
indeterminate.

If an integer exception occurs and b i t 8 of the keys contains 0, the
ins t ruc t ion se t s CBIT t o 1 . If b i t 8 contains a 1, the ins t ruc t ion
se t s CBIT to 1 and causes an integer exception f a u l t . See Chapter 11
for more information.

13-39 Third Edition

DOC306 0-192

• E16S
Enter 16S Mode
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 (S, R, V mode form)

Sets bits 4-6 of the keys to 000. Subsequent S mode instructions may
now be interpreted, and 16S address calculations may be used to form
effective addresses. Leaves the values of LINK, CBIT, and the
condition codes unchanged.

^ E32I
Enter 321 Mode
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 (S, R, V mode form)

Sets bits 4-6 of the keys to 100. Subsequent I mode instructions may
now be interpreted, and 321 address calculations may be used to form
effective addresses. Leaves the values of LINK, CBIT, and the
condition codes unchanged.

• E32R
Enter 32R Mode
0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 (S, R, V mode form)

Sets bits 4-6 of the keys to 011. Subsequent R mode instructions may
now be interpreted, and 32R address calculations may be used to form
effective addresses. Leaves the values of LINK, CBIT, and the
condition codes unchanged.

^ E32S
Enter 32S Mode
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 (S, R, V mode form)

Sets bits 4-6 of the keys to 001. Subsequent S mode instructions may
now be interpreted, and 32S address calculations may be used to form
effective addresses. Leaves the values of LINK, CBIT, and the
condition codes unchanged.

• E64R
Enter 64R Mode
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 (S, R, V mode form)

Sets bi ts 4-6 of the keys to 010. Subsequent R mode instructions may
now be interpreted, and 64R address calculations may be used to form
effective addresses. Leaves the values of LINK, CBIT, and the
condition codes unchanged.

Third Edition 13-40

S, R, and V M3DE

^ E64V
Enter 64V Mode
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 (S, R, V mode form)

Sets bits 4-6 of the keys to 110. Subsequent V mode instructions may
now be interpreted, and 64V address calculations may be used to form
effective addresses. Leaves the values of LINK, CBIT, and the
condition codes unchanged.

^ EAA address
Effective Address t o A
1 X 0 0 0 1 1 1 0 0 0 0 0 1 CB\2 (R mode form)

Calculates an effective address, EA, and loads it into A. Leaves the
values of LINK, CBIT, and the condition codes unchanged.

• EAFA far,address
Effective Address to FAR
0 0 0 0 0 0 1 0 1 1 0 0 FAR 0 0 0 (V mode form)
AP\32

Builds a 36-bi t EA from the 32-bi t address pointer contained in the
ins t ruc t ion and loads i t i n to the specified FAR. Note t ha t the AP b i t
f i e l d i s processed and loaded in to the b i t port ion of the FAR for
d i rec t access ; ; ind i rec t ion uses the b i t f i e l d in the ind i rec t pointer
(if any) . Leaves the values of CBIT, LINK, and the condition codes
unchanged.

Figure 13-3 shows the format of the EA loaded i n to the specif ied FAR.

1 16 17 32 33 36

I RING, SEG | WORD # | BIT # |

EA Format for EAFA
Figure 13-3

EAL address
Effective Address to L
I X 0 0 0 1 1 1 0 0 0 Y 0 1 BR\2 (V mode form)

Calculates an ef fec t ive address, EA, and loads i t i n t o L. Leaves the
values of LINK, CBIT, and the condition codes unchanged.

13-41 Third Edition

DOC3060-192

• EALB address
Effective Address to LB
I X 1 0 1 1 1 1 0 0 0 Y 1 0 BR\2 (V mode form)
DISPLACEMENT\16

Calculates an effect ive address, EA, and loads i t i n to LB. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

• EAXB address
Load XB with Effective Address
I X 1 0 1 0 1 1 0 0 0 Y 1 0 BR\2 (V mode form)
DISPLACEMENT\16

Calculates an effect ive address, EA, and loads i t i n to XB. Leaves the
values of LINK, CBIT, and the condition codes unchanged.

• EIO address
Execute I/O
I 0 1 1 0 0 1 1 0 0 0 Y 0 1 BR\2 (V mode form)
DISPLACEMENT\16

Calculates an effect ive address, EA. Executes b i t s 17-32 of EA as i f
the b i t s were an extended PIO ins t ruc t ion . If execution i s successful,
the ins t ruc t ion se t s the condition codes as follows:

CC Meaning

EQ Successful INA, OTA, or SKS instruction

NE Unsuccessful INA, OTA, OR SKS; all OOP

Leaves the values of LINK and CBIT unchanged. See Chapter 12 for more
information.

Note

This i s a r e s t r i c t ed ins t ruc t ion .

Third Edition 13-42

S, R, and V MDDE

• EMCM
Enter Machine Check Mode
0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 (S, R, V mode form)

Enters machine check mode 3 by loading 3 into modal bits 15-16. This
mode enables the reporting of all errors. The actions taken upon an
error depend on whether the machine was in process exchange mode or
not.

The instruction inhibits interrupts during execution of the next
instruction. Leaves the values of (BIT, LINK, and the condition codes
unchanged. See Chapter 11 for more information about checks.

If an error occurs in process exchange mode, the microcode stores the
machine state in the appropriate check vector and transfers control to
that vector, automatically dropping back to machine check mode 0.

If an error occurs when the machine is not in process exchange mode,
the following actions occur. If the appropriate check vector contains
a nonzero value, the processor jumps indirectly through this vector to
the check routine. If the check vector location contains 0, the
machine halts.

Note

This is a restricted instruction.

^ ENB
Enable In ter rupts
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 (S, R, V mode form)

Enables interrupts by setting bit 1 of the modals to 1. Interrupts
remain inhibited for the next instruction. Leaves the values of LINK,
(BIT, and the condition codes unchanged.

Note

This i s a r e s t r i c t e d ins t ruc t ion .

^ ENBL
Enable In ter rupts (Local)
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 (S, R, V mode form)

This 850 ins t ruc t ion performs the same act ions as ENB except t ha t i t i s
performed spec i f ica l ly for the local processor. Leaves the values of
LINK, (BIT, and the condition codes unchanged.

13-43 Third Edition

DOC306 0-192

Note

ENBL i s a r e s t r i c t ed ins t ruc t ion .

• ENBM
Enable Interrupts (Mutual)
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 (S, R, V mode form)

For the 850, a processer checks the availability of the mutual
exclusion lock. If available, the processor sets this lock and enables
interrupts. Otherwise, it waits for the lock to be released by the
other processor and then sets the lock and enables interrupts. Leaves
the values of (BIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

• ENBP
Enable In ter rupts (Process)
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 (S, R, V mode form)

For the 850, a processor checks the availability of the process
exchange lock. If available, the processor sets this lock and enables
interrupts. Otherwise, it waits for this lock to be released by the
other processor and then sets the lock and enables interrupts. Leves
the values of CBIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

^ ENTR n
Enter R Mode Recursive Procedure Stack
1 X 0 0 0 1 1 1 0 0 0 0 1 1 CB\2 (R mode long form)
[DISPLACEMENT\16]

Creates a save area n words long and saves the current value of the R
mode stack pointer in the f i r s t word of the save area . The s t a r t i n g
address of the save area i s :

(contents of R mode stack pointer) - n

This means tha t the ins t ruct ion creates a stack frame containing n
loca t ions , and t ha t the f i r s t location points t o the previous frame.

Third Edition 13-44

S, R, and V MDDE

The ENTR instruction leaves the values of CBIT, LINK, and the condition
codes unchanged.

^ ERA address
Exclusive OR to A
I X 0 1 0 1 1 1 0 0 0 Y 0 0 BR\2 (V mode long)
DISPLACEMENT\16

1 X 0 1 0 1 1 1 0 0 0 0 0 0 CB\2 (R mode long)
[DISPLACEMENT\16]

I X 0 1 0 1 DISHJACEMENT\10 (S mode; R, V mode short)

Calculates an effective address, EA. Exclusively ORs the contents of
the location specified by EA and the contents of A. Stores the results
in A. Leaves the values of LINK, CBIT, and the condition codes
unchanged.

• ERL
Exclusive Or to L
I X 0 1 0 1 1 1 0 0 0 Y 1 1 BR\2 (V mode long)
DISELACEMENT\16

Calculates an ef fec t ive address , EA. Exclusively ORs the contents of L
with the contents of the 32-bi t locat ion specif ied by EA. Stores the
r e s u l t s i n L. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

• ESIM
Enter Standard Interrupt Mode
0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 (S, R, V mode form)

Enters standard interrupt mode by resetting bit 2 of the modals to 0.
Inhibits interrupts for one instruction. ESIM is meaningless when in
the system is in process exchange mode (that is, the value of modal bit
13 is 1). All interrupts use location '63. The processor services
interrupts according to their relative positions on the I/O bus. Lower
devices have higher priority. Inhibits interrupts during execution of
the next instruction. Leaves the values of LINK, CBIT, and the
condition codes unchanged. Refer to Chapter 11 for more information
about interrupts.

Note

This i s a r e s t r i c t e d ins t ruc t ion .

13-45 Third Edition

DOC3060-192

• EVTM
Enter Vectored Interrupt Mode
0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 (S, R, V mode form)

Enters vectored interrupt mode by setting bit 2 of the modals to 1.
EVTM is meaningless when in the system is in process exchange mode
(that is, the value of modal bit 13 is 1). The processor services
interrupts according to their relative positions on the I/O bus. Lower
devices have higher priority. Interrupts occur through a location
specified by the interrupting device. Inhibits interrupts during
execution of the next instruction. Leaves the values of LINK, CBIT,
and the condition codes unchanged. Refer to Chapter 11 for more
information about interrupts.

Note

This i s a r e s t r i c t ed ins t ruc t ion .

Third Edition 13-46

S, R, and V MDDE

• FAD address
Floating Add
I X 0 1 1 0 1 1 0 0 0 Y 0 1 BR\2 (V mode long)
DISPLACEMENT\16

1 X 0 1 1 0 1 1 0 0 0 0 0 1 CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an ef fec t ive address , EA. Adds the contents of the locat ion
specified by EA to the contents of the FAC. (See Chapter 6.) Stores
the r e s u l t in the FAC and normalizes i t i f necessary. An overflow
causes a f loa t ing-point exception. If no f loa t ing-poin t exception
occurs, (BIT i s r e se t t o 0 . The values of LINK and the condition codes
are indeterminate.

If a f loat ing-point exception occurs and b i t 7 of the keys contains a
1, the ins t ruc t ion se t s CBIT to 1 . If b i t 7 contains a 0, the
ins t ruc t ion se t s (BIT to 1 and causes a f loat ing-point exception f a u l t .
See Chapter 11 for more information.

• FCDQ
Floating Point Convert Double t o Quad
1 1 0 0 0 0 0 1 0 1 1 1 1 0 0 1 (V mode form)

Clears FAC0 to 0. Leaves the values of (BIT, LINK, and the condition
codes unchanged.

Note

If this instruction is used for any system but the 9950, an
unimplemented instruction (UII) fault occurs. (See Chapter
11.)

• PCM
Floating Point Complement
1 1 0 0 0 0 0 1 0 1 0 1 1 0 0 0 (R, V mode form)

Forms the two's complement of the FAC mantissa and normalizes the
r e s u l t i f necessary. (See Chapter 6.) Stores the r e s u l t i n the FAC.
An overflow causes a f loat ing-point exception. If no f loa t ing-poin t
exception occurs, CBIT i s r e se t t o 0. The values of LINK and the
condition codes a re indeterminate.

If a f loa t ing-point exception occurs and b i t 7 of the keys contains a
1, the ins t ruc t ion se t s (BIT to 1 . If b i t 7 contains a 0 , the
ins t ruc t ion s e t s (BIT t o 1 and causes a f loa t ing-point exception f a u l t .
See Chapter 11 for more information.

13-47 Third Edition

DOC3060-192

• PCS address
Floating Compare and Skip
I X 1 0 0 1 1 1 0 0 0 Y 0 1 BR\2 (V mode long)
DISPLACEMENTS

1 X 1 0 0 1 1 1 0 0 0 0 0 1 CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. In rounding mode, the instruction
rounds the contents of DAC, then compares the rounded value to the
contents of the memory location specified by EA. In normal mode, no
rounding occurs before the compare. (See Chapter 6 for more
information.) The compare results in a skip as follows:

Condition Skip

FAC contents > EA contents. No skip.

FAC contents = EA contents. Skip one word.

FAC contents < EA contents. Skip two words.

The values of (BIT, LINK, and the condition codes are indeterminate.

^ FDBL
Floating Point Convert Single to Double
1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 (V mode form)

Converts the single precision floating-point number in the floating
accumulator to a double precision floating-point number by loading 0s
into bits 25-48 of the floating accumulator. Leaves the values of
LINK, CBIT, and the condition codes unchanged.

^ FDV address
Floating Point Divide
I X 1 1 1 1 1 1 0 0 0 Y 0 1 BR\2 (V mode long)
DISPLACEMENT\16

1 X 1 1 1 1 1 1 0 0 0 0 0 1 CB\2 (R mode long)
[DISPLACEMENT^]

Calculates an effect ive address, EA. Divides the contents of the FAC
by the contents of the locat ion specified fcy EA. (See Chapter 6.)
Normalizes the r e s u l t i f necessary and s tores i t in the FAC. A divide
by 0 or an overflow causes a f loat ing-point exception. If no
f loat ing-point exception occurs, CBIT i s r e s e t t o 0 . The values of
LINK and the condition codes are indeterminate.

Third Edition 13-48

S, Rf and V MDEE

If a f loat ing-point exception occurs and b i t 7 of the keys contains a
1, the ins t ruc t ion s e t s CBIT t o 1 . If b i t 7 contains a 0 , the
ins t ruc t ion se t s CBIT to 1 and causes a f loa t ing-point exception f a u l t .
See Chapter 11 for more information.

Note

The location specified by EA must contain a normalized
floating-point number. An unnormalized divisor can cause an
error.

^ FLD address
Floating Point Load
I X 0 0 1 0 1 1 0 0 0 Y 0 1 BR\2 (V mode long)
DISPLACEMENT\16

1 X 0 0 1 0 1 1 0 0 0 0 0 1 CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates a 32-bi t ef fect ive address, EA. Loads the 32-bi t contents
in the locat ion specif ied by EA in to the FAC. (See Chapter 6.) Leaves
the values of LINK, CBIT, and the condition codes unchanged.

^ FLOT
Convert Integer t o Floating Point
1 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 (R mode form)

Converts the 31-bi t integer contained in A and B to a normalized
f loat ing-point number and s tores the r e s u l t in the f loa t ing
accumulator. The values of CBIT, LINK, and the condition codes a r e
indeterminate.

• FLTA
Convert Integer to Float
1 1 0 0 0 0 0 1 0 1 0 1 1 0 1 0 (V mode form)

Converts the 16-bi t integer in A to a f loat ing-point number and s tores
the r e s u l t in the f loa t ing accumulator. The values of CBIT, LINK, and
the condition codes a re indeterminate.

13-49 Third Edition

DOC3060-192

^ FLTL
Convert Long Integer t o Float
1 1 0 0 0 0 0 1 0 1 0 1 1 1 0 1 (V mode form)

Converts the 32-bit integer in L to a f loat ing-point number and s to res
the r e s u l t in the f loa t ing accumulator. The values of CBIT, LINK, and
the condition codes are indeterminate.

^ FLX address
Floating Load Index
1 0 1 1 0 1 1 1 0 0 0 0 0 1 CB\2 (R, V mode form)

Calculates an effect ive address, EA. Loads the index r e g i s t e r , X, with
two times the 16-bi t contents of the locat ion specified by EA. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

Note

This ins t ruc t ion cannot do indexing.

• FMP address
Floating Multiply
I X 1 1 1 0 1 1 0 0 0 Y 0 1 BR\2 (V mode long)
DISPLACEMENT\16

1 X 1 1 1 0 1 1 0 0 0 0 0 1 CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effect ive address, EA. Multiplies the contents of the
FAC by the contents of the locat ion specified by EA. (See Chapter 6.)
Normalizes the r e s u l t i f necessary and s tores i t in the FAC. An
overflow causes a f loat ing-point exception. If no f loat ing-point
exception occurs, CBIT i s rese t to 0. The values of LINK and the
condition codes are indeterminate.

If a f loat ing-point exception occurs and b i t 7 of the keys contains a
1, the ins t ruc t ion se t s CBIT to 1 . If b i t 7 contains a 0, the
ins t ruc t ion se t s CBIT to 1 and causes a f loat ing-point exception f a u l t .
See Chapter 11 for more information.

Third Edition 13-50

S, R, and V MDDE

^ FRN
Floating Round
1 1 0 0 0 0 0 1 0 1 0 1 1 1 0 0 (R rV mode form)

This instruction operates on and stores a l l results in the floating
accumulator.

For the 9950, the following actions occur. If b i t s 1-48 contain 0,
then bi ts 49-64 are cleared to 0. If b i ts 24 and 25 both contain 1,
then 1 i s added to b i t 24, bi ts 25-48 are cleared to 0, and the result
i s normalized. If b i t 25 contains 1 and bi ts 26-48 are not equal to 0,
then 1 i s added to b i t 24, bi ts 25-48 are cleared, and the result i s
normalized.

For the rest of the 50 series , the following actions occur. If b i t s
1-48 contain 0, then b i t s 49-64 are cleared to 0. Otherwise, b i t 25 i s
added to b i t 24, b i t s 25-48 are cleared to 0, and the resul t i s
normalized.

For a l l systems, if no floating point exception occurs, sets OBIT to 0.
The values of LINK and the condition codes are indeterminate.

If a floating point exception occurs and b i t 7 of the keys contains a
1, the instruction sets CBIT to 1. If b i t 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating point exception faul t .
See Chapter 11 for more information.

^ FRNM
FLoating Point Round towards Negative Infinity
0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 (V mode form)

Converts the 64-bit value in E&C to a single precision floating-point
number. If EftC contains 0, the instruction ends. If b i t s 25-48 of EfcC
contain 0s, the instruction ends. In any other case, the instruction
clears b i t s 25-48 to 0, normalizes the resul t , and places i t in DAC.

If no floating-point exception occurs, the instruction resets CBIT to
0. The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bi t 7 of the keys contains a
1, the instruction sets CBIT to 1. If b i t 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception faul t .
See Chapter 11 for more information.

13-51 Third Edition

DOC3060-192

^ FRNP
Floating Point Round towards Posi t ive Inf in i ty
0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 (V mode form)

Converts the 64-bit value in DAC to a single precis ion f loa t ing-point
number. If DAC contains 0f the ins t ruct ion ends. If b i t s 25-48 of DAC
contain 0s , the ins t ruct ion ends. In any other case, the ins t ruc t ion
adds 1 to the value contained in b i t 24 of DAC, c lea rs b i t s 25-48 to 0,
normalizes the r e s u l t , and places i t in DAC.

If no f loat ing-point exception occurs, the ins t ruc t ion rese t s (BIT to
0. The values of LINK and the condition codes are indeterminate.

If a f loat ing-point exception occurs and b i t 7 of the keys contains a
1, the ins t ruc t ion se t s (BIT to 1 . If b i t 7 contains a 0, the
ins t ruc t ion se t s (BIT t o 1 and causes a f loat ing-point exception f a u l t .
See Chapter 11 for more information.

^ FRNZ
Floating Point Round towards Zero
0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 (V mode form)

Converts the 64-bi t value in DAC to a s ingle precis ion f loa t ing-point
number. If DAC contains 0, the ins t ruc t ion ends. If b i t s 25-48 of DAC
are not 0s and b i t 1 contains 1, the ins t ruc t ion adds 1 to the value
contained in b i t 24 of DAC, c lears b i t s 25-48 t o 0, normalizes the
r e s u l t , and places i t in DAC. If any other condition e x i s t s , no
rounding occurs.

If no f loat ing-point exception occurs, the ins t ruc t ion r e se t s (BIT t o
0 . The values of LINK and the condition codes are indeterminate.

If a f loat ing-point exception occurs and b i t 7 of the keys contains a
1, the ins t ruc t ion se t s (BIT to 1 . If b i t 7 contains a 0, the
ins t ruc t ion se t s (BIT t o 1 and causes a f loat ing-point exception f a u l t .
See Chapter 11 for more information.

Third Edition 13-52

S, R, and V MDDE

^ FSB address
Floating Subtract
I X 0 1 1 1 1 1 0 0 0 Y 0 1 BR\2 (V mode long)
DISPLACEMENT\16

1 X 0 1 1 1 1 1 0 0 0 0 0 1 CB\2 (R mode long)
[DISPLACEMEMT\16]

Calculates an effect ive address, EA. Subtracts the 32-bi t contents of
the locat ions specif ied by EA from the contents of the FAC. (See
Chapter 6.) Normalizes the r e s u l t i f necessary and s to res i t in the
FAC. An overflow causes a f loat ing-point exception. If no
f loat ing-point exception occurs, (BIT i s r ese t t o 0 . The values of
LINK and the condition codes are indeterminate.

If a f loat ing-point exception occurs and b i t 7 of the keys contains a
1, the ins t ruc t ion se t s (BIT t o 1 . If b i t 7 contains a 0, the
ins t ruc t ion s e t s (BIT t o 1 and causes a f loat ing-point exception f a u l t .
See Chapter 11 for more information.

^ FSGT
Floating Skip on F Greater Than 0
1 1 0 0 0 0 0 1 0 1 0 0 1 1 0 1 (R, V mode form)

Skips the next word if the contents of the floating accumulator are
greater than 0. Leaves the value of LINK and (BIT unchanged. The
condition codes contain the result of the comparison. (See Table 5-3.)

^ FSLE
Floating Skip on F Less Than or Equal To 0
1 1 0 0 0 0 0 1 0 1 0 0 1 1 0 0 (R, V mode form)

Skips the next word if the contents of the floating accumulator are
less than or equal to 0. Leaves the values of LINK and (BIT unchanged.
The condition codes contain the result of the comparison. (See Table
5-3.)

P> FSMI
Floating Skip on F Minus
1 1 0 0 0 0 0 1 0 1 0 0 1 0 1 0 (R, V mode form)

Skips the next word i f the contents of the f loa t ing accumulator a re
l e s s than 0 . Leaves the values of LINK and (Brr unchanged. The
condition codes contain the r e s u l t of the comparison. (See Table 5-3.)

13-53 Third Edition

DOC3060-192

^ FSNZ
Floating Skip on F Not 0
1 1 0 0 0 0 0 1 0 1 0 0 1 0 0 1 (R fV mode form)

Skips the next word if the contents of the floating accumulator are
less than or equal to 0. Leaves the values of LINK and CBIT unchanged.
The condition codes contain the result of the comparison. (See Table
5-3.)

• FSFL
Floating Skip on FAC Plus
1 1 0 0 0 0 0 1 0 1 0 0 1 0 1 1 (R, V mode form)

Skips the next word if the contents of the floating accumulator are
greater than or equal to 0. Leaves the values of LINK and CBIT
unchanged. The condition codes contain the result of the comparison.
(See Table 5-3.)

• FST address
Floating Store
I X 0 1 0 0 1 1 0 0 0 Y 0 1 BR\2 (V mode long)
DISPLACEMENTS

1 X 0 1 0 0 1 1 0 0 0 0 0 1 BR\2 (R mode long)
[DISPLACEMENT^]

Calculates an effect ive address, EA. Stores the contents of the FAC
in to the 32-bi t locat ion specified by EA. (See Chapter 6.) If the
exponent contained in the FAC i s too large to be expressed in 8 b i t s , a
f loat ing-point exception (store exception) occurs. If no
f loat ing-point exception occurs, the ins t ruc t ion rese t s CBIT t o 0 . At
the end of the ins t ruc t ion , the values of LINK and the condition codes
a re indeterminate.

If a f loat ing-point exception occurs and b i t 7 of the keys contains a
1, the ins t ruc t ion se t s CBIT to 1 . If b i t 7 contains a 0, the
ins t ruc t ion se t s CBIT to 1 and causes a f loat ing-point exception f a u l t .
See Chapter 11 for more information. In e i ther case, a f loat ing-point
exception leaves the contents of the memory locat ion in an
indeterminate s t a t e .

Note

This ins t ruc t ion does not normalize the r e s u l t before loading
i t in to the specified memory locat ion.

Third Edition 13-54

S, R, and V MDDE

^ FSZE
Floating Skip on F Equal t o 0
1 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 (R, V mode form)

Skips the next word i f the contents of the f loa t ing accumulator equal
0. Leaves the values of LINK and (BIT unchanged. The condition codes
contain the r e s u l t of the comparison. (See Table 5-3.)

13-55 Third Edition

DOC3060-192

HLT
Halt
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (Sf R, V mode form)

Halts computer operation. The program counter points to the
instruction that would have been executed if execution had not been
stopped. The supervisor terminal indicates a halt. Leaves the values
of LINK, (BIT, and the condition codes unchanged.

This instruction saves the contents of registers in a memory location
specified by the RSAVPFR. The contents of RSAVPTR can be accessed by
an LELR/STLR instruction with address '40037. The registers are saved
in their physical order. (See Chapter 9 for the format of these
register files.) The saved register file order is shown in Table 13-3.

Table 13-3
Order of Saved Registers after HLT

9950 850 Rest of 50 Series

User Reg Set 1
User Reg Set 2
User Reg Set 3
User Reg Set 4
Microcode Reg File,
Set 2

Indirect Reg Set
Microcode Reg File,

Set 1
EMx Reg File

ISP #1:
User Reg Set 1
User Reg Set 2
EMx Reg File
Microcode Reg File

ISP #2:
User Reg Set 1
User Reg Set 2
EMx Reg File
Microcode Reg File

User Reg Set 1
User Reg Set 2
EMx Reg File
Microcode Reg File

Note

This i s a r e s t r i c t ed ins t ruc t ion .

Third Edition 13-56

S, R, and V MDEE

• IAB
Interchange A and B
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 (S, R, V mode form)

Interchanges the contents of A and B. Leaves the values of LINK, CBIT,
and the condition codes unchanged.

^ ICA
Interchange Bytes of A Register
1 1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 (S, R, V mode form)

Interchanges the bytes of A. Leaves the values of LINK, CBIT, and the
condition codes unchanged.

^ ICL
Interchange Bytes and d e a r Left
1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 (S, R, V mode form)

Interchanges the bytes of A, then clears the left byte to 0. Leaves
the values of LINK, CBIT, and the condition codes unchanged.

^ ICR
Interchange Bytes and Clear Right
1 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 (S, R, V mode form)

Interchanges the bytes of A, then clears the right byte to 0. Leaves
the values of LINK, CBIT, and the condition codes unchanged.

^ ILE
Interchange E and L
1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 (S, R, V mode form)

Interchanges the values of E and L. Leaves the values of LINK, CBIT,
and the condition codes unchanged.

13-57 Third Edition

DOC3060-192

• IMA address
Interchange A and Memory
I X 1 0 1 1 1 1 0 0 0 Y 0 0 BR\2 (V mode long)
DISPLACEMENTS

1 X 1 0 1 1 1 1 0 0 0 0 0 0 CB\2 (R mode long)
[DISPLACEMENT\16]

I X 1 0 1 1 DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effect ive address, EA. Interchanges the contents of A
and the contents of the locat ion specified by EA. Leaves the values of
LINK, CBIT, and the condition codes unchanged.

^ INA function,device
Input t o A
1 0 1 1 0 0 FUNCTIDN\4 DEVTCE\6
Valid for modes S, R.

Loads data from the specified device in to A. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

Note

This i s a r e s t r i c t ed ins t ruc t ion .

• INBC address
Interrupt Notify Beginning, Clear Active Interrupt
0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1 (V mode form)
AP\32

Notif ies a semaphore a t the specified address during phantom in ter rupt
code. Restores the s t a t e of the interrupted process by loading b i t s
1-16 of PB, b i t s 17-32 of the program counter, and the keys from
microcode temporary r eg i s t e r s PSWPB and PSWKEYS. Places the not i f ied
process a t the beginning of the appropriate p r i o r i t y level queue.
Issues a CAI pulse to clear the currently ac t ive i n t e r rup t .

Note tha t a process exchange w i l l occur i f the not i f ied process i s of a
higher p r i o r i t y than the interrupted process. The values of CBIT,
LINK, and the condition codes are indeterminate.

Note

This i s a r e s t r i c t e d ins t ruc t ion .

This ins t ruc t ion i s normally used t o t ransfer from phantom
inter rupt code to an interrupt process.

Third Edition 13-58

S, R, and V MDDE

• INBN address
Interrupt Notify Beginning
0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1 (V mode form)
AP\32

Notifies a semaphore at the specified address during phantom interrupt
code. Restores the state of the interrupted process by loading bits
1-16 of PBr bits 17-32 of the program counter, and the keys from
microcode temporary registers PSWPB and PSWKEYS. Places the notified
process at the beginning of the appropriate priority level queue. Does
not issue a CAI pulse to clear the currently active interrupt.

Note that a process exchange will occur if the notified process is of a
higher priority than the interrupted process. The values of CBIT,
LINK, and the condition codes are indeterminate.

Note

This is a restricted instruction.

This instruction is normally used to transfer from phantom
interrupt code to an interrupt process.

^ INEC address
Interrupt Notify End, Clear Active Interrupt
0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0 (V mode form)
AP\32

Notifies a semaphore at the specified address during phantom interrupt
code. Restores the state of the interrupted process by loading b i t s
1-16 of PB, b i t s 17-32 of the program counter, and the keys from
microcode temporary registers PSWPB and PSWKEYS. issues a CAI pulse to
clear the currently active interrupt. Places the notified process a t
the end of the appropriate priori ty level queue.

Note that a process exchange will occur if the notified process i s of a
higher priori ty than the interrupted process. The values of CBIT, LINK
and the condition codes are indeterminate.

Note

This i s a restr icted instruction.

This instruction i s normally used to transfer from phantom
interrupt code to an interrupt process.

13-59 Third Edition

DOC3060-192

• INEN address
Interrupt Notify End
0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 (V mode form)
AP\32

Notifies a semaphore at the specified address during phantom interrupt
code. Restores the state of the interrupted process by loading bits
1-16 of PB, bits 17-32 of the program counter, and the keys from
microcode temporary registers PSWPB and PSWKEYS. Does not issue a CAI
pulse to clear the currently active interrupt. Places the notified
process at the end of the appropriate priority level queue.

Note that a process exchange will occur if the notified process is of a
higher priority than the interrupted process. The values of OBIT,
LINK, and the condition codes are indeterminate.

Note

This is a restricted instruction.

This instruction is normally used to transfer from phantom
interrupt code to an interrupt process.

^ INH
Inhibit Interrupts
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 (S, R, V mode form)

Inhibits interrupts by setting bit 1 of the modals to 0. Inhibits
interrupts for one instruction. The processor ignores any interrupt
requests that are made over the I/O bus. Note that this instruction
takes effect immediately. Leaves the values of LINK, CBIT, and the
condition codes unchanged.

Note

This is a restricted instruction.

• INHL
Inh ib i t In ter rupts (Local)
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 (S, R, V mode form)

This 850 ins t ruc t ion performs the same act ions as INH does. Leaves the
values of LINK, CBIT,and the condition codes unchanged.

Note

This i s a r e s t r i c t ed in s t ruc t ion .

Third Edition 13-60

S, Rf and V MODE

^ INHM
Inhib i t In te r rupts (Mutual)
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 (S, R, V mode form)

For the 850, a processor checks the availability of the mutual
exclusion lock. If available, the processor sets this lock and
inhibits interrupts. Otherwise, it waits for the lock to be released
by the other processor and then sets the lock and inhibits interrupts.
Leaves the values of (BIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

^ INHP
Inh ib i t In te r rupts (Process)
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 (S, R, V mode form)

For the 850, a processor checks the availability of the process
exchange lock. If available, the processor sets it and inhibits
interrupts. Otherwise, it waits for the lock to be released by the
other processor and then sets the lock and inhibits interrupts. Leaves
the values of (BIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

• INK
Input Keys
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 (S, R mode form)

Loads the contents of the R mode keys in to A. Reads the low-order 8
b i t s of the S r eg i s t e r along with the high-order 8 b i t s of the keys
r e g i s t e r . Leaves the values of LINK, (BIT, and the condit ion codes
unchanged.

• INT
Convert Floating Point t o Integer
1 1 0 0 0 0 0 1 0 1 1 0 1 1 0 0 (S,R mode form)

Converts the double precis ion f loa t ing-point number contained in the
f loa t ing accumulator t o a 31-bi t integer and s to res the r e s u l t in A and
b i t s 2-16 of B. Bit 1 of B (b i t 17 of the resu l t) i s forced t o 0.
Ignores the f rac t iona l port ion of the f loa t ing-point number. Overflow
occurs i f the value in the f loa t ing accumulator i s l e s s than -2**30 or

13-61 Third Edition

DOC306 0-192

greater than (2**30)-1. If overflow occurs, a floating-point exception
occurs. If no floating-point exception occurs, CBIT i s reset to 0.
The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and b i t 7 of the keys contains a
1, the instruction sets CBIT to 1. If b i t 7 contains a 0, the
instruction sets CBIT to 1 and causes an integer exception faul t . See
Chapter 11 for more information.

^ INTA
Convert Floating Point to Integer
1 1 0 0 0 0 0 1 0 1 0 1 1 0 0 1 (V mode form)

Converts the double precision number contained in the floating
accumulator to a 16-bit integer and stores the result in A. Ignores
the fractional portion of the floating-point number. Overflow occurs
if the value in the floating accumulator i s less than -2**15 or greater
than (2**15)-1. If overflow occurs, a floating-point exception occurs.
At the end of this instruction, the B register contents are
indeterminate. If no floating-point exception occurs, CBIT i s reset to
0. The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and b i t 7 of the keys contains a
1, the instruction sets CBIT to 1. If b i t 7 contains a 0, the
instruction sets CBIT to 1 and causes an integer exception faul t . See
Chapter 11 for more information.

• INTL
Convert Floating Point to Long Integer
1 1 0 0 0 0 0 1 0 1 0 1 1 0 1 1 (V mode form)

Converts the double precision floating-point number contained in the
floating accumulator to a 32-bit integer and stores the result in L.
Ignores the fractional portion of the floating-point number contained
in the floating accumulator. Overflow occurs if the floating-point
number i s less than -2**31 or greater than (2**31)-1. If overflow
occurs, a floating-point exception occurs. If no floating-point
exception occurs, CBIT i s reset to 0. The values of LINK and the
condition codes are indeterminate.

If a floating-point exception occurs and b i t 7 of the keys contains a
1, the instruction sets CBIT to 1. If b i t 7 contains a 0, the
instruction sets CBIT to 1 and causes an integer exception faul t . See
Chapter 11 for more information.

Third Edition 13-62

S, R, and V MDDE

^ IRS address
Increment and Replace Memory
I X 1 0 1 0 1 1 0 0 0 Y 0 0 BR\2 (V mode long)
DISPLACEMENT\16

1 X 1 0 1 0 1 1 0 0 0 0 0 0 CB\2 (R mode long)
[DISPLACEMENT\16]

I X 1 0 1 0 DISFLACEMENT\10 (S mode; R, V mode short)

Calculates an effective address, EA. Fetches the contents of the
location specified by EA, adds 1, and stores the result back in the
location specified by EA. Skips the next location if the incremented
value is 0. Leaves the values of LINK, CBIT, and the condition codes
unchanged.

• IRTC
Interrupt Return, Clear Active Interrupt
0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 (V mode form)

Returns from an i n t e r rup t . Issues a CAI pulse t o c lear the current ly
ac t ive i n t e r rup t . Restores the s t a t e ex is t ing before the in te r rup t by
loading b i t s 1-16 of EB, b i t s 17-32 of the program counter, and the
keys from the values saved in microcode temporary r e g i s t e r s PSWEB and
PSWKEYS.

Note

This is a restricted instruction.

• IRTN
Interrupt Return
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 (V mode form)

Returns from an i n t e r rup t . Does not issue a CAI pulse t o c lear the
currently ac t ive i n t e r rup t . Restores the s t a t e ex i s t ing before the
in te r rupt by loading b i t s 1-16 of FB, b i t s 17-32 of the program
counter, and the keys from the values saved in microcode temporary
r eg i s t e r s PSWPB and PSWKEYS.

Note

This i s a r e s t r i c t e d ins t ruc t ion .

13-63 Third Edition

DOC3060-192

^ IRX
Increment and Replace X
1 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 (S, R, V mode form)

Increments the contents of X by 1 and stores the result in X. Skips
the next word if the incremented value is 0. Leaves the values of
LINK, OBIT, and the condition codes unchanged.

^ ITLB
Invalidate STLB Entry
0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 (V mode form)

Invalidates the STLB entry that corresponds to the virtual address
contained in L. The values of (BIT, LINK, and the condition codes are
indeterminate. You must execute this instruction whenever you change
the page table entry for the given address.

If you change an SEW or DTAR, (explained in Chapter 4), you usually
have to invalidate the entire STLB by issuing the instruction PTLB. A
0 in the segment number portion of L invalidates the IOTLB entry
corresponding to the address specified by L.

Note

This i s a restricted instruction.

Third Edition 13-64

S, R, and V MDDE

• JDX address
Jump and Decrement X
1 0 1 1 0 1 1 1 0 0 0 0 1 0 CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Subtracts 1 from the contents of
the index register, X. If the decremented value does not equal 0, the
instruction loads EA into the program counter. If the decremented
value is equal to 0, execution continues with the next sequential
instruction. Leaves the values of LINK, OBIT, and the condition codes
unchanged.

Note

This instruction cannot do indexing. See Chapter 2 for more
information.

• JEQ address
Jump on A Equal to 0
1 X 0 0 1 0 1 1 0 0 0 0 1 1 CB\2 (R mode form)
[DISFLACEMENT\16]

Calculates an effective address, EA. Loads EA into the program counter
if the contents of A are equal to 0. If the contents of A are not
equal to 0, execution continues with the next instruction. Leaves the
values of LINK, (BIT, and the condition codes unchanged.

^ JGE address
Jump on A Greater Than or Equal to 0
1 X 0 1 1 1 1 1 0 0 0 0 1 1 CB\2 (R mode form)
[DISELACEMENT\16]

Calculates an effect ive address, EA. If the contents of A a re greater
than or equal t o 0, the ins t ruc t ion loads EA in to the program counter.
If the contents of A are l e s s than 0, execution continues with the next
ins t ruc t ion . Leaves the contents of LINK, OBIT, and t he condition
codes unchanged.

13-65 Third Edition

DOC3060-192

• JGT address
Jump on A Greater Than 0
1 X 0 1 0 1 1 1 0 0 0 0 1 1 CB\2 (R mode form)
[DISPLACEMENT\16]

Calculates an effective address, EA. If the contents of A are greater
than 0, the instruction loads EA into the program counter. If the
contents of A are less than or equal to 0, execution continues with the
next instruction. Leaves the contents of LINK, OBIT, and the condition
codes unchanged.

^ JIX address
Increment X and Jump if 0
1 0 1 1 0 1 1 1 0 0 0 0 1 1 CB\2 (R mode form)
[DISPLACEMENT\16]

Calculates an effective address, EA. Adds 1 to the contents of X, the
index register. If the incremented value does not equal 0, the
instruction loads EA into the program counter. If the incremented
value is equal to 0, execution continues with the next instruction.
Leaves the contents of LINK, (BIT, and the condition codes unchanged.

Note

This ins t ruc t ion cannot do indexing.

• JLE address
Jump on A Less Than or Equal t o 0
1 X 0 1 0 0 1 1 0 0 0 0 1 1 CB\2 (R mode form)
[DISPLACEMENT\16]

Calculates an effect ive address, EA. If the contents of A a re l e s s
than or equal to 0, the ins t ruc t ion loads EA in to the program counter.
If the contents of A are greater than 0, execution continues with the
next ins t ruc t ion . Leaves the contents of LINK, (BIT, and the condition
codes unchanged.

^ JLT address
Jump on A Less Than 0
1 X 0 1 1 0 1 1 0 0 0 0 1 1 CB\2 (R mode form)
[DISELACEMENT\16]

Calculates an effect ive address, EA. If the contents of A a re l e s s
than 0, the ins t ruc t ion loads EA in to the program counter. If the
contents of A are greater than 0, execution continues with the next
ins t ruc t ion . Leaves the contents of LINK, CBIT, and the condition
codes unchanged.

Third Edition 13-66

S, R, and V MDDE

^ JMP address
Jump
I X 0 0 0 1 1 1 0 0 0 Y 0 0 BR\2 (V mode long)
DISPLACEMENT\16

1 X 0 0 0 1 1 1 0 0 0 0 0 0 CB\2 (R mode long)
[DISPLACEMENTS]

I X 0 0 0 1 DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effective address, EA. Loads EA into the program
counter. Leaves the values of LINK, CBIT, and the condition codes
unchanged.

^ JNE address
Jump on A Not Equal to 0
1 X 0 0 1 1 1 1 0 0 0 0 1 1 CB\2 (R mode form)
[DISPUCEMENT\16 3

Calculates an effective address, EA. If the contents of A do not equal
0, the instruction loads EA into the program counter. If the contents
of A are equal to 0, execution continues with the next instruction.
Leaves the contents of LINK, CBIT, and the condition codes unchanged.

• JST address
Jump and Store
I X 1 0 0 0 1 1 0 0 0 Y 0 0 BR\2 (V mode long)
DISPLACEMENTS

1 X 1 0 0 0 1 1 0 0 0 0 0 0 CB\2 (R mode long)
[DISPLACEMENT\16]

I X 1 0 0 0 DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effect ive address. EA. Stores the contents of the
program counter in the locat ion specified by EA. Execution continues
a t the locat ion EA+1.

13-67 Third Edition

DOC3060-192

The JST ins t ruc t ion truncates the return address according t o the
addressing mode before s tor ing i t . The high-order b i t s of the memory
location are not affected by the s to re . This allows you t o p rese t the
I or X b i t s in some modes a s follows:

Mode Allowed Presets

16S

32S, 32R

64R, 64V

I, x

I

none

Note

This instruction cannot be used in shared code,
interrupts for one instruction in Ring Only.

Inhibits

In Ring 0, this instruction inhibits interrupts during
execution of the next instruction.

• JSX address
Jump and Save in X
1 1 1 1 0 1 1 1 0 0 0 0 1 1
DISPLACEMENT\16

BR\2

1 1 1 1 0 1 1 1 0 0 0 0 1 1 CB\2
[DISPLACEMENTS]

(V mode long)

(R mode long)

Calculates an effective address, EA. Increments the contents of the
program counter by 1 and loads the result into X. Loads EA into the
program counter. For the 750 and 850, if the value of CB is 2 or 3,
then the next 16 bits are skipped. Leaves the values of CBITr LINK,
and the condition codes unchanged.

Note

This ins t ruc t ion cannot do indexing.

Third Edition 13-68

S, R, and V MDDE

^ JSXB address
Jump and Set XB
I X 1 1 0 0 1 1 0 0 0 Y 1 0 BR\2 (V mode long)
DISPLACEMENT\16

1 X 1 1 0 0 1 1 0 0 0 0 1 0 CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Loads the contents of the program
counter into XB. Loads EA into the program counter. Leaves the values
of CBIT, LINK, and the condition codes unchanged.

Note

This instruction can make subroutine calls outside the current
segment as well as within.

^ JSY address
Jump and Save in Y
I X 1 1 0 0 1 1 0 0 0 Y 0 0 BR\2 (V mode long)
DISPLACEMENT\16

I X 1 1 0 0 DISELACEMENT\10 (V mode short)

Calculates an effective address, EA. Loads Y with the location number
of the program counter. Loads EA into the program counter. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

Note

This ins t ruc t ion may c a l l only those subroutines res iding in
the same procedure segment only, since only the word number
f i e l d of the program counter i s saved.

13-69 Third Edition

DOC3060-192

• LCEQ
Load Aon BQ
1 1 0 0 0 0 1 1 0 1 0 0 0 0 1 1 (V mode form)

If the condition codes reflect an equal to condition, the instruction
loads A with a 1. If the condition codes reflect a not equal
condition, the instruction loads A with a 0. Leaves the values of
LINK, CBIT, and the condition codes unchanged.

^ LOSE
Load A on GE
1 1 0 0 0 0 1 1 0 1 0 0 0 1 0 0 (V mode form)

If the condition codes reflect a greater than or equal to condition,
the instruction loads A with a 1. If the condition codes reflect a
less than condtion, the instruction loads A with a 0. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

^ LCGT
Load A on GT
1 1 0 0 0 0 1 1 0 1 0 0 0 1 0 1 (V mode form)

If the condition codes re f lec t a greater than condition, the
ins t ruc t ion loads with a 1 . If the condition codes r e f l ec t a l e s s than
or equal t o condition, the ins t ruct ion loads A with a 0. Leaves the
values of LINK, CBIT, and the condition codes unchanged.

^ LCLE
Load Aon LE
1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 1 (V mode form)

If the condition codes reflect a less than or equal to condition, the
instruction loads A with a 1. If the condition codes reflect a greater
than condition, the instruction loads A with a 0. Leaves the values of
LINK, CBIT, and the condition codes unchanged.

^ LCLT
Load A on LT
1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 (V mode form)

If the condition codes re f l ec t a l e s s than condition, the ins t ruc t ion
loads A with a 1 . If the condition codes re f l ec t a greater than or
equal t o condition, the ins t ruct ion loads A with a 0. Leaves the
values of LINK, CBIT, and the condition codes unchanged.

Third Edition 13-70

S, R, and V MODE

^ LCNE
Load A on NE
1 1 0 0 0 0 1 1 0 1 0 0 0 0 1 0 (V mode form)

If the condition codes reflect a not equal condition, the instruction
loads A with a 1. If the condition codes reflect an equal condition,
the instruction loads A with a 0. Leaves the values of LINK, (BIT, and
the condition codes unchanged.

^ LDA address
Load A
I X 0 0 1 0 1 1 0 0 0 Y 0 0 BR\2 (V mode long)
DISPLACEMENTS

1 X 0 0 1 0 1 1 0 0 0 0 0 0 CB\2 (R mode long)
[DISPLAOTENT\16]

I X 0 0 1 0 DISPLACEMENT^ (S mode; R, V mode short)

Calculates an effective address, EA. Loads the contents of the
location specified by EA into A. Leaves the values of LINK, CBIT, and
the condition codes unchanged.

^ LDC f i r
Load Character
0 0 0 0 0 0 1 0 1 1 0 0 F L R 0 1 0 (V mode form)

If the contents of the specified FLR are nonzero, the instruction loads
the single character pointed to by the appropriate FAR into bits 9-16
of A and loads 0s into bits 1-8. Updates the contents of the
appropriate FAR by 8 so that they point to the next character.
Decrements the contents of the specified FLR by 1. Sets the condition
codes to NE.

If the contents of the specified FLR are 0, the instruction sets the
condition codes to EQ.

The instruction leaves the values of CBIT and LINK unchanged.

Note

This ins t ruc t ion uses FARO when FLR0 i s specif ied, and PARI
when FLR1 i s specif ied.

13-71 Third Edition

DOC3060-192

• LEL address
Long Load
I X 0 0 1 0 1 1 0 0 0 Y 1 1 BR\2 (V mode form)
DISPLACEMENT\16

Calculates a long effect ive address, EA. Loads the 32-bi t contents of
the locat ion specified by EA in to L. Leaves the values of LINK, (BIT,
and the condition codes unchanged.

^ LELR address
Load L from Addressed Register
I X 0 1 0 1 1 1 0 0 0 Y 0 1 BR\2 (V mode form)
DISPLACEMENT\16

Calculates a doubleword effect ive address, EA. Loads L with the
contents of the reg i s t e r f i l e locat ion specified by the word port ion of
EA. Bit 2 and b i t 12 of the word portion of EA determine the act ions
of t h i s ins t ruc t ion :

Bi t 2 Bit 12 Action

1* Ignore b i t s 1 and 3-9. The word port ion of
EA specif ies an absolute r eg i s t e r number
from 0- '377.

0* 0 Bits 13-16 of the word port ion of EA specify
one of the r eg i s t e r s '20- '37 in the current
reg is te r s e t .

0 0 Bits 13-16 of the word port ion of EA specify
one of the r eg i s t e r s 0-'17 in the current
reg is te r s e t .

*This i s a r e s t r i c t e d ins t ruc t ion .

Leaves the values of CBIT and LINK unchanged; the values of the
condition codes are indeterminate. See Chapter 9 for more information
on reg is te r s e t s .

Third Edition 13-72

S, R, and V M3DE

^ LDX address
Load X
I 1 1 1 0 1 DISIfcACEMENT\10 (S, R, V mode short form)

1 1 1 1 0 1 1 1 0 0 0 0 1 1 CB\2 (R mode long)
[DISPLACEMENT\16]

1 1 1 1 0 1 1 1 0 0 0 0 1 1 BR\2 (V mode long)
DISHiACEMENT\16

Calculates an effective address, EA. Loads X, the index register, with
the contents of the location specified by EA. Leaves the values of
LINK, CBIT, and the condition codes unchanged. For 750 and 850
processors in R mode only, if CB contains 2 or 3, the first 16 bits of
the next instruction will be skipped.

Note

This instruction cannot specify indexing, though an address
calculated in the indirect chain may do so in 16S mode. See
Chapter 2 for more information.

^ LDY address
Load Y
I 1 1 1 0 1 1 1 0 0 0 Y 0 1 BR\2 (V mode form)
DISEALCEMENT\16

Calculates an effective address, EA. Loads Y with the contents of the
location specified by EA. Leaves the values of LINK, CBIT, and the
condition codes unchanged.

Note

This instruction cannot do indexing. See Chapter 2 for more
information.

• LEQ
Load A on A Equal t o 0
1 1 0 0 0 0 0 1 0 0 0 0 1 0 1 1 (S, R, V mode form)

If the contents of A are equal t o 0, the ins t ruc t ion loads A with a 1 .
If the contents of A a re not equal t o 0, the ins t ruc t ion loads A with a
0. Leaves the values of LINK and CBIT unchanged. The condition codes
r e f l ec t the r e s u l t of the comparison. (See Table 5-3.)

13-73 Third Edition

DOC3060-192

^ LF
Load False
1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 (S, R, V mode form)

Loads A with a 0. Leaves the values of LINK and CBIT unchanged. Sets
the condition codes to reflect the result of the comparison. (See
Table 5-3.)

^ LFEQ
Load A on F Equal to 0
1 1 0 0 0 0 1 0 0 1 0 0 1 0 1 1 (V mode form)

If the contents of the floating accumulator are equal to 0, the
instruction loads A with a 1. If the F contents are not equal to 0r

the instruction loads A with a 0. Leaves the values of LINK and CBIT
unchanged. The condition codes reflect the result of the comparison.
(See Table 5-3.)

^ LFGE
Load A on Floating Accumulator Greater Than or Equal t o 0
1 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 (V mode form)

If the contents of the f loat ing accumulator a re greater than or equal
to 0, the ins t ruc t ion loads A with a 1 . If the F contents a re l e s s
than 0, the ins t ruc t ion loads A with a 0. Leaves the values of LINK
and CBIT unchanged. The condition codes re f l ec t the r e s u l t of the
comparison. (See Table 5-3.)

^ LFGT
Load A on Floating Accumulator Greater Than 0
1 1 0 0 0 0 1 0 0 1 0 0 1 1 0 1 (V mode form)

If the contents of the f loa t ing accumulator a re greater than 0, the
ins t ruc t ion loads A with a 1 . If the F contents a re l e s s than or equal
to 0, the ins t ruc t ion loads A with a 0. Leaves the values of LINK and
CBIT unchanged. The condition codes re f l ec t the r e s u l t of the
comparison. (See Table 5-3.)

Third Edition 13-74

S, R, and V MDDE

^ LFLE
Load A on Floating Accumulator Less Than or Equal t o 0
1 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 (V mode form)

If the contents of the f loa t ing accumulator a re l e s s than or equal t o
0, the ins t ruc t ion loads A with a 1 . If the F contents a re greater
than 0, the ins t ruc t ion loads A with a 0 . Leaves the values of LINK
and CBIT unchanged. The condition codes r e f l ec t the r e s u l t of the
comparison. (See Table 5-3.)

^ LFLI fir,data
Load FLR Immediate
0 0 0 0 0 0 1 0 1 1 0 0 F L R 0 1 1 (V mode form)
INTEGER\16

Loads the 16-bit, unsigned integer contained in the second word of the
instruction into the specified FLR. Clears the upper bits of the FLR.
Leaves the values of CBIT, LINK, the condition codes, and the
associated FAR unchanged.

^ LFLT
Load A on Floating Accumulator Less Than 0
1 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 (V mode form)

If the contents of the f loa t ing accumulator a re l e s s than 0, the
ins t ruc t ion loads A with a 1 . If the F contents a re greater than or
equal to 0, the ins t ruc t ion loads A with a 0. Leaves the values of
LINK and (BIT unchanged. The condition codes r e f l ec t the r e s u l t of the
comparison. (See Table 5-3.)

^ LFNE
Load A on Floating Accumulator Not Equal t o 0
1 1 0 0 0 0 1 0 0 1 0 0 1 0 1 0 (V mode form)

If the contents of the f loat ing accumulator are not equal t o 0, the
ins t ruc t ion loads A with a 1 . If the F contents a re equal to 0, the
ins t ruc t ion loads A with a 0. Leaves the values of LINK and (BIT
unchanged. The condition codes r e f l ec t the r e s u l t of the comparison.
(See Table 5-3.)

13-75 Third Edition

EOC3060-192

^ LGE
Load A on Greater Than or Equal to 0
1 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 (S, Rf V mode form)

If the contents of A are greater than or equal to 0, the instruction
loads A with a 1. If the A contents are less than 0, the instruction
loads A with a 0. Leaves the values of LINK and CBIT unchanged. The
condition codes reflect the result of the comparison. (See Table 5-3.)

• LGT
Load A on Greater Than 0
1 1 0 0 0 0 0 1 0 0 0 0 1 1 0 1 (S f R f V mode form)

If the contents of A are greater than 0 , the instruction loads A with a
1. If the A contents are less than or equal to 0, the instruction
loads A with a 0. Leaves the values of LINK and CBIT unchanged, The
condition codes reflect the result of the comparison. (See Table 5-3.)

^ LDDT address
Load I/O TLB
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 (V mode form)
AP\32

Loads a specif ied IOTLB entry. The following l i s t shows the contents
of the LIDT entry and the or igin of the information.

Origin Description

AP in LIDT Virtual address in segment 0 (calculated from the
EA).

Page t ab le Physical address (t rans la t ion of the v i r t u a l
address) obtained from segment 0 . Note t h a t i f the
f au l t b i t i s s e t t o 1, a page f a u l t occurs.

L reg i s te r Target v i r t ua l address. TJiis i s the segment number
and page number of the v i r t u a l address t h a t w i l l be
used by procedures accessing t h i s information.
This i s used t o help inval ida te the proper
locat ions in the cache. This i s provided in L as a
v i r t ua l address. The low-order 10 b i t s (word
number in the page) and the segment number are
ignored.

The values of CBIT, LINK, and the condition codes a re indeterminate.

Third Edition 13-76

S, R, and V MODE

Note

This is a restricted instruction.

• LLE
Load on A Less Than or Equal t o 0
1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 (S, R, V mode form)

If the contents of A are less than or equal to 0, the instruction loads
A with a 1. If the A contents are greater than 0, the instruction
loads A with a 0. Leaves the values of LINK and (BIT unchanged. The
condition codes contain the result of the comparison. (See Table 5-3.)

^ LLEQ
Load A on L Equal t o 0
1 1 0 0 0 0 1 1 0 1 0 0 1 0 1 1 (V mode form)

If the contents of L are equal to 0, the instruction loads A with a 1.
If the L contents are not equal to 0, the instruction loads A with a 0.
Leaves the values of LINK and (BIT unchanged. The condition codes
contain the result of the comparison. (See Table 5-3.)

• LLGE
Load A on L Greater Than or Equal to 0
1 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 (V mode form)

If the contents of L are greater than or equal to 0, the instruction
loads A with a 1. If the L contents are less than 0, the instruction
loads A with a 0. Leaves the values of LINK and (BIT unchanged. The
condition codes contain the result of the comparison. (See Table 5-3.)

^ LLGT
Load A on L Greater Than 0
1 1 0 0 0 0 1 1 0 1 0 0 1 1 0 1 (V mode form)

If the contents of L are greater than 0 f the ins t ruc t ion loads A with a
1. If the L contents are l e s s than or equal t o 0, the ins t ruc t ion
loads A with a 0 . Leaves the values of LINK and (BIT unchanged. The
condition codes contain the r e s u l t of the comparison. (See Table 5-3.)

13-77 Third Edition

DOC3060-192

• LLL n
Long Left Logical
0 1 0 0 0 0 1 0 0 0 N\6 (S, R, V mode form)

Shifts the contents of A and B to the le f t , bringing 0s into b i t 16 of
B. Shifts b i t s out of b i t 1 of B into b i t 16 of A. CBIT contains the
value of last b i t shifted out of A; the values of a l l other bi ts
shifted out of A are los t . The value of LINK i s indeterminate. Leaves
the values of the condition codes unchanged.

N contains the two's complement of the number of shifts to perform. If
N contains 0f the instruction performs 64 shif ts .

^ LLLE
Load A on L Less Than or Equal to 0
1 1 0 0 0 0 1 1 0 1 0 0 1 0 0 1 (V mode form)

If the contents of L are less than or equal to 0, the instruction loads
A with a 1. If the L contents are greater than 0 , the instruction
loads A with a 0. Leaves the values of LINK and CBIT unchanged. The
condition codes contain the result of the comparison. (See Table 5-3.)

^ LLLT
Load A on L Less Than 0
1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 (V mode form)

If the contents of L are less than 0, the instruction loads A with a If
the L contents are greater than or equal to 0, the instruction loads A
with a 0. Leaves the values of LINK and CBIT unchanged. The condition
codes contain the result of the comparison. (See Table 5-3.)

^ LLNE
Load A on L Not Equal to 0
1 1 0 0 0 0 1 1 0 1 0 0 1 0 1 0 (V mode form)

If the contents of L are not equal to 0, the instruction loads A with a
1. If the L contents are equal to 0, the instruction loads A with a 0.
Leaves the values of LINK and CBIT unchanged. The condition codes
contain the result of the comparison. (See Table 5-3.)

Third Edition 13-78

S, Rr and V MDEE

• LLR n
Long Left Rotate
0 1 0 0 0 0 1 0 1 0 N\6 (S, R, V mode form)

Shifts the contents of A and B lef t , rotating b i t 1 of A into b i t 16 of
B. Bit 1 of B shifts into b i t 16 of A. CBIT contains a copy of the
las t b i t rotated into b i t 16 of B. The value of LINK i s indeterminate.
Leaves the values of the condition codes unchanged.

N contains the two's complement of the number of shifts to perform. If
N contains 0, the instruction performs 64 shif ts .

• LLS n
Long Left Shift
0 1 0 0 0 0 1 0 0 1 N\6 (V mode form)

Shifts the 32-bit integer in L left arithmetically, bringing 0s into
bit 32. Bits shifted out of bit 1 are lost. If bit 1 changes state,
it is interpreted as an overflow and causes an integer exception. If
no integer exception occurs, CBIT is reset to 0. The values of LINK
and the condition codes are indeterminate.

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 11
for more information.

• LLS n
Long Left Shift
0 1 0 0 0 0 1 0 0 1 N\6 (S, R mode form)

Shifts the 31-bit integer contained in A and B left arithmetically,
bringing 0s into b i t 16 of B. Bit 1 of B does not take part in the
shift; b i t 2 of B i s shifted into b i t 16 of A. Bits shifted out of
b i t 1 of A are los t . If b i t 1 of A changes s ta te , i t i s interpreted as
an overflow and causes an integer exception. If no integer exception
occurs, CBIT i s reset to 0. Ihe values of LINK and the condition codes
are indeterminate.

If an integer exception occurs and b i t 8 of the keys contains 0, the
instruction sets (BIT to 1. If b i t 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception faul t . See Chapter 11
for more information.

13-79 Third Edition

DOC3060-192

^ LLT
Load on A Less Than 0
1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 (S, R, V mode form)

If the contents of A are less than 0f the instruction loads A with a 1.
If the A contents are greater than or equal to 0, the instruction loads
A with a 0. Leaves the values of LINK and (BIT unchanged. The
condition codes contain the result of the comparison. (See Table 5-3.)

^ LMCM
Leave Machine Check Mode
0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 (S, R, V mode form)

Leaves machine check mode by se t t ing b i t s 15-16 of the modals t o 00.
If a machine pa r i ty error occurs in t h i s mode, the hardware se t s the
machine check f lag but no check (V mode) or in te r rupt (S, R modes)
occurs. Inh ib i t s the machine for one ins t ruc t ion . Leaves the values
of LINK, (BIT, and the condition codes unchanged.

Note

This is a restricted instruction.

^ LNE
Load on A Not Equal t o 0
1 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 (S, R, V mode form)

If the contents of A are not equal to 0, the instruction loads A with a
1. If the A contents are equal to 0, the instruction loads A with a 0.
Leaves the values of LINK and CBIT unchanged. The condition codes
contain the result of the comparison. (See Table 5-3.)

^ LPID
Load Process ID
0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 (V mode form)

Loads the process ID from b i t s 1-12 of A in to RPID (the process ID
r e g i s t e r) . This contains the 10 most s igni f icant b i t s of the u s e r ' s
address space. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

Note

This i s a r e s t r i c t ed ins t ruc t ion .

Third Edition 13-80

S, R, and V MDDE

• LESW address
Load PSW
0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 (V mode form)
AP\32

Changes the status of the processor by loading new values into the
program counter, keys, and modals. Inhibits interrupts for one
instruction.

Addresses a 4-word block a t the specified location. The block has the
following:

Word in Block Contents

1-2 New program counter (ring, segment, word numbers)

3 New keys

4 New modals

Loads the program counter and keys of the currently running process
with the contents of the first three words, then loads the processor
modals with the contents of the fourth word.

The new value of bit 15 in the keys, the in-dispatch bit, can
temporarily halt execution of the current process. This bit is altered
by software only during a cold or warm start. If bit 15 is 0, the
currently executing process will continue to execute, but at a location
defined by the new value of the program counter. If bit 15 is 1, the
processor enters the dispatcher and dispatches the ready process with
the highest priority. When execution resumes for the process that was
temporarily halted, note that execution resumes at the point defined by
the value of the new program counter.

Regardless of the value of bit 15, the new value of the modals takes
effect immediately, since the modals are associated with the processor,
not the process.

Note that this instruction loads the four words of the register set
that the STLR instruction cannot correctly load. STLR does not update
the separate hardware registers the processor uses to maintain
duplicate information for optimization.

Never use this instruction to change bits 9-11 of the modals. These
bits specify the current user register set. This means that if you do
not know the current value of these bits, you must do the following
each time you want to execute an LPSW:

13-81 Third Edition

DOC3060-192

1. Inhibit interrupts.

2. Read the current values of modal bits 9-11 (use LELR).

3. Mask the old values of the modal bits into the new information.

4. Load the new information into the modals with an LPSW.

For the two common uses of LPSW, you do not have to perform this
sequence, since the values of modal bits 9-11 are predictable. When
you use LPSW after a Master Clear to turn on processor exchange mode,
bits 9-11 are 010 because the processor is always initialized to
register set 2. When you use LPSW to return from a fault, check, or
interrupt, simply reload the values stored by the break because these
values are still correct.

Also note that you should not use LPSW to set bits 16 (the save done
bit) or 15 (the in-dispatcher bit) of the keys, unless you are merely
loading status following a fault, check, or interrupt. When issuing
LPSW after a Master Clear, make sure you load 0s into both of these
bits.

Note

•This i s a restricted instruction. This instruction inhibits
interrupts during execution of the next instruction.

• LRL n
Long Right Logical
0 1 0 0 0 0 0 0 0 0 N\6 (S, R, V mode form)

Shifts the contents of A and B right, bringing 0s into bit 1 of A.
Shifts bit 16 of A into bit 1 of B. CBIT contains the value of the
last bit shifted out of B; the values of all other bits shifted out of
B are lost. The value of LINK is indeterminate. Leaves the values of
the condition codes unchanged.

N contains the two's complement of the number of shifts to perform. If
N contains 0, the instruction performs 64 shifts.

^ LRR n
Long Right Rotate
0 1 0 0 0 0 0 0 1 0 N\6 (S, R, V mode form)

Shifts the contents of A and B right, rotating bit 16 of B into bit 1
of A. Shifts bit 16 of A into bit 1 of B. CBIT contains a copy of the
last bit rotated from B to A. The value of LINK is indeterminate.
Leaves the values of the condition codes unchanged.

Third Edition 13-82

S, R, and V MDDE

N contains the two's complement of the number of sh i f t s t o perform. If
N contains 0 , the ins t ruc t ion performs 64 s h i f t s .

• LRS n
Long Right Shif t
0 1 0 0 0 0 0 0 0 1 N\6 (V mode form)

Shifts the 32-bi t integer contained in L r igh t a r i thmet i ca l ly . Shifts
copies of b i t 1 , the sign b i t , in to each of the vacated b i t s . CBIT
contains the value of the l a s t b i t shif ted out of L; the values of a l l
other b i t s shi f ted out a re l o s t . The value of LINK i s indeterminate.
Leaves the values of the condition codes unchanged.

N contains the two's complement of the number of sh i f t s t o perform. If
N contains 0 , the ins t ruc t ion performs 64 s h i f t s .

• LRS n
Long Right Shift
0 1 0 0 0 0 0 0 0 1 N\6 (S, R mode form)

Shifts r igh t a r i thmet ica l ly the 31-bit integer contained in A and B,
leaving b i t 1 of A unaffected. Bit 1 of B does not take par t in the
sh i f t ; b i t 16 of A i s shi f ted in to b i t 2 of B. Shif ts copies of b i t 1
of A in to each of the vacated b i t s . CBIT contains the value of the
l a s t b i t shi f ted out of B; the values of a l l other b i t s sh i f ted out of
B are l o s t . The value of LINK i s indeterminate. Leaves the values of
the condition codes unchanged.

N contains the two's complement of the number of sh i f t s t o perform. If
N contains 0, the ins t ruc t ion performs 64 s h i f t s .

^ LT
Load True
1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 1 (S, R, V mode form)

Loads A with a 1 . Leaves the values of LINK and CBIT unchanged. Sets
the condition codes t o r e f l ec t the outcome of the operat ion. (See
Table 5-3.)

13-83 Third Edition

DOC3060-192

• MDRS
Memory Diagnostic Read Syndrome Bits
0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 (V mode form)

Reads memory syndrome b i t s . Leaves the values of LINK, CBIT, and the
condition codes unchanged.

Note

This is a restricted instruction.

^ MEWC
Memory Diagnostic Load Write Control Register
0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1 (V mode form)

Writes memory control r eg i s t e r . Leaves the values of LINK, CBIT, and
the condition codes unchanged.

Note

This is a restricted instruction.

^ MIA
Microcode Execute A
I X 1 0 1 0 1 1 0 0 0 Y 0 1 BR\2 (V mode long)
DISPLACEMENT^

This ins t ruc t ion currently causes a UII f a u l t . If implemented, t h i s
ins t ruc t ion i s for user-writ ten microcode. For more information about
UII, refer t o Chapter 1 1 .

^ MIB
Microcode Execute B
I X 1 0 1 1 1 1 0 0 0 Y 0 1 BR\2 (V mode long)
DISELACEMENT\16

This ins t ruc t ion currently causes a UII f a u l t . If implemented, t h i s
ins t ruc t ion i s for user-wri t ten microcode. For more information about
UII, refer t o Chapter 11 .

Third Edition 13-84

S, R, and V MODE

• MPL address
Multiply Long
I X 1 1 1 0 1 1 0 0 0 Y 1 1 BR\2 (V mode form)
DISPLACEMENT\16

Calculates an effect ive address, EA. Mult ipl ies the 32-bi t integer in
L by the 32-bi t integer in the locat ion specified by EA. Stores the
63-bit r e s u l t in L and E. Resets (BIT to 0. Leaves the value of LINK
unchanged. The condition codes re f lec t the r e s u l t of the operation.
(See Table 5-3.)

Note

This instruction cannot cause overflow.

• MPY address
Multiply
I X 1 1 1 0 1 1 0 0 0 Y 0 0 BR\2 (V mode long)
DISPLACEMENT\16

I X 1 1 1 0 DISPLACEMENT\10 (V mode short)

Calculates an effect ive address, EA. Mult ipl ies the 16-bi t integer in
A by the 16-bi t integer in the locat ion specified by EA. Stores the
32-bit r e s u l t in A and B. Resets (BIT to 0. The value of LINK i s
indeterminate. Leaves the values of the condition codes unchanged.

Note

This ins t ruc t ion cannot cause overflow.

13-85 Third Edition

DOC3060-192

• MPY address
Multiply
1 X 1 1 1 0 1 1 0 0 0 0 0 0 CB\2 (R mode long)
[DISPLACEMENT\16]

I X 1 1 1 0 DISPLACEMENT\10 (S mode; R mode short)

Calculates an effect ive address, EA. Multiplies the 16-bi t integer in
A by the 16-bit integer in the locat ion specif ied by EA. Loads the
31-bit r e s u l t i n A and B. If the mult ipl ier and multiplicand a r e both
-(2**15), an integer exception occurs. If no integer exception occurs,
(BIT i s r e se t to 0. The value of LINK i s indeterminate. Leaves the
values of the condition codes unchanged.

If an integer exception occurs and b i t 8 of the keys contains 0, the
ins t ruc t ion se t s (BIT to 1 . If b i t 8 contains a 1, the ins t ruc t ion
se t s (BIT to 1 and causes an integer exception f a u l t . See Chapter 11
for more information.

Third Edition 13-86

S, R, and V MDDE

• NFYB
Notify
0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 (V mode form)
AP\32

Notifies the semaphore at address specified by the address pointer in
the instruction. Uses LIPO queueing. Does not clear the currently
active interrupt. The values of LINK, (BIT, and the condition codes
are indeterminate.

Note

This is a restricted instruction.

^ NFYE
Notify
0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 (V mode form)
M>\32

Notifies the semaphore at address specified by the address pointer in
the instruction. Uses FIFO queueing. Does not clear the currently
active interrupt. The values of LINK, CBIT, and the condition codes
are indeterminate.

Note

This i s a r e s t r i c t e d ins t ruc t ion .

^ NOP
No Operation
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 (S, R, V mode form)

Does nothing. Leaves the values of LINK, CBIT, and the condition codes
unchanged.

13-87 Third Edition

D0C3060-192

• NRM
Normalize
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 (S, R mode form)

Shifts the 31-bit integer in A and B to the le f t arithmetically,
shifting in 0s into b i t 16 of B. The shift does not affect b i t 1 of B
or b i t 1 of A. The instruction shifts bi ts out of b i t 2 in A until the
value of b i t 2 i s opposite the value of b i t 1 in A. Loads b i t s 9-16 of
the S and R mode keys with the number of shifts performed. Leaves the
values of CBIT and the condition codes unchanged; the value of LINK i s
indeterminate.

Note

Since the b i ts shifted out of b i t 2 in A contain copies of the
sign of the 31-bit number, the shift results in no loss of
information.

Third Edition 13-88

S, R, and V MDDE

• OCP function,device
Output Control Pulse
1 0 1 1 0 0 PUNCTK)N\4 DEVICE\6 (S, R mode form)

Sends a control pulse to perform the specified function to the
specified device. This ins t ruc t ion never sk ips . Leaves the values of
(BIT, LINK, and the condition codes unchanged. See Chapter 12 for more
information.

Note

This is a restricted instruction.

• ORA
Inclusive OR
I X 0 0 1 1 1 1 0 0 0 Y 1 0 BR\2 (V mode form)
DISPLACEMENT\16

Calculates an effect ive address, EA. Logically ORs the contents of the
locat ion specif ied by EA and the contents of A and s to res the r e s u l t in
A. Leaves the values of LINK, CBIT, and the condition codes unchanged.

^ OTA function,device
Output from A
1 1 1 1 0 0 FUNCTIDN\4 DEVTCE\6 (S, R mode form)

Transfers data from A t o the specified device. Leaves the values of
CBrr, LINK, and the condition codes unchanged. See Chapter 12 for more
information.

Note

This is a restricted instruction.

^ OTK
Output Keys
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 (S, R mode form)

Stores the contents of A in the keys. Loads (BIT, LINK, and the
condition codes as a r e s u l t of the operation. If t h i s ins t ruc t ion i s
executed in Ring 0, i t i n h i b i t s in te r rupt during execution of the next
in s t ruc t ion . Loads the low-order 8 b i t s of the S r eg i s t e r with the
low-order 8 b i t s of A.

13-89 Third Edition

EOC306 0-192

• PCL
Procedure Call
I X 1 0 0 0 1 1 0 0 0 Y 1 0 BR\2 (V mode form)
DISPLACEMENT\16

Sets CBIT, LINK, and the condtion codes to the values contained in the
ECB. See Chapter 8 for a complete description of this instruction.

Note

When arguments are to be transferred to the called procedure,
this instruction uses X, Y, and XB, destroying the previous
contents of these registers. The contents of X, Y, and XB
remain unchanged if no arguments are transferred. The contents
of the condition codes, CBIT, and LINK are not correctly saved
in the ECB along with the rest of the caller's keys.

• PID
Position for Integer Divide
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 (S, R mode form)

Moves the contents of bits 2-16 of A into bits 2-16 of B. Clears bit 1
or register B to 0 and extends the sign contained in bit 1 of A into
bits 2-16 of A. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

• PIDA
Position for Integer Divide
0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 (V mode form)

Moves the contents of bi ts 1-16 of A into b i ts 17-32 of L. Extends the
sign contained in b i t 1 of A into bi ts 2-16 of A. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

^ PIDL
Position for Integer Divide Long
0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 (V mode form)

Moves the contents of L into E and extends the sign contained in b i t 1
of L into bi ts 2-32 of L. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

Third Edition 13-90

S, R, and V MODE

^ PIM
Posit ion After Multiply
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 (S, R mode form)

Moves b i t s 2-16 of B in to b i t s 2-16 of A. I h i s converts a 31-bi t
integer t o a 16-bi t in teger . Leaves the values of LINK, CBIT, and the
condition codes unchanged. Note tha t l o s s of precis ion does not cause
an integer exception.

^ PIMA
Posi t ion af ter Multiply
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 (V mode form)

Moves b i t s 17-32 of L in to b i t s 1-16 of A. This converts a 32-bi t
integer to a 16-bi t in teger . An integer exception occurs i f there i s a
loss in precis ion. (This occurs i f Bi ts 1-16 of A contain a value
other than a l l 0s or a l l ones before the move.) If no integer
exception occurs, CBIT i s r e se t t o 0. The values of LINK and the
condition codes are indeterminate.

If an integer exception occurs and b i t 8 of the keys contains 0, the
ins t ruc t ion se t s CBIT t o 1 . If b i t 8 contains a 1, the ins t ruc t ion
se ts CBIT t o 1 and causes an integer exception f a u l t . See Chapter 11
for more information.

Note

To position bits 17-32 of L in A, PIMA swaps the two words of
L. Since A and B overlap L, this swap means that B contains
whatever was in bits 1-16 of L. This value is not always 0,
even when no integer exception occurs. (B may contain 111111,
for example.)

• PIML
Posit ion Following Integer Multiply Long
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 (V mode form)

Moves the contents of b i t s 1-32 of E in to b i t s 1-32 of L. This
converts a 64-bi t integer t o a 32-bi t in teger . Any loss of precis ion
causes an integer exception. If no integer exception occurs, CBIT i s
r e se t to 0. The values of LINK and the condition codes are
indeterminate.

If an integer exception occurs and b i t 8 of the keys contains 0, the
ins t ruc t ion se t s CBIT t o 1 . If b i t 8 contains a 1, the ins t ruc t ion
se ts CBIT to 1 and causes an integer exception f a u l t . See Chapter 11
for more information.

13-91 Third Edition

DOC3060-192

^ PRTN
Procedure Return
0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 (V mode form)

Deallocates the stack frame created for the executing procedure and
returns to the environment of the procedure that called i t .

To deallocate the frame, the instruction stores the current value of
the stack base register into the free pointer. I t then restores the
ca l le r ' s s tate by loading the ca l le r ' s program counter, stack base
register, linkage base register, and keys with the values contained in
the frame being deallocated. Sets b i t s 15-16 of the keys to 0.

Loads the ring number in the program counter with the current ring
number to allow outward returns but prevent inward returns.

^ PTLB
Purge TLB
0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 (V mode form)

L contains the address of a physical page, right justified. Based on
the value of L bit 1, PTLB purges either the first 128 locations or a
single location. If L bit 1 contains a 1, the instruction performs a
complete purge. If L bit 1 contains a 0, the instruction purges the
page specified by L. Leaves the values of CBIT, LINK, and the
condition codes indeterminate. See Chapters 1, 3, and 12 for more
information about the STLB and IOTLB.

Note

This i s a restricted instruction.

On the 750, 850, or 9950, insert a ORE (dear E) instruction
before PTLB. Since PTLB uses E as a pointer, the CRE 0s E
before PTLB manipulates i t . If an interrupt occurs during
PTLB's execution, E points to the location PTLB is currently
purging. PTLB leaves the contents of E in an undefined s ta te
at the end of i t s execution.

Third Edition 13-92

S, R, and V MDDE

• QFAD address
Quad Precision Floating Add
I X 0 1 0 1 1 1 0 0 0 Y 1 0 BR\2 (V mode long)
DISPIJCEMENT\16
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Calculates an effect ive address, EA. Adds the 112-bi t , quad precis ion
number contained in the locat ions specified by FA to the contents of
QAC. (See Chapter 6.) Normalizes the r e s u l t and loads i t i n to QAC.
An overflow or underflow causes a f loat ing-point exception. If no
f loat ing-point exception occurs, the ins t ruc t ion r e se t s CBIT to 0. The
values of LINK and the condition codes are indeterminate.

If a f loat ing-point exception occurs and b i t 7 of the keys contains a
1, the ins t ruc t ion se t s CBIT to 1 . If b i t 7 contains a 0, the
ins t ruc t ion se t s CBIT t o 1 and causes a f loat ing-point exception f a u l t .
See Chapter 11 for more information.

Note

If this instruction is used for any system but the 9950, an
unimplemented instruction (UII) fault occurs. (See Chapter
11.)

• QFCM
Quad Precision Floating Complement
1 1 0 0 0 0 0 1 0 1 1 1 1 0 0 0 (V mode form)

Forms the two's complement of the value contained in QAC and normalizes
i t i f necessary. (See Chapter 6.) Stores the r e s u l t in QAC. An
underflow or overflew causes a f loat ing-point exception. If no
f loat ing-point exception occurs, rese t s CBIT t o 0. The values of LINK
and the condition codes a re indeterminate.

If a f loat ing-point exception occurs and b i t 7 of the keys contains a
1, the ins t ruc t ion se t s CBIT to 1 . If b i t 7 contains a 0, the
ins t ruc t ion se t s CBIT to 1 and causes a f loat ing-point exception f a u l t .
See Chapter 11 for more information.

Note

If t h i s ins t ruc t ion i s used for any system but the 9950, an
unimplemented ins t ruc t ion (UII) fau l t occurs. (See Chapter
11.)

13-93 Third Edition

EOC3060-192

• QFCS address
Quad Precision Floating Point Compare and Skip
I X 0 1 0 1 1 1 0 0 0 Y 1 0 BR\2 (V mode long)
DISPLACEMENT\16
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

Calculates an effect ive address, EA. Compares the contents of QAC (see
Chapter 6) t o the 128-bit contents of the locat ion specified by EA and
skips according t o the l i s t below.

Condition Skip

QAC > EA contents . No skip .

QAC = EA contents . Skip one word.

QAC < EA contents . Skip two words.

The values of (BIT, LINK, and the condition codes a re indeterminate.

Note

Be sure to use normalized numbers for correct results.

If this instruction is used for any system but the 9950, an
unimplemented instruction (UII) fault occurs. (See Chapter
11.)

• QFDV address
Quad Precision Floating Point Divide
I X 0 1 0 1 1 1 0 0 0 Y 1 0 BR\2 (V mode long)
DISPLACEMENT\16
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

Calculates an effect ive address, EA. Divides the contents of QAC by
the 112-bit contents of the location specified by EA. Normalizes the
r e s u l t and s tores the whole quotient in to QAC. An overflow, underflow,
or divide by 0 causes a f loat ing-point exception. If there i s no
f loat ing-point exception, rese ts CBIT to 0. The values of LINK and the
condition codes are indeterminate.

If a f loat ing-point exception occurs and b i t 7 of the keys contains a
1, the ins t ruc t ion se t s CBIT to 1 . If b i t 7 contains a 0, the
ins t ruc t ion se t s CBIT to 1 and causes a f loat ing-point exception f a u l t .
See Chapter 11 for more information.

Third Edition 13-94

S, R, and V NODE

Note

If the QFDV instruction is used for any system but the 9950, an
unimplemented instruction (UII) fault occurs. (See Chapter
11.)

• QFLD address
Quad Precision Floating Point Load
I X 0 1 0 1 1 1 0 0 0 Y 1 0 BR\2 (V mode long)
DISPLACEMENT\16
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Calculates an extended, augmented effect ive address , EA. Performs one
of the following act ions with the value contained in the locat ion
specified by EA. Loads b i t s 1-112 in to QAC and zeros QAC b i t s 113-128,
or loads 128 b i t s i n to QAC. (See Chapter 6 for more information.)
Leaves the values of LINK, CBIT, and the condition codes unchanged.

Note

If t h i s ins t ruc t ion i s used for any system but the 9950, an
unimplemented ins t ruc t ion (UII) f au l t occurs. (See Chapter
11.)

• QFLX address
Quad Precision Floating Point Load Index
I 0 1 1 0 1 1 1 0 0 0 Y 1 1 BR\2 (V mode long)
DISPLACEMENT\16

Calculates an effect ive address, EA. Shif ts the 16-bi t contents of the
locat ion specif ied by EA to the l e f t three times t o multiply the
contents by e igh t . Shif ts in 0s on the r igh t and sh i f t s data out on
the l e f t f i r s t through b i t 2 and then b i t 1 . Leaves the values of
CBIT, LINK, and and the condition codes unchanged.

Note

This ins t ruc t ion cannot do indexing.

If t h i s ins t ruc t ion i s used for any system but the 9950, an
unimplemented ins t ruc t ion (UII) fau l t occurs. (See Chapter
11.)

13-95 Third Edition

DOC3060-192

• QFMP address
Quad Precision Floating Point Multiply
I X 0 1 0 1 1 1 0 0 0 Y 1 0 BR\2 (V mode long)
DISPLACEMENT\16
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Calculates an effect ive address, EA. Multiplies the contents of QAC by
the 112-bit contents of the locat ion specified by EA. (See Chapter 6.)
Normalizes the r e s u l t i f necessary and s tores i t i n to QAC. An overflow
or underflow causes a f loating-point exception. If there i s no
f loat ing-point exception, the ins t ruct ion rese t s (BIT t o 0 . The values
of LINK and the condition codes are indeterminate.

If a f loat ing-point exception occurs and b i t 7 of the keys contains a
1, the ins t ruc t ion se t s CBIT to 1 . If b i t 7 contains a 0 , the
ins t ruc t ion se t s CBIT to 1 and causes a f loat ing-point exception f a u l t .
See Chapter 11 for more information.

Note

If this instruction is used for any system but the 9950, an
unimplemented instruction (UII) fault occurs. (See Chapter
11.)

• QFSB address
Quad Precision Floating Point Subtract
I X 0 1 0 1 1 1 0 0 0 Y 1 0 BR\2 (V mode long)
DISPLACEMENT^
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Calculates an effect ive address, EA. Subtracts the contents of the
locat ions specified by EA from t±e 112-bit contents of QAC. (See
Chapter 6.) Normalizes the r e su l t i f necessary and loads i t i n to QAC.
An overflow or underflow causes a f loat ing-point exception. If there
i s no f loat ing-point exception, the ins t ruc t ion r e se t s CBIT to 0 . The
values of LINK and the condition codes are indeterminate.

If a f loat ing-point exception occurs and b i t 7 of the keys contains a
1, the ins t ruc t ion se t s CBIT to 1 . If b i t 7 contains a 0, the
ins t ruc t ion se t s CBIT to 1 and causes an integer exception f a u l t . See
Chapter 11 for more information.

Note

If t h i s ins t ruc t ion i s used for any system but the 9950, an
unimplemented ins t ruc t ion (UII) faul t occurs. (See Chapter
11.)

Third Edition 13-96

S, R, and V MODE

• QFST address
Quad Precision Floating Point Store
I X 0 1 0 1 1 1 0 0 0 Y 1 0 BR\2 (V mode long)
DISPLACEMENT^
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Calculates an effect ive address, EA. Stores the 128-bit contents of
QAC in to the 128 b i t s of memory specified by EA. (See Chapter 6.)
Leaves the values of LINK, (BIT, and the condition codes unchanged.

Note

This instruction does not normalize the result before storing
it into the specified memory location.

If this instruction is used for any system but the 9950, an
unimplemented instruction (UII) fault occurs. (See Chapter
11.)

• QINQ
Quad t o Integer , in Quad Convert
1 1 0 0 0 0 0 1 0 1 1 1 1 0 1 0 (V mode form)

Strips the fractional portion of QAC as described in Table 13-4:

Table 13-4
QINQ Actions

Exponent Value Action

•340 <= Exp

'200 < Exp < '340

•200 = Exp

'200 > Exp

A conversion fault occurs.

If sign >= 0, strip fractional part of
QAC for result.

If sign < 0 and fractional part = 0,
strip fractional part of QAC and
increment result by 1.

If sign < 0 and fractional part <> 0,
strip fractional part for result.

If sign >= 0, result = 0.
If sign < 0 and bits 2-96 = 0 result = -1,
If sign < 0 and bits 2-96 <> 0 result = 0.

Result = 0 .

13-97 Third Edition

DOC3060-192

The QINQ ins t ruc t ion can cause a f loat ing-point exception; an
exception does not a l t e r the contents of QAC. If no f loa t ing-poin t
exception occurs, the ins t ruc t ion rese t s (BIT t o 0 . The values of LINK
and the condition codes are indeterminate.

If a f loat ing-point exception occurs and b i t 7 of the keys contains a
1, the ins t ruc t ion se t s CBIT to 1 . If b i t 7 contains a 0, the
ins t ruc t ion se t s CBIT to 1 and causes a f loat ing-point exception f a u l t .
See Chapter 11 for more information.

Note

If this instruction is used for any system but
unimplemented instruction (UII) fault occurs.
11.)

the 9950, an
(See Chapter

• QIQR
Quad t o Integer , in Quad Convert Rounded
1 1 0 0 0 0 0 1 0 1 1 1 1 0 1 1 (V mode form)

St r ips the f ract ional portion of QAC as described in Table 13-5.

Table 13-5
QIQR Actions

Exponent Value Action

'340 < Exp
Exp = '340

'200 < Exp < '340

Exp = *'200

Exp < '200

A conversion f au l t occurs.
Set the most s ignif icant b i t of the

f ract ional par t of QAC to 0.
If sign >= 0, s t r i p f rac t ional par t of

QAC for r e su l t .
If sign < 0 and f ract ional par t <>0,

s t r i p fract ional par t of QAC for r e s u l t .
If sign <> 0 and f rac t ional par t = 0,

s t r i p the f ract ional par t and increment
the integer par t by 1 .

In any case, increment the integer par t
by 1 if i t ex i s t s and the most s igni f icant
b i t of the f ract ional par t of QAC i s 1 .

If sign >= 0, r e su l t = 0.
If sign < 0 and b i t s 2-96 = 0 r e s u l t = - 1 .
If sign < 0 and b i t s 2-96 <> 0 r e su l t = 0.
For a l l cases increment integer par t by 1
if i t ex i s t s and the most s igni f icant b i t
of QAC = 1.
The r e su l t i s 0.

Third Edition 13-98

S, R, and V MDDE

The QIQR ins t ruc t ion can cause a f loat ing-point exception; an
exception does not a l t e r the contents of QAC. If no f loa t ing-point
exception occurs, the ins t ruc t ion r e se t s CBIT t o 0. The values of LINK
and the condition codes a re indeterminate.

If a f loat ing-point exception occurs and b i t 7 of the keys contains a
1, the ins t ruc t ion se t s CBIT to 1 . If b i t 7 contains a 0, the
ins t ruc t ion se t s CBIT t o 1 and causes a f loat ing-point exception f a u l t .
See Chapter 11 for more information.

Note

If t h i s ins t ruc t ion i s used for any system but the 9950, an
unimplemented ins t ruc t ion (UII) f au l t occurs. (See Chapter
11.)

13-99 Third Edition

DOC3060-192

• RBQ address
Remove Entry from Bottom of Queue
1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 1 (V mode form)
AP\32

The address pointer in t h i s ins t ruc t ion points t o the QGB for a queue.
The ins t ruc t ion removes the entry from the bottom of the referenced
queue and loads i t in to A. If the queue i s not empty, se t s the
condition codes t o NE; i f empty, rese ts A to 0 and se t s the condition
codes t o EQ. Leaves the values of (BIT and LINK unchanged.

• RCB
Reset CBIT Bi t t o 0
1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 (S, R, V mode form)

Resets CBIT to 0. Leaves the values of the condition codes and LINK
unchanged.

^ RMC
Reset Machine Check Flag t o 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 (S, R, V mode form)

Resets the MCM flag (bi ts 15-16 of the modals) t o 0 . Leaves the values
of LINK, CBIT, and the condition codes unchanged. Inh ib i t s i n t e r rup t s
during execution of the next ins t ruc t ion .

Note

This is a restricted instruction.

^ RRST address
Restore Registers
0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 (V mode form)
AP\32

Calculates an effect ive address, EA, from the 32-bi t address pointer in
the ins t ruc t ion . This specif ies the s t a r t i ng address of a save area
for the general , f loa t ing , and XB r e g i s t e r s . The save area format i s
shown in Table 13-6. Restores the contents of the general , f loa t ing ,
and XB r e g i s t e r s from t h i s save area. Bits 1-16 of the save area are a
save mask, whose format appears in Figure 13-4. A mask b i t value of 1
means t ha t the corresponding regis ter had nonzero contents t ha t have
been saved in the save area; a mask b i t value of 0 means t h a t the
corresponding r e g i s t e r ' s contents were 0. Leaves the values of CBIT,
LINK, and the condition codes unchanged.

Third Edition 13-100

S, R, and V MODE

Table 13-6
RRST Save Area Format

1 Word #

I 1
1 2-5
I 6-9
1 10-11
1 12-13
I 14-15
1 15-17
1 18-19
I 20-21
I 22-23
I 24-25
1 26-27

Contents |

Save mask |
FR1 (F) |
FRO |
X, GR7 |
GR6 I
Y, S, GR5 |
GR4 |
E, GR3 I
A, B, L, GR2 |
GR1 |
GRO I
XB |

4 5 6 7 8 9 10 11 12 13 14 15 16

0000 | FR1 | FRO | X | - | Y | - | E | L,B,A | |

Save Mask Format, RRST and RSAV Instructions
Figure 13-4

• RSAV
Save Registers
0 0 0 0 0 0 0 1 1 1
AP\32

0 0 1 1 0 1 (V mode form)

Calculates an effect ive address, EA, from the 32-bi t address pointer in
the in s t ruc t ion . This specif ies the s t a r t i n g address of a save area
for the general , f loa t ing , and XB r e g i s t e r s . The save area format i s
shown in Table 13-7. Bi ts 1-16 of the save area are a save mask, whose
format appears in Figure 13-5. This ins t ruc t ion se t s the mask b i t of
each reg i s te r as follows: t o 1 if the r e g i s t e r ' s contents have a
nonzero value; t o 0 if a 0 value. Saves the nonzero contents of the
general , f loa t ing , and XB r eg i s t e r s in the save area . Leaves the
values of CBIT, LINK, and the condition codes unchanged.

13-101 Third Edition

DOC3060-192

Table 13-7
RSAV Save Area Format

Word # I Contents

1
2-5
6-9
10-11
12-13
14-15
15-17
18-19
20-21
22-23
24-25
26-27

Save mask
FR1 (F)
FRO
X, GR7
GR6
Yf Sf GR5
GR4
E, GR3
A, B, L, GR2
GR1
GRO
XB

1 4 5 6 7 8 9 10

1 0000 | FR1 | FRO | X | -

11

Y |

12 13

- 1 E |

14 15 16

L,B,A ! |

Save Mask Format, RRST and RSAV Ins t ruct ions
Figure 13-5

^ Km
Return
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 (R mode form)

Returns control from a P300 recursive procedure to the ca l l i ng rout ine .
Leaves the values of LINK, (BIT, and the condition codes unchanged.

Note

This ins t ruc t ion reverses the act ions done by CREP and ENTR.

Third Edition 13-102

S, R, and V MDDE

• RTQ address
Remove Entry from Top of Queue
1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 (V mode form)
AP\32

The address pointer in this instruction is to the QCB for a queue. The
instruction removes the entry from the top of the referenced queue, and
loads it into A. If the queue is empty, the instruction resets A to 0
and the condition codes to EQ; if not empty, sets the condition codes
to NE. Leaves the values of CBIT and LINK unchanged.

• RTS
Reset Time Sl ice
0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 (V mode form)
Valid for the 550-11, 750, 850, 1450, and new processors .

A contains a negative value representing the number of milliseconds in
the new time s l i c e .

Adds the current value of the in te rva l timer (locat ions 16-17 of the
PCB) t o the contents of the elapsed timer (locat ions 10-11 of the K B) ,
then subtrac ts the contents of A from the sum of the t imers . Stores
the r e s u l t i n the elapsed t imer. Loads the contents of A in to the
in te rva l t imer. Leaves the contents of A unchanged. The values of
CBIT, LINK, and the condition codes are unchanged.

The addit ion performed by t h i s ins t ruc t ion i s equivalent t o the
following s e r i e s of in s t ruc t ions :

LEA ITH / * load A with the contents of ITH
SUB RV / * subtract r e se t value (in RV) from contents of A

sign extend the contents of A in to b i t s 17-32 of L
skip next word i f CBIT i s 0 (no overflow)
complement A
add contents of L and contents of ET
s to re contents of L in ET

LDA RV / * load A with r e se t value
STA ITH / * s to re the r e se t value in to ITH

Note

This ins t ruc t ion can be executed in Ring 0 only.

PIEA
SRC
CMA
AEL
STL

ET
ET

/*
/*
/*
/*
/*

13-103 Third Edition

DOC3060-192

P- S1A
Subtract 1 from A

1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 (S, R, V mode form)
Subtracts 1 from the contents of A and stores the result in A. If the
number to be decremented is -(2**15), an integer exception occurs, and
the instruction loads (2**15)-1 into A. If no overflow occurs, the
instruction resets (BIT to 0. LINK reflects the state of (BIT. The
condition codes reflect the result of the operation. (See Table 5-3.)

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets (BIT to 1. If bit 8 contains a 1, the instruction
sets (BIT to 1 and causes an integer exception fault. See Chapter 11
for more information.

• S2A
Subtract 2 from A
1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 (S, R, V mode form)

Subtracts 2 from the contents of A and stores the result in A. If the
number to be decremented is -(2**15-1) or -2**15, an integer exception
occurs and the instruction loads (2**15)-1 into A. If no overflow
occurs, the instruction resets CBIT to 0. LINK reflects the state of
the (BIT. The condition codes reflect the result of the operation.
(See Table 5-3.)

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets (BIT to 1. If bit 8 contains a 1, the instruction
sets (BIT to 1 and causes an integer exception fault. See Chapter 11
for more information.

• SAR n
Skip on A Register Bit Reset to 0
1 0 0 0 0 0 0 0 1 0 1 1 N\4 (S, R, V mode form)

Skips the next word if bit n in register A contains 0. Leaves the
values of LINK, (BIT, and the condition codes unchanged.

N specifies the bit to test. A value of 0 indicates bit 1; 1, bit 2;
and so on.

Note

The assembler converts n to the octal equivalent of b i t number
minus 1.

Third Edition 13-104

S, R, and V MDDE

• SAS n
Skip on A Register Bi t Set t o 1
1 0 0 0 0 0 1 0 1 0 1 1 N\4 (S, R, V mode form)

Skips the next word i f b i t n in reg is te r A contains 1 . Leaves the
values of LINK, CBIT, and the condition codes unchanged.

N specif ies the b i t t o t e s t . A value of 0 indicates b i t 0, and so on.

Note

The assembler converts n to the octal equivalent of bit number
minus 1.

^ SBL address
Subtract Long
I X 0 1 1 1 1 1 0 0 0 Y 1 1 BR\2 (V mode form)
DISPLACEMENT\16

Calculates an effective address, EA. Subtracts the 32-bit integer in
the location specified by EA from the contents of L. Stores the
results in L. If the result is greater than 2**31, an integer
exception occurs and the instruction loads bit 1 of L with a 1 and bits
2-32 with (result - (2**31)).

If the result is less than -(2**31), an integer exception occurs and
the instruction loads bit 1 of L with a 0 and bits 2-32 with the
negative of (result + (2**31)).

If no overflow occurs, the instruction resets CBIT to 0. The
instruction loads LINK with the borrow bit. The condition codes
reflect the outcome of the operation. (See Table 5-3.)

If an integer exception occurs and bit 8 of the keys contains a 0, the
instruction sets (BIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 11
for more information.

^ SCA
Load Shif t Count in to A
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 (S, R mode form)

Loads the contents of b i t s 9-16 of the keys in to b i t s 9-16 of A.
Clears b i t s 1-8 of A to 0 . Leaves the values of CBIT, LINK, and the
condition codes unchanged.

13-105 Third Edition

DOC3060-192

Note

The SCA instruction is used with NRM.

• SCB
Set CBIT Bit to 1
1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 (S, R, V mode form)

Sets the value of CBIT to 1. Leaves the values of the condition codes
unchanged. The value of LINK is indeterminate.

^ SGL
Enable Single Precision Mode
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 (S f R mode form)

Enters s ingle precision mode by rese t t ing b i t 2 of the keys t o 0.
Subsequent LDA, STA, ADD, and SUB ins t ruc t ions manipulate 16-bi t
in tegers . Leaves the values of LINK, CBIT, and the condition codes
unchanged.

^ SGT
Skip on A Greater than 0
1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 (S, R, V mode form)

Skips the next sequential 16-bit word if the contents of A are greater
than 0. Leaves the values of LINK, CBIT, and the condition codes
unchanged.

• SKP n
Skip
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (S, R, V mode form)

Skips the next sequential 16-bit word i f the specif ied condition i s
met. Leaves the values of LINK, CBIT, and the condition codes
unchanged.

This ins t ruc t ion allows you to t e s t for several condit ions. The t ab le
below shows the conditions avai lable to t e s t and information about the
associated ins t ruc t ion .

Third Edition 13-106

S, R, and V MODE

Table 13-8
SKP Conditions

I Mnem

I NOP
1 SKP
I SMI
I SPL
I SLN
I SLZ
I SNE
I SZE
I SSI*
I SRI*
I SS2*
I SR2*
I SS3*
I SR3*
I SS4*
I SR4*
I SSS*
1 SSR*
I SSC
I SRC

Opcode

101000
100000
101400
100400
101100
100100
101040
100040
101020
100020
101010
100010
101004
100004
101002
100002
101036
100036
101001
100001

I Condition I

No operation. 1
Unconditional skip. I
Skip
Skip
Skip
Skip
Skip
Skip
Skip
Skip
Skip
Skip
Skip
Skip
Skip
Skip
Skip
Skip

on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on

bit 1 of A equal to 1. I
bit 1 of A equal to 0. 1
bit 16 of A equal to 1. I
bit 16 of A equal to 0. 1
A not equal to 0. I
A equal to 0. 1
sense switch 1 set to 1. I
sense switch 1 reset to 0. 1
sense switch 2 set to 1. 1
sense switch 2 reset to 0. I
sense switch 3 set to 1. |
sense switch 3 reset to 0. 1
sense switch 4 set to 1. 1
sense switch 4 reset to 0. I
all sense switches set to 1.1
any sense switch reset to 0.I

Set CBIT to 1. I
Reset . CBIT to 0. 1

Note

These are r e s t r i c t e d i n s t ruc t i ons .

Note t ha t you do not have to specify the unique mnemonic t o t e s t a
par t i cu la r condit ion; you can specify the SKP mnemonic and give the
correct b i t configuration for b i t s 7-16 of the desired t e s t . Make sure
tha t you s e t b i t 7 of the SKP ins t ruc t ion properly: i f i t contains a
1, the skip occurs only if a l l the specified conditions a re t r u e ; i f
i t contains a 0, the skip occurs i f any of the specif ied conditions are
t r u e .

^ SKS function,device
Skip on Condition Met
0 1 1 1 0 0 FUNCTION\4 DEVTCE\6 (S, R mode form)

Tests for the condition specified in the function field of the
instruction. Leaves the values of (BIT, LINK, and the condition codes
unchanged. See Chapter 12 for more information.

13-107 Third Edition

DOC3060-192

Note

SKS is a restricted instruction.

^ SLE
Skip i f A Less than or Equal to 0
1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 (S, R, V mode form)

Skips the next sequential 16-bit word i f the contents of A a re l e s s
than or equal to 0. Leaves the values of LINK, CBIT, and the condition
codes unchanged.

• SLN
Skip on LSB of A Nonzero
1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 (S, R, V mode form)

Skips the next sequential 16-bit word i f b i t 16 of A i s 1 . Leaves the
values of LINK, CBIT, and the condition codes unchanged.

^ SLZ
Skip on LSB of A Zero
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 (S, R, V mode form)

Skips the next sequential 16-bit word if the bit 16 in A equals 0.
Leaves the values of LINK, CBIT, and the condition codes unchanged.

• SMCR
Skip on Machine Check Reset to 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 (S, R, V mode form)

Skips the next word if the machine check flag is 0. Leaves the values
of LINK, CBIT, and the condition codes unchanged.

Note

If the processer i s operating in machine check mode, t h i s
ins t ruc t ion has no meaning; i t executes as an unconditional
sk ip .

Third Edition 13-108

S, Rf and V MODE

• SMCS
Skip on Machine Check Set to 1
1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 (S, R, V mode form)

Skips the next word i f the machine check f lag i s 1 . Leaves the values
of LINK, (BIT, and the condition codes unchanged.

Note

If the processer is operating in machine check mode, this
instruction has no meaning; it executes as a NOP.

^ SMI
Skip on A Minus
1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 (S, R, V mode form)

Skips the next sequential 16-bi t word i f the contents of A are l e s s
than 0 . Leaves the values of LINK, (BIT, and the condition codes
unchanged.

• SNR n
Skip on Sense Switch N Reset to 0
1 0 0 0 0 0 0 0 1 0 1 0 N\4 (S, R, V mode form)

Skips the next sequential 16Hsit word if the contents of sense switch N
are 0. Leaves the values of LINK, (BIT, and the condition codes
unchanged.

N specifies the sense switch to test.

Note

This is a restricted instruction.

^ SNS
Skip on Sence Switch N Set t o 1
1 0 0 0 0 0 1 0 1 0 1 0 N\4 (S, R, V mode form)

Skips the next sequential 16-bi t word i f the value of sense switch N i s
1. Leaves the values of LINK, (BIT, and the condition codes unchanged.

N speci f ies the sense switch to t e s t .

13-109 Third Edition

DOC3060-192

Note

SNS is a restricted instruction.

P- SNZ
Skip on A Nonzero
1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 (S, R, V mode form)

Skips the next sequential 16-bi t word i f the contents of A a re not
equal to 0. Leaves the values of LINK, CBIT, and the condition codes
unchanged.

^ SPL
Skip on A Plus
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 (S, R, V mode form)

Skips the next sequential 16-bit word i f the contents of A are greater
than or equal t o 0. Leaves the values of LINK, CBIT, and the condition
codes unchanged.

• SRI
Skip on Sense Switch 1 Reset to 0
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 (S, R, V mode form)

Skips the next sequential 16-bit word i f the value of sense switch 1 i s
0. Leaves the values of LINK, CBIT, and the condition codes unchanged.

Note

This is a restricted instruction.

^ SR2
Skip on Sense Switch 2 Reset t o 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 (S, R, V mode form)

Skips the next sequential 16-bit word i f the value of sense switch 2 i s
0. Leaves the values of LINK, CBIT, and the condition codes unchanged.

Note

This i s a r e s t r i c t ed ins t ruc t ion .

Third Edition 13-110

Sf R, and V MDDE

^ SR3
Skip on Sense Switch 3 Reset t o 0
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 (S f R f V mode form)

Skips the next sequential 16-bi t word i f the value of sense switch 3 i s
0. Leaves the values of LINK, (BIT, and the condition codes unchanged.

Note

This is a restricted instruction.

^ SR4
Skip on Sense Switch 4 Reset t o 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 (S, R, V mode form)

Skips the next sequential 16-bi t word i f the value of sense switch 4 i s
0. Leaves the values of LINK, CBIT, and the condition codes unchanged.

Note

This is is a restricted instruction.

^ SRC
Skip on CBIT Reset t o 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 (S, R, V mode form)

Skips the next sequential 16-bi t word i f the value of CBIT i s 0.
Leaves the values of LINK, CBIT, and the condition codes unchanged.

^ SSI
Skip on Sense Switch 1 Set t o 1
1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 (S, R, V mode form)

Skips the next sequential 16-bi t word i f the value of sense switch 1 i s
1. Leaves the values of LINK, CBIT, and the condition codes unchanged.

Note

This i s a r e s t r i c t e d ins t ruc t ion .

13-111 Third Edition

DOC3060-192

^ SS2
Skip on Sense Switch 2 Set to 1
1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 (S, R, V mode form)

Skips the next sequential 16-bit word i f the value of sense switch 2 i s
1. Leaves the values of LINK, CBIT, and the condition codes unchanged.

Note

This is a restricted instruction.

^ SS3
Skip on Sense Switch 3 Set to 1
1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 (S, R, V mode form)

Skips the next sequential 16-bit word i f the value of sense switch 3 i s
1. Leaves the values of LINK, CBIT, and the condition codes unchanged.

Note

This is a restricted instruction.

^ SS4
Skip on Sense Switch 4 Set to 1
1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 (S, R, V mode form)

Skips the next sequential 16-bit word i f the value of sense switch 4 i s
1. Leaves the values of LINK, CBIT, and the condition codes unchanged.

Note

This is a restricted instruction.

^ SSC
Skip on CBIT b i t Set t o 1
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 (S, R, V mode form)

Skips the next sequential 16-bit word i f the value of CBIT i s 1 .
Leaves the values of LINK, CBIT, and the condition codes unchanged.

Third Edition 13-112

S, R, and V M3DE

^ SSM
Set the Sign of A Minus
1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 (S f R f V mode form)

Sets bit 1 of A to 1. Leaves the values of CBITf LINK, and the
condition codes unchanged.

^ SSP
Set the Sign of A Plus
1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 (S, R, V mode form)

Sets bit 1 of A to 0. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

^ SSR
Skip on All Sense Switches Reset t o 0
1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 (S, R, V mode form)

Skips the next sequential 16-bi t word i f the values of sense switches
1, 2 , 3 , and 4 are a l l 0. Leaves the values of LINK, CBIT, and the
condition codes unchanged.

Note

This is a restricted instruction.

^ sss
Skip on All Sense Switches Set t o 1
1 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 (S, R, V mode form)

Skips the next sequential 16-bi t word i f the values of sense switches
1, 2 , 3 , and 4 are a l l 1 . Leaves the values of LINK, CBIT, and the
condition codes unchanged.

Note

This i s a r e s t r i c t e d ins t ruc t ion .

13-113 Third Edition

DOC3060-192

• STA address
Store A in to Memory
I X 0 1 0 0 1 1 0 0 0 Y 0 0 BR\2 (V mode long)
DISPLACEMENT\16

1 X 0 1 0 0 1 1 0 0 0 0 0 0 CB\2 (R mode long)
[DISPLACEMENT\16]

I X 0 1 0 0 DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effective address, EA. Stores the contents of the A
register in the location specified by EA. Leaves the values of LINK,
CBIT, and the condition codes unchanged.

• STAC address
Store A Conditionally
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 (V mode form)
AP\32

Compares the contents of B with the contents of the location referenced
by the specified address pointer. If the two values are equal, the
instruction stores the contents of A into that referenced location. If
the two values are not equal, execution continues with the next
instruction. Leaves the values of CBIT and LINK unchanged. Sets the
condition codes to EQ if the store occurs and to NE if not.

Note that the comparison and store will not be separated by execution
of other instructions. This means that no instruction can alter the
contents of the specified memory location between the compare and the
store.

Note

This instruction is useful when two cooperating, sequential
processes are manipulating shared data. It is interlocked
against direct memory I/O; this means you can use it to
interlock a process with a EMA, EMC, or EMQ channel, as well as
to interlock a memory location that is possibly accessed by
I/O.

^ STC f i r
Store Character
0 0 0 0 0 0 1 0 1 1 0 1 F L R 0 1 0 (V mode form)

If the contents of the specified FLR are nonzero, the instruction
stores the contents of bits 9-16 of A into the character byte pointed
to by the appropriate FAR. Updates the contents of the appropriate FAR
so that they point to the next character. Decrements the contents of
the specified FLR by 1. Sets the condition code NE.

Third Edition 13-114

S, R, and V MDDE

If the contents of the specified FLR are 0, the instruction sets the
condition code EQ and does not store a character.

The instruction leaves the values of LINK and (BIT unchanged.

Note

When the instruction specifies FLRO, FARO is used; FLR1, FARl.

^ STEX
Stack Extend
0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 1 (V mode form)

Extends the length of the procedure stack.

A and B contain a 32-bit number specifying the word size of the
extension.

The firmware rounds up the number specified by A and B to an even
number of words. The instruction uses this value to allocate a block
of memory to the procedure stack. Note that the extension and the
initial stack do not have to be contiguous, since there may not have
been enough room left in the initial stack to contain a complete frame.

The instruction returns a segment number/word number in A and B that
specifies the starting address of the extension.

The extension is automatically deallocated when the current procedure
completes execution. There is no limit on the number of extensions you
can make.

A stack fault occurs if there is no room for the extension. The values
of LINK and the condition codes are indeterminate. See Chapters 8 and
11 for more information about this instruction, stacks, and stack
faults.

^ STFA far,address
Store FAR
0 0 0 0 0 0 1 0 1 1 0 1 FAR 0 0 0 (V mode form)
AP\32

Stores the specified FAR contents as a hardware recognizable ind i rec t
pointer a t the memory locat ion referenced by the specif ied address
pointer . If the b i t number f i e ld of the specif ied FAR contains 0, the
ins t ruc t ion s tores the f i r s t two words of the pointer and c l ea r s the
p o i n t e r ' s extend b i t t o 0. If the b i t number f i e ld of the specified
FAR does not contain 0, the ins t ruc t ion saves a l l th ree words of the
pointer and se t s the p o i n t e r ' s extend b i t t o 1 . Leaves the values of
CBIT, LINK, and the condition codes indeterminate.

13-115 Third Edition

DOC3060-192

^ STL address
Store Long
I X 0 1 0 0 1 1 0 0 0 Y 1 1 BR\2 (V mode form)
DISPLACEMENT\16

Calculates an effect ive address, EA. Stores the contents of L in the
32-bi t locat ion specified by EA. Leaves the values of LINK, CBIT, and
the condition codes unchanged.

^ STLC
Store L Conditionally
0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 (V mode form)
AP\32

Calculates an effect ive address, EA. Stores the contents of L in to the
32-bi t locat ion specified by EA if and only i f the contents of the
specified locat ion equal the contents of E. Leaves the values of CBIT
and LINK unchanged. The condition codes re f l ec t the r e s u l t of the
comparison. (See Table 5-3.)

Note

This ins t ruc t ion i s useful when two cooperating, sequential
processes are manipulating shared data. I t i s inter locked
against d i rec t memory I/O; t h i s means you can use i t t o
in ter lock a process with a EMA, EMC, or EMQ channel, as well as
to inter lock a memory location tha t i s possibly accessed by
I/O.

^ STLR address
Store L in to Addressed Register
I X 0 0 1 1 1 1 0 0 0 Y 0 1 BR\2 (V mode form)
DISPLACEMENT\16

Calculates a doubleword effect ive address, EA. Stores the contents of
L into the reg is te r locat ion specified by the word port ion of EA. Bit
2 and b i t 12 of the word portion of EA determine the act ions of t h i s
ins t ruc t ion :

Third Edition 13-116

Sf R, and V M3DE

Bi t 2 Bit 12 Action

1* Ignore b i t s 1 and 3-9. The word port ion of
EA specified an absolute r eg i s t e r number
from 0- '377.

0* 1 Bi ts 13-16 of the word port ion of EA specify
one of the r eg i s t e r s '20- '37 in the current
r eg i s t e r s e t .

0 0 Bits 13-16 of the word port ion of EA specify
one of the r eg i s t e r s 0-'17 in the current
reg i s te r s e t .

*This i s a r e s t r i c t e d ins t ruc t ion .

Leaves the values of CBIT and LINK unchanged; the values of the
condition codes a re indeterminate. See Chapter 9 for more information
about r eg i s t e r s e t s .

Note

Do not use this instruction to write into the keys or modals.
You can use LPSW or a mode control operation to change either
of these registers. Under no circumstances should you try to
change the value of the current register set bits contained in
the modals.

In addition, do not change the contents of the procedure base
register (PB) with this instruction. Use either LPSW or a
control transfer. Loading any value other than 0 into PBL will
change future effective address calculations for the currently
running process.

• STPM
Store Processor Model Number
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 (V mode form)

Stores the CPU model number and microcode revis ion number in an 8-word
f i e l d . XB contains a pointer t o the f i e l d . The format of the f i e l d i s
shown in Table 13-9.

13-117 Third Edition

DOC3060-192

Table 13-9
STPM Memory Field Format

Word

1-2

3-4

5

6

7-8 |

Name

Processor
[Model
[Number

Microcode
Revision

Processor
Line

Extended
Microcode
ID

Description 1

! Contains a code specifying the machine: j
! 0L - 400/500, no Rev B microcode I

IL - 400, Rev. B microcode 1
2L - Reserved I
3L - 350 1
4L - 450/550 1
5L - 750 1
6L - 650 1
7L - 250 1
8L - 850 I
9L - 250-11 I

10L - 550-11 I
11L - 2250 I
15L - 9950 I

Word 1: I
Bi ts 1-8 reserved |
Bi ts 9-16 manufacturing microcode j

revision number I
Word 2: I

Bi ts 1-16 engineering microcode I
revision number |

Specifies options enabled for t h i s 1
machine: |
Bi ts 1-15 reserved; must be 0 I
Bit 16 marketing segment j

specif icat ion b i t j
To be implemented |

Reserved for future use |

This ins t ruc t ion leaves the values of CBIT, LINK, and the condition
codes unchanged.

Note

This i s a r e s t r i c t ed ins t ruc t ion .

Third Edition 13-118

S, R, and V MDDE

^ STTM
Store Process Timer
0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 (V mode form)

Valid for the 550-11, 750, 850, 1450, and 9950.

XB contains the address of a 3-word memory block. Stores the 48-bi t
process timer in the block referenced by XB. Returns ETH, ETL+TTH, ITL
as the current process time. Bits 1-10 of ITL contain the microsecond
count.

The addit ion performed by t h i s ins t ruc t ion i s a 48-bi t operat ion. I t
i s equivalent t o the following s e r i e s of i n s t ruc t ions :

LDA ITH / * Load A with the contents of TTH.
PIDA / * Sign extend the contents of A in to L.
ACL ET / * Add ET and L (containing ITH) .

• STX address
Store X
I 0 1 1 0 1 1 1 0 0 0 Y 0 0 BR\2 (V mode long)
DISPLACEMENT\16

1 0 1 1 0 1 1 1 0 0 0 0 0 0 CB\2 (R mode long)
[DISPLACEMENT\16]

I 0 1 1 0 1 DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effective address, EA. Stores the contents of X at the
location specified by EA. Leaves the values of LINK, CBIT, and the
condition codes unchanged.

Note

This instruction cannot directly specify indexing, though an
address in the indirection chain may do so in 16S mode. See
Chapter 2 for more information.

P> STY
Store Y
I 1 1 1 0 1 1 1 0 0 0 Y 1 0 BR\2 (V mode form)
DISPLACEMENT\16

Calculates an ef fec t ive address, EA. Stores the contents of Y a t the
locat ion specif ied by EA. Leaves the values of LINK, CBIT, and the
condition codes unchanged.

13-119 Third Edition

DOC3060-192

Note

The STY ins t ruc t ion cannot do indexing. See Chapter 2 for more
information.

• SUB address
Subtract
I X 0 1 1 1 1 1 0 0 0 Y 0 0 BR\2 (V mode long)
DISPLACEMENT^

1 X 0 1 1 1 1 1 0 0 0 0 0 0 CB\2 (R mode long)
[DISPLACEMENT\16]

I X 0 1 1 1 DISPLACEMENTS (S mode; R, V mode short)

Calculates an effect ive address, EA. Fetches the 16-bit integer
contained in the locat ion specified by EA and subt rac ts them from the
contents of A. Stores the r e su l t s in A.

If the r e su l t i s greater than 2**15, an integer exception occurs and
the ins t ruc t ion se t s CBIT to 1 and loads b i t 1 of A with a 1 and b i t s
2-16 with (resu l t minus (2**15)).

If the r e su l t i s l e s s than -2**15, an integer exception occurs and the
ins t ruc t ion loads b i t 1 of A with 0 and b i t s 2-16 with the negative of
(resu l t + (2**15)).

If no overflow occurs, the ins t ruc t ion rese t s CBIT to 0. LINK contains
the carry-out b i t . The condition codes r e f l ec t the r e s u l t of the
operation. (See Table 5-3.)

If an integer exception occurs and b i t 8 of the keys contains 0, the
ins t ruc t ion se t s CBIT to 1. If b i t 8 contains a 1, the ins t ruc t ion
se t s CBIT to 1 and causes an integer exception f a u l t . See Chapter 11
for more information.

• SVC
Supervisor Call
0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 (S, R, V mode form)

Supervisor c a l l . Generates a directed f a u l t . Leaves the values of
LINK, CBIT, and the condition codes unchanged.

This ins t ruc t ion allows you to make an operating system request t h a t i s
addressing mode independent. An operation code followed by argument
pointers i s sent t o the operating system. For more information, refer
to Chapter 11 .

Third Edition 13-120

S, R, and V MDDE

^ SZE
Skip on A Zero
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 (S, R, V mode form)

Skips the next sequential 16-bit word if the contents of A equal 0.
Leaves the values of LINK, CBIT, and the condition codes unchanged.

13-121 Third Edition

DOC3060-192

^ TAB
Transfer A to B
1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 (V mode form)

Transfers the contents of A into B. Leaves the values of LINK, OBIT,
and the condition codes unchanged.

^ TAK
Transfer A to Keys
0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 (V mode form)

Moves a copy of the contents of A into the keys. Loads CBIT, LINK, and
the condition codes as a result of the operation. Resets bits 15-16 of
the keys to 0.

Note

If the new contents of the keys specifies a new addressing
mode, the new mode takes effect with the instruction
immediately following TAK.

^ TAX
Transfer A to X
1 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 (V mode form)

Loads X with a copy of the contents of A. Leaves the values of LINK,
CBIT, and the condition codes unchanged.

^ TAY
Transfer A to Y
1 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 (V mode form)

Loads Y with a copy of the contents of A. Leaves the values of LINK,
CBIT, and the condition codes unchanged.

^ TBA
Transfer B to A
1 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 (V mode form)

Transfers a copy of the contents of B to A. Leaves the values of LINK,
CBIT, and the condition codes unchanged.

Third Edition 13-122

S, R, and V MODE

^ TCA
Two's Complement A
1 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 (S, R, V mode form)

Forms the two's complement of the contents of A and stores the result
in A. If the number to be complemented i s -2**15, an integer exception
occurs and the instruction loads -2**15 into A. If no integer
exception occurs, the instruction resets (BIT to 0. LINK contains the
carry-out b i t . The condition codes reflect the result of the
operation. (See Table 5-3.)

If an integer exception occurs and b i t 8 of the keys contains 0, the
instruction sets (BIT to 1. If b i t 8 contains a 1, the instruction
sets (BIT to 1 and causes an integer exception faul t . See Chapter 11
for more information.

^ TCL
Two's Complement Long
1 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 (V mode form)

Forms the two's complement of the contents of L and stores the result
in L. If the number to be complemented i s -2**31, an integer exception
occurs and the instruction loads -2**31 into L. If no integer
exception occurs, the instruction resets (BIT to 0. The condition
codes reflect the result of the operation. (See Table 5-3.) LINK
contains the carry-out b i t .

If an integer exception occurs and b i t 8 of the keys contains 0, the
instruction sets (BIT to 1. If b i t 8 contains a 1, the instruction
sets (BIT to 1 and causes an integer exception faul t . See Chapter 11
for more information.

^ TFLL fir
Transfer FLR to L
0 0 0 0 0 0 1 0 1 1 0 1 FLR 0 1 1 (V mode form)

Transfers the contents of the specified FLR into L as an unsigned,
32-bit integer. Clears bi ts 1-11 of L to 0. Leaves the values of
(BIT, LINK, and the condition codes unchanged.

• TKA
Transfer Keys into A
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 (V mode form)

Moves a copy of the keys into A. Leaves the values of (BIT, LINK, and
the condition codes unchanged.

13-123 Third Edition

DOC3060-192

^ TLFL fir
Transfer L to FLR
0 0 0 0 0 0 1 0 1 1 0 1 FLR 0 0 1 (V mode form)

Transfers the 32-bi t unsigned integer contained in L in to the specif ied
FLR. Q e a r s b i t s 1-11 of L to 0 so tha t b i t s 1-6 of the specif ied FLR
wi l l be 0. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

Note

This instruction allows you to load the specified FLR with a
value computed at execution time. The maximum allowable
integer you can load is 2**20. This number is 21 bits wide and
equals the number of bits in a 64K segment.

^ TSTQ address
Test Queue
1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 (V mode form)
AP\32

The address pointer in this instruction is to the QCB of a queue. This
instruction tests the referenced queue and sets A to equal the number
of items in the queue. Sets the condition codes to EQ when the queue
is empty. If the queue is not empty, sets the condition codes to NE.
Leaves the values of CBIT and LINK unchanged.

^ TXA
Transfer X to A
1 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0 (V mode form)

Transfers a copy of the contents of X to A. Leaves the values of LINK,
CBIT, and the condition codes unchanged.

^ TYA
Transfer Y t o A
1 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 (V mode form)

Transfers a copy of the contents of Y t o A. Leaves the values of LINK,
CBIT, and the condition codes unchanged.

Third Edition 13-124

S, R, and V MODE

• WAIT
Wait
0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 (V mode form)
AP\32

The address pointer in t h i s ins t ruc t ion i s t o a 16-b i t semaphore
counter, C. The ins t ruc t ion increments C. If C i s greater than 0 f
e i ther the resource i s not ava i lab le , or the event has not occurred.
The ins t ruc t ion removes the PCB from the ready l i s t and adds i t t o the
wait l i s t associated with the semaphore. I t then makes the r eg i s t e r
se t ava i lable and turns off the process t imer.

If C i s l e s s than or equal t o 0, the current ly executing process
continues.

If the ins t ruc t ion places the PCB on the wait l i s t , no general
r eg i s t e r s a re saved. This means t ha t a process cannot depend on these
r e g i s t e r s to be in t ac t a f te r t h i s ins t ruc t ion occurs. This ins t ruc t ion
po ten t ia l ly c lears the general , f loa t ing , and XB r e g i s t e r s .

Leaves LINK, CBIT, and the condition codes unchanged.

For more information about semaphores, PCBs, and wait l i s t s , refer to
Chapter 8.

Note

This i s a r e s t r i c t e d ins t ruc t ion .

13-125 Third Edition

DOC3060-192

^ XAD
Decimal Add
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 (V mode form)

Performs a decimal ar i thmetic operation under control of FARO, FAR1,
and L.

FARO contains the address of f i e ld 1. FARl contains the address of
f i e ld 2 . L contains the control word; f i e lds B and C of the control
word specify the decimal operation t o be performed, as shown in Table
13-10.

Table 13-10
XAD Decimal Operations

B | C I Operation I Destination

0 | 0 | +F1+F2 | F2
0 | 1 | +F1-F2 | F2
1 | 0 | -F1+F2 | F2
1 I 1 I -F1-F2 | F2

The scale differential field in the control word specifies the
difference in the decimal point alignment between Fl and F2:

SD Relation of Fl and F2

SD>0 Fl > F2

SD=0 Fl = F2

SD<0 Fl < F2

If the T bit contains a 1, the results will be forced positive,
more information about decimal arithmetic, refer to Chapter 6.

For

If the add operation results in an overflow, a decimal exception
occurs. If no overflow occurs, the instruction sets CBIT to 0 to
indicate success.

If a decimal exception occurs and bit 11 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
sets CBIT to 1 and causes a decimal exception fault. See Chapter 11
for more information.

Third Edition 13-126

S, R, and V MODE

The registers used are GRD, GR1, GR3 (E), GR4, GR6, FARO, FARl, FLRO,
and FLRl. At the end of this instruction, the contents of these
registers is indeterminate. The value of LINK is indeterminate. The
condition codes reflect the state of F2 after the decimal operation.
(See Table 5-3.)

^ XBTD
Binary to Decimal Conversion
0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 (V mode form)

Converts a binary number to a decimal number. FARO contains the
decimal field address. L contains the control word.

This instruction uses fields A, E, and H in the control word. H
specifies the length of the binary number and its location:

H Length Location

0 16 bits EH register

1 32 bits E register

2 64 bits FP1 register

Converts the specified binary integer to a decimal integer and stores
the result in the location specified by FARO. Leaves the values of
LINK unchanged. Overflow results in a decimal exception. If no
overflow occurs, the instruction sets (BIT to 0. The values of the
condition codes are indeterminate.

The registers used are GRD, GR1, GR3 (E), GR4, GR6, FARO, and FLRO. At
the end of the instruction, the contents of these registers are
indeterminate.

If a decimal exception occurs and bit 11 of the keys contains a 0, the
instruction sets (BIT to 1. If bit 11 contains a 1, the instruction
sets (BIT to 1 and causes a decimal exception fault. See Chapter 11
for more information.

Note

This instruction does not use or modify FARl, FLRl, or FAC1.

13-127 Third Edition

DOC3060-192

^ XCA
Exchange and C l e a r A
1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 (S , R, V mode form)

Interchanges the contents of registers A and B, then clears A to 0.
Leaves the values of (BIT, LINK, and the condition codes unchanged.

^ XCB
Exchange and C l e a r B
1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 (S , R, V mode form)

Interchanges the values of A and B and then clears B to 0. Leaves the
values of LINK, CBIT, and the condition codes unchanged.

^ XCM
Decimal Compare
0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 (V mode form)

Compares two decimal numbers and sets the condition codes depending on
the result of the compare.

PAR0 contains the address of field 1 (Fl). PARI contains the address
of field 2 (F2). L contains the control word. This instruction uses
fields A, B, C, E, F, G, and H of the control word.

Compares the two specified numbers. The instruction uses the G field
of the control field to adjust the two numbers before the compare:

G Decision

>0 Low-order d ig i t s of Fl only affect the i n i t i a l borrow
from the low-order d ig i t of F2.

<0 Assume Fl i s zero-extended with low 0s .

The r eg i s t e r s used are GR0, GRl, GR3 (E), GR4, GR6, FLRO, and FLRl. At
the end of t h i s ins t ruc t ion , the contents of these r e g i s t e r s are
indeterminate. Leaves the value of LINK indeterminate. The condition
codes re f l ec t the r e su l t of the compare:

CC Test Result

GT F2 > F l

EQ F2 = F l

LT F2 < F l

Third Edition 13-128

Sf Rf and V MDDE

^ XDTB
Decimal to Binary Conversion
0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 (V mode form)

Converts a decimal string to a binary string.

FARO contains the address of the decimal string. L contains the
control word; this instruction uses the A, E, and H fields. Field H
specifies the length of the binary string and its location:

H Length Destination Register

00 16 bits A register

01 32 bits L register

10 64 bits L|E

Converts the decimal string to a binary string of the specified type
and stores it in the specified register. A conversion error causes a
decimal exception. Leaves the value of LINK unchanged. The values of
the condition codes are indeterminate.

The registers used are GRO, GR1, GR3 (E), GR4, GR6, FARO, and FLRO. At
the end of this instruction the contents of these registers are
indeterminate.

If a decimal exception occurs and bit 11 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
sets CBIT to 1 and causes a decimal exception fault. See Chapter 11
for more information.

Note

This instruction does not use or modify FAR1, FLR1, or FAC1.

^ XDV
Decimal Divide
0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 (V mode form)

Divides a decimal number, D2, by another, Dl, and s to res the quotient
and remainder in the locat ion of D2.

FARO contains the address of Dl. FARl contains the address of D2. L
contains the control word; t h i s ins t ruc t ion uses f i e ld s A, B, C, E, F,
H, and T.

13-129 Third Edition

DOC3060-192

Both decimal numbers must be in trailing sign embedded format. In
addition, D2 must contain a number of leading 0s equal to the length of
Dl.

The instruction divides the two numbers. After the divide, the
location of D2 contains the quotient of length (D2 length - Dl length)
followed by the remainder of length (Dl length). Since D2 had leading
0s, no overflow can occur.

If the T bit contains a 1, the results will be forced positive. For
more information about decimal arithmetic, refer to Chapter 6.

The registers used are GRO, GR1, GR3 (E), GR4, GR6, FARO, FARl, FLRO,
and FLR1. At the end of this instruction, the contents of these
registers are indeterminate.

At the end of the instruction, the condition codes and LINK contain
undefined results. If no overflow occurs, CBIT is reset to 0.

If Dl is 0, overflow occurs which causes a decimal exception. Decimal
exceptions also occur if Dl or D2 have the incorrect data type or if
the length of D2 is less than that of Dl. If a decimal exception
occurs and bit 11 of the keys contains a 0, the instruction sets CBIT
to 1. If bit 11 contains a 1, the instruction sets CBIT to 1 and
causes a decimal exception fault. See Chapter 11 for more information.

^ XEC address
Execute
I X 0 0 0 1 1 1 0 0 0 Y 1 0 BR\2 (V mode long)
DISPLACEMENTS

1 X 0 0 0 1 1 1 0 0 0 0 1 0 CB\2 (R mode long)
[DISPLACEMENT^]

Calculates an effective address, EA. Executes the instruction found at
EA, but does not transfer control to that location. Leaves the values
of LINK, CBIT, and the condition codes modified as specified by the
executed instruction.

The XEC instruction has limited application since all instructions
cannot be executed in this way. The XEC instruction is useful for
16-bit register generic instructions such as shifts, rotates, clears,
interchanges, and NOPs.

The following instruction types should not be used with XEC since they
may not execute properly or will produce undefined results:
instructions that change the address mode, program counter, or
instruction stream; instructions that cause arithmetic faults;
decimal or character instructions; and generic skips.

Third Edition 13-130

S, R, and V MODE

^ XED
Numeric Edit
0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 (V mode form)

Edits the contents of a string under control of a subprogram.

The registers used are GR2 (L), XB, FARO, FAR1, and FLRO. At the end
of the instruction, the contents of these registers are indeterminate.

FARO contains the address of the source s tr ing. The source string must
be leading separate sign type and must have at least the same number of
decimal digits and the decimal point alignment as called for in the
edit subprogram.

FAR1 contains the address of the destination str ing. Bits 1-8 of A
contain the floating character; b i t s 9-16, the status register . Bits
1-8 of B contain the number of remaining bytes to be processed (used if
a fault or interrupt occurs). Bits 9-16 of B contain the suppression
character whose i n i t i a l value i s determined by b i t 12 of the keys ('240
if b i t 1 contains 0; '40 if b i t 12 contains 1) . XB contains the
address of the edit subprogram.

The instruction uses an edit subprogram to a l ter a source string and
store the edit result in a destination location(s) . To set up, perform
a decimal move to correct the correct the type, alignment, and length
of the number to be edited. Next, use a LCEQ instruction to set up the
i n i t i a l contents of the register .

Each word in the edit subprogram has the format shown in Figure 13-6.

1 2 3 4 8 9 16

L I 00 I E | M

Edit Subprogram Word Format
Figure 13-6

where L is 1 if this word is the last word in the subprogram,
0 if it is not the last word;

E is a suboperator;
M is a suboperator modifier.

This instruction uses several variables internally to control the edit
subprogram. These are shown in Table 13-11.

13-131 Third Edition

DOC3060-192

Table 13-11
XED Internal Variables

Var | Definition

SC I Zero suppression character; contained in B. In i t ia l
value i s the space character ('240 or '40, depending
on whether b i t 12 of the keys contains 0 or 1.

FC I Floating edit character; contained in A. In i t ia l
value i s not defined.

SIGN | Sign of the source field. The f i r s t character fetch
sets up the value of this variable.

SIG I End zero suppression flag.

There are 17 edit suboperators, shown in Table 13-12.

Third Edition 13-132

S, Rf and V MDDE

Table 13-12
XED Suboperators

Subop | Mnem | Name and Description

00 I ZS I Zero Suppress. Fetches M digits from the source
field consecutively, each time checking SIG. If
SIG is lr copies the digit into the destination
string. If SIG is 0 and the digit is not 0,
inserts the floating character (if defined)
and copies the digit into the destination field.
If SIG is 0, the digit is not 0, and the
floating character is not defined, sets the SIG
flag and copies the digit into the destination.
If SIG and the digit are both 0, substitutes
SC for the 0 digit in the destination field.

01 I IL I Insert Literal. Copies M into the
destination string. Increments XB and FARl by 1.

02 I SS I Set Suppress Character. Sets SC to M and
increments XB by 1.

03 I ICS I Insert Character. If SIG is 1, copies M into the
destination string. If SIG is 0, copies SC into
the destination string. Increments XB and FARl
by 1.

04 I ID I Insert Digits. If SIG is 0, and FC is defined,
copies FC and M digits into the destination field
then sets SIG to 1. Increments XB by 1, FARO by
M, and FARl by M+l. If SIG is 0 and FC is not
defined, sets SIG to 1 and copies M digits from
the source to the destination; increments XB by
1 and both FARO and FARl by M. If SIG is 1,
copies M digits from the source to the
destination and increments XB by 1 and both FARO
and FARl by M.

13-133 Third Edition

EOC3060-192

Table 13-12
XED Suboperators (continued)

I Subop

I 05

! 06

1 07

1 10

1 11

1 12

1 13

1 14

1 15

1 16

I 17

1 20

Mnem |

ICM |

ICP |

SFC |

SFP |

SFM |

SFS |

JZ |

FS |

SF |

is I

SD I

EBS |

Name and Description

Insert Character if Minus. If SIGN = 1, copies
M into the destination string. If SIGN = 1 ,
copies SC into the destination string.
Increments both SB and FARl by 1.

Insert Character if Plus. If SIGN = 0, copies M
into the destination string. If SIGN = 1,
copies SC into the destination string.
Increments both SB and FARl by 1.

Set Floating Character. Sets PC to M and
increments XB by 1.

Set Floating if Plus. If SIGN = 0f sets FC to M.
If SIGN = 1, sets FC to SC. Increments XB by 1.

Set Floating if Minus. If SIGN = 1, sets FC to M.
If SIGN = 0, sets FC to SC. Increments XB by 1.

Set Floating to SIGN. If SIGN = 0, sets FC to
•253. If SIGN = 1, sets PC to '255. Increments
XB by 1.

Jump if Zero. If the condition flag in A = 0,
increments XB by 1. If the condition flag in A
= 1, adds M to XB and then increments XB by 1.

Fill with Suppression Characters. Copies SC
M times into the destination string. Increments
XB by 1 and FAR1 by M.

Set Significance. If SIG = 0 and FC <> 0, inserts
FC into the destination string, sets SIG to 1,
and increments XB and FAR1 by 1. If SIG = 0 and
FC = 0, sets SIG to 1 and increments XB and FARl
by 1. If SIG = 1, increments XB by 1.

Insert Sign. If SIGN = 0, copies '253 into the
destination string. If SIGN = 1, copies '255
into the destination string. Increments XB by 1.

Suppress Digits. Fetches M digits from the source
string and checks if they are '260. If the source
digit = '260, inserts SC into the destination
string. If the source digit <> "260, copies the
source digit into the destination string.
Increments XB by 1 and both FARO and FARl by M.

Embed Sign. Fetches M digits from the source
string. If SIGN = 0 , copies each digit into the
destination string. If SIGN = 1, embeds a minus
sign into each digit before copying it into the
destination string. Table 5-14 shows the
characters used to represent the sign/digit
combinations. Note that } represents negative 0.

Third Edition 13-134

S, R, and V MODE

^ XMP
Decimal Multiply
0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 (V mode form)

Multiplies one decimal number, D2, by another, Dl, and stores the
result in D2's location in memory.

FARO contains the address of Dl. FARl contains the address of D2. L
contains the control word; this instruction uses fields A, B, C, E, F,
G, H, and T. Note that field G, the scale differential, must contain
the number of decimal digits in the multiplier (M). This value is not
the same as the length of the D2.

For correct results, D2 must contain a number of leading 0s equal to or
greater than the length of Dl.

Ihe instruction multiplies D2 by Dl and stores the result in the
location specified by FARl. The result of the multiply is:

Dl x D2 + partial product field

The partial product field is equal to:

length (D2) - M.

The partial product field is left justified in D2's location. The
maximum partial product added in per traverse of the multiplicand is:

source digits + multiplier digits processed

Note that there is also an implied weighting of the partial product
field. The weighting is:

10 ** multiplier digits

If the T bit is set to 1, the results are forced positive. See Chapter
6 for more information about decimal arithmetic.

The registers used are GR0, GR1, GR3 (E), GR4, GR6, FARO, FARl, and XB.
At the end of this instruction, the contents of these registers are
indeterminate. At the end of the instruction, the condition codes
reflect the state of the result. (See Table 5-3.) Overflow causes a
decimal exception; if no overflow occurs, resets CBIT to 0. LINK
contains undefined results.

A decimal exception occurs if there are more potential or actual
product digits than there is space in D2.

If a decimal exception occurs and bit 11 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
sets CBIT to 1 and causes a decimal exception fault. See Chapter 11
for more information.

13-135 Third Edition

DOC3060-192

^ XMV
Decimal Move
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 (V mode form)

Moves a string of characters from one location to another.

FARO contains the address of the source str ing. FAR1 contains the
address of the destination string. L contains the control word; th i s
instruction uses fields A, B, D, E, F, G, H and T.

The instruction moves the contents of the source field into the
destination field from right to le f t . If the B field in the control
word i s 1, changes the the sign of the source field during the move.
If the D field in the control word i s 1 and the scale differential i s
greater than 0, the instruction rounds the source field during the
move. If the scale differential (from the H field) i s less than 0, the
instruction pads the source field with SD t ra i l ing zeroes before
transferring.

Note that since the T b i t i s used by a l l systems for th is instruction,
the result i s forced positive if this b i t i s set to 1.

The registers used are GR0, GRl, GR2 (L), GR3 (E), GR4, GR6, FARO,
FAR1, FLR0, and FLR1. At the end of this instruction, the contents of
these registers are indeterminate.

A decimal exception occurs if there are more non-zero source digits
than there i s room in the destination, after any padding. If there i s
no decimal exception, CBIT i s reset to 0. Leaves the value of LINK
indeterminate. The values of the condition codes reflect the s ta te of
the destination field after the move. (See Table 5-3.)

If a decimal exception occurs and bi t 11 of the keys contains a 0, the
instruction sets CBIT to 1. If bi t 11 contains a 1, the instruction
sets CBIT to 1 and causes a decimal exception faul t . If no exception
occurs, the instruction sets CBIT to 0. See Chapter 11 for more
information about decimal exceptions.

Note

The source and destination strings may not overlap in memory.

Third Edition 13-136

S, R, and V MDDE

^ ZCM
Compare Character Field
0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 1 (V mode form)

Compares two fields and sets the condition codes depending on the
result of the compare.

FARO contains the address of field 1 (Fl). FLR0 contains an integer
specifying the length of Fl. FARl contains the address of field 2
(F2). FLR1 contains an integer specifying the length of F2.

The instruction compares the contents of Fl and F2 on a byte by byte
basis. If the fields are not of equal length, the instruction
automatically extends the shorter string with space characters. A
space character is '240 or '40 when bit 12 of the keys contains 0 or 1,
respectively. Sets the condition codes as a result of the compare:

Result of Compare Set Condition Codes

Fl > F2 GT

Fl = F2 EQ

Fl < F2 LT

The registers used are GR3 (E), GR4, FARO, FARl, FLR0, and FLRl; at
the end of this instruction, the contents of these registers are
indeterminate.

When the instruction completes execution, the values of CBIT and LINK
are indeterminate.

Note

This ins t ruc t ion uses GR3, GR4, the FARs, and the FLRs during
i t s operat ion. Since ZCM does not save the contents of these
r e g i s t e r s before using them, any data contained in them i s
overwritten when t h i s ins t ruc t ion executes, unless you save i t
ahead of t ime.

13-137 Third Edition

DOC3060-192

^ ZED
Character Field Edit
0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 (V mode form)

Controls an edit subprogram.

Uses registers FARO, PARI, FLR0, and XB. At the end of this
instruction the contents of these registers are indeterminate.

FARO contains the address of the source string. FLRO specifies the
length of the source string. FARl contains the address of the
destination string. XB contains the address of the edit subprogram.

The instruction uses the edit subprogram to alter the source string,
then loads the edited result into the destination string. The
subprogram, addressed by the contents of XB, contains a list of
commands, each with the format shown in Figure 13-7:

1

1 L

2 6 7 8 9

1 00000 I E | M

16

1

ZED Subprogram Word Format
Figure 13-7

where L is 1 if this command is the last command in the subprogram,
0 if it is not;

E is the edit opcode;
M is the edit modifier.

Mote that bits 2-6 must be 0.

M, the operator modifier, specifies information E uses when editing the
source string. (See Table 13-13.)

E, the edit suboperator, specifies the operation to be performed on the
source string. Available values for E are shown in Table 13-13.

Third Edition 13-138

S, R, and V MDDE

Table 13-13
ZED Suboperators

1 Subop | Value | Action 1

1 CPC I 00 I Copies characters from the source string into |
1 j j the destination string. If the length of the I
1 | j source string is greater than the contents of |
1 j | the M field, then CPC moves a total of M source |
1 I | characters into the destination string, |
1 | | increments FARO and FAR1 by M, increments XB I
I | | by 1, and decrements FLRO by M. If the length j
I | | of the source string is less than the contents j
j j j of the M field, then CPC moves the rest of the j
I | | source string into the destination string, and j
1 | | then pads the remaining space to be filled with j
1 | j spaces. (See note.) Increments FARO by FLRO, |
j 1 1 increments FAR1 by M, increments XB by 1, and j
1 | | decrements FLRO by FLRO (so FLRO - 0). |

1 INL I 01 1 Inserts M into the destination string and j
j | | increments XB and FAR1 by 1. I

1 SKC I 10 I Skips characters in the source string. If the |
I 1 I remaining length of the source string is j
j j j greater than or equal to the contents of the |
I j j M field, SKC skips over the next M characters j
I | | of the source field by incrementing FARO by M j
I | j and decrementing FLRO by M. If the remaining |
1 | | length of the source string is less than the j
I | | contents of the M field, SKC skips over FLRO I
I | | characters in the source string by incrementing |
I | | FARO by FLRO and decrementing FLRO by FLRO |
j | | (FLRO = 0) . In either case, SKC increments |
1 1 1 XB by 1. 1

I BLK j 11 | Inserts M spaces into the destination string, |
1 | | increments FARl by M, and increments XB by 1. I
| | | A space is '240 or '40, depending on whether |
I i | bit 12 of the keys is 0 or 1. j

Note

Leaves the values of CBIT, LINK, and the condition codes
indeterminate. This instruction uses GR3, GR4, the FARs, and
the FLRs during its operation. Since ZED does not save the
contents of these registers before using them, any data
contained in them is overwritten when this instruction
executes, unless you save it ahead of time.

13-139 Third Edition

DOC3060-192

^ ZFIL
F i l l Field with Character
0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 0 (V mode form)

Stores a character into a series of destination bytes.

Bits 9-16 of A contain the character to be stored. FARO contains the
starting address of the destination field (byte aligned). FLRl
contains an integer specifying the length of the destination field (in
bytes).

The instruction stores the character specified in A in each byte of the
destination field. If FLRl contains 0, no operation takes place.
Leaves the values of CBIT, LINK, and the condition codes indeterminate.

The registers used are GR3 (E), GR4f FARO, FARl, FLR0, and FLRl; at
the end of this instruction, the contents of these registers are
indeterminate.

Note

This instruction uses GR3, GR4, the FARs, and the FLRs during
its operation. Since ZFIL does not save the contents of these
registers before using them, any data contained in them is
overwritten when this instruction executes, unless you save it
ahead of time.

^ ZMV
Move Character Field
0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 (V mode form)

Moves a character field from one location to another.

FARO contains the address of the source string (byte aligned). FLR0
specifies the length in bytes, N, of the source string. FARl contains
the address of the destination string (byte aligned). FLRl specifies
the length in bytes, M, of the destination string.

Compares N and M. If N is less than M, the instruction moves the
contents of the source string into the destination string followed by
M-N space characters. (A space character is '240 or '40 when bit 12 of
the keys is 0 or 1, respectively.) If the destination string is
shorter, the. instruction moves the first M characters of the source
string into the destination string.

When the instruction completes, the values of FARO, FARl, FLR0, FLRl,
CBIT, LINK, and the condition codes are indeterminate.

Third Edition 13-140

S, R, and V MODE

Note

This instruction uses GR3, GR4, the FARs, and the FLRs during
its operation. Since ZMV does not save the contents of these
registers before using them, any data contained in them is
overwritten when this instruction executes, unless you save it
ahead of time. This instruction does not work with overlapping
strings. See Chapter 6 for more information.

^ ZMVD
Move Characters Between Equal Length Strings
0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 (V mode form)

Moves characters from one string to another of equal length.

FARO contains the address of the source str ing. FAR1 contains the
address of the destination str ing. FLRl contains the number of
characters to move, N.

The instruction moves N characters from the source string to the
destination str ing. Characters are moved from lower addresses to
higher addresses.

The registers used are GR3 (E), GR4, FARO, FAR1, FLRO, and FLRl; a t
the end of th is instruction, the contents of these registers are
indeterminate. The values of (BIT, LINK, and the condition codes are
indeterminate.

Note

This instruction uses GR3, GR4, the FARs, and the FLRs during
its operation. Since ZMVD does not save the contents of these
registers before using them, any data contained in them is
overwritten when this instruction executes, unless you save it
ahead of time. This instruction does not work with overlapping
strings. See Chapter 6 for more information.

^ ZTRN
Character String Translate
0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 (V mode form)

Translates a string of characters and stores the translations in the
specified destination.

FARO contains the address of the source string (byte aligned). FARl
contains the address of the destination string (byte aligned). FLRl
specifies the length of the source and destination s tr ings. XB
contains the start ing address of a translation table. Each byte in the
256-byte table contains an alphabetic character.

13-141 Third Edition

DOC3060-192

The Z13RN instruction uses the address in FARO to reference a character.
It interprets this character as an integer, adding it to the contents
of XB to form an address into the translation table. The instruction
takes the referenced character in the translation table and writes it
into the location specified by FARl. After storing the character, the
instruction increments the contents of FARO and FARl by 1, decrements
the contents of FLRO by 1, and repeats the operation until FLR1
contains 0.

At the end of the instruction, FARO and FARl point to the last byte in
the source and destination strings, respectively. FLR1 contains 0.
Leaves the values of XB, (BIT, LINK, and the condition codes unchanged.

Note

This instruction uses GR3, GR4, the FARs, and the FLRs during
i t s operation. Since Z1RN does not save the contents of these
registers before using them, any data contained in them i s
overwritten when th is instruction executes, unless you save i t
ahead of time.

Third Edition 13-142

14
I Mode Instruction

Dictionary

INTRODUCTION

This chapter contains descr ipt ions for a l l 50 Ser ies ins t ruc t ions used
in I mode. In the descript ion of each ins t ruc t ion , you w i l l f ind:

• The ins t ruc t ion mnemonic followed by any arguments.

• The name of the in s t ruc t ion .

• The b i t format of the ins t ruc t ion .

• Detailed information describing the i n s t r u c t i o n ' s ac t ion .

• Information about the how the ins t ruc t ion a f fec ts LINK, CBIT,
and the condition codes.

Notation Conventions

Several abbreviations and symbols a re used throughout t h i s d ic t ionary .
Table 14-1 defines the dict ionary notat ion.

14-1 Third Edition

DOC3060-192

Table 14-1
Dictionary Notation

I Symbol

1 A

I ADDRESS

| AP

1 B

I BR

I CBIT

I DAC

I DR

1 E

I EA

1 F

I FAC

I FAR

I FLR

1 GR2

I I

1 L

I LINK

1 QAC

I PB

1 R

Meaning 1

The 16-bit A register. 1

Encompasses all the elements needed to specify an |
effective address. This term is used because |
various types of addressing require you to specify |
the elements in different orders (such as indirect I
or pre- and post-indexing). I

Address pointer. 1

The 16-bit B register. I

Base register. 1

Bit 1 of the keys. 1

The double precision floatingpoint accumulator. |

Destination register (normal register specifier). |

The 32-bit E register. I

Effective address. 1

Floating accumulator. 1

The single precision floating-point accumulator. 1

Field address register. I

Field length register. I

General register 2. 1

Indirect bit. 1

The 32-bit L register. 1

Bit 3 of the keys. 1

The quad precision floating-point accumulator. I

The procedure base register. 1

A 32-bit general register, 1

Third Edition 14-2

I MODE INSTRUCTION DICTIONARY

Table 14-1 (continued)
Dictionary Notation

I Symbol | Meaning

Bits 1-16 of a general register.

Skip the next 16-bit word before continuing execution.

Source register (or index if memory reference).

Tag modifier. Bits used in I mode effective address
calculation to specify indirection, indexing, etc.

The X register (indexing).

Auxiliary base register.

The Y register (indexing).

Specifies the number of bits, n, occupied by field m.

Specifies an optional argument.

Resumable Instructions

Some assembly language instructions are resumable. When a fault or
interrupt occurs during instruction execution, the processor usually
services it, then restarts the instruction from the beginning. Some
instructions, however, are too long or too complex for this to be
desirable. When a fault or interrupt occurs during one of the
resumable instructions, the processor preserves the state of the
instruction, handles the fault or interrupt, and then resumes the
instruction at the point where the interrupt occurred. Table 14-2
lists the resumable assembly language instructions.

Table 14-2
Resumable Instructions

14-3 Third Edition

DOC3060-192

Storing Data Into the 9950 Instruction Stream

After any instruction that stores data into memory, you must wait five
instructions before executing data. If in doubt about the next five
instructions (temporally) to be executed, a mode change instruction to
the current addressing mode, such as E32I, allows the stored data to be
executed.

Instruction Formats

All I mode instructions belong to one of the following instruction
types:

• I Mode Memory Reference

• I Mode Special Memory Reference

• I Mode Generic AP (Address Pointer)

• I Mode Register Generic

• I Mode Register Generic Branch

• Generic A and B (see below)

The format of each instruction type is shown in Figure 14-1.

Memory reference instructions have the opcode in bits 1-6. Special
memory reference instructions (for floating point) have the opcode in
bits 2r 3, 7, and 9; bit 8 specifies the floating accumulator. Some
memory reference and special memory reference instructions have
register-to-register and/or immediate forms. Such instructions are so
identified in this I Mode Instruction Dictionary.

The immediate form of a memory reference instruction has a 16-bit
literal in bits 17-32 instead of a 16-bit displacement.
Register-to-register forms are 16 bits long, since they have no
displacement. Bits 7-9 specify the destination register and bits 12-14
specify the source register.

The immediate form of a special memory reference instruction has a
16-bit encoding in bits 17-32 instead of a 16-bit displacement. The
register-to-register form is 16 bits long, since it has no
displacement. Bit 8 specifies the floating-point destination
accumulator and bits 12-14 specify the index register or the
floating-point source register (in bit 13).

Generic AP instructions have a generic format (where bits 10-16 contain
the opcode extension) followed by a 32-bit address pointer.

Third Edition 14-4

I MODE INSTRUCTION DICTIONARY

Register generic instructions are 16 bits long and have an opcode in
bits 10-16. The value of bits 1-6 is 011000; bits 7-9 specify a
general register.

Register generic branch instructions are 32 bits long and have an
opcode in bits 10-16. The value of bits 1-6 is 00100; bits 7-9
specify a general register. Bits 17-32 contain a displacement.

Generic A and B instructions that do not reference the A, B, E, or L
registers are also used in I Mode. See Chapter 13, Figure 13-1 for the
format of these instructions. Instructions defined in I mode for this
class are included in this instruction dictionary.

14-5 Third Edition

DOC3060-192

L 6 7 9 10 11 12 14 15 16 17 32

OPCODE | DEST REG | TM | SOURCE REG OR INDEX | BR | DISP I

I Mode General Memory Reference Format*

1

1 o

2 3

I OP

4 6

I 110

7 8

1 OP |

9

DES F

10 11

I OP

12

I TM

14 15

ISRC REG OR IDX|

16

BR

17 32

I DISP |

I Mode Special Memory Reference Format*

1 16

I GENERIC OR REGISTER GENERIC |

17 20 21 22 23 24 25 32 33 48

I BIT | I | 0 I BR I 00000000 | OFFSET

I Mode Generic AP Format

1 6 7 9 10 16

I 011000 | REG I OPCODE |

I Mode Register Generic Format

L 6 7 9 10 16 17 32

001000 | REG | OPCODE | DISPLACEMENT |

I Mode Register Generic Branch Format

* This instruction type also has a register-to-register and
immediate form as explained in the text.

I Mode Instruction Formats
Figure 14-1

Third Edition 14-6

I MDDE INSTRUCTION DICTIONARY

INSTRUCTIONS

^ A Rf address
Add Fullword
0 0 0 0 1 0 DR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effect ive address, EA. Adds the value contained in the
specified R to the 32-bi t value contained in the locat ion specif ied by
EA. Stores the r e s u l t in the specified R. An overflow produces an
integer exception. LINK contains the carry-out b i t . The condition
codes r e f l ec t the r e s u l t of the operation. (See Table 5-3.) If no
integer exception occurs, (BIT i s r ese t t o 0.

If an integer exception occurs and b i t 8 of the keys contains 0, the
ins t ruc t ion se t s CBIT to 1 . If b i t 8 contains 1, the ins t ruc t ion se t s
(BIT to 1 and causes an integer exception f a u l t . See Chapter 11 for
more information.

Note

This ins t ruc t ion a l so has a r e g i s t e r - t o - r e g i s t e r and an
immediate form. See Chapter 3 for more information.

^ ABQ address
Add Entry t o Bottom of Queue
0 1 1 0 0 0 R\3 1 0 1 1 1 0 0
AP\32

Adds the entry contained in the specified R to the bottom of the queue
referenced by the AP. (AP points to the queue's QCB.) Sets the
condition codes t o r e f l ec t EQ if the queue was f u l l , or t o NE i f not
f u l l . Leaves the values of CBIT and LINK unchanged.

^ ADLR R
Add LINK to Register
0 1 1 0 0 0 R\3 0 0 0 1 1 0 0

Adds the contents of LINK to the contents of R and stores the result in
R. If there is an overflow, an integer exception occurs. LINK
contains the carry-out bit. The condition codes reflect the result of
the operation. (See Table 5-3.) If no integer exception occurs, CBIT
is reset to 0.

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains 1, the instruction sets
CBIT to 1 and causes an integer exception fault. See Chapter 11 for
more information.

14-7 Third Edition

DOC3060-192

^ AH r,address
Add Halfword
0 0 1 0 1 0 DR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Adds the value contained in the
specified r to the 16-bit value contained in the location specified by
EA. Stores the result in r. An overflow produces an integer
exception. If no integer exception occurs, (BIT is reset to 0. LINK
contains the carry-out bit. The condition codes reflect the result of
the operation. (See Table 5-3.)

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets (BIT to 1. If bit 8 contains a 1, the instruction
sets (BIT to 1 and causes an integer exception fault. See Chapter 11
for more information.

Note

This ins t ruc t ion also has a r e g i s t e r - t o - r e g i s t e r and an
immediate form. See Chapter 3 for more information.

^ ARFA far,R
Add Register to FAR
0 1 1 0 0 0 R\3 1 1 1 FAR 0 0 1

Adds the bit address in the specified R to the contents of the
specified FAR. Stores the result in the FAR. Leaves the values of
(BIT, LINK, and the condition codes unchanged.

^ ARGT
Argument Transfer
0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1

Transfers arguments from a source procedure to a destination procedure.
ARGT is fetched and executed only when the argument transfer phase of a
procedure call (PCL) instruction is interrupted or faulted.

To perform a procedure call and argument transfer, the source procedure
must contain the PCL instruction followed by a number of argument
templates. The destination procedure must begin with the ARGT
instruction. When the PCL instruction is executed, control transfers
to the destination procedure, and the ARGT instruction uses the
templates to form the actual arguments. The arguments are stored in
the new stack frame as they are computed. At the end of the ARGT
instruction, the values of LINK, (BIT, and the condition codes are
indeterminate.

Third Edition 14-8

I MDDE INSTRUCTION DICTIONARY

ARGT must be the first executable instruction in any destination
procedure that will use arguments. For those procedures whose entry
control blocks specify zero arguments, omit ARGT.

For more information about argument transfers, refer to the section on
procedure calls in Chapter 8.

^ ATQ address
Add Entry t o Top of Queue
0 1 1 0 0 0 R\3 1 0 1 1 1 0 1
AP\32

Adds the entry contained in the specified R to the top of the queue
referenced by the AP. (AP points t o the queue's QCB.) Sets the
condition codes t o r e f l ec t EQ if the queue was f u l l , or t o NE i f not
f u l l . Leaves the values of (BIT and LINK unchanged.

14-9 Third Edition

EOC3060-192

^ BCEQ address
Branch on Condition Code EQ
1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 0
ADERESS\16

If the condition codes re f lec t equal t o 0, the ins t ruc t ion loads the
specified address in to the program counter. This address must be
within the current segment. If the condition codes r e f l ec t some other
condition, execution continues with the next in s t ruc t ion . Leaves the
values of LINK, (BIT, and the condition codes unchanged.

^ BCGE address
Branch on Condition Code GE
1 1 0 0 0 0 1 1 1 0 0 0 0 1 0 1
ADERESS\16

If the condition codes reflect greater than or equal to 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the condition codes
reflect some other condition, execution continues with the next
instruction. Leaves the values of LINK, CBIT, and the condition codes
unchanged.

^ BCGT address
Branch on Condition Code GT
1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1
ADDRESS\16

If the condition codes re f lec t greater than 0, the ins t ruc t ion loads
the specified address in to the program counter. This address must be
within the current segment. If the condition codes r e f l ec t some other
condition, execution continues with the next ins t ruc t ion . Leaves the
values of LINK, CBIT, and the condition codes unchanged.

^ BCLE address
Branch on Condition Code LE
1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0
ADEKESS\16

If the condition codes re f lec t l e s s than or equal t o 0, the ins t ruc t ion
loads the specified address in to the program counter. This address
must be within the current segment. If the condition codes re f l ec t
some other condition, execution continues with the next i n s t ruc t ion .
Leaves the values of LINK, CBIT, and the condition codes unchanged.

Third Edition 14-10

I M3DE INSTRUCTION DICTIONARY

^ BCLT address
Branch on Condition Code LT
1 1 0 0 0 0 1 1 1 0 0 0 0 1 0 0
ADDRESS\16

If the condition codes r e f l ec t l e s s than 0, the ins t ruc t ion loads the
specified address i n to the program counter. This address must be
within the current segment. If the condition codes r e f l e c t some other
condition, execution continues with the next i n s t ruc t ion . Leaves the
values of LINK, (BIT, and the condition codes unchanged.

^ BCNE address
Branch on Condition Code NE
1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1
ADDRESS\16

If the condition codes r e f l ec t not equal t o 0, the ins t ruc t ion loads
the specif ied address in to the program counter. This address must be
within the current segment. If the condition codes r e f l ec t some other
condition, execution continues with the next i n s t ruc t ion . Leaves the
values of LINK, CBTT, and the condition codes unchanged.

^ BCR address
Branch on CBIT Reset t o 0
1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 1
ADDRESS\16

If CBIT has the value 0, the ins t ruc t ion loads the specif ied address
in to the program counter. This address must be within the current
segment. If CBIT has the value 1, execution continues with the next
ins t ruc t ion . Leaves the values of LINK, CBIT, and the condition codes
unchanged.

^ BCS address
Branch on CBTT Set t o 1
1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0
ADDRESS\16

If CBTT has the value 1, the ins t ruc t ion loads the specif ied address
in to the program counter. This address must be within the current
segment. If CBTT has the value 0, execution continues with the next
ins t ruc t ion . Leaves the values of LINK, CBIT, and the condition codes
unchanged.

14-11 Third Edition

DOC3060-192

^ BFEQ f raddress
Branch on Floating Accumulator Equal t o 0
0 0 1 0 0 0 0 F 0 1 0 1 0 0 1 0
ADDRESS\16

If the contents of the specified f loat ing-point accumulator are equal
t o 0, the ins t ruc t ion loads the specified address in to the program
counter. This address must be within the current segment. If the
f loa t ing accumulator contents are not equal t o 0, execution continues
with the next ins t ruc t ion . The condition codes r e f l ec t the r e s u l t of
the comparison. (See Table 5-3.) Leaves the values of LINK and GBIT
unchanged.

• BFGE f,address
Branch on Floating Accumulator Greater Than or Equal t o 0
0 0 1 0 0 0 0 F 0 1 0 1 0 1 0 1
ADORESS\16

If the contents of the specified f loat ing-point accumulator a re greater
than or equal to 0, the ins t ruct ion loads the specified address in to
the program counter. This address must be within the current segment.
If the f loat ing accumulator contents are l e s s than 0 r execution
continues with the next ins t ruc t ion . The condition codes r e f l ec t the
r e su l t of the comparison. (See Table 5-3.) Leaves the values of LINK
and CBrr unchanged.

^ BFGT f,address
Branch on Floating Accumulator Greater Than 0
0 0 1 0 0 0 0 F 0 1 0 1 0 0 0 1
ADERESS\16

If the contents of the specified f loat ing-point accumulator a re greater
than 0, the ins t ruc t ion loads the specified address in to the program
counter. This address must be within the current segment. If the
f loa t ing accumulator contents a re l e s s than or equal t o 0f execution
continues with the next ins t ruc t ion . The condition codes re f lec t the
r e s u l t of the comparison. (See Table 5-3.) Leaves the values of LINK
and CBIT unchanged.

• BFLE f ,address
Branch on Floating Accumulator Less Than or Equal t o 0
0 0 1 0 0 0 0 F 0 1 0 1 0 0 0 0
ADERESS\16

If the contents of the specified f loat ing-point accumulator are l e s s
than or equal to 0, the ins t ruct ion loads the specif ied address i n to
the program counter. This address must be within the current segment.
If the f loat ing accumulator contents a re greater than 0 , execution

Third Edition 14-12

I MODE INSTRUCTION DICTIONARY

continues with the next instruction. The condition codes reflect the
result of the comparison. (See Table 5-3.) Leaves the values of LINK
and CBrr unchanged.

^ BELT ffaddress
Branch on Floating Accumulator Less Than 0
0 0 1 0 0 0 0 F 0 1 0 1 0 0 1 0
ADDRESS\16

If the contents of the specified floating-point accumulator are less
than 0, the instruction loads the specified address into the program
counter. This address must be within the current segment. If the
floating accuumulator contents are greater than or equal to 0,
execution continues with the next instruction. The condition codes
reflect the result of the comparison. (See Table 5-3.) Leaves the
values of LINK and CBrr unchanged.

^ BFNE f,address
Branch on Floating Accumulator Not Equal to 0
0 0 1 0 0 0 0 F 0 1 0 1 0 0 1 1
ADDRESS\16

If the contents of the specified floating-point accumulator are not
equal to 0, the instruction loads the specified address into the
program counter. This address must be within the current segment. If
the floating accumulator contents are equal to 0f execution continues
with the next instruction. The condition codes reflect the result of
the comparison. (See Table 5-3.) Leaves the values of LINK and CBIT
unchanged.

^ BHD1 r,address
Branch on Half Register Decremented by 1
0 0 1 0 0 0 R\3 1 1 0 0 1 0 0
ADDRESS\16

Decrements the contents of the specified r by 1 and stores the result
in the specified r . If the decremented value i s not equal to 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the decremented value
i s equal to 0, execution continues with the next instruction. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

14-13 Third Edition

DOC3060-192

^ BHD2 r,address
Branch on Half Register Decremented By 2
0 0 1 0 0 0 R\3 1 1 0 0 1 0 1
ADDRESS\16

Decrements the contents of the specified r by 2 and stores the result
in the specified r. If the decremented value is not equal to 0r the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the decremented value
is equal to 0, execution continues with the next instruction. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

^ BHD4 r,address
Branch on Half Register Decremented By 4
0 0 1 0 0 0 R\3 1 1 0 0 1 1 0
ADDRESS\16

Decrements the contents of the specified r by 4 and stores the result
in the specified r. If the decremented value is not equal to 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the decremented value
is equal to 0, execution continues with the next instruction. Leaves
the values of (BIT, LINK, and the condition codes unchanged.

^ BHEQ r,address
Branch on Half Register Equal To 0
0 0 1 0 0 0 R\3 1 0 0 1 0 1 0
ADDRESS\16

If the contents of the specified r are equal to 0, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the contents of r are not equal
to 0, execution continues with the next instruction. Sets the
condition codes to the result of the comparison. (See Table 5-3.)
Leaves the values of CBIT and LINK unchanged.

^ BHGE r,address
Branch on Half Register Greater Than or Equal To 0
0 0 1 0 0 0 R\3 1 0 1 0 1 0 1
ADDRESS\16

If the contents of the specified r are greater than or equal to 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the contents of r are
less than 0, execution continues with the next instruction. Sets the
condition codes to the result of the comparison. (See Table 5-3.)
Leaves the values of CBIT and LINK unchanged.

Third Edition 14-14

I M3DE INSTRUCTION DICTIONARY

• BHGT r ,address
Branch on Half Register Greater Than 0
0 0 1 0 0 0 R\3 1 0 0 1 0 0 1
ADERESS\16

If the contents of the specif ied r a re greater than 0, the ins t ruc t ion
loads the specif ied address in to the program counter. This address
must be within the current segment. If the contents of r a re l e s s than
or equal t o 0 r execution continues with the next i n s t ruc t ion . Sets the
condition codes t o the r e s u l t of the comparison. (See Table 5-3.)
Leaves the values of (BIT and LINK unchanged.

^ BHI1 r ,address
Branch on Half Register Incremented By 1
0 0 1 0 0 0 R\3 1 1 0 0 0 0 0
ADEKESS\16

Increments the contents of the specified r by 1 and s to re s the r e s u l t
in the specif ied r . If the incremented value i s not equal t o 0, the
ins t ruc t ion loads the specif ied address in to the program counter. This
address must be within the current segnent. If the incremented value
i s equal t o 0, execution continues with the next i n s t ruc t ion . Leaves
the values of CBIT, LINK, and the condition codes unchanged.

^ BHI2 r ,address
Branch on Half Register Incremented By 2
0 0 1 0 0 0 R\3 1 1 0 0 0 0 1
ADERESS\16

Increments the contents of the specified r by 2 and s to res the r e s u l t
in the specif ied r . If the incremented value i s not equal t o 0, the
ins t ruc t ion loads the the specified address i n t o the program counter.
This address must be within the current segment. If the incremented
value i s equal t o 0, execution continues with the next i n s t ruc t ion .
Leaves the values of CBITf LINK, and the condition codes unchanged.

• BHI4 r ,address
Branch on Half Register Incremented By 4
0 0 1 0 0 0 R\3 1 1 0 0 0 1 0
ADCRESS\16

Increments the contents of the specified r by 4 and s to res the r e s u l t
in the specified r . If the incremented value i s not equal t o 0, the
ins t ruc t ion loads the specif ied address in to the program counter. This
address must be within the current segnent. If the incremented value
i s equal to 0, execution continues with the next i n s t ruc t ion . Leaves
the values of CBIT, LINK, and the condition codes unchanged.

14-15 Third Edition

DOC306 0-192

^ BHLE rraddress
Branch on Half Register Less Than or Equal to 0
0 0 1 0 0 0 R\3 1 0 0 1 0 0 0
ADDRESS\16

If the contents of the specified r are less than or equal to 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the contents of r are
greater than 0, execution continues with the next instruction. Sets
the condition codes to the result of the comparison. (See Table 5-3.)
Leaves the values of CBIT and LINK unchanged.

^ BHLT r,address
Branch on Half Register Less Than 0
0 0 1 0 0 0 R\3 1 0 0 1 1 0 0
ADERESS\16

If the contents of the specified r are less than 0, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the contents of r are greater
than or equal to 0, execution continues with the next instruction.
Sets the condition codes to the result of the comparison. (See Table
5-3.) Leaves the values of CBIT and LINK unchanged.

^ BHNE r,address
Branch on Half Register Not Equal To 0
0 0 1 0 0 0 R\3 1 0 0 1 0 1 1
ADDRESS\16

If the contents of the specified r are not equal to 0, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the contents of r are equal to
0r execution continues with the next instruction. Sets the condition
codes to the result of the comparison. (See Table 5-3.) Leaves the
values of CBIT and LINK unchanged.

^ BLR address
Branch on LINK Reset t o 0
1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1
ADDRESS\16

If LINK has the value 0 r the ins t ruct ion loads the specified address
in to the program counter. This address must be within the current
segment. If LINK has the value 1, execution continues with the next
ins t ruc t ion . Leaves the values of LINK, CBIT, and the condition codes
unchanged.

Third Edition 14-16

I MODE INSTRUCTION DICTIONARY

^ ELS address
Branch on LINK Set to 1
1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0
ADDRESS\16

If LINK has the value 1 , the ins t ruc t ion loads the specif ied address
in to the program counter. This address must be within the current
segment. If LINK has the value 0, execution continues with the next
ins t ruc t ion . Leaves the values of LINK, CBIT, and the condition codes
unchanged.

^ BMEQ address
Branch on Magnitude Condition BQ
1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 0
ADDRESS\16

Performs the same operation as the BCEQ ins t ruc t ion , except t ha t i t
allows the r e s u l t t o be evaluated as unsigned.

^ BMGE address
Branch on Magnitude Condition GE
1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0
ADDRESS\16

Performs the same function as the BLS ins t ruc t ion , except t h a t i t
allows the r e s u l t t o be evaluated as unsigned.

^ BMGT address
Branch on Magnitude Condition GT
1 1 0 0 0 0 1 1 1 1 0 0 1 0 0 0
ADDRESS\16

If LINK i s 1 and the condition codes re f l ec t not equal t o 0, the
ins t ruc t ion loads the specified address i n to the program counter. This
address must be within the current segment. If some other condition
e x i s t s , execution continues with the next in s t ruc t ion . Leaves the
values of CBIT, LINK, and the condition codes unchanged.

14-17 Third Edition

DOC3060-192

^ BMLE address
Branch on Magnitude Condition LE
1 1 0 0 0 0 1 1 1 1 0 0 1 0 0 1
ADERESS\16

If LINK i s 0 or the condition codes re f lec t equal t o 0, the ins t ruc t ion
loads the specified address in to the program counter. This address
must be within the current segment. If some other condition e x i s t s ,
execution continues with the next ins t ruc t ion . Leaves the values of
CBIT, LINK, and the condition codes unchanged.

^ BMLT address
Branch on Magnitude Condition LT
1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1
ADDRESS\16

Performs the same function as the BLR ins t ruc t ion , except t h a t i t
allows the r e s u l t t o be evaluated as unsigned.

^ BMNE address
Branch on Magnitude Condition NE
1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1
ADERESS\16

Performs the same function as the BLNE ins t ruc t ion , except t h a t i t
allows the r e s u l t t o be evaluated as unsigned.

^ BRBR R,bi t #,address
Branch on Register Bit Reset
0 0 1 0 0 0 R\3 0 1 BIT\5
ADCRESS\16

Bi ts 12-16 of the ins t ruc t ion contain a value between '00 and ' 37 .
This value specif ies the b i t posi t ion in the r eg i s t e r t o be t e s t ed . A
value of '00 corresponds t o b i t 1; ' 0 1 , b i t 2; and so on.

If the specified b i t posi t ion contains 0, the ins t ruc t ion loads the
specified address in to the program counter. This address must be
within the current segment. If the specified b i t pos i t ion contains 1,
execution continues with the next ins t ruc t ion . Leaves the values of
LINK, CBIT, and the condition codes unchanged.

Third Edition 14-18

I M3DE INSTRUCTION DICTIONARY

^ BRBS R,bi t #,address
Branch on Register Bi t Set
0 0 1 0 0 0 R\3 0 0 BIT\5
ADDRESS\16

Bits 12-16 of the ins t ruc t ion contain a value between *00 and ' 37 .
This value specif ies the b i t posi t ion in the r eg i s t e r t o be t e s t ed . A
value of '00 corresponds t o b i t 1; ' 0 1 , b i t 2; and so on.

If the specif ied b i t pos i t ion contains 1 , the ins t ruc t ion loads the
specified address in to the program counter. This address must be
within the current segment. If the specified b i t pos i t ion contains 0,
execution continues with the next ins t ruc t ion . Leaves the values of
LINK, CBIT, and the condition codes unchanged.

^ BRDl R,address
Branch on Register Decremented By 1
0 0 1 0 0 0 R\3 1 0 1 1 1 0 0
ADDRESS\16

Decrements the contents of the specified R by 1 and s to res the r e s u l t
in the specified R. If the decremented value i s not equal t o 0f the
ins t ruc t ion loads the specif ied address in to the program counter. This
address must be within the current segment. If the decremented value
i s equal t o 0 r execution continues with the next i n s t ruc t ion . Leaves
the values of CBIT, LINK, and the condition codes unchanged.

^ BRD2 R,address
Branch on Register Decremented By 2
0 0 1 0 0 0 R\3 1 0 1 1 1 0 1
ADDRESS\16

Decrements the contents of the specified R by 2 and s to res the r e s u l t
in the specif ied R. If the decremented value i s not equal t o 0, the
ins t ruc t ion loads the specif ied address in to the program counter. This
address must be within the current segment. If the decremented value
i s equal t o 0, execution continues with the next i n s t ruc t ion . Leaves
the values of CBIT, LINK, and the condition codes unchanged.

14-19 Third Edition

DOC3060-192

• BRD4 R,address
Branch on Register Decremented By 4
0 0 1 0 0 0 R\3 1 0 1 1 1 1 0
ADDRESS\16

Decrements the contents of the specified R by 4 and stores the result
in the specified R. If the decremented value is not equal to 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the decremented value
is equal to 0, execution continues with the next instruction. Leaves
the values of (BIT, LINK, and the condition codes unchanged.

• BRBQ Rfaddress
Branch on Register Equal To 0
0 0 1 0 0 0 R\3 1 0 0 0 0 1 0
ADDRESS\16

If the contents of the specified R are equal to 0, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the R contents are not equal to
0, execution continues with the next instruction. Sets the condition
codes to the result of the comparison. (See Table 5-3.) Leaves the
values of CBIT and LINK unchanged.

^ BRGE Rfaddress
Branch on Register Greater Than or Equal To 0
0 0 1 0 0 0 R\3 1 0 1 0 1 0 1
ADDRESS\16

If the contents of the specified R are greater than or equal t o 0, the
ins t ruc t ion loads the specified address in to the program counter. This
address must be within the current segment. If the R contents a re l e s s
than 0, execution continues with the next in s t ruc t ion . Sets the
condition codes t o the r e su l t of the comparison. (See Table 5-3.)
Leaves the values of CBIT and LINK unchanged.

^ BRGT R,address
Branch on Register Greater Than 0
0 0 1 0 0 0 R\3 1 0 0 0 0 0 1
ADDRESS\16

If the contents of the specified R are greater than 0 f the ins t ruc t ion
loads the specified address in to the program counter. This address
must be within the current segment. If the R contents a re l e s s than or
equal to 0, execution continues with the next i n s t ruc t ion . Sets the
condition codes t o the r e su l t of the comparison. (See Table 5-3.)
Leaves the values of CBIT and LINK unchanged.

Third Edition 14-20

I MODE INSTRUCTION DICTIONARY

^ BRI1 R,address
Branch on Register Incremented By 1
0 0 1 0 0 0 R\3 1 0 1 1 0 0 0
ADDRESS\16

Increments the contents of the specif ied R by 1 and s to r e s the r e s u l t
in the specified R. If the incremented value i s not equal t o 0, the
ins t ruc t ion loads the specified address in to the program counter. This
address must be within the current segment. If the incremented value
i s equal t o 0, execution continues with the next i n s t ruc t i on . Leaves
the values of CBIT, LINK, and the condition codes unchanged.

^ BRI2 R, address
Branch on Register Incremented By 2
0 0 1 0 0 0 R\3 1 0 1 1 0 0 1
ADDRESS\16

Increments the contents of the specified R by 2 and s to res the r e s u l t
in the specif ied R. If the incremented value i s not equal t o 0 f the
ins t ruc t ion loads the specif ied address i n to the program counter. This
address must be within the current segment. If the incremented value
i s equal t o 0, execution continues with the next i n s t ruc t ion . Leaves
the values of CBIT, LINK, and the condition codes unchanged.

^ BRI4 R, address
Branch on Register Incremented By 4
0 0 1 0 0 0 R\3 1 0 1 1 0 1 0
ADDRESS\16

Increments the contents of the specified R by 4 and s to re s the r e s u l t
in the specified R. If the incremented value i s not equal t o 0, the
ins t ruc t ion loads the specif ied address in to the program counter. This
address must be within the current segment. If the incremented value
i s equal to 0, execution continues with the next i n s t ruc t ion . Leaves
the values of CBIT, LINK, and the condition codes unchanged.

^ BRLE R,address
Branch on Register Less Than or Equal to 0
0 0 1 0 0 0 R\3 1 0 0 0 0 0 0
ADDRESS\16

If the contents of the specified R are l e s s than or equal t o 0, the
ins t ruc t ion loads the specif ied address i n to the program counter. This
address must be within the current segment. If the R contents a re
greater than 0, execution continues with the next i n s t ruc t ion . Sets
the condition codes t o the r e s u l t of the comparison. (See Table 5-3.)
Leaves the values of OBIT and LINK unchanged.

14-21 Third Edition

DOC3060-192

^ BRLT R,address
Branch on Register Less Than 0
0 0 1 0 0 0 R\3 1 0 0 0 1 0 0
ADDRESS\16

If the contents of the specified R are less than 0, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the R contents are greater than
or equal to 0, execution continues with the next instruction. Sets the
condition codes to the result of the comparison. (See Table 5-3.)
Leaves the values of CBIT and LINK unchanged.

^ BENE R,address
Branch on Register Not Equal To 0
0 0 1 0 0 0 R\3 1 0 0 0 0 1 1
ADERESS\16

If the contents of the specified R are not equal to 0, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the R contents are equal to 0f

execution continues with the next instruction. Sets the condition
codes to the result of the comparison. (See Table 5-3.) Leaves the
values of (BIT and LINK unchanged.

Third Edition 14-22

I MDDE INSTRUCTION DICTIONARY

^ C R,address
Compare Fullword
1 1 0 0 0 1 DR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effect ive address, EA. Compares the 32-bi t value
contained in the specif ied R to the 32-bi t value contained in the
locat ion specif ied by EA. The comparison i s done by subtract ing the
contents of the the memory locat ion from the contents of the r e g i s t e r .
Sets the condition codes t o the r e su l t of the comparison. (See Table
5-3.) Leaves the value of (BIT unchanged. LINK contains the carry-out
b i t .

Note

This ins t ruc t ion a l so has a r e g i s t e r - t o - r e g i s t e r and an
immediate form. See Chapter 3 for more information.

P> CAI
Clear Active In terrupt
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1

Clears the current active interrupt and inhibits interrupts for the
next instruction. Effective only in vectored interrupt mode. Leaves
the values of LINK, (BIT, and the condition codes unchanged.

Note

This is a restricted instruction.

• CALF
Call Fault Handler
0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1
AP\32

The address pointer in t h i s ins t ruc t ion points t o the ECB of a f a u l t
rou t ine . CALF uses t h i s pointer t o t ransfer control t o the f au l t
routine as i f the t ransfer were a normal procedure c a l l . The values of
(BIT, LINK, and the condition codes are indeterminate. See Chapter 11
for more information.

14-23 Third Edition

DOC3060-192

• OGT R
Computed GOTO
0 1 1 0 0 0 R\3 0 0 1 0 1 1 0
INTEGER N\16
BRANCH ADDRESS 1\16
• • •
BRANCH ADDRESS N-l\16

If the contents of the specified R are greater than or equal to 1 and
less than the specified integer N that follows the opcode, the
instruction adds the contents of R to the contents of the program
counter to form an address. (The program counter points to the integer
N following the opcode.) Loads the contents of the location specified
by this address into the program counter. If the contents of R are not
within this range, the instruction adds integer N to the contents of
the program counter and stores the result in the program counter. Each
of the branch addresses following the instruction specifies a location
within the current procedure segment. The values of CBIT, LINK, and
the condition codes are indeterminate.

^ CH r,address
Compare Halfword
1 1 1 0 0 1 DR\3 TM\2 SR\2 BR\2
[DISPLACEMENTS]

Calculates an effect ive address, EA. Compares the value contained in
the specified r t o the 16-bit value contained in the locat ion specif ied
by EA. Leaves the value of CBIT unchanged. LINK contains the
carry-out b i t . The condition codes re f lec t the r e s u l t of the
comparison. (See Table 5-3.)

Note

This ins t ruc t ion also has a r e g i s t e r - t o - r e g i s t e r and an
iiwnediate form. See Chapter 3 for more information.

• CHS R
Change Sign
0 1 1 0 0 0 R\3 0 1 0 0 0 0 0

Complements b i t 1 of the specified R. Leaves the values of CBIT, LINK,
and the condition codes unchanged.

Third Edition 14-24

I MDEE INSTRUCTION DICTIONARY

• CMH r
Complement r
0 1 1 0 0 0 R\3 0 1 0 0 1 0 1

Forms the one 's complement of the contents of the specif ied r by
invert ing the value of each b i t and s to res the r e s u l t i n r . Leaves the
values of (BIT, LINK, and the condition codes unchanged.

• CMR R
Complement R
0 1 1 0 0 0 R\3 0 1 0 0 1 0 0

Forms the one 's complement of the contents of the specif ied R by
invert ing the value of each b i t and s tores the r e s u l t i n R. Leaves the
values of (BIT, LINK, and the condition codes unchanged.

• CR R
Clear R
0 1 1 0 0 0 R\3 0 1 0 1 1 1 0

Clears the specified R to 0. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

^ CRBL R
Clear R Hi^i Byte 1 Left
0 1 1 0 0 0 R\3 0 1 1 0 0 1 0

Loads 0 into bits 1-8 of the specified R. Leaves the values of LINK,
CBIT, and the condition codes unchanged.

^ CRBR R
d e a r R High Byte 2 Right
0 1 1 0 0 0 R\3 0 1 1 0 0 1 1

Loads 0 into bits 9-16 of the specified R. Leaves the values of LINK,
CBIT, and the condition codes unchanged.

^ CRHL R
Clear R Left Halfword
0 1 1 0 0 0 R\3 0 1 0 1 1 0 0

Clears b i t s 1-16 of the specif ied R t o 0 . Leaves the values of CBIT,
LINK, and the condition codes unchanged.

14-25 Third Edition

DOC3060-192

^ CRHR R
Clear R Right Halfword
0 1 1 0 0 0 R\3 0 1 0 1 1 0 1

Clears bits 17-32 of the specified R to 0. Leaves the values of CBIT,
LINK, and the condition codes unchanged.

^ CSR R
Copy and Save Sign
0 1 1 0 0 0 R\3 0 1 0 0 0 0 1

Copies the value of b i t 1 of the specified R in to CBIT, and then loads
0 in to b i t 1 of R. Leaves the values of LINK and the condition codes
unchanged.

Third Edition 14-26

I MODE INSTRUCTION DICTIONARY

• D R, address
Divide Fullword
1 1 0 0 1 0 DR\3 TM\2 SR\3 BR\2
[DISPLACEMENT^]

Calculates an effect ive address, EA. Divides the 64-bi t value
contained in the specif ied R and R+1 by the 32-bi t value contained in
the locat ion specif ied by EA. Stores the quotient in the specif ied R
and the remainder in R+1. Overflow may occur i f the quot ient i s l e s s
than -(2**31) or greater than (2**31)-1. Overflow and divide by 0
cause an integer exception.

If no integer exception occurs, CBIT i s r e se t t o 0. The ins t ruc t ion
leaves the values of LINK and the condition codes indeterminate.

If an integer exception occurs and b i t 8 in the keys contains 0, the
ins t ruc t ion se t s CBIT t o 1; i f b i t 8 contains 1, the ins t ruc t ion se t s
CBIT t o 1 and causes an integer exception f a u l t . For more information,
see Chapter 1 1 .

Note

R must specify an even r e g i s t e r .

This ins t ruc t ion a l so has a r e g i s t e r - t o - r e g i s t e r and an
immediate form. See Chapter 3 for more information.

^ DBLE f
Convert Single to Double Floating Point
0 1 1 0 0 0 0 F 0 1 0 0 0 1 1 0

Converts the single precision number contained in the specified
floating-point accumulator to a double precision number by toing bits
25-48 of the floating-point accumulator. Stores the result in the
floating-point accumulator. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

For 750 and 850 processors, exponent underflow is detected, but
exponent overflow is not.

14-27 Third Edition

DOC3060-192

^ DFA f,address
Double Floating Add
0 0 1 1 1 0 1 F 1 TM\2 SR\3 BR\2
[DISELACEMENT\16]

Calculates an effective address, EA. Adds the contents of the
specified DAC to the contents of the location specified by EA. Stores
the result in the DAC. An overflow causes a floating-point exception.
If no floating-point exception occurs, CBIT is reset to 0. The values
of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 11 for more information.

Note

This instruction also has a register-to-register and an
immediate form. See Chapter 3 for more information.

• DFC f,address
Double Floating Compare
0 0 0 1 1 0 1 F 1 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Compares the contents of the
specified DAC to the contents of the location specified by EA. Leaves
the values of CBIT and LINK unchanged. Sets the condition codes to the
outcome of the comparison.

Condition CC

Contents of DAC > contents of location specified by EA. GT

Contents of DAC = contents of location specified by EA. EQ

Contents of DAC < contents of location specified by EA. LT

Note

This instruction also has a register-to-register and an
immediate form. See Chapter 3 for more information.

Third Edition 14-28

I M3DE INSTRUCTION DICTIONARY

^ DFCM f
Double Precision Floating Complement
0 1 1 0 0 0 0 F 0 1 1 0 0 1 0 0

Forms the two's complement of the double precision, floating-point
number contained in the specified DAC and normalizes i t if necessary.
Stores the result in the DAC. An overflow causes a floating-point
exception. If no floating-point exception occurs, (BIT i s reset to 0.
The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and b i t 7 in the keys contains 1,
the instruction sets CBIT to 1. If b i t 7 contains 0, the instruction
sets CBIT to 1 and causes a floating-point exception faul t . For more
information, see Chapter 11.

^ DFD f,address
Double Floating Divide
0 1 1 1 1 0 0 F 1 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Divides the contents of the
specified DAC by the contents of the location specified by EA.
Normalizes the quotient if necessary. Stores the result in the DAC.
An overflow or divide by to causes a floating-point exception. If no
floating-point exception occurs, CBIT is reset to 0. The values of
LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 in the keys contains 1,
the instruction sets CBIT to 1. If bit 7 contains 0, the instruction
sets CBIT to 1 and causes a floating-point exception fault. For more
information, see Chapter 11.

Note

This instruction also has a register-to-register and an
immediate form. See Chapter 3 for more information.

^ DFL f,address
Double Floating Load
0 0 0 1 1 0 0 F 1 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Loads the 64-bit contents of the
location specified by EA into the specified DAC. Leaves the values of
LINK, CBIT, and the condition codes unchanged.

14-29 Third Edition

DOC3060-192

Note

The DFL instruction also has a register-to-register and an
immediate form. See Chapter 3 for more information.

^ DFM f,address
Double Floating Multiply
0 1 0 1 1 0 1 F 1 TM\2 SR\3 BR\2
[DISFLACEMENT\16]

Calculates an effective address, EA. Multiplies the 64-bit contents of
the location specified by EA by the contents of the specified DAC.
Normalizes the result if necessary. Stores the result in the DAC. An
overflow causes a -point exception. If no floating floating-point
exception occurs, CBIT is reset to 0. The values of LINK and the
condition codes are indeterminate.

If a floating-point exception occurs and bit 7 in the keys contains 1,
the instruction sets CBIT to 1. If bit 7 contains 0, the instruction
sets CBIT to 1 and causes a floating-point exception fault. For more
information, see Chapter 11.

Note

This instruction also has a register-to-register and an
immediate form. See Chapter 3 for more information.

^ DFS f,address
Double Floating Subtract
0 1 0 1 1 0 0 F 1 TM\2 SR\3 BR\2
[DISPLACEMENTS]

Calculates an effective address, EA. Subtracts the 64-bit contents of
the location specified by EA from the contents of the specified DAC.
Stores the result in the DAC. An overflow causes a floating-^point
exception. If no floating-point exception occurs, CBIT is reset to 0.
The values of LINK and the condition codes are indeterminate.

For 750 and 850 processors, exponent underflow is detected, but
exponent overflow is not.

If a floating-point exception occurs and bit 7 in the keys contains 1,
the instruction sets CBIT to 1. If bit 7 contains 0, the instruction
sets CBIT to 1 and causes a floating-point exception fault. For more
information, see Chapter 11.

Third Edition 14-30

I MODE INSTRUCTION DICTIONARY

Note

The DFS ins t ruc t ion a l so has a r e g i s t e r - t o - r e g i s t e r and an
immediate form. See Chapter 3 for more information.

^ DFST f raddress
Double Precision Floating Point Store
0 0 1 1 1 0 0 F 1 TM\2 SR\3 BR\2
[DISPLACEMENT^]

Calculates an ef fec t ive address, EA. Stores the contents of the
specified DAC in to the loca t ion specified by EA. Leaves the values of
LINK, (BIT, and the condition codes unchanged.

^ DH R, address
Divide Halfword
1 1 1 0 1 0 DR\3 TM\2 SR\3 BR\2
[DISPIiACEMENT\16]

Calculates an effect ive address, EA. Divides the 32-bi t dividend
contained in the specif ied R by the 16-bi t value contained in the
locat ion specif ied by EA. Stores the quotient in b i t s 1-16 of R and
the remainder in b i t s 17-32 of R. The sign of the remainder equals the
sign of the dividend. If the quotient i s l e s s than -(2**15) or greater
than (2**15)-1, an overflow occurs and causes an integer exception.
The values of LINK and the condition codes a re indeterminate. If no
integer exception occurs, (BIT i s r e se t t o 0 .

If an integer exception occurs and b i t 8 in the keys contains 0, the
ins t ruc t ion se t s (BIT to 1 . If b i t 8 contains 1, the ins t ruc t ion se t s
(BIT to 1 and causes an integer exception f a u l t . For more information,
see Chapter 1 1 .

Note

This ins t ruc t ion a l so has a r e g i s t e r - t o - r e g i s t e r and an
immediate form. See Chapter 3 for more information.

• DH1 r
Decrement r By 1
0 1 1 0 0 0 R\3 1 0 1 1 0 0 0

Decrements the contents of r by 1 and stores the result in r. If an
overflow occurs, an integer exception occurs. LINK reflects the value
of the carry. The condition codes reflect the result of the operation.
(See Table 5-3.) If no integer exception occurs, (BIT is reset to 0.

14-31 Third Edition

DOC3060-192

If an integer exception occurs and bit 8 of the keys contains 0r the
instruction sets CBIT to 1. If bit 8 contains a lf the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 11
for more information.

• DH2 r
Decrement r By 2
0 1 1 0 0 0 R\3 1 0 1 1 0 0 0

Decrements the contents of r by 2 and stores the result in r. If an
overflow occurs, an integer exception occurs. LINK reflects the value
of the carry. The condition codes reflect the result of the operation.
(See Table 5-3.) If no integer exception occurs, CBIT is reset to 0.

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 11
for more information.

^ DM address
Decrement Memory Fullword
1 1 0 1 1 0 0 0 0 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Subtracts 1 from the 32-bit integer contained in the specified location
and stores the result back in the specified location. Leaves the
values of LINK and CBIT unchanged. The condition codes reflect the
result of the operation. (See Table 5-3.)

^ DMH address
Decrement Memory Halfword
1 1 1 1 1 0 0 0 0 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Subtracts 1 from the 16-bit integer contained in the specif ied locat ion
and s tores the r e s u l t back in the specified loca t ion . Leaves the
values of LINK and CBIT unchanged. The condition codes r e f l ec t the
r e s u l t of the operation. (See Table 5-3.)

Third Edition 14-32

I MDDE INSTRUCTION DICTIONARY

• DR1 R
Decrement Register By 1
0 1 1 0 0 0 R\3 1 0 1 0 1 0 0

Decrements the contents of R by 1 and stores the result in R. An
overflow causes an integer exception. LINK contains the value of the
borrow bit. The condition codes reflect the result of the operation.
(See Table 5-3.) If no integer exception occurs, OBIT is reset to 0.

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets (BIT to 1. If bit 8 contains a 1, the instruction
sets (BIT to 1 and causes an integer exception fault. See Chapter 11
for more information.

• DR2 R
Decrement Register By 2
0 1 1 0 0 0 R\3 1 0 1 0 1 0 1

Decrements the contents of the specified R by 2 and stores the result
in R. An overflow causes an integer exception. LINK contains the
value of the borrow bit. The condition codes reflect the result of the
operation. (See Table 5-3.) If no integer exception occurs, (BIT is
reset to 0.

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets (BIT to 1. If bit 8 contains a 1, the instruction
sets (BIT to 1 and causes an integer exception fault. See Chapter 11
for more information.

^ DRN
Double Round from Quad
0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0

Converts the 112-bit value in QAC to a double precis ion f loa t ing-poin t
number. If QAC contains 0, the ins t ruc t ion ends. If b i t s 50-96 of QAC
are not t o , or b i t 48 of QAC contains 1, the ins t ruc t ion adds the value
of b i t 49 to t h a t of b i t 48 (unbiased round) and c lea r s b i t s 49-96 of
QAC to 0. If any other condition e x i s t s , no unbiased rounding occurs,
but b i t s 49-96 of QAC are s t i l l cleared t o 0. After any rounding and
clear ing occurs, the ins t ruc t ion normalizes the r e s u l t and loads i t
in to b i t s 1-64 of QAC.

If no f loat ing-point exception occurs, the ins t ruc t ion s e t s (BIT to 0.
The values of LINK and the condition codes a re indeterminate.

If a f loat ing-point exception occurs and b i t 7 of the keys contains a
1, the ins t ruc t ion se t s (BIT to 1 . If b i t 7 contains a 0, the
ins t ruc t ion se t s (BIT t o 1 and causes a f loa t ing-point exception f a u l t .
See Chapter 11 for more information.

14-33 Third Edition

DOC3060-192

Note

If the DRN instruction i s used for any system but the 9950, an
unimplemented instruction (UII) fault occurs. (See Chapter
11.)

^ DRNM
Double Round from Quad towards Negative Infinity
1 1 0 0 0 0 0 1 0 1 1 1 1 0 0 1

Converts the 112-bit value in QAC to a double precision floating-point
number. If QAC contains 0, or if bits 49-96 of QAC contain zeroes, the
instruction ends. In any other case, the instruction clears bits 49-96
to 0, normalizes the result, and places it in bits 1-64 of QAC.

If no floating-point exception occurs, the instruction sets (BIT to 0.
The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 11 for more information.

Note

If this instruction is used for any system but the 9950, an
unimplemented instruction (UII) fault occurs. (See Chapter
11.)

^ DRNP
Double Round from Quad towards Positive Infinity
0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1

Converts the 112-bit value in QAC to a double precision floating point
number. If QAC contains 0, or if bits 49-96 of QAC contain zeroes, the
instruction ends. In any other case, the instruction adds 1 to the
value contained in bit 48 of QAC, clears bits 49-96 to 0, normalizes
the result, and places it in bits 1-64 of QAC.

If no floating-point exception occurs, the instruction sets CBIT to 0.
The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 11 for more information.

Third Edition 14-34

I MDDE INSTRUCTION DICTIONARY

Note

If the DRNP instruction is used for any system but the 9950, an
unimplemented instruction (UII) fault occurs. (See Chapter
11.)

^ DRNZ
Double Round from Quad towards Zero
0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0

Converts the 112-bit value in QAC to a double precision floating-point
number. If QAC contains 0, the instruction ends. If bits 49-96 of QAC
contain zeroes and bit 1 contains 1, the instruction adds 1 to the
value contained in bit 48 of QAC, clears bits 49-96 to 0, normalizes
the result, and places it in bits 1-64 of QAC. If any other condition
exists, no rounding occurs.

If no floating-point exception occurs, the instruction sets OBIT to 0.
The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets (BIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 11 for more information.

Note

If t h i s ins t ruc t ion i s used for any system but the 9950, an
unimplemented ins t ruc t ion (UII) f au l t occurs. (See Chapter
11.)

14-35 Third Edition

DOC3060-192

^ E16S
Enter 16S Mode
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

Sets bits 4-6 of the keys to 000. Subsequent S mode instructions may
now be interpreted, and 16S address calculations may be used to form
effective addresses. Leaves the values of LINK, OBIT, and the
condition codes unchanged.

^ E32I
Enter 321 Mode
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

Sets bits 4-6 of the keys to 100. Subsequent I mode instructions may
now be interpreted, and 321 address calculations may be used to form
effective addresses. Leaves the values of LINK, CBIT, and the
condition codes unchanged.

^ E32R
Enter 32R Mode
0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1

Sets bits 4-6 of the keys to 011. Subsequent R mode instructions may
now be interpreted, and 32R address calculations may be used to form
effective addresses. Leaves the values of LINK, CBIT, and the
condition codes unchanged.

• E32S
Enter 32S Mode
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1

Sets bits 4-6 of the keys to 001. Subsequent S mode instructions may
now be interpreted, and 32S address calculations may be used to form
effective addresses. Leaves the values of LINK, CBIT, and the
condition codes unchanged.

^ E64R
Enter 64R Mode
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1

Sets bits 4-6 of the keys to 010. Subsequent R mode instructions may
now be interpreted, and 64R address calculations may be used to form
effective addresses. Leaves the values of LINK, CBIT, and the
condition codes unchanged.

Third Edition 14-36

I MODE INSTRUCTION DICTIONARY

^ E64V
Enter 64V Mode
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Sets bits 4-6 of the keys to 110. Subsequent V mode instructions may
now be interpreted, and 64V address calculations may be used to form
effective addresses. Leaves the values of LINK, (BIT, and the
condition codes unchanged.

^ EAFA far,address
Effective Address to FAR
0 0 0 0 0 0 1 0 1 1 0 0 F 0 0 0
AP\32

Builds a 36-bi t EA from the 32-bi t address pointer contained in the
ins t ruc t ion and loads i t i n t o the specified FAR. The AP b i t f i e l d i s
processed and loaded in to the b i t portion of the FAR, for d i rec t
access . Indirect ion uses the b i t f i e l d in the ind i rec t pointer (if
any). Leaves the values of CBIT, LINK, and the condition codes
unchanged.

Figure 14-2 shows the format of the EA loaded in to the specif ied FAR.

16 17 32 33 36

I RING, SEG I WORD # | BIT #

EA Format for EAFA
Figure 14-2

^ EALB address
Effective Address t o LB
1 0 0 1 1 0 0 1 0 TM\2 SR\3 BR\2
[DISPLACEMENTS]

Calculates an effect ive address, EA, and loads i t i n t o LB. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

14-37 Third Edition

DOC3060-192

^ EAR R,address
Effective Address to Register
1 1 0 0 1 1 DR\3 1M\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Loads the 32-bit EA into the
specified R. Leaves the values of LINK, CBIT, and the condition codes
unchanged.

^ EAXB address
Load XB with Effective Address
1 0 1 1 1 0 0 1 0 TM\2 SR\3 BR\2
[DISPLACEMENTS]

Calculates an effective address, EA, and loads it into XB. Leaves the
values of LINK, CBIT, and the condition codes unchanged.

• EIO address
Execute I/O
0 1 1 1 0 0 DR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Executes bits 17-32 of EA as if
they were a PIO instruction. If execution is successful, the
instruction sets the condition codes as follows:

CC Meaning

EQ Successful INA, OTA, or SKS instruction

NE Unsuccessful INA, OTA, OR SKS; any OCP

Leaves the values of LINK and CBIT unchanged. For more information
about I/O operations, see Chapter 12.

Note

This is a restricted instruction.

Third Edition 14-38

I MODE INSTRUCTION DICTKNARY

^ EMCM
Enter Machine Check Mode
0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1

Enters machine check mode 3 by loading 3 into modal bits 15-16. This
mode enables the reporting of all errors. The actions taken upon an
error depend on whether or not the machine was in process exchange
mode.

The instruction inhibits interrupts during execution of the next
instruction. Leaves the values of CBIT, LINK, and the condition codes
unchanged. See Chapter 11 for more information about checks.

If an error occurs in process exchange mode, the microcode stores the
machine state in the appropriate check vector and transfers control to
that vector, automatically dropping back to machine check mode.

If an error occurs when the machine is not in process exchange mode,
the following actions occur. If the appropriate check vector contains
a nonzero value, the processor jumps indirectly through this vector to
the check routine. If the check vector location contains 0, the
machine halts.

Note

This is a restricted instruction.

^ ENB
Enable In ter rupts
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

Enables interrupts by setting bit 1 of the modals to 1. Inhibits
interrupts for one instruction. Leaves the values of CBIT, LINK, and
the condition codes unchanged.

Note

This is a restricted instruction.

14-39 Third Edition

DOC3060-192

^ ENBL
Enable In ter rupts (Local)
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

This 850 instruction performs the same actions as ENB, except that it
is performed specifically for the local processor. Leaves the values
of LINK, CBIT, and the condition codes unchanged.

Note

This is a restricted instruction.

^ ENBM
Enable In ter rupts (Mutual)
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

For the 850, a processor checks the availability of the mutual
exclusion lock. If available, the processor sets this lock and enables
interrupts. Otherwise, it waits for the lock to be released by the
other processor and then sets the lock and enables interrupts. Leaves
the values of (BIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

^ ENBP
Enable In ter rupts (Process)
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

For the 850, a processor checks the availability of the process
exchange lock. If available, the process sets this lock and enables
interrupts. Otherwise, it waits for this lock to be released by the
other processor, and then sets the lock and enables interrupts. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

Third Edition 14-40

I MODE INSTRUCTION DICTIONARY

^ ESIM
Enter Standard I n t e r n e t Mode
0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1

Enters standard interrupt mode by resetting bit 2 of the raodals to 0.
ESIM is meaningless when the system is in process exchange mode (that
is, the value of modal bit 13 is 1). M l interrupts use location '63.
The processor services interrupts according to their relative positions
on the I/O bus. Lower devices have higher priority. Inhibits
interrupts during execution of the next instruction. Leaves the values
of LINK, CBIT, and the condition codes unchanged. Refer to Chapter 11
for more information about interrupts.

Note

This is a restricted instruction.

^ EVTM
Enter Vectored Interrupt Mode
0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1

Enters vectored interrupt mode by setting bit 2 of the modals to 1.
EVIM is meaningless when in the system is in process exchange mode
(that is, the value of modal bit 13 is 1). The processor services
interrupts according to their relative positions on the I/O bus. Lower
devices have higher priority. Interrupts occur through a location
specified by the interrupting device. Inhibits interrupts during
execution of the next instruction. Leaves the values of LINK, CBIT,
and the condition codes unchanged. Refer to Chapter 11 for more
information about interrupts.

Note

This i s a restricted instruction.

14-41 Third Edition

DOC3060-192

^ FA f,address
Floating Add
0 0 1 1 1 0 1 F 0 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Adds the contents of the
specified FAC to the 32-bit contents of the location specified by EA.
(See Chapter 6.) Stores the result in the FAC. An overflow causes a
floating-point exception. If no floating-point exception occurs, OBIT
is reset to 0. The values of LINK and the condition codes are
indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 11 for more information.

Note

This instruction also has a register-to-register and an
immediate form. See Chapter 3 for more information.

• FC f,address
Floating Compare
0 0 0 1 1 0 1 F 0 TM\2 SR\3 BR\2
[DISRLACEMENT\16]

Calculates an effective address, EA. Compares the contents of the
specified FAC to the contents of the location specified by EA. Leaves
the values of LINK and CBIT unchanged. Sets the condition codes to
reflect the outcome of the comparison:

Condition CC

Contents of FAC > contents of location specified by EA. GT

Contents of FAC = contents of location specified by EA. EQ

Contents of FAC < contents of location specified by EA. LT

Note

This instruction also has a register-to-register and an
immediate form. See Chapter 3 for more information.

Third Edition 14-42

I MOM: INSTRUCTION DICTIONARY

• FCDQ
Floating Point Convert Double to Quad
1 1 0 0 0 0 0 1 0 1 1 1 1 0 0 1

Clears FAC0 to 0. Leaves the values of (BIT, LINK, and the condition
codes unchanged.

Note

If this instruction is used for any system but the 9950, an
unimplemented instruction (UII) fault occurs. (See Chapter
11.)

• FCM f
Floating Point Complement
0 1 1 0 0 0 0 F 0 1 0 0 0 0 0 0

Forms the two's complement of the contents of the FAC and normalizes
the result if necessary. (See Chapter 6.) Stores the result in the
FAC. An overflow causes a floating-point exception. The values of
LINK and the condition codes are indeterminate. If no floating-point
exception occurs, (BIT is reset to 0.

If a floating-point exception occurs and bit 7 in the keys contains 1,
the instruction sets (BIT to 1. If bit 7 contains 0, the instruction
sets (BIT to 1 and causes a floating-point exception fault. For more
information, see Chapter 11.

^ FD f,address
Floating Divide
0 1 1 1 1 0 0 F O TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Divides the contents of the
specified FAC by the contents of the location specified by EA. (See
Chapter 6.) Stores the result in the FAC and normalizes if necessary.
A divide by to or an overflow causes a floating-point exception. If no
floating-point exception occurs, CBIT is reset to 0. The values of
LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 in the keys contains 1,
the instruction sets (BIT to 1. If bit 7 contains 0, the instruction
sets (BIT to 1 and causes a floating-point exception fault. For more
information, see Chapter 11.

14-43 Third Edition

DOC3060-192

Note

The FD ins t ruc t ion also has a r e g i s t e r - t o - r e g i s t e r and an
immediate form. See Chapter 3 for more information.

^ FL f,address
Floating Load
0 0 0 1 1 0 0 F 0 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Converts the single precision
operand to double precision and loads the result into the specified
FAC. Leaves the contents of CBIT, LINK, and the condition codes
unchanged.

Note

This ins t ruc t ion also has a r e g i s t e r - t o - r e g i s t e r and an
immediate form. See Chapter 3 for more information.

^ FLT f,R
Convert Integer to Floating Point
0 1 1 0 0 0 R\3 1 0 0 F 1 0 1

Converts the integer contained in R to a floating-point number and
stores the result in the specified FAC. The values of CBIT, LINK, and
the condition codes are indeterminate.

^ FLTH f,r
Convert Halfword Integer to Floating Point
0 1 1 0 0 0 R\3 1 0 0 F 0 1 0

Converts the halfword integer contained in r to a floating-point number
and stores the result in the specified FAC. The values of CBIT, LINK,
and the condition codes are indeterminate.

^ FM f,address
Floating Multiply
0 1 0 1 1 0 1 F 0 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effect ive address, EA. Multiplies the 32-bi t contents of
the locat ion specified by EA by the contents of the specified FAC.
(See Chapter 6.) Normalizes the r e s u l t , i f necessary/ and s to res i t in
the FAC. An exponent overflow causes a f loat ing-point exception. If

Third Edition 14-44

I MDDE INSTRUCTION DICTIONARY

no f loat ing-point exception occurs, (BIT i s r e s e t t o 0 . The values of
LINK and the condition codes a re indeterminate.

If a f loat ing-point exception occurs and b i t 7 in the keys contains 1,
the ins t ruc t ion s e t s CBIT t o 1 . If b i t 7 contains 0 , the ins t ruc t ion
se ts CBIT t o 1 and causes a f loat ing-point exception f a u l t . For more
information, see Chapter 1 1 .

Note

This ins t ruc t ion a l so has a r e g i s t e r - t o - r e g i s t e r and an
immediate form. See Chapter 3 for more information.

^ FRN
Floating Round
1 1 0 0 0 0 0 1 0 1 0 1 1 1 0 0 (R, V mode form)

This ins t ruc t ion operates on and s tores a l l r e su l t s i n the f loa t ing
accumulator.

For the 9950, the following act ions occur. If b i t s 1-48 contain 0,
then b i t s 49-64 are cleared t o 0. If b i t s 24 and 25 both contain 1,
then 1 i s added t o b i t 24, b i t s 25-48 are cleared t o 0, and the r e s u l t
i s normalized. If b i t 25 contains 1 and b i t s 26-48 are not equal t o 0,
then 1 i s added t o b i t 24, b i t s 25-48 are c leared, and the r e s u l t i s
normalized.

For the r e s t of the 50 s e r i e s , the following ac t ions occur. If b i t s
1-48 contain 0, then b i t s 49-64 are cleared t o 0. Otherwise, b i t 25 i s
added t o b i t 24, b i t s 25-48 are cleared t o 0, and the r e s u l t i s
normalized.

For a l l systems, if no f loat ing-point exception occurs, s e t s CBIT to 0.
The values of LINK and the condition codes are indeterminate.

If a f loat ing-point exception occurs and b i t 7 of the keys contains a
1, the ins t ruc t ion se t s CBIT to 1 . If b i t 7 contains a 0, the
ins t ruc t ion se t s CBIT to 1 and causes a f loa t ing-point exception f a u l t .
See Chapter 11 for more information.

14-45 Third Edition

DOC3060-192

^ FRNM f
FLoating Point Round towards Negative Infinity
0 1 1 0 0 0 0 P 0 1 1 0 0 1 1 0

Converts the 64-bit value in DAC to a single precision floating-point
number. If DAC contains 0, or if bits 25-48 of DAC contain zeroes, the
instruction ends. In any other case, the instruction clears bits 25-48
to 0, normalizes the result, and places it in DAC.

If no floating-point exception occurs, the instruction sets CBIT to 0.
The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floatingpoint exception fault.
See Chapter 11 for more information.

^ FRNP f
Floating Point Round towards Posit ive Inf in i ty
0 1 1 0 0 0 0 F 0 1 1 0 0 1 0 1

Converts the 64-bi t value in DAC t o a s ingle precis ion f loat ing-point
number. If DAC contains 0, or if b i t s 25-48 of DAC contain zeroes, the
ins t ruc t ion ends. In any other case, the ins t ruc t ion adds 1 to the
value contained in b i t 24 of DAC, c lears b i t s 25-48 to 0, normalizes
the r e s u l t , and places i t in DAC.

If no f loat ing-point exception occurs, the ins t ruc t ion se t s CBIT t o 0 .
The values of LINK and the condition codes a re indeterminate.

If a f loat ing-point exception occurs and b i t 7 of the keys contains a
1, the ins t ruc t ion se t s CBIT to 1 . If b i t 7 contains a 0, the
ins t ruc t ion se t s CBIT to 1 and causes a f loat ing-point exception f a u l t .
See Chapter 11 for more information.

^ FRNZ f
Floating Point Round towards Zero
0 1 1 0 0 0 0 F 0 1 1 0 0 1 1 1

Converts the 64-bi t value in DAC to a s ingle precis ion f loa t ing-point
number. If DAC contains 0, the ins t ruc t ion ends. If b i t s 25-48 of DAC
are not zeroes and b i t 1 contains 1, the ins t ruc t ion adds 1 to the
value contained in b i t 24 of DAC, c lears b i t s 25-48 to 0, normalizes
the r e s u l t , and places i t in DAC. If any other condition e x i s t s , no
rounding occurs.

If no f loat ing-point exception occurs, the ins t ruc t ion se t s CBIT to 0 .
The values of LINK and the condition codes are indeterminate.

Third Edition 14-46

I MDDE INSTRUCTION DICTIONARY

If a f loat ing-point exception occurs and b i t 7 of the keys contains a
1, the ins t ruc t ion s e t s (BIT to 1 . If b i t 7 contains a 0, the
ins t ruc t ion s e t s CBIT t o 1 and causes a f loa t ing-point exception f a u l t .
See Chapter 11 for more information.

^ FS f,address
Floating Subtract
0 1 0 1 1 0 0 F 0 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Subtracts the 32-bit contents of
the location specified by EA from the contents of the specified FAC.
(See Chapter 6.) Normalizes the result, if necessary, and stores it in
the FAC. An overflow causes a floating-point exception. If no
floating-point exception occurs, CBIT is reset to 0. The values of
LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 11 for more information.

Note

This ins t ruc t ion a l so has a r e g i s t e r - t o - r e g i s t e r and an
immediate form. See Chapter 3 for more information.

^ FST f ,address
Floating Store
0 0 1 1 1 0 0 F 0 TM\2 SR\3 BR\2
[DISELACEMENT\16]

Calculates an e f fec t ive address, EA. Stores the contents of the
specified FAC in to the 32-bi t locat ion specif ied by EA. (See Chapter
6.) If the exponent contained in the FAC i s too la rge t o be expressed
in 8 b i t s , a floating-^point exception (store exception) occurs. If no
exception occurs, the ins t ruc t ion se t s CBIT to 0 . At the end of the
ins t ruc t ion , the values of LINK and the condit ion codes are
indeterminate.

If a f loa t ing-point exception occurs and b i t 7 of the keys contains a
1, the ins t ruc t ion se t s CBIT to 1. If b i t 7 contains a 0, the
ins t ruc t ion s e t s CBIT t o 1 and causes a f loat ing-point exception f a u l t .
See Chapter 11 for more information. In e i ther case , a f loat ing-point
exception leaves the contents of the memory loca t ion in an
indeterminate s t a t e .

14-47 Third Edition

DOC3060-192

HLT
Halt
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Halts computer operation. The program counter points to the
instruction that would have been executed if execution had not been
stopped. The supervisor terminal indicates a halt. Leaves the values
of LINK, GBIT, and the condition codes unchanged.

This instruction saves the contents of registers in a memory location
specified by the RSAVPTR. The contents of RSAVPTR can be accessed by
an LELR/STLR instruction with address '40037. The registers are saved
in their physical order. (See Chapter 9 for the format of these
register files.) The saved register file order is shown in Table 14-3.

Table 14-3
Order of Saved Registers After HLT

9950 850 Rest of 50 Series

User Reg Set 1
User Reg, Set 2
User Reg Set 3
User Reg Set 4
Microcode Reg File,
Set 2

Indirect Reg Set
Microcode Reg File,

Set 1
DMx Reg File

ISP #1:
User Reg Set 1
User Reg Set 2
EMx Reg File
Microcode Reg File

ISP #2:
User Reg Set 1
User Reg Set 2
EMx Reg File
Microcode Reg File

User Reg Set 1
User Reg Set 2
EMx Reg File
Microcode Reg File

Note

This i s a r e s t r i c t ed ins t ruc t ion .

Third Edition 14-48

I JYDDE INSTRUCTIDN DICTIONARY

^ I R faddress
Interchange Register and Memory Fullword
1 0 0 0 0 1 DR\3 TM\2 SR\3 BR\2
[DISPLACEMEMT\16]

Calculates an ef fec t ive address, EA. Interchanges the 32-bi t value
contained in the specif ied R with the 32-bi t value contained in the
locat ion specif ied by EA. Leaves the values of LINK, CBIT, and the
condition codes unchanged.

Note

This ins t ruc t ion a lso has a r e g i s t e r - t o - r e g i s t e r form. See
Chapter 3 for more information.

^ ICBL r
Interchange Bytes and Clear Left
0 1 1 0 0 0 R\3 0 1 1 0 1 0 1

Interchanges b i t s 1-8 and b i t s 9-16 of the specif ied r , then loads 0
into b i t s 1-8 of r . Leaves the values of LINK, CBIT, and the condition
codes unchanged.

^ ICBR r
Interchange Bytes and Clear Right
0 1 1 0 0 0 R\3 0 1 1 0 1 1 0

Interchanges bits 1-8 and bits 9-16 of the specified r, then loads 0
into bits 9-16 of r. Leaves the values of LINK, CBIT, and the
condition codes unchanged.

^ ICHL r
Interchange Halfwords and Clear Left
0 1 1 0 0 0 R\3 0 1 1 0 0 0 0

Interchanges the contents of bits 1-16 and bits 17-32 of the specified
R, then loads zeroes into bits 1-16 of R. Leaves the values of LINK,
CBIT, and the condition codes unchanged.

14-49 Third Edition

DOC3060-192

^ ICHR r
Interchange Halfwords and Clear Right
0 1 1 0 0 0 R\3 0 1 1 0 0 0 1

Interchanges the contents of bits 1-16 and bits 17-32 of the specified
Rf then loads zeroes into bits 17-32 of R. Leaves the values of LINK,
CBIT, and the condition codes unchanged.

^ IH r,address
Interchange r and Memory Halfword
1 0 1 0 0 1 DR\3 TM\2 SR\3 BR\2
[DISPLACEMEM?\16]

Calculates an effective address, EA. Interchanges the value contained
in the specified r with the 16-bit value contained in the location
specified by EA. Leaves the values of LINK, CBIT, and the condition
codes unchanged.

Note

This instruction also has a register-to-register form. See
Chapter 3 for more information.

• IH1 r
Increment r By 1
0 1 1 0 0 0 R\3 1 0 1 0 1 1 0

Increments the contents of the specified r by 1 and stores the result
in r . An overflow causes an integer exception. LINK reflects the
state of the carry. The condition codes reflect the result of the
operation. (See Table 5-3.) If no integer exception occurs, CBIT i s
reset to 0.

If an integer exception occurs and bi t 8 of the keys contains 0, the
instruction sets CBIT to 1. If b i t 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception faul t . See Chapter 11
for more information.

• IH2 r
Increment r By 2
0 1 1 0 0 0 R\3 1 0 1 0 1 1 1

Increments the contents of the specified r by 2 and stores the resul t
in r . An overflow causes an integer exception to occur. LINK reflects
the state of the carry. The condition codes reflect the result of the
operation. (See Table 5-3.) If no integer exception occurs, CBIT i s
reset to 0.

Third Edition 14-50

I MODE INSTRUCTION DICTIONARY

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets (BIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 11
for more information.

^ IM address
Increment Memory Fullword
1 0 0 1 1 0 0 0 0 TM\2 SR\3 BR\2
[DISPLACEMENT^]

Adds 1 to the 32-bi t integer contained in the specif ied locat ion and
s tores the r e s u l t back in the specified loca t ion . Leaves the values of
LINK and CBrr unchanged. The condition codes r e f l ec t the r e s u l t of the
operation. (See Table 5-3.)

^ IMH address
Increment Memory Halfword
1 0 1 1 1 0 0 0 0 TM\2 SR\3 BR\2
[DISPLACEMENTS]

Adds 1 to the 16-bi t integer contained in the specif ied locat ion and
s tores the r e s u l t back in the specified loca t ion . Leaves the values of
LINK and CBIT unchanged. The condition codes r e f l ec t the r e s u l t of the
operation. (See Table 5-3.)

^ INBC address
Interrupt Notify Beginning, d e a r Active Interrput
0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1
AP\32

Notif ies a semaphore a t the specif ied address during phantom in ter rupt
code. Restores the s t a t e of the interrupted process by loading b i t s
1-16 of PB, b i t s 17-32 of the program counter, and the keys from
microcode temporary r eg i s t e r s PSWPB and PSWKEYS. Places the no t i f i ed
process a t the beginning of the appropriate p r i o r i t y level queue.
Issues a CAI pulse t o c lear the current ly ac t ive i n t e r rup t .

A process exchange w i l l occur if the not i f ied process i s of a higher
p r i o r i t y than the interrupted process. The values of CBIT, LINK, and
the condition codes are indeterminate. See Chapter 11 for more
information.

14-51 Third Edition

EOC3060-192

Note

INBC is a restricted instruction.

This instruction is normally used to transfer from phantom
interrupt code to an interrupt process.

^ INBN address
Interrupt Notify Beginning
0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1
AP\32

Notifies a semaphore at the specified address during phantom interrupt
code. Restores the state of the interrupted process by loading bits
1-16 of PB, bits 17-32 of the program counter, and the keys from
microcode temporary registers PSWPB and PSWKEYS. Places the notified
process at the beginning of the appropriate priority level queue. Does
not issue a CAI pulse to clear the currently active interrupt.

A process exchange will occur if the notified process is of a higher
priority than the interrupted process. The values of CBIT, LINK, and
the condition codes are indeterminate. See Chapter 11 for more
information.

Note

This is a restricted instruction.

This instruction is normally used to transfer from phantom
interrupt code to an interrupt process.

• INEC address
Interrupt Notify End, Clear Active Interrupt
0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0
AP\32

Notifies a semaphore at the specified address during phantcm interrupt
code. Restores the state of the interrupted process by loading bits
1-16 of PB, bits 17-32 of the program counter, and the keys from
microcode temporary registers PSWPB and PSWKEYS. Issues a CAI pulse to
clear the currently active interrupt. Places the notified process at
the end of the appropriate priority level queue.

A process exchange will occur if the notified process is of a higher
priority than the interrupted process. The values of CBIT, LINK and
the condition codes are indeterminate. See Chapter 11 for more
information.

Third Edition 14-52

I MDDE INSTRUCTION DICTIONARY

Note

INEC is a restricted instruction.

This instruction is normally used to transfer from phantom
interrupt code to an interrupt process.

^ INEN address
Interrupt Notify End
0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0
AP\32

Notifies a semaphore at the specified address during phantom interrupt
code. Restores the state of the interrupted process by loading bits
1-16 of PB, bits 17-32 of the program counter, and the keys from
microcode temporary registers PSWPB and PSWKEYS. Does not issue a CAI
pulse to clear the currently active interrupt. Places the notified
process at the end of the appropriate priority level queue.

A process exchange will occur if the notified process is of a higher
priority than the interrupted process. The values of (BIT, LINK and
the condition codes are indeterminate. See Chapter 11 for more
information.

Note

This is a restricted instruction.

This instruction is normally used to transfer from phantom
interrupt code to an interrupt process.

^ INH
Inh ib i t In te r rupts
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

Inhibits interrupts by setting bit 1 of the modals to 0. The processor
ignores any interrupt requests that are made over the I/O bus. This
instruction takes effect immediately. Leaves the values of LINK, CBIT,
and the condition codes unchanged.

Note

This i s a r e s t r i c t e d i n s t ruc t ion .

14-53 Third Edition

EOC3060-192

^ INHL
Inh ib i t In terrupts (Local)
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

This 850 instruction performs the same actions as INH does. Leaves the
values of LINK, (BIT, and the condition codes unchanged.

Note

This is a restricted instruction.

^ INHM
Inh ib i t In ter rupts (Mutual)
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

For the 850, a processor checks the availability of the mutual
exclusion lock. If available, the processor sets this lock and
inhibits interrupts. Otherwise, it waits for the lock to be released
by the other processor and then sets the lock and inhibits interrupts.
Leaves the values of (BIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

^ INHP
Inh ib i t In ter rupts (Process)
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

For the 850, a processor checks the availability of the process
exchange lock. If available, the processor sets it and inhibits
interrupts. Otherwise, it waits for the lock to be released by the
other processor, and then sets the lock and inhibits interrupts. It
also inhibits interrupts in the local processor. Leaves the values of
(BIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

Third Edition 14-54

I MDDE INSTRUCTION DICTIONARY

• INK r
Input Keys
0 1 1 0 0 0 R\3 0 1 1 1 0 0 0

Loads the contents of the R-mode keys in to the specif ied r . Leaves the
values of LINK, (BIT, and the condition codes unchanged. Reads the
low-order 8 b i t s of the S reg i s te r along with the high-order 8 b i t s of
the keys r e g i s t e r .

^ INT f,R
Convert Floating Point t o Integer
0 1 1 0 0 0 R\3 1 0 0 F 0 1 1

Converts the double precision f loat ing-point number contained in the
specified f loa t ing accumulator to a 32-bi t integer and s to res the
r e s u l t in R. Ignores the f rac t ional par t of the f loa t ing-poin t number.
Overflow occurs i f the value in the f loat ing accumulator i s l e s s than
-2**31 or greater than (2**31)-1. An overflow causes a f loa t ing-poin t
exception. If no f loa t ing-point exception occurs, CBIT i s r e s e t t o 0.
The values of LINK and the condition codes a re indeterminate.

If a f loat ing-point exception occurs and b i t 7 of the keys contains a
1, the ins t ruc t ion s e t s CBIT to 1 . If b i t 7 contains a 0, the
ins t ruc t ion s e t s CBIT to 1 and causes a f loat ing-point exception f a u l t .
See Chapter 11 for more information.

^ INTH f , r
Convert Floating Point Number to Halfword Integer
0 1 1 0 0 0 R\3 1 0 0 F 0 0 1

Converts the double precis ion f loat ing-point number contained in the
specif ied f loa t ing accumulator t o an integer and s to res the r e s u l t in
r . Overflow occurs i f the value in the f loa t ing accumulator i s l e s s
than -2**15 or greater than (2**15)-1. An overflow causes a
f loat ing-point exception. If no f loat ing-point exception occurs, CBIT
i s r e se t t o 0.

At the end of t h i s i n s t ruc t ion , the contents of R b i t s 17-32 are
indeterminate. The values of LINK and the condition codes are
indeterminate.

If a f loat ing-point exception occurs and b i t 7 in the keys contains 1,
the ins t ruc t ion se t s CBIT t o 1 . If b i t 7 contains 0 , the ins t ruc t ion
se t s CBIT to 1 and causes a f loat ing-point exception f a u l t . For more
information, see Chapter 1 1 .

14-55 Third Edition

DOC3060-192

• IR1 R
Increment Register By 1
0 1 1 0 0 0 R\3 1 0 1 0 0 1 0

Increments the contents of the specified R by 1 and stores the result
in R. An overflow causes an integer exception fault. If no integer
exception occurs, (BIT is reset to 0. LINK contains the carry-out bit.
The condition codes reflect the result of the operation. (See Table
5-3.)

If an integer exception occurs and bit 8 in the keys contains 0, the
instruction sets (BIT to 1. If bit 8 contains 1, the instruction sets
(BIT to 1 and causes an integer exception fault. (See Chapter 11.)

• IR2 R
Increment Register By 2
0 1 1 0 0 0 R\3 1 0 1 0 0 1 1

Increments the contents of the specified R by 2 and stores the result
in R. An overflow causes an integer exception fault. If no integer
exception occurs, (BIT is reset to 0. LINK contains the carry-out bit.
The condition code contain the result of the operation. (See Table
5-3.)

If an integer exception occurs and bit 8 in the keys contains 0, the
instruction sets (BIT to 1. If bit 8 contains 1, the instruction sets
(BIT to 1 and causes an integer exception fault. For more information,
see Chapter 11.

• IRB r
Interchange r Bytes
0 1 1 0 0 0 R\3 0 1 1 0 1 0 0

Interchanges bits 1-8 and bits 9-16 of the specified r. Leaves the
values of LINK, CBTT, and the condition codes unchanged.

• IRH R
Interchange Register Halves
0 1 1 0 0 0 R\3 0 1 0 1 1 1 1

Interchanges the contents of bits 1-16 and bits 17-32 of the specified
R. Leaves the values of LINK, (BIT, and the condition codes unchanged.

Third Edition 14-56

I MDDE INSTRUCTION DICTIONARY

^ IRTC
Interrupt Return, Clear Active Interrupt
0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1

Returns from an i n t e r rup t . Issues a CM pulse t o c lear the current ly
act ive i n t e r rup t . Restores the s t a t e exis t ing before the in te r rup t by
loading b i t s 1-16 of PB, b i t s 17-32 of the program counter, and the
keys from the values saved in microcode temporary r eg i s t e r s PSWEB and
PSWKEYS.

Note

This is a restricted instruction.

^ IRON
Interrupt Return
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1

Returns from an interrupt. Does not issue a CAI pulse to clear the
currently active interrupt. Restores the state existing before the
interrupt by loading bits 1-16 of PB, bits 17-32 of the program
counter, and the keys from the values saved in microcode temporary
registers PSWPB and PSWKEYS.

Note

This is a restricted instruction.

^ ITLB
Inval idate STLB Entry
0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1

Invalidates the STLB entry that corresponds to the virtual address
contained in GR2. The values of (BIT, LINK, and the condition codes
are indeterminate. You must execute this instruction whenever you
change the page table entry for the given address.

If you change a SEW or DTAR (explained in Chapter 4), you usually have
to invalidate the entire STLB by issuing the instruction PTLB. A 0 in
the segment number portion of GR2 invalidates the IOTLB entry
corresponding to the address specified by GR2.

Note

This is a restricted instruction.

14-57 Third Edition

DOC3060-192

• JMP address
Jump
1 0 1 1 1 0 0 0 1 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA, and loads it into the program
counter. Leaves the values of LINK, CBIT, and the condition codes
unchanged.

^ JSR R,address
Jump to Subroutine
1 1 1 0 1 1 DR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Saves the 16-bit word number
position of the return address in the specified R. Loads the program
counter with the current segment location specified by bits 17-32 of
the EA. Leaves the values of LINK, CBIT, and the condition codes
unchanged.

Note

This instruction is useful for calling routines within the
current segment only.

• JSXB address
Jump and Set XB
1 1 0 1 1 0 0 0 1 TM\2 SR\3 BR\2

Calculates an effective address, EA. Loads the contents of the program
counter into XB. Loads EA into the program counter. Leaves the values
of CBIT, LINK, and the condition codes unchanged.

Note

This instruction can make subroutine cal ls outside the current
segment as well as within.

Third Edition 14-58

I MDEE INSTRUCTION DICTIONARY

^ L R, address
Load Full Word
0 0 0 0 0 1 DR\3 TM\2 SR\3 BR\2
[DISELflCEMENT\16]

Calculates an effect ive address, EA. Loads EA in to the specif ied R.
Leaves the values of LINK, CBIT, and the condition codes unchanged.

Note

This ins t ruc t ion a lso has a r e g i s t e r - t o - r e g i s t e r and an
immediate form. See Chapter 3 for more information.

^ LCEQ R
Load Register on EQ
0 1 1 0 0 0 R\3 1 1 0 1 0 1 1

If the condition codes reflect an equal to 0 condition, the instruction
loads the specified R with a 1. If the condition codes reflect a not
equal to 0 condition, the instruction loads R with a 0. Leaves the
values of LINK, CBIT, and the condition codes unchanged.

^ LOGE R
Load Register on GE
0 1 1 0 0 0 R\3 1 1 0 1 1 0 0

If the condition codes reflect a greater than or equal to 0 condition,
the instruction loads the specified R with a 1. If they reflect a less
than 0 condition, the instruction loads R with a 0. Leaves the values
of LINK, CBTT, and the condition codes unchanged.

^ LCGT R
Load Register on GT
0 1 1 0 0 0 R\3 1 1 0 1 1 0 1

If the condition codes re f l ec t a greater than 0 condit ion, the
ins t ruc t ion loads the specif ied R with a 1. If they re f l ec t a l e s s
than or equal t o 0 condit ion, the ins t ruc t ion loads R with a 0. Leaves
the values of LINK, CBIT, and the condition codes unchanged.

14-59 Third Edition

DOC3060-192

^ LCLE R
Load Register on LE
0 1 1 0 0 0 R\3 1 1 0 1 0 0 1

If the condition codes reflect a less than or equal to 0 condition, the
instruction loads the specified R with a 1. If they reflect a greater
than 0 condition, the instruction loads R with a 0. Leaves the values
of LINK, (BIT, and the condition codes unchanged.

^ LCLT R
Load Register on LT
0 1 1 0 0 0 R\3 1 1 0 1 0 0 0

If the condition codes reflect a less than 0 condition, the instruction
loads the specified R with a 1. If they reflect a greater than or
equal to 0 condition, the instruction loads R with a 0. Leaves the
values of LINK, OBIT, and the condition codes unchanged.

^ LCNE R
Load Register on NE
0 1 1 0 0 0 R\3 1 1 0 1 0 1 0

If the condition codes reflect a not equal to 0 condition, the
instruction loads the specified R with a 1. If they reflect an equal
to 0 condition, the instruction loads R with a 0. Leaves the values of
LINK, (BIT, and the condition codes unchanged.

^ LDAR R,address
Load Addressed Register
1 0 0 1 0 0 DR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates a doubleword effective address, EA. Loads the specified R
with the contents of the register file location specified by the word
portion of EA. Bit 2 and bit 12 of the word portion of EA determine
the actions of this instruction.

Third Edition 14-60

I NODE INSTRUCTION DICTIONARY

Bit 2 Bit 12 Action

1* Ignore b i t s 1 and 3-9. The word port ion of EA
specif ies an absolute r eg i s t e r number from
0- '377.

0* 1 Bits 13-16 of the word port ion of EA specify one
of the r e g i s t e r s '20- '37 in the current r eg i s t e r
s e t .

0 0 Bits 13-16 of the word port ion of EA specify one
of the r eg i s t e r s 0-'17 in the current r eg i s t e r
s e t .

*This i s a r e s t r i c t e d ins t ruc t ion .

Leaves the values of CBIT and LINK unchanged; the values of the
condition codes are indeterminate. See Qiapter 9 for more information
about r eg i s t e r s e t s .

Note

If the current ring is not 0 and EA is outside the range of
0-17, inclusive, any access causes an RXM violation.

^ LDC f l r , r
Load Character
0 1 1 0 0 0 R\3 1 1 1 FLR 0 1 0

If the contents of the specified FLR are nonzero, the instruction loads
the single character pointed to by the specified FAR into bits 9-16 of
r and loads zeroes into bits 1-8. Updates the contents of the FAR by 8
(one byte) so that they point to the next character. Decrements the
contents of the specified FLR by 1. Sets the condition codes to NE.
Leaves the values of CBIT and LINK unchanged.

If the contents of the specified FLR are 0, the instruction sets the
condition codes to EQ.

Note

This instruction uses FARO when FLR0 is specified, and FARl
when FLR1 is specified.

14-61 Third Edition

DOC3060-192

• LEQ R
Load Register on Equal t o 0
0 1 1 0 0 0 R\3 0 0 0 0 0 1 1

If the contents of the specified R are equal to 0, the instruction
loads R with a 1. If not equal to 0, the instruction loads R with a 0.
Leaves the values of LINK and CBIT unchanged. The condition codes
reflect the result of the comparison. (See Table 5-3.)

• LF R
Logic Set False
0 1 1 0 0 0 R\3 0 1 0 1 1 0 0

Loads the specif ied R with 0. Leaves the values of LINK and CBIT
unchanged. Sets the condition codes t o the outcome of the comparison.
(See Table 5-3.)

^ LFEQ f,R
Load Register on Floating Accumulator Equal t o 0
0 1 1 0 0 0 R\3 0 0 1 F 0 0 1

If the contents of the specified f loa t ing accumulator a re equal t o 0,
the ins t ruc t ion loads the specified R with a 1; i f not equal t o 0, the
ins t ruc t ion loads R with a 0. Leaves the values of LINK and CBIT
unchanged. The condition codes r e f l ec t the r e s u l t of the comparison.
(See Table 5-3.)

^ LPGE f,R
Load Register on Floating Accumulator Greater Than or Equal to 0
0 1 1 0 0 0 R\3 0 0 1 F 1 0 0

If the contents of the specified floating accumulator are greater than
or equal to 0, the instruction loads the specified R with a 1; if less
than 0, the instruction loads R with a 0. Leaves the values of LINK
and CBIT unchanged. The condition codes reflect the result of the
comparison. (See Table 5-3.)

• LFGT f ,R
Load Register on Floating Accumulator Greater Than 0
0 1 1 0 0 0 R\3 0 0 1 F 1 0 1

If the contents of the specified floating accumulator are greater than
0, the instruction loads the specified R with a 1; if less than or
equal to 0, the instruction loads R with a 0. Leaves the values of
LINK and CBIT unchanged. The condition codes reflect the result of the
comparison. (See Table 5-3.)

Third Edition 14-62

I MDDE INSTRUCTION DICTIONARY

• LFLE ffR
Load Register on Floating Accumulator Less Than or Equal t o 0
0 1 1 0 0 0 R\3 0 0 1 F 0 0 1

If the contents of the specif ied f loa t ing accumulator a re l e s s than or
equal t o 0, the ins t ruc t ion loads the specified R with a 1; i f greater
than 0, the ins t ruc t ion loads R with a 0. Leaves the values of LINK
and CBIT unchanged. The condition codes re f l ec t the r e s u l t of the
comparison. (See Table 5-3.)

^ LFLI f i r , d a t a
Load FLR Iirmediate
0 0 0 0 0 0 1 0 1 1 0 0 F 0 0 1
INTEGER\16

Loads the 16-bit, unsigned integer contained in the second word of the
instruction into the specified FLR. Clears the upper bits of the FLR.
Leaves the values of CBIT, LINK, the condition codes, and the
associated FAR unchanged.

• LFLT f,R
Load Register on Floating Accumulator Less Than 0
0 1 1 0 0 0 R\3 0 0 1 F 0 0 0

If the contents of the specif ied f loa t ing accumulator a re l e s s than 0,
the ins t ruc t ion loads the specified R with a 1; i f greater than or
equal t o 0, the ins t ruc t ion loads R with a 0. Leaves the values of
LINK and CBIT unchanged. The condition codes r e f l ec t the r e s u l t of the
comparison. (See Table 5-3.)

^ LFNE f,R
Load Register on Floating Accumulator Not Equal t o 0
0 1 1 0 0 0 R\3 0 0 1 F 0 1 0

If the contents of the specif ied f loa t ing accumulator a re not equal t o
0, the ins t ruc t ion loads the specified R with a 1; i f equal t o 0, the
ins t ruc t ion loads R with a 0. Leaves the values of LINK and CBIT
unchanged. The condition codes r e f l ec t the r e s u l t of the comparison.
(See Table 5-3.)

14-63 Third Edition

DOC3060-192

• LGE R
Load Register on Greater Than or Equal t o 0
0 1 1 0 0 0 R\3 0 0 0 0 1 0 0

If the contents of the specified R are greater than or equal t o 0, the
ins t ruc t ion loads R with a 1; i f l e s s than 0, the ins t ruc t ion loads R
with a 0. Leaves the values of LINK and CBIT unchanged. The condition
codes r e f l ec t the r e su l t of the comparison. (See Table 5-3.)

• LGT R
Load Register on Greater Than 0
0 1 1 0 0 0 R\3 0 0 0 0 1 0 1

If the contents of the specified R are greater than 0, the ins t ruc t ion
loads R with a 1; i f l e s s than or equal t o 0, the ins t ruc t ion loads R
with a 0. Leaves the values of LINK and CBIT unchanged. The condition
codes r e f l ec t the r e s u l t of the comparison. (See Table 5-3.)

• LH r ,address
Load Halfword
0 0 1 0 0 1 DR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effect ive address, EA. Loads the 16-bi t contents
contained in the locat ion specified by EA in to r . Leaves the values of
LINK, CBIT, and the condition codes unchanged.

Note

This ins t ruc t ion also has a r e g i s t e r - t o - r e g i s t e r and an
immediate form. See Chapter 3 for more information.

^ LHEQ r
Load r on EQ
0 1 1 0 0 0 R\3 0 0 0 1 0 1 1

If the contents of the specified r a re equal t o 0f the ins t ruc t ion
loads r with a 1; i f not equal t o 1, the ins t ruc t ion loads r with a 0.
Leaves the values of LINK and CBIT unchanged. The condition codes
r e f l ec t the r e s u l t of the comparison. (See Table 5-3.)

Third Edition 14-64

I K)DE INSTRDCTIDN DICTIONARY

^ LHGE r
Load r on GE
0 1 1 0 0 0 R\3 0 0 0 0 1 0 0

If the contents of the specified r are greater than or equal to 0, the
instruction loads r with a 1; if less than 0, the instruction loads r
with a 0. Leaves the values of LINK and CBIT unchanged. The condition
codes reflect the result of the comparison. (See Table 5-3.)

^ LHGT r
Load r on GT
0 1 1 0 0 0 R\3 0 0 0 1 1 0 1

If the contents of the specified r are greater than 0f the instruction
loads r with a 1; if less than or equal to 0, the instruction loads r
with a 0. Leaves the values of LINK and CBIT unchanged. The condition
codes reflect the result of the comparison. (See Table 5-3.)

• LHLl r,address
Load Halfword Shifted Left by 1
0 0 0 1 0 0 DR\3 TM\2 SR\3 BR\2
[DISELACEMENT\16]

Calculates an effective address, EA. Shifts the contents of the
location specified by EA left one bit and stores the result in the
specified r. Leaves the values of LINK. CBIT, and the condition codes
unchanged.

Note

LHL2 a lso has a r e g i s t e r - t o - r e g i s t e r form. See Chapter 3 for
more information.

^ LHL2 r ,address
Load Halfword Shifted Left by 2
0 0 1 1 0 0 DR\3 TM\2 SR\3 BR\2
[DISELACEMENT\16]

Calculates an effect ive address, EA. Shif ts the 16-bi t contents of the
locat ion specif ied by EA l e f t two b i t s and s to res the r e s u l t i n the
specified r . Leaves the values of LINK, CBIT, and the condition codes
unchanged.

14-65 Third Edition

DOC3060-192

Note

LHL2 also has a r eg i s t e r - to - reg i s t e r form. See Chapter 3 for
more information.

^ LHL3 rraddress
Load Halfword Shifted Left by 3
0 1 1 1 0 1 DR\3 TM\2 SR\3 BR\2
[DISPLACEMENT^]

Calculates an effect ive address, EA. Shif ts the 16-bi t contents of the
locat ion specified by EA l e f t three b i t s and s tores the r e s u l t in the
specified r . Leaves the values of LINK, CBIT, and the condition codes
unchanged.

Note

This ins t ruc t ion also has a r eg i s t e r - t o - r eg i s t e r form. See
Chapter 3 for more information.

^ LHLE r
Load r on LE
0 1 1 0 0 0 R\3 0 0 0 1 0 0 1

If the contents of the specified r are l e s s than or equal t o 0, the
ins t ruc t ion loads r with a 1; i f greater than 0, the ins t ruc t ion loads
r with 0 . Leaves the values of LINK and CBIT unchanged. The condition
codes r e f l ec t the r e su l t of the comparison. (See Table 5-3.)

• LHLT r
Load r on LT
0 1 1 0 0 0 R\3 0 0 0 0 0 0 0

If the contents of the specified r are l e s s than 0, the ins t ruc t ion
loads r with a 1; i f greater than or equal t o 0, loads r with a 0.
Leaves the values of LINK and CBIT unchanged. The condition codes
r e f l ec t the r e s u l t of the comparison. (See Table 5-3.)

Third Edition 14-66

I MODE INSTRUCTION DICTIONARY

• LHNE r
Load r on NE
0 1 1 0 0 0 R\3 0 0 0 1 0 1 0

If the contents of the specified r are not equal to 0, the instruction
loads r with a 1; if equal to 0, the instruction loads r with a 0.
Leaves the values of LINK and CBIT unchanged. The condition codes
reflect the result of the comparison. (See Table 5-3.)

LIOT address
Load I/O TLB
0 0 0 0 0 0 0 0 0 0
AP\32

1 0 0 1 0 0

Loads a specif ied IOTLB ent ry . Table 14-4 shows the contents of the
LIOT entry and the or ig in of the information. The values of CBIT,
LINK, and the condition codes a re indeterminate.

Table 14-4
LIOT Data

Origin Description

AP in LIOT | Virtual address in segment 0 (calculated
from the EA).

Page table | Physical address (translation of the
virtual address) obtained from segment
0. If the fault bit is set
to 1, a page fault occurs.

L register | Target virtual address. This is the
segment number and page number of the
virtual address that will be used by
procedures accessing this information.
This is used to help invalidate the
proper locations in the cache. This is
provided in L as a virtual address,
the low-order 10 bits (word number in
the page) and the segment number are
ignored.

Note

This is a restricted instruction.

14-67 Third Edition

DOC3060-192

^ LLB R
Load Register on Less Than or Equal to 0
0 1 1 0 0 0 R\3 0 0 0 0 0 0 1

If the contents of the specified R are less than or equal to 0r the
instruction loads R with a 1; if greater than 0, the instruction loads
R with a 0. Leaves the values of LINK and (BIT unchanged. The
condition codes reflect the result of the comparison. (See Table 5-3.)

• LLT R
Load Register on Less Than 0
0 1 1 0 0 0 R\3 0 0 0 0 0 0 0

If the contents of the specified R are less than 0, the instruction
loads R with a 1; if greater than or equal to 0, the instruction loads
R with a 0. Leaves the values of LINK and (BIT unchanged. The
condition codes reflect the result of the comparison. (See Table 5-3.)

• LMCM
Leave Machine Check Mode
0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1

Leaves machine check mode by resetting bi ts 15-16 of the modals to 00.
If a machine parity error occurs in th is mode, the hardware sets the
machine check flag but no check (V mode) or interrupt (Sr R modes)
occurs. Inhibits the machine for one instruction. Leaves the values
of LINK, (BIT, and the condition codes unchanged.

Note

This is a restricted instruction.

• LNE R
Load Register on Not Equal to 0
0 1 1 0 0 0 R\3 0 0 0 0 0 1 0

If the contents of the specified R are not equal to 0f the instruction
loads r with a 1; if equal to 0, the instruction loads r with a 0.
Leaves the values of LINK and (BIT unchanged. The condition codes
reflect the result of the comparison. (See Table 5-3.)

Third Edition 14-68

I MDDE INSTRUCTION DICTIONARY

^ LPID
Load Process ID
0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1

Loads the process ID from bits 1-12 of A into RPID (the process ID
register, which contains the 10 most significant bits of the user's
address space). Leaves the values of CBIT, LINK, and the condition
codes unchanged.

Note

This is a restricted instruction.

^ LPSW address
Load PSW
0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1

Changes the status of the processor by loading new values into the
program counter, keys, and modals. Inhibits interrupts for one
instruction.

Addresses a four-word block at the specified location. The block has
the format:

Word in Block Contents

1-2 New program counter (ring, segment, word numbers)

3 New keys

4 New modals

Loads the program counter and keys of the currently running process
with the contents of the first three words, then loads the processor
modals with the contents of the fourth word.

The new value of bit 15 in the keys, the in-dispatch bit, can
temporarily halt execution of the current process. This bit is altered
by software only during a cold or a warm start. If bit 15 is 0, the
currently executing process will continue to execute, but at a location
defined by the new value of the program counter. If bit 15 is 1, the
processor enters the dispatcher and dispatches the ready process with
the highest priority. When execution resumes for the process that was
temporarily halted, execution resumes at the point defined by the value
of the new program counter.

Regardless of the value of bit 15, the new value of the modals takes
effect immediately, since the modals are associated with the processor,
not the process.

14-69 Third Edition

DOC3060-192

The LPSW instruction loads the four words of the register set that the
STLR instruction cannot correctly load. STLR does not update the
separate hardware registers the processor uses to maintain duplicate
information for optimization.

Never use this instruction to change bits 9-11 of the modals. These
bits specify the current user register set. This means that if you do
not know the current value of these bits, you must do the following
each time you want to execute an LPSW:

1. Inhibit interrupts.

2. Read the current values of modal bits 9-11 with an LDLR '24
instruction.

3. Mask the old values of the modal bits into the new information.

4. Load the new information into the modals with an LPSW.

For the two common uses of LPSW, you do not have to perform this
sequence, since the values of modal bits 9-11 are predictable. When
you use LPSW after a Master Clear to turn on processor exchange mode,
bits 9-11 are 010 because the processor is always initialized to
register set 2. When you use LPSW to return from a fault, check, or
interrupt, simply reload the values stored by the break because these
values are still correct.

You should not use LPSW to set bits 16 (the save-done bit) or 15 (the
in-dispatcher bit) of the keys, unless you are merely loading status
following a fault, check, or interrupt. When issuing LPSW after a
Master Clear, make sure you load zeroes into both of these bits.

Note

This is a restricted instruction.

• LT R
Logic Set True
0 1 1 0 0 0 R\3 0 0 0 1 1 1 1

Loads the specified R with 1 . Leaves the values of LINK and (BIT
unchanged. Sets the condition codes t o the outcome of the operation.
(See Table 5-3.)

Third Edition 14-70

I MODE INSTRUCTION DICTIONARY

^ M R, address
Multiply Fullword
1 0 0 0 1 0 DR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effect ive address, EA. Mult ipl ies the 32-bi t value
contained in the locat ion specified by EA by the 32-bi t value contained
in the specif ied R. Stores the 64-bit r e s u l t in the specif ied R and
R+1. The l e a s t s igni f icant b i t of the r e s u l t i s contained in b i t 32 of
R+1. Resets (BIT to 0. The values of LINK and the condition codes a re
indeterminate.

Note

R must be an even numbered r e g i s t e r .

This ins t ruc t ion a l so has a r e g i s t e r - t o - r e g i s t e r and an
immediate form. See Chapter 3 for more information.

^ MDEI
Memory Diagnostic Enable Inter leave
0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0

Enables the memory interleave facility. Leaves the values of LINK,
CBITr and the condition codes unchanged. This instruction is not
implemented on the 9950.

Note

This is a restricted instruction.

^ MDII
Memory Diagnostic Inh ib i t Interleave
0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 1

Inhibits the memory interleave facility. Leaves the values of LINK,
CBIT, and the condition codes unchanged. This instruction is not
implemented on 9950.

Note

This i s a r e s t r i c t e d in s t ruc t ion .

14-71 Third Edition

DOC3060-192

^ MDIW
Memory Diagnostic Write Interleaved
0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0

Writes interleaved memory. Leaves the values of LINK, (BIT, and the
condition codes unchanged. This instruction is not implemented on the
9950.

Note

This is a restricted instruction.

• MDRS
Memory Diagnostic Read Syndrome Bits
0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0

Reads memory syndrome b i t s . Leaves the values of LINK, CBIT, and the
condition codes unchanged.

Note

This is a restricted instruction.

• MDWC
Memory Diagnostic Load Write Control Register
0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1

Writes memory control register. Leaves the values of LINK, CBIT, and
the condition codes unchanged.

Note

This is a restricted instruction.

• MH r,address
Multiply Halfword
1 0 1 0 1 0 R\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Multiplies the 16-bit value
contained in the location specified by EA by the 16-bit value contained
in the specified r. Stores the 32-bit result in R. Bit 32 of R
contains the least significant bit of the result. Resets CBIT to 0.
The value of LINK is indeterminate. The condition codes reflect the
result of the operation. (See Table 5-3.)

Third Edition 14-72

I MODE INSTRUCTION DICTIONARY

Note

MH r a lso has a r e g i s t e r - t o - r e g i s t e r and an immediate form.
See Chapter 3 for more information.

^ MIA
Microcode Execute A
1 1 0 1 0 0 DR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

This ins t ruc t ion current ly causes a UII f a u l t . If implemented, t h i s
ins t ruc t ion i s for user-wri t ten microcode. For more information about
UII, refer to Chapter 1 1 .

^ MIB
Microcode Execute B
1 1 1 1 0 0 DR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

This ins t ruc t ion current ly causes a UII f a u l t . If implemented, t h i s
ins t ruc t ion i s for user-wri t ten microcode. For more information about
UII, refer t o Chapter 1 1 .

14-73 Third Edition

DOC3060-192

• N R, address
AND Fullword
0 0 0 0 1 1 DR\3 1M\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effect ive address, EA. Logically ANDs the value
contained in the specified R with the 32-fcit value contained in the
locat ion specified by EA. Stores the r e s u l t in the specif ied R.
Leaves the values of LINK, CBIT, and the condition codes unchanged.

Note

This ins t ruc t ion also has a r e g i s t e r - t o - r e g i s t e r and an
immediate form. See Chapter 3 for more information.

^ NFYB
Notify
0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1
AP\32

Notifies on semaphore at address specified in second and third words of
the instruction. Uses LIFO queueing. Does not clear the currently
active interrupt. The values of LINK, CBIT, and the condition codes
are indeterminate.

Note

This is a restricted instruction.

^ NFYE
Notify
0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0
AP\32

Notifies on semaphore a t address specified in second and t h i r d words of
the ins t ruc t ion . Uses FIFO queueing. Does not c lear the current ly
ac t ive i n t e r rup t . The values of LINK, CBIT, and the condition codes
are indeterminate.

Note

This is a restricted instruction.

Third Edition 14-74

I M3DE INSTRUCTION DICTIONARY

^ NH r ,address
AND Halfword
0 0 1 0 1 1 DR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effect ive address, EA. Logically £NDs the value
contained in the specified r with the 16-bi t value contained in the
location specified by EA. Stores the r e s u l t in r . Leaves the values
of LINK, (BIT, and the condition codes unchanged.

Note

This ins t ruc t ion a lso has a r e g i s t e r - t o - r e g i s t e r and an
immediate form. See Chapter 3 for more information.

^ NOP
No Operation
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Does nothing. Leaves the values of LINK, CBIT, and the condition codes
unchanged.

14-75 Third Edition

DOC3060-192

^ 0 R,address
OR Fullword
0 1 0 0 1 1 DR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effect ive address, EA. Logically ORs the value contained
in the specified R with the 32-bit value contained in the locat ion
specified by EA. Stores the r e su l t in the specified R. Leaves the
values of LINK, CBIT, and the condition codes unchanged.

Note

This ins t ruc t ion also has a r e g i s t e r - t o - r e g i s t e r and an
immediate form. See Chapter 3 for more information.

• OH r ,address
OR Halfword
0 1 1 0 1 1 R\3 TM\2 SR\2 BR\2
[DISPLACEMENT\16]

Calculates an effect ive address, EA. Logically ORs the value contained
in the specified r with the 16-bit value contained in the locat ion
specified by EA. Stores the r e su l t in r . Leaves the values of LINK,
CBIT, and the condition codes unchanged.

Note

This ins t ruc t ion also has a r eg i s t e r - t o - r eg i s t e r and an
immediate form. See Chapter 3 for more information.

^ OTK r
Output Keys
0 1 1 0 0 0 R\3 0 1 1 1 0 0 1

Stores the contents of the specified r in the keys. Resets b i t s 15-16
of the keys to 0. Loads CBIT, LINK, and the condition codes from the
specified r as a r e su l t of the operation.

Third Edition 14-76

I MODE INSTRUCTION DICTIONARY

• PCL
Procedure Call
1 0 0 1 1 0 0 0 1 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

See Chapter 8 for a complete descript ion of t h i s i n s t ruc t i on . Sets
LINK, OBIT, and the condition codes t o the values contained in the ECB.

Note

When arguments are to be transferred to the called procedure,
this instruction uses GR5, GR7, and XB, destroying the previous
contents of these registers. The contents of GR5, GR7, and XB
remain unchanged if no arguments are transferred. The contents
of the condition codes, CBIT, and LINK are not correctly saved
in the ECB, along with the rest of the caller's keys.

^ PID R
Posi t ion for Integer Divide
0 1 1 0 0 0 R\3 0 1 0 1 0 1 0

Posit ions a r eg i s t e r for integer divide. Loads the contents of the
specified R in to R+1. Extends the sign of R (b i t 1) in to b i t s 2-32 of
R. Leaves the values of CBIT, LINK, and the condition codes unchanged.

Note

R must be a even numbered register.

^ PIDH r
Position r for Integer Divide
0 1 1 0 0 0 R\3 0 1 0 1 0 1 1

Moves the contents of the specified r (bits 1-16 of R) into bits 17-32
of R. Extends the contents of bit 1 of r into bits 2-16 of R. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

P> PIM R
Posit ion After Multiply
0 1 1 0 0 0 R\3 0 1 0 1 0 0 0

Checks b i t 1 of R+1 to see i f i t i s the same as a l l the b i t s in the
specified R, and then moves the contents of R+1 in to R. If b i t 1 of
R+1 was not the same as a l l the b i t s in R, an overflow occurs which
causes an integer exception.

14-77 Third Edition

DOC3060-192

If no integer exception occurs, (BIT is reset to 0. The values of LINK
and the condition codes are indeterminate.

If an integer exception occurs and bit 8 in the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains 1, the instruction sets
CBIT to 1 and causes an integer exception fault. For more information,
see Chapter 11.

Note

R must be an even numbered register.

^ PIMH r
Posit ion r af ter Multiply
1 0 1 1 0 0 0 R\3 0 1 0 1 0 0 1

Checks the contents of bit 17 of the specified R to see if it has the
same value as do all of bits 1-16 of R, and then moves the contents of
bits 17-32 into bits 1-16. If bit 17 was different from all of bits
1-16, an integer exception occurs. If no integer exception occurs,
CBIT is reset to 0. The values of LINK and the condition codes are
indeterminate.

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 11
for more information.

^ PRTN
Procedure Return
0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1

Deallocates the stack frame created for the executing procedure and
re turns to the environment of the procedure t ha t ca l led i t .

To deallocate the frame, the ins t ruc t ion s tores the current value of
the stack base reg i s t e r in to the free pointer . I t then res tores the
c a l l e r ' s s t a t e by loading the c a l l e r ' s program counter, stack base
r e g i s t e r , linkage base r eg i s t e r , and keys with the values contained in
the frame being deallocated. Sets b i t s 15-16 of the keys t o 0 .

Loads the r ing number in the program counter with the log ica l OR
(weaker) of the saved program counter ring and the current r ing number.
This process prevents inward returns but a l so allows re turns from gated
c a l l s t o work properly.

Third Edition 14-78

I NODE INSTRUCTION DICTIONARY

^ PTLB
Purge TLB
0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0

GR2 contains the address of a physical page, right justified. Based on
the value of GR2 bit 1, PTLB purges either the first 128 locations of
the STLB (i.e., not the IOTLB) , or a specified physical page. If GR2
bit 1 contains a 1, the instruction performs a complete purge. If GR2
bit 1 contains a 0, the instruction purges the page specified by GR2.
Leaves the values of CBIT, LINK, and the condition codes indeterminate.
See Chapters 1, 3, and 12 for more information about the STLB and
IOTLB.

Note

This i s a r e s t r i c t e d ins t ruc t ion .

On the 750, 850, or 9950,, inse r t a CRE (Clear E) ins t ruc t ion
before PTLB. Since PTLB uses E (GR3 in I mode) as a poin ter ,
the CRE zeroes GR3 before PTLB manipulates i t . If an in t e r rup t
occurs during PTLB's execution, GR3 points t o the loca t ion PTLB
i s current ly purging. PTLB leaves the contents of GR3 in an
undefined s t a t e a t the end of i t s execution.

14-79 Third Edition

DOC3060-192

^ QFAD address
Quad Precision Floating Add
0 1 1 1 1 0 1 1 0 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effect ive address, EA. Adds the 112-bi t , quad precis ion
number contained in the locations specified by EA to the contents of
QAC. (See Chapter 6.) Normalizes the r e s u l t , i f necessary, and loads
i t in to QAC. An overflow or underflow causes a f loat ing-point
exception. If no f loat ing-point exception occurs, CBIT i s r e se t t o 0.
The values of LINK and the condition codes a re indeterminate.

If a f loat ing-point exception occurs and b i t 7 of the keys contains a
1, the ins t ruc t ion se t s OBIT to 1. If b i t 7 contains a 0, the
ins t ruc t ion se t s CBIT t o 1 and causes a f loat ing-point exception f a u l t .
See Chapter 11 for more information.

Note

If this instruction is used for any system but the 9950, an
unimplemented instruction (UII) fault occurs. (See Chapter
11.)

• QFCM
Quad Precision Floating Complement
1 1 0 0 0 0 0 1 0 1 1 1 1 0 0 0

Forms the two's complement of the value contained in QAC. (See Chapter
6.) Normalizes the r e s u l t , if necessary, and s to res i t in QAC. An
underflow or overflow causes a f loat ing-point exception. If no
f loat ing-point exception occurs, CBIT i s r e se t t o 0 . The values of
LINK and the condition codes are indeterminate.

If a f loat ing-point exception occurs and b i t 7 of the keys contains a
1, the ins t ruc t ion se t s CBIT to 1. If b i t 7 contains a 0, the
ins t ruc t ion se t s CBIT t o 1 and causes a f loat ing-point exception f a u l t .
See Chapter 11 for more information.

Note

If this instruction is used for any system but the 9950, an
unimplemented instruction (UII) fault occurs. (See Chapter
11.)

Third Edition 14-80

I MODE INSTRUCTION DICTIONARY

• QPC address
Quad Precision Floating Point Compare and Skip
1 0 0 1 1 0 1 1 1 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effect ive address, EA. Compares the contents of QAC
(explained in Chapter 6) t o the 112-bit contents of the locat ion
specified by EA and skips according t o the l i s t below.

Condition Skip

QAC > contents of loc spec by EA. No skip .

QAC = contents of loc spec by EA. Skip one word.

QAC < contents of loc spec by EA. Skip two words.

Sets the condition codes t o re f l ec t the s t a t e of the comparison. (See
Table 5-3.) The values of CBIT and LINK are indeterminate.

Note

Be sure t o use normalized numbers for correct r e s u l t s .

If t h i s ins t ruc t ion i s used for any system but the 9950, an
unimplemented ins t ruc t ion (UII) f au l t occurs. (See Chapter
11.)

^ QFDV address
Quad Precision Floating Point Divide
1 0 0 1 1 0 1 1 0 TM\2 SR\3 BR\2
[DISPLACEMENTS]

Calculates an effect ive address, EA. Divides the contents of QAC by
the 112-bit contents of the locat ion specified by EA. (See Chapter 6.)
Normalizes the r e s u l t , i f necessary, and s to res the whole quot ient i n to
QAC. An overflow, underflow, or divide by to causes a f loat ing-point
exception. If no f loat ing-point exception occurs, CBIT i s r e s e t t o 0.
The values of LINK and the condition codes are indeterminate.

If a f loat ing-point exception occurs and b i t 7 of the keys contains a
1, the ins t ruc t ion se t s CBIT to 1 . If b i t 7 contains a 0, the
ins t ruc t ion se t s CBIT t o 1 and causes a f loat ing-point exception f a u l t .
See Chapter 11 for more information.

14-81 Third Edition

DOC3060-192

Note

If QFDV i s used for any system but the 9950, an unimplemented
ins t ruc t ion (UII) f au l t occurs. (See Chapter 11.)

^ QFLD address
Quad Precision Floating Load
0 1 1 1 1 0 1 0 0 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an extended, augmented effect ive address, EA. Performs one
of the following act ions with the value contained in the locat ion
specified by EA. Loads b i t s 1-112 into QAC and zeros QAC b i t s 113-128,
or loads 128 b i t s in to QAC. (See Chapter 6 for more information.)
Leaves the values of LINK, (BIT, and the condition codes unchanged.

Note

If t h i s ins t ruc t ion i s used for any system but the 9950, an
unimplemented ins t ruc t ion (UII) f au l t occurs. (See Chapter
11.)

^ QFMP address
Quad Precision Floating Point Multiply
1 0 0 1 1 0 1 0 1 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effect ive address, EA. Multiplies the contents of QAC by
the 112-bit contents of the location specified by EA. (See Chapter 6.)
Normalizes the r e s u l t , if necessary, and s tores i t in to QAC. An
overflow or underflow causes a f loat ing-point exception. If no
f loat ing-point exception occurs, (BIT i s r e se t t o 0. The values of
LINK and the condition codes are indeterminate.

If a f loat ing-point exception occurs and b i t 7 of the keys contains a
1, the ins t ruc t ion se t s (BIT to 1. If b i t 7 contains a 0, the
ins t ruc t ion se t s (BIT to 1 and causes a f loat ing-point exception f a u l t .
See Chapter 11 for more information.

Note

If t h i s ins t ruc t ion i s used for any system but the 9950, an
unimplemented ins t ruc t ion (UII) fau l t occurs. (See Chapter
11.)

Third Edition 14-82

I MDDE INSTRUCTION DICTIONARY

^ QESB address
Quad Precision Floating Point Subtract
0 1 1 1 1 0 1 1 1 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effect ive address, EA. Subtracts the 112-bit contents of
the locat ions specif ied by EA from the contents of QAC. (See Chapter
6.) Normalizes the r e s u l t , i f necessary, and loads i t i n to QAC. An
overflow or underflow causes a f loat ing-point exception. If no
f loat ing-point exception occurs, (BIT i s r e se t t o 0. The values of
LINK and the condition codes are indeterminate.

If a f loa t ing-point exception occurs and b i t 7 of the keys contains a
1, the ins t ruc t ion s e t s (BIT to 1 . If b i t 7 contains a 0, the
ins t ruc t ion se t s (BIT t o 1 and causes an integer exception f a u l t . See
Chapter 11 for more information.

Note

If t h i s ins t ruc t ion i s used for any system but the 9950, an
unimplemented ins t ruc t ion (UII) f au l t occurs. (See Chapter
11.)

• QFST address
Quad Precision Floating Store
0 1 1 1 1 0 1 0 1 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effect ive address, EA. Stores the contents of QAC in to
the 128 b i t s of memory specified by EA. Leaves the values of LINK,
(BIT, and the condition codes unchanged.

Note

This instruction does not normalize the result before storing
it into the specified memory location.

If this instruction is used for any system but the 9950, an
unimplemented instruction (UII) fault occurs. (See Chapter
11.)

• QINQ
Quad t o Integer , in Quad Convert
1 1 0 0 0 0 0 1 0 1 1 1 1 0 1 0

S t r ips the f rac t iona l port ion of QAC as described in Table 14-5.

14-83 Third Edition

DOC3060-192

Table 14-5
QINQ Actions

Exponent Value Action

•340 <= Exp

'200 < Exp < '340

'200 = Exp

•200 > Exp

A conversion fault occurs.

If sign >= 0, strip fractional part of
QAC for result.

If sign < 0 and fractional part = 0r

strip fractional part of QAC and
increment result by 1.

If sign < 0 and fractional part <> 0,
strip fractional part for result.

If sign >= 0, result = 0.
If sign < 0 and bits 2-96 = 0 result =
If sign < 0 and bits 2-96 <> 0 result =

Result = 0.

-1,
' 0,

QINQ can cause a floating-point exception. This exception does not
alter the contents of QAC. If no exception occurs, the instruction
sets CBIT to 0. The values of LINK and the condition codes are
indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 11 for more information.

Note

If this instruction i s used for any system but
unimplemented instruction (UII) fault occurs.
11.)

the 9950, an
(See Chapter

• QIQR
Quad to Integer, in Quad Convert Rounded
1 1 0 0 0 0 0 1 0 1 1 1 1 0 1 1

Strips the fractional portion of QAC as described in Table 14-6.

Third Edition 14-84

I MODE INSTRUCTION DICTIONARY

Table 14-6
QIQR Actions

I Exponent Value

I '340 < Exp

I Exp = '340

I '200 < Exp < '340

1 Exp = '200

I Exp < '200

Action I

A conversion fault occurs. I

Set the most significant bit of the I
fractional part of QAC to 0. I

If sign >= 0, strip fractional part of I
QAC for result. |

If sign < 0 and fractional part <>0, I
strip fractional part of QAC for result. I

If sign <> 0 and fractional part = 0 , 1
strip the fractional part and increment |
the integer part by 1. 1

In any case, increment the integer part |
by 1 if it exists and the most significant |
bit of the fractional part of QAC is 1. |

If sign >= 0, result = 0 . 1
If sign < 0 and bits 2-96 = 0 result = -1. j
If sign < 0 and bits 2-96 <> 0 result = 0 . 1
For all cases increment integer part by 1 1
if it exists and the most significant bit |
of QAC = 1. !

The result is 0. 1

QIQR can cause a floating-point exception. This exception does not
alter the contents of QAC. If no exception occurs, the instruction
sets CBIT to 0. The values of LINK and the condition codes are
indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 11 for more information.

Note

If this instruction is used for any system but the 9950, an
unimplemented instruction (UII) fault occurs. (See Chapter
11.)

14-85 Third Edition

DOC3060-192

^ RBQ address
Remove Entry from Bottom of Queue
0 1 1 0 0 0 R\3 1 0 1 1 0 1 1
AP\32

The address pointer in t h i s ins t ruc t ion points t o the QCB for a queue.
The ins t ruc t ion removes the entry from the bottom of the referenced
queue and loads i t i n to the specified R. If the queue was not empty,
t h i s ins t ruc t ion se t s the condition codes t o r e f l ec t not equal t o t o .
If the queue was empty, rese ts R to 0 and s e t s the condition codes t o
r e f l ec t equal to t o . Leaves the values of OBIT and LINK unchanged.

^ RCB
Reset (BIT Bi t t o 0
1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Resets CBIT to 0. Leaves the values of LINK and the condition codes
unchanged.

^ RMC
Reset Machine Check Flag t o 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

Resets the machine check mode (bi ts 15-16 of the modals) t o 0. Leaves
the values of LINK, CBIT, and the condition codes unchanged. Inh ib i t s
in t e r rup t s for the next ins t ruc t ion .

Note

I h i s i s a r e s t r i c t e d ins t ruc t ion .

^ ROT address
Rotating Shif t
0 1 0 1 0 0 DR\3 TM\2 SR\3 BR\2
[DISPLACEMENTS]

Calculates an effect ive address, EA. In te rpre t s b i t s 1-16 of EA as a
sh i f t command, as shown in Table 14-7.

Third Edition 14-86

I MDDE INSTRUCTION DICTIONARY

Table 14-7
EA Format for ROT Shift Command

Bi t

1

2

3-10

11-16

Value

0
1

0
1

In te rpre ta t ion 1

Shif t l e f t . 1
Shif t r i gh t . 1

Word sh i f t (32 b i t s) . 1
Halfword sh i f t (16 b i t s) . I

Ignored. I

Values specify the two's complement of |
the number of b i t s t o s h i f t . A value I
of 0 indicates a sh i f t of 64 p laces ; j
of - 1 , 1 place; of - 6 3 , 63 p laces ; |
and so on. 1

Uses EA to perform a ro ta t ing sh i f t on the contents of the specif ied R.
Stores the shif ted r e s u l t in R. CBIT contains the value of the l a s t
b i t shif ted out . The value of LINK i s indeterminate. Leaves the
values of the condition codes unchanged.

^ RRST address
Restore Registers
0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1
AP\32

Calculates an effective address, EA, from the 32-bit address pointer in
the instruction. This specifies the starting address of a save area
for the general, floating, and XB registers. Restores the contents of
these registers from this save area.

The save area format is shown in Table 14-8. Bits 1-16 of the save
area are a save mask, whose format appears in Figure 14-3. A mask bit
value of 1 means that the corresponding register had nonzero contents
that have been saved in the save area; a mask bit value of 0 means
that the corresponding register's contents were 0. Leaves the values
of CBIT, LINK, and the condition codes unchanged.

14-87 Third Edition

DOC3060-192

Table 14-8
RRST and RSAV Save Area Format

I Word #

I 1
I 2-5
I 6-9
1 10-11
I 12-13
1 14-15
1 16-17
1 18-19
1 20-21
I 22-23
I 24-25
1 26-27

Contents |

Save mask 1
FR1 I
FRO I
GR7, X I
GR6 1
GR5, Y, S I
GR4 |
GR3, E |
GR2, A, B, L |
GR1 I
GRO 1

1 XB |

1 4

10000

5

|FR1

6 7

|FR0

8 9

IGR7

10

IGR6

11

|GR5

12

|GR4

13

|GR3

14

IGR2

15

IGR1

16

|GR0 |

Save Mask Format, RRST and RSAV Instructions
Figure 14-3

^ RSAV
Save Registers
0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1
AP\32

Calculates an effect ive address, EA, from the 32-bi t address pointer in
the ins t ruc i ton . This specif ies the s t a r t i n g address of a save area
for the general , f loa t ing, and XB r e g i s t e r s . Saves the nonzero
contents of these r eg i s t e r s in the save area .

The save area format i s shown in Table 14-8. Bits 1-16 of the save
area are a save mask, whose format appears in Figure 14-3. This
ins t ruc t ion s e t s the mask b i t of each reg is te r as follows: t o 1 if the
r e g i s t e r ' s contents have a nonzero value; t o 0 if a 0 value. Leaves
the values of OBIT, LINK, and the condition codes unchanged.

Third Edition 14-88

I MDDE INSTRUCTION DICTIONARY

^ RTQ address
Remove Entry from Top of Queue
0 1 1 0 0 0 R\3 1 0 1 1 0 1 0
AP\32

The address pointer in this instruction is to the QCB for a queue. The
instruction removes the entry from the top of the referenced queue, and
loads it into the specified R. If the queue was not empty, the
instruction sets the condition codes to reflect not equal to 0. If the
queue was empty, resets R to 0 and sets the condition codes to reflect
equal to to. Leaves the values of OBIT and LINK unchanged.

^ RTS
Reset Time Sl ice
0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1

Valid for the 550-11, 750, 850, 1450, and new processors .

GR2 contains a negative value representing the number of milliseconds
in the new time s l i c e .

Adds the current value of the in te rva l timer (locat ions 16-17 of the
PCB) t o the contents of the elapsed timer (locations 10-11 of the POB),
then subtrac ts the contents of GR2 from the sum of the t imers . Stores
the r e s u l t in the elapsed t imer. Loads the contents of GR2 in to the
in te rva l t imer. Leaves the contents of GR2 unchanged. The values of
(BIT, LINK, and the condition codes a re unchanged.

The addit ion performed by t h i s ins t ruc t ion i s equivalent t o the
following s e r i e s of ins t ruc t ions :

LH 0,ITH / * Load GR0 with contents of TTH.
Subtract r e se t value (in RV)

from contents of GR0.
Sign extend the contents of

GR0 in to b i t s 17-32 of GR0.
Skip next word i f CBIT i s 0 .
Complement GR0.
Load GR1 with contents of ET.
Add ITH and ET.
Store r e s u l t in ET.
Load r e se t value in to GRO.

SH 0,ITH / * Store GRO contents i n TTH.

Note

This is a restricted instruction.

SH

PIEH

SRC
CMR
LH
A
ST
LH

0,RV

0

0
1,ET
0 ,1
0,ET
0,RV

/ *
/ *
/ *
/ *
/ *
/ *
/ *
/ *
/ *
/ *

14-89 Third Edition

DOC3060-192

^ S Rfaddress
Subtract Fullword
0 1 0 0 1 0 DR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Subtracts the 32-bit value
contained in the location specified by EA from the value contained in
the specified R. Stores the result in the specified R. If overflow
occurs, an integer exception results. If no integer exception occurs,
CBIT is reset to 0. LINK contains the borrow bit. The condition codes
reflect the result of the operation. (See Table 5-3.)

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 11
for more information.

Note

This ins t ruc t ion also has a r e g i s t e r - t o - r e g i s t e r and an
immediate form. See Chapter 3 for more information.

^ SCB
Set CBIT Bi t t o 1
1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0

Sets the value of CBIT to 1. Leaves the values of the condition codes
unchanged. The value of LINK is indeterminate.

• SH r,address
Subtract Halfword
0 1 1 0 1 0 DR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Subtracts the 16-bit value
contained in the location specified by EA from the value contained in
the specified r and stores the result in R. An overflow causes an
integer exception. If no integer exception occurs, CBIT is reset to 0.
LINK contains the borrow bit. The condition codes reflect the result
of the operation. (See Table 5-3.)

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 11
for more information.

Third Edition 14-90

I MDDE INSTRUCTION DICTIONARY

Note

The SH ins t ruc t ion a l so has a r e g i s t e r - t o - r e g i s t e r and an
immediate form. See Chapter 3 for more information.

^ SHA R faddress
Arithmetic Shif t
0 0 1 1 0 1 DR\3 TM\2 SR\3 BR\2
[DISELACErffiNT\16]

Calculates an effect ive address, EA.
sh i f t command, as shown in Table 14-9.

In te rp re t s b i t s 1-16 of EA as a

Table 14-9
EA Format for SHA Shift Command

1 B i t

! 1

1 2

1 3-10

I 11-16

Value

0
1

0
1

In te rpre ta t ion 1

Shif t l e f t . 1
Shif t r i g h t . 1

Word sh i f t (32 b i t s) . 1
Halfword sh i f t (16 b i t s) . i

Ignored. 1

Values specify the two's complement of I
the number of b i t s t o s h i f t . A value j
of 0 indicates a sh i f t of 64 p laces ; I
of - 1 , 1 place; of - 6 3 , 63 p laces ; |
and so on. 1

Uses EA to perform an ar i thmet ic sh i f t on the contents of the specif ied
R, and s to res the r e s u l t of the sh i f t in R.

For a r i gh t s h i f t , CBTT contains the value of the l a s t b i t sh i f ted out .
The values of a l l other shif ted-out b i t s a re l o s t .

For a l e f t s h i f t , an overflow causes an integer exception. If there i s
no integer exception, CBIT i s r e se t t o 0.

All sh i f t s leave the value of LINK indeterminate and the values of the
condition codes unchanged.

14-91 Third Edition

DOC3060-192

If an integer exception occurs and b i t 8 of the keys contains 0, the
ins t ruc t ion se t s CBIT to 1 . If b i t 8 contains a 1, the ins t ruc t ion
se t s CBIT to 1 and causes an integer exception f a u l t . See Chapter 11
for more information.

^ SHL R,address
Logical Shift
0 0 0 1 0 1 DR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effect ive address, EA. In te rpre t s b i t s 1-16 of EA
sh i f t command, as shown in Table 14-10.

as a

Table 14-10
EA Format for SHL Shift Command

1 Bit

I 1

1 2

I 3-10

I 11-16

Value

0
1

0
1

—

Interpretation 1

Shift l e f t . 1
Shift r ight. 1

Word shift (32 b i t s) . I
Halfword shift (16 b i t s) . I

Ignored. I

Values specify the two's complement of |
the number of bi ts to shif t . A value |
of 0 indicates a shift of 64 places; |
of - 1 , 1 place; of -63, 63 places; 1
and so on. !

Uses EA to perform a logica l sh i f t on the contents of the specif ied R.
Stores the shif ted r e s u l t in R. CBIT contains the value of the l a s t
b i t shif ted out . The values of a l l other shif ted-out b i t s a r e l o s t .
The value of LINK i s indeterminate. Leaves the values of the condition
codes unchanged.

Third Edition 14-92

I MDDE INSTRUCTION DICTIONARY

^ SHL1 r
Shift r Left 1
0 1 1 0 0 0 R\3 0 1 1 1 1 1 0

Shifts the contents of the specified r t o the l e f t one b i t and s tores
the r e s u l t in r . (BIT contains the value of the b i t sh i f ted out . The
value of LINK i s indeterminate. Leaves the values of the condition
codes unchanged.

SHL2 r
Shif t r Left 2
0 1 1 0 0 0 R\3 0 1 1 1 1 1 1

Shifts the contents of the specified r to the l e f t two b i t s and s to res
the r e s u l t in r . (BIT contains the value of the l a s t b i t sh i f ted out .
The value of the f i r s t b i t shif ted out i s l o s t . The value of LINK i s
indeterminate. Leaves the values of the condition codes unchanged.

• SHR1 r
Shif t r Right 1
0 1 1 0 0 0 R\3 1 0 1 0 0 0 0

Shifts the contents of the specified r t o the r i gh t one b i t and s tores
the r e s u l t in r . CBIT contains the value of the b i t sh i f ted out . The
value of LINK i s indeterminate. Leaves the values of the condition
codes unchanged.

^ SHR2 r
Shift r Right 2
0 1 1 0 0 0 R\3 1 0 1 0 0 0 1

Shifts the contents of the specified r t o the r igh t two b i t s and s to res
the r e s u l t in r . (BIT contains the value of the l a s t b i t sh i f ted out .
The value of the f i r s t b i t shif ted out i s l o s t . The value of LINK i s
indeterminate. Leaves the values of the condition codes unchanged.

^ SL1 R
Shift Register Left 1
0 1 1 0 0 0 R\3 0 1 1 1 0 1 0

Shif ts the contents of the specified R to the l e f t one b i t and s to res
the r e s u l t in R. (BIT contains the value of the b i t sh i f ted out . The
value of LINK i s indeterminate. Leaves the values of the condition
codes unchanged.

14-93 Third Edition

DOC3060-192

^ SL2 R
Shift Register Left 2
0 1 1 0 0 0 R\3 0 1 1 1 0 1 1

Shifts the contents of the specified R to the left two bits and stores
the result in R. CBIT contains the value of the last bit shifted out;
the value of the first bit shifted out is lost. The value of LINK is
indeterminate. Leaves the values of the condition codes unchanged.

• SRI R
Shift Register Right 1
0 1 1 0 0 0 R\3 0 1 1 1 1 0 0

Shifts the contents of the specified R to the right one bit and stores
the result in R. CBIT contains the value of the bit shifted out. The
value of LINK is indeterminate. Leaves the values of the condition
codes unchanged.

• SR2 R
Shift Register Right 2
0 1 1 0 0 0 R\3 0 1 1 1 1 0 1

Shifts the contents of the specified R to the right two bits and stores
the result in R. CBIT contains the value of the last bit shifted out;
the value of the first bit shifted out is lost. The value of LINK is
indeterminate. Leaves the values of the condition codes unchanged.

^ SSM R
Set Sign Minus
0 1 1 0 0 0 R\3 0 1 0 0 0 1 0

Sets b i t 1 of the specified R to 1. Leaves the values of CBIT, LINK,
and the condition codes unchanged.

^ SSP R
Set Sign Plus
0 1 1 0 0 0 R\3 0 1 0 0 0 1 1

Sets b i t 1 of the specified R to 0. Leaves the values of (BIT, LINK,
and the condition codes unchanged.

Third Edition 14-94

I MDEE INSTRUCTION DICTIONARY

^ ST R,address
Store Fullword
0 1 0 0 0 1 DR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effect ive address, EA. Stores
specified R in to the locat ion specified by EA.

the contents of the

^ STAR R faddress
Store Addressed Register
1 0 1 1 0 0 DR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates a doubleword ef fec t ive address, EA. Stores the contents of
the specified R in to the r eg i s t e r locat ion specif ied by the word
port ion of EA. Bit 2 and b i t 12 of the word port ion of EA determine
the ac t ions of t h i s in s t ruc t ion , as shown in Table 14-11.

Table 14-11
STAR Actions

Bi t 2 | Bi t 12 I Action

1* 1 I Ignore b i t s 1 and 3-9. The word por t ion of
EA specif ies an absolute r eg i s t e r number
from 0- '377.

0* I 1 I B i t s 13-16 of the word port ion of EA specify
one of the r eg i s t e r s '20- '37 in the current
r eg i s t e r s e t .

B i t s 13-16 of the word port ion of EA specify
one of the r eg i s t e r s 0-'17 in the current
r eg i s t e r s e t .

*This i s a r e s t r i c t e d ins t ruc t ion .

Leaves the values of CBIT and LINK
condition codes a re indeterminate,
about r eg i s t e r s e t s .

unchanged. The values of the
See Chapter 9 for more information

14-95 Third Edition

DOC3060-192

Note

Do not use this instruction to write into the procedure base,
keys, or modals. You can use LPSW to change any of these three
registers. In addition, you can use a control transfer to
change the procedure base, or a mode control operation to
change the keys or modals. Under no circumstances should you
try to change the value of the current register set bits
contained in the modals.

If the current ring is not 0 and EA is outside the range of
0-17 inclusive, any access causes an RXM violation.

^ STC flr,r
Store Character
0 1 1 0 0 0 R\3 1 1 1 ELR 1 1 0

If the contents of the specified FLR are nonzero, the instruction
stores the contents of bits 9-16 of the specified r into the character
byte address contained in the associated FAR. Updates the contents of
the appropriate FAR so that they point to the next character.
Decrements the contents of the specified FLR by 1. Sets the condition
codes to NE.

If the contents of the specified FLR are 0, the instruction sets the
condition codes to EQ and does not store a character.

The instruction leaves the values of LINK and (BIT unchanged.

Note

When the ins t ruc t ion specif ies FLR0, FARO i s used. When the
ins t ruc t ion specif ies FLRl, FARl i s used.

^ STCD R,address
Store Conditional Fullword
0 1 1 0 0 0 R\3 1 0 1 1 1 1 1
AP\32

Compares the contents of R+l and the contents of the 32-bi t locat ion
referenced by the specified address pointer . If the two values are
equal, the ins t ruc t ion s tores the contents of R in t h a t referenced
loca t ion . If the two values are not equal, execution continues with
the next ins t ruc t ion . STCD i s an interlocked operation, guaranteed t o
work in a multiprocessor.

Leaves the values of CBIT and LINK unchanged. The condition codes
re f l ec t the r e su l t of the comparison. (See Table 5-3.)

Third Edition 14-96

I MDDE INSTRUCTION DICTIONARY

Note

R must be an even numbered r e g i s t e r .

^ STCH r f address
Store Conditional Halfword
0 1 1 0 0 0 R\3 1 0 1 1 1 1 0
AP\32

Compares the contents of b i t s 17-32 of the specif ied R with the
contents of the locat ion referenced by the specif ied address poin ter .
If the two values are equal, the ins t ruc t ion s to res the contents of r
in to t ha t referenced loca t ion . If the two values a re not equal ,
execution continues with the next ins t ruc t ion . Leaves the values of
CBIT and LINK unchanged. Sets the condition codes t o EQ if the s to re
occurs and t o NE i f not .

The comparison and s to re wi l l not be separated by execution of other
ins t ruc t ions . Therefore, no ins t ruc t ion can a l t e r the contents of the
specified memory locat ion between the compare and the s t o r e .

Note

This instruction is useful when two cooperating, sequential
processes are manipulating shared data. It is interlocked
against direct memory I/O. This means you can use it to
interlock a process with a EMA, DMC, or EMQ channel, as well as
to interlock a memory location that is possibly accessed by
I/O.

^ STEX R
Stack Extend
0 1 1 0 0 0 R\3 0 0 1 0 1 1 1

Extends the length of the procedure stack. The designated R contains a
32-bit number that specifies the word size of the extension.

The firmware rounds up the number contained in the specified R to an
even number of words. The instruction uses this value to allocate a
block of memory to the procedure stack. The extension and the initial
stack segment do not have to be contiguous, since there may not have
been enough room left in the initial stack to contain a complete frame.

Returns a segment number/word number in the specified R that specifies
the starting address of the extension. The extension is automatically
deallocated when the current procedure completes execution. There is
no limit on the number of extensions you can make.

14-97 Third Edition

DOC3060-192

A stack fault occurs if there is no room for the extension. The values
of LINK and the condition codes are indeterminate. See Chapters 8 and
11 for more information about this instruction, stacks, and stack
faults.

^ STFA far,address
Store FAR
0 0 0 0 0 0 1 0 1 1 0 1 FAR 0 0 0
AP\32

Stores the specified FAR contents as a hardware recognizable indirect
pointer at the memory location referenced by the specified address
pointer. If the bit number field of the specified FAR contains 0, the
instruction stores the first two words of the pointer and clears the
pointer's extend bit to 0. If the bit number field of the specified
FAR does not contain 0, the instruction saves all three words of the
pointer and sets the pointer's extend bit to 1. Leaves the values of
(BIT and LINK unchanged. The values of the condition codes are
indeterminate.

• STH r,address
Store Halfword
0 1 1 0 0 1 DR\3 1M\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Stores the contents of the
specified r into the 16-bit location specified by EA. Leaves the
values of LINK, CBrr, and the condition codes unchanged.

^ STPM
Store Processor Model Number
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

Stores the CPU model number and microcode revision number in an 8-word
f i e l d . XB contains a pointer t o the f i e l d in memory. Table 14-12
shows the format of the f i e l d .

Third Edition 14-98

I MODE INSTRUCTION DICTIONARY

Table 14-12
STPM Memory Field Format

Word

1-2

3-4

5

6

7-8

Name

Processor
Model
Number

Microcode

Revision

Processor
Line

Extended
Microcode
ID

—

Description I

Contains a code specifying the machine: |
OL - 400/500, no Rev B microcode 1
IL - 400, Rev. B microcode !
2L - Reserved I
3L - 350 1
4L - 450/550 1
5L - 750 I
6L - 650 1
7L - 250 I
8L - 850 I
9L - 250-11 I
10L - 550-11 |
11L - 2250 I
15L - 9950 1

Word 1: 1
Bits 1-8 reserved I
Bits 9-16 manufacturing microcode [

revision number |
Word 2: I
Bits 1-16 engineering microcode I

revision number 1

Specifies options enabled for this I
machine: I
Bits 1-15 reserved; must be zero; I
Bit 16 marketing segment I

specification bit. 1

To be implemented. I

Reserved for future use. I

The STPM ins t ruc t ion leaves the values of CBIT, LINK, and the condition
codes unchanged.

Note

STPM is a restricted instruction.

14-99 Third Edition

DOC3060-192

^ STTM
Store Process Timer
0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0

Valid for the 550-11, 750, 850, 1450, and 9950.

Stores the 48-bi t process timer in the block referenced by XB. XB
contains the address of a three-word memory block. Returns ETH,
ETL+CTH, ITL as the current process time. Bits 1-10 of ITL contain the
microsecond count.

The addit ion performed by t h i s ins t ruc t ion i s a 48-bi t operat ion. I t
i s equivalent t o the following se r ies of ins t ruc t ions :

LH 0,ITH / * Load GR0 wi th t h e c o n t e n t s of ECH.
PIEH 0 / * Sign extend GR0 b i t s 1-16.
LH 1,ET / * Load GR1 with the contents of ET.
A 0,1 / * Adds contents of GR0 AND GR1.

Third Edition 14-100

I MODE INSTRUCTION DICTIONARY

• TC R
Two's Complement Register
0 1 1 0 0 0 R\3 0 1 0 0 1 1 0

Forms the two's complement of the contents of the specified R and
stores the result in R. An overflow causes an integer exception. The
condition codes reflect the result of the operation. (See Table 5-3.)
The value of LINK is indeterminate. If there is no integer exception,
(BIT is reset to 0.

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBrr to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 11
for more information.

• TCH r
Two's Complement r
0 1 1 0 0 0 R\3 0 1 0 0 1 1 1

Forms the two's complement of the contents of the specified r and
stores the result in r. An overflow causes an integer exception. The
condition codes reflect the result of the operation. (See Table 5-3.)
The value of LINK is indeterminate. If there is no integer exception,
CBIT is reset to 0.

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 11
for more information.

^ TFLR flr,R
Transfer FLR to Register
0 1 1 0 0 0 R\3 1 1 1 FLR 0 1 1

Transfers the contents of the specified FLR into the specified R.
Leaves the values of LINK, CBIT, and the condition codes unchanged.

• TM address
Test Memory Fullword
1 0 0 1 1 0 1 0 0 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effect ive address, EA. Sets the condition codes
according t o the numerical value of the 32-bi t contents of the loca t ion
specified by EA. (See Table 5-3.) Leaves the values of LINK and CBIT
unchanged.

14-101 Third Edition

DOC3060-192

• TMH address
Test Memory Halfword
1 0 1 1 1 0 1 0 0 TM\2 SR\3 BR\2
[DISPLACEayENT\16]

Calculates an effective address, EA. Sets the condition codes
according t o the numerical value of the contents of b i t s 1-16 of the
locat ion specified by EA. (See Table 5-3.) Leaves the values of LINK
and CB3T unchanged.

• TRFL f l r ,R
Transfer Register to FLR
0 1 1 0 0 0 R\3 1 1 1 EIR 1 0 1

Transfers the contents of R in to the specified FLR. Leaves the values
of LINK, (BIT, and the condition codes unchanged.

^ TSTQ Rfaddress
Test Queue
0 1 1 0 0 0 R\3 1 0 0 0 1 0 0
AP\32

The address pointer in this instruction points to the QCB of a queue.
This instruction tests the referenced queue and sets R to equal the
number of items in the queue. Sets the condition codes to EQ when the
queue is empty. If the queue is not empty, the instruction sets the
condition codes to NE. Leaves the values of (BIT and LINK unchanged.

Third Edition 14-102

I M3DE INSTRUCTION DICTIONARY

^ WATT
Wait
0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1
AP\32

The address pointer in t h i s ins t ruc t ion points t o a 16-bi t semaphore
counter, C. The ins t ruc t ion increments C. If C i s greater than 0,
e i ther the resource i s not ava i lab le , or the event has not occurred.
Removes the PCB from the ready l i s t and adds i t t o the wait l i s t
associated with the semaphore. I t then makes the r eg i s t e r se t
avai lable and turns off the process t imer.

If C i s l e s s than or equal to 0, the current ly executing process
continues.

If the ins t ruc t ion places the PCB on the wait l i s t , no general
r eg i s t e r s are saved. This means t ha t a process cannot depend on these
r e g i s t e r s t o be in t ac t a f te r t h i s ins t ruc t ion occurs. This ins t ruc t ion
po ten t ia l ly c lea rs the general , f loa t ing , and XB r e g i s t e r s .

Leaves LINK, CBn, and the condition codes unchanged.

For more information about semaphores, PCBs, and wait l i s t s , refer t o
Chapter 8.

Note

This i s a r e s t r i c t e d ins t ruc t ion .

14-103 Third Edition

DOC3060-192

^ X rfaddress
Exclusive OR Fullword
1 0 0 1 1 0 0 1 1 TM\2 SR\3 BR\2
[DISPLAOTENT\16]

Calculates an effective address, EA. Performs an exclusive OR of the
contents of the specified R with the 32-bit value contained in the
location specified by EA. Stores the result in the specified R.
Leaves the values of LINK, (BIT, and the condition codes unchanged.

Note

This ins t ruc t ion a lso has a r e g i s t e r - t o - r e g i s t e r
immediate form. See Chapter 3 for more information.

and an

^ XAD
Decimal Add
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

Performs a decimal ar i thmetic operation under control of FARO, FARl,
and GR2.

FARO contains the address of f i e ld 1. FARl contains the address of
f i e ld 2 . GR2 contains the control word; f i e ld s B and C of the control
word specify the decimal operation t o be performed, as shown in Table
14-13.

Table 14-13
XAD Decimal Operations

1 B

1 o

1 o

I 1

1 1

CB

0

1

0

1

Operation

+F1+F2

+F1-F2

-F1+F2

-F1-F2

Destination |

F2 I

F2 |

F2 |

F2 I

Third Edition 14-104

I M3DE INSTRUCTION DICTIONARY

The scale differential field in the control word specifies the
difference in the decimal point alignment between Fl and F2, as
follows:

SD Relation of Fl and F2

SD>0 Fl > F2

SD=0 Fl = F2

SD<0 Fl < F2

If the T bit is set to 1, the results are forced positive. If the add
operation results in an overflow, a decimal exception occurs. If no
overflow occurs, the instruction sets (BIT to 0 to indicate success.

If a decimal exception occurs and bit 11 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
sets CBIT to 1 and causes a decimal exception fault. See Chapter 11
for more information.

The registers used are GRO, GR1, GR3 (E), GR4, GR6, FARO, FARl, FLRO,
and FLR1. At the end of the instruction, the contents of these
registers are indeterminate. The value of LINK is also indeterminate.
The condition codes reflect the state of F2 after the decimal
operation. (See Table 5-3.)

^ XBTD
Binary to Decimal Conversion
0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1

Converts a binary number to a decimal number. FARO contains the
decimal field address. GR2 contains the control word. This
instruction uses fields A, E, and H of the control word. H specifies
the length of the binary number and its location, as follows:

H Length Location

0 16 bits GR3 register, high side

1 32 bits GR3 register

2 64 bits FP1 register

14-105 Third Edition

DOC3060-192

Converts the specified binary integer to a decimal integer and s to res
the r e s u l t in the location specified by FARO. Leaves the values of
LINK unchanged. Overflow resu l t s in a decimal exception. If no
overflow occurs, se t s CBIT to 0. The values of the condition codes a re
indeterminate.

The r e g i s t e r s used a re GRO, GR1, GR3 (E), GR4, GR6, FARO, and FLRO. At
the end of the ins t ruc t ion , the contents of these r e g i s t e r s a re
indeterminate.

If a decimal exception occurs and b i t 11 of the keys contains a 0, the
ins t ruc t ion se t s CBIT to 1. If b i t 11 contains a 1, the ins t ruc t ion
se t s CBIT to 1 and causes a decimal exception f a u l t . See Chapter 11
for more information.

Note

The XBTD instruction does not use or modify FARl, FLR1, or
FACC1.

• XCM
Decimal Compare
0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0

Compares two decimal numbers and se t s the condition codes depending on
the r e s u l t of the compare. Uses the G f i e ld of the control f i e ld t o
adjust the two numbers before the compare, as follows:

G Field Decision

>0 Low-order d ig i t s of Fl only affect the i n i t i a l
borrow from the low-order d i g i t of F2.

<0 Assume Fl i s zero-extended with low zeroes.

FARO contains the address of f i e ld 1 (F l) . FARl contains the address
of f i e ld 2 (F2). GR2 contains the control word. This ins t ruc t ion uses
f i e lds A, B, C, E, F, G, and H of the control word.

The r eg i s t e r s used are GRO, GRl, GR3 (E), GR4, GR6, FLRO, and FLRl. At
the end of t h i s ins t ruc t ion , the contents of these r e g i s t e r s are
indeterminate. Leaves the value of LINK in an undefined s t a t e . The
condition codes r e f l ec t the r e su l t of the comparison, as follows:

Third Edition 14-106

I MDDE INSTRUCTION DICTIONARY

CC Test Result

GT F2 > Fl

EQ F2 = Fl

LT F2 < Fl

^ XDTB
Decimal to Binary Conversion
0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0

Converts a decimal string to a binary string. FARO contains the
address of the decimal string. GR2 contains the control word.

This instruction uses the A, E, and H fields. Field H specifies the
length of the binary string and its location, as shown below.

H Length Destination Register

00 16 bits GR2H

01 32 bits GR2

10 64 bits GR2/GR3

Converts the decimal string to a binary string of the specified type
and stores it in the specified register. A conversion error causes a
decimal exception. If no decimal exception occurs, the instruction
sets CBIT to 0. The values of LINK and the condition codes are
indeterminate.

The registers used are GR0, GRl, GR3 (E), GR4, GR6, FARO, and FLRO. At
the end of the instruction, the contents of these registers are
indeterminate.

If a decimal exception occurs and bit 11 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
sets CBIT to 1 and causes a decimal exception fault. See Chapter 11
for more information.

Note

This instruction does not use or modify FARl, FLR1, or FAC1.

14-107 Third Edition

EOC3060-192

^ XDV
Decimal Divide
0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1

Divides a decimal number, D2, by another, Dl, and stores the quotient
and remainder in the location of D2.

FARO contains the address of Dl. FAR1 contains the address of D2. L
contains the control word. This instruction uses fields A, B, C, E, F,
and H.

Both decimal numbers must be in trailing sign embedded format. In
addition, D2 must contain a number of leading zeroes equal to the
length of Dl.

The XDV instruction divides the two numbers. After the divide, the
location of D2 contains the quotient of length (D2 length - Dl length)
followed by the remainder of length (Dl length). Since D2 had leading
zeroes, no overflow can occur.

If the T bit contains a 1, the results will be forced positive. For
more information about decimal arithmetic, refer to Chapter 6.

The registers used are GR0, GR1, GR3 (E), GR4, GR6, FARO, FAR1, FLR0,
and FLR1. At the end of the instructions, the contents of these
registers are indeterminate.

At the end of the instruction, the condition codes, LINK, FARO, and
FARl contain undefined results. If no overflow occurs, CBIT is reset
to 0.

If Dl is 0, overflow occurs and causes a decimal exception. Decimal
exceptions also occur if Dl or D2 has the incorrect data type or if the
length of D2 is less than that of Dl. If no decimal exception occurs,
the instruction sets CBIT to 0.

If a decimal exception occurs and bit 11 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
sets CBIT to 1 and causes a decimal exception fault. See Chapter 11
for more information.

Third Edition 14-108

I MDDE INSTRUCTION DICTIONARY

^ XED
Numeric Edit
0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0

Edits the contents of a string under control of a subprogram.

The registers used are GR2 (L), XB, FARO, FARl, and FLRO. At the end
of the instruction, the contents of these registers are indeterminate.

FARO contains the address of the source string. The source string must
be leading separate sign type and must have at least the same number of
decimal digits and the decimal point alignment as called for in the
edit subprogram.

FARl contains the address of the destination string. Bits 1-8 of A
contain the floating character; bits 9-16, the status register. Bits
1-8 of B contain the number of remaining bytes to be processed (used if
a fault or interrupt occurs). Bits 9-16 of B contain the suppression
character whose initial value is determined by bit 12 of the keys ('240
if bit 12 contains 0; '40 if bit 12 contains 1). XB contains the
address of the edit subprogram.

The instruction uses an edit subprogram to alter a source string and
store the edit result in a destination location(s). To set up, perform
a decimal move to correct the type, alignment, and length of the number
to be edited. Next, use a LCEQ instruction to set up the initial
contents of the register.

Each word in the edit subprogram has the format shown in Figure 14-4,
where:

L is 1 if this word is the last word in the subprogram,
0 if it is not the last word;

E is a suboperator;
M is a suboperator modifier.

1 2 3 4 8 9 16

L I 00 I E I M

Edit Subprogram Word Format
Figure 14-4

The XED instruction uses several variables internally to control the
edit subprogram. These are shown in Table 14-14.

14-109 Third Edition

D0C3060-192

Table 14-14
XED Internal Variables

Definition

Zero suppression character; contained in B. Initial
value is the space character ('240 or '40 if bit 12
of the keys contains 0 or 1, respectively).

Floating edit character; contained in A. Initial
value is not defined.

Sign of the source field. The first character fetch
sets up the value of this variable.

End zero suppression flag.

There are 17 edit suboperators, shown in Table 14-15.

Third Edition 14-110

I MOIX: INSTRUCTION DICTIONARY

Table 14-15
XED Suboperators

I Subop

1 00

1 01

! 02

1 03

1 04

! 05

1 06

1 07

I 10

1 11

1 12

Mnem I

ZS I

IL 1

SS 1

ICS I

ID |

ICM I

ICP I

SFC I

SFP |

SFM |

SFS I

Name and Description

Zero Suppress. Fetches M digits from the source
field consecutively, each time checking SIG. If
SIG is 1, copies the digit into the destination
string. If SIG is 0 and the digit is not 0,
inserts the floating character (if defined)
and copies the digit into the destination field.
If SIG is 0, the digit is not 0, and the
floating character is not defined, sets the SIG
flag and copies the digit into the destination.
If SIG and the digit are both 0, substitutes
SC for the 0 digit in the destination field.

Insert Literal. Copies M into the
destination string. Increments XB and PARI by 1.

Set Suppress Character. Sets SC to M and
increments XB by 1.

Insert Character. If SIG is 1, copies M into the
destination string. If SIG is 0, copies SC into
the destination string. Increments XB and FARl
by 1.

Insert Digits. If SIG is 0, and FC is defined,
copies FC and M digits into the destination field
then sets SIG to 1. Increments XB by 1, FARO by
M, and FARl by M+l. If SIG is 0 and FC is not
defined, sets SIG to 1 and copies M digits from
the source to the destination. Increments XB by
1 and both FARO and FARl by M. If SIG is 1,
copies M digits from the source to the
destination and increments XB by 1 and both FARO
and FARl by M.

Insert Character if Minus. If SIGN = 0, copies
M into the destination string. If SIGN = 1,
copies SC into the destination string.
Increments both SB and FARl by 1.

Insert Character if Plus. If SIGN = 0, copies M
into the destination string. If SIGN = 1,
copies SC into the destination string.
Increments both SB and FARl by 1.

Set Floating Character. Sets FC to M and
increments XB by 1.

Set Floating if Plus. If SIGN = 0, sets FC to M.
If SIGN = 1, FC to SC. Increments XB by 1.

Set Floating if Minus. If SIGN = 1, sets FC to M.
If SIGN = 0, sets FC to SC. Increments XB by 1.

Set Floating to SIGN. If SIGN = 0, sets FC to
'253. If SIGN = 1, sets FC to '255. Increments
XB by 1.

14-111 Third Edition

EOC3060-192

Table 14-15 (continued)
XED Suboperators

I Subop

1 13

1 14

1 15

1 16

i 17

I 20

Mnem |

JZ |

FS I

SF |

IS |

SD |

EBS |

Jump if Zero. If the condition flag in A = 0f

increments XB by 1. If the condition flag in A
= lr adds M to XB and then increments XB by 1.

Fill with Suppression Characters. Copies SC
M times into the destination string. Increments
XB by 1 and FARl by M.

Set Significance. If SIG = 0 and FC <> 0, inserts
FC into the destination string, sets SIG to 1,
and increments XB and FARl by 1. If SIG = 0 and
FC = 0f sets SIG to 1 and increments XB and FARl
by 1. If SIG = 1, increments XB by 1.

Insert Sign. If SIGN = 0, copies '253 into the
destination string. If SIGN = 1, copies '255
into the destination string. Increments XB by 1.

Suppress Digits. Fetches M digits from the source
string and checks if they are '260. If the source
digit = '260, inserts SC into the destination
string. If the source digit <> '260, copies the
source digit into the destination string.
Increments XB by 1 and both FARO and FARl by M.

Embed Sign. Fetches M digits from the source
string. If SIGN = 0, copies each digit into the
destination string. If SIGN = 1, embeds a minus
sign into each digit before copying it into the
destination string. Table 6-16 shows the
characters used to represent the sign/digit
combinations. Note that } represents negative 0.

Third Edition 14-112

I MDDE INSTRUCTION DICTIONARY

^ XH r ,address
Exclusive OR Halfword
1 0 1 1 1 0 0 1 1 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effect ive address, EA. Performs an exclusive OR of the
contents of the specif ied r with the 16-bi t value contained in the
locat ion specified by EA. Stores the r e s u l t in r . Leaves the values
of LINK, 03TT, and the condition codes unchanged.

Note

This ins t ruc t ion a lso has a r e g i s t e r - t o - r e g i s t e r and an
immediate form. See Chapter 3 for more information.

^ XMP
Decimal Multiply
0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0

Multiplies one decimal number, D2, by another, Dl, and stores the
result in D2's location in memory.

FARO contains the address of Dl. FAR1 contains the address of D2. L
contains the control word. This instruction uses fields A, B, C, E, F,
G, H, and T. Note that field G, the scale differential, must contain
the number of decimal digits in the multiplier (M). This value is not
the same as the length of the D2.

For correct results, D2 must contain a number of leading zeroes equal
to or greater than the length of Dl.

The instruction multiplies D2 by Dl and stores the result in the
location specified by FARl. The result of the multiply is:

Dl x D2 + partial product field

The partial product field is equal to:

length (D2) - M.

The p a r t i a l product f i e l d i s l e f t j u s t i f i e d in D2's loca t ion . The
maximum p a r t i a l product added in per t raverse of the multiplicand i s :

source d i g i t s + mul t ip l ie r d i g i t s processed

There i s a l so an implied weighting of the p a r t i a l product f i e l d . The
weighting i s :

10 ** mul t ip l i e r d i g i t s

14-113 Third Edition

DOC3060-192

If the T bit contains a 1, the results are forced positive.

The registers used are GRO, GR1, GR3 (E), GR4, GR6, FAROr FAR1, and XB.
At the end of this instruction, the contents of these registers are
indeterminate. At the end of the instruction, the condition codes
reflect the state of the result. (See Table 5-3.) Overflow causes a
decimal exception. If no overflow occurs, resets CBIT to 0. LINK
contains undefined results.

A decimal exception occurs if there are more potential or actual
product digits than there is space in D2. If a decimal exception
occurs and bit 11 of the keys contains a 0, the instruction sets CBIT
to 1. If bit 11 contains a 1, the instruction sets CBIT to 1 and
causes a decimal exception fault. See Chapter 11 for more information.

^ XMV
Decimal Move
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1

Moves a string of characters from one location to another.

FARO contains the address of the source string. FARl contains the
address of the destination string. GR2 contains the control word.
This instruction uses fields A, B, D, E, F, G, H and T.

The instruction moves the contents of the source field into the
destination field from right to left. If the B field in the control
word is 1, the instruction changes the sign of the source field during
the move. If the D field in the control word is 1 and the scale
differential is greater than 0, the instruction rounds the source field
during the move. If the scale differential (from the H field) is less
than 0, the instruction pads the source field with SD trailing zeroes
before transferring.

If the T bit is set to 1, the result will be forced positive.

An overflow causes a decimal exception. If no decimal exception
occurs, the instruction resets CBIT to 0. At the end of the
instruction, LINK, FARO, and FARl contain undefined results. The
values of the condition codes reflect the state of the destination
field after the move. (See Table 5-3.)

If a decimal exception occurs and bit 11 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
sets CBIT to 1 and causes a decimal exception fault. See Chapter 11
for more information about decimal exceptions.

Note

The source and destination strings may not overlap in memory.

Third Edition 14-114

I MDDE INSTRUCTION DICTIONARY

^ ZCM
Compare Character Field
0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 1

Compares two fields and sets the condition codes depending on the
result of the compare. Uses registers GR3 (E)f GR4, FARO, FARl, FLR0,
and FLRl. At the end of this instruction, the contents of these
registers are indeterminate.

FARO contains the address of field 1 (Fl). FLR0 contains an integer
specifying the length of Fl. FARl contains the address of field 2
(F2). FLRl contains an integer specifying the length of F2.

The instruction compares the contents of Fl and F2 on a byte by byte
basis. If the fields are not of equal length, the instruction
automatically extends the shorter string with space characters. Sets
the condition codes as a result of the comparison, as follows:

Result of Compare

Fl > F2

Fl = F2

Fl < F2

Set Condition Codes

GT

BQ

LT

When the instruction completes execution, the values of CBIT and LINK
are indeterminate.

Note

This instruction uses GR3, GR4, the FARs, and the FLRs during
its operation. Since ZCM does not save the contents of these
registers before using them, any data contained in them is
overwritten when this instruction executes, unless you save it
ahead of time.

14-115 Third Edition

DOC3060-192

^ ZED
Character Field Edit
0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1

Controls an edit subprogram.

FARO contains the address of the source string. FLR0 specifies the
length of the source string. FARl contains the address of the
destination string. XB contains the address of the edit subprogram.

The ZED instruction uses the edit subprogram to alter the source
string, then loads the edited result into the destination string. The
subprogram, addressed by the contents of XB, contains a list of
commands, each with the format shown in Figure 14-5, where:

L is 1 if this command is the last command in the subprogram,
0 if it is not;

E is the edit opcode;
M is the edit modifier.

1 2 6 7 8 9

I L I 00000 | E | M

16

1

ZED Subprogram Word Format
Figure 14-5

Bits 2-6 must be 0.

M, the operator modifier, specifies information E uses when editing the
source str ing. (See Table 14-16.)

E, the edit suboperator, specifies the operation to be performed on the
source str ing. Table 14-16 shows the available values for E.

Third Edition 14-116

I MDDE INSTRUCTION DICTIONARY

Table 14-16
ZED Suboperators

Subop | Value I Action

CPC I 00 I Copies characters from the source string into
the destination string. If the length of the
source string is greater than the contents of
the M field, then CPC moves a total of M source
characters into the destination string,
increments FARO and FAR1 by M, increments XB
by 1, and decrements FLRO by M. If the length
of the source string is less than the contents
of the M field, then CPC moves the rest of the
source string into the destination string, and
then pads the remaining space to be filled with
spaces. Increments FARO by FLRO, FAR1
by M, increments XB by 1, and decrements FLRO
by FLRO (so FLRO = 0).

INL I 01 I Inserts M into the destination string and
increments XB and FAR1 by 1.

SKC I 10 I Skips characters in the source string. If the
remaining length of the source string is
greater than or equal to the contents of the
M field, SKC skips over the next M characters
of the source field by incrementing FARO by M
and decrementing FLRO by M. If the remaining
length of the source string is less than the
contents of the M field, SKC skips over FLRO
characters in the source string by incrementing
FARO by FLRO and decrementing FLRO by FLRO
(FLRO = 0). In either case, SKC increments
XB by 1.

BLK I 11 | Inserts M spaces into the destination
string, increments FAR1 by M, and increments
XB by 1. A space is '240 or '40, depending on
whether bit 12 of the keys contains 0 or 1.

Note

This instruction uses GR3, GR4, the FARs, and the FLRs during
its operation. Since ZED does not save the contents of these
registers before using them, any data contained in them is
overwritten when this instruction executes, unless you save it
ahead of time.

14-117 Third Edition

DOC3060-192

^ ZFIL
F i l l Field with Character
0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 0

Stores a character into a series of destination bytes. Uses registers
GR3 (E), GR4, FARO, FAR1, FLR0, and FLR1. At the end of this
instruction, the contents of these registers are indeterminate.

Bits 9-16 of GR3 contain the character to be stored. FARO contains the
starting address of the destination field (byte aligned). FLR1
contains an integer specifying the length of the destination field (in
bytes).

The instruction stores the character specified in GR3 in each byte of
the destination field. If FLR1 contains 0, no operation takes place.
Leaves the values of G3IT, LINK, and the condition codes indeterminate.

Note

This instruction uses GR3, GR4, the FARs, and the FLRs during
its operation. Since ZFIL does not save the contents of these
registers before using them, any data contained in them is
overwritten when this instruction executes, unless you save it
ahead of time.

^ ZM address
Zero Memory Fullword
1 0 0 0 1 1 DR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Loads 0 into the 32-bit location
specified by EA. Leaves the values of LINK, CBIT, and the condition
codes unchanged.

^ ZMH address
Zero Memory Halfword
1 0 1 0 1 1 DR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Loads 0 into the 16-bit location
specified by EA. Leaves the values of LINK, CBIT, and the condition
codes unchanged.

Third Edition 14-118

I MODE INSTRUCTDDN DICTIONARY

^ ZMV
Move Character Field
0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0

Moves a character field from one location to another. Uses registers
GR3 (E)f GR4, FARO, FARl, FLR0, and FLR1. At the end of this
instruction, the contents of these registers are indeterminate.

FARO contains the address of the source string (byte aligned). FLR0
specifies the length in bytes, N, of the source string. FARl contains
the address of the destination string (byte aligned). FLR1 specifies
the length in bytes, M, of the destination string.

Compares N and M. If N is less than M, the instruction moves the
contents of the source string into the destination string followed by
M-N space characters. A space character is '240 or '40 when bit 12 of
the keys is 0 or 1, respectively. If the destination string is
shorter, the instruction moves the first M characters of the source
string into the destination string.

When the instruction completes, the values of FARO, FARl, FLR0, FLR1,
CBIT, LINK, and the condition codes are indeterminate.

Note

This instruction uses GR3, GR4, the FARs, and the FLRs during
its operation. Since ZMV does not save the contents of these
registers before using them, any data contained in them is
overwritten when this instruction executes, unless you save it
ahead of time.

This instruction does not work with overlapping strings. See
Chapter 6 for more information.

^ ZMVD
Move Characters Between Equal Length Str ings
0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1

Moves characters from one s t r ing t o another of equal length. Uses
r eg i s t e r s GR3 (E), GR4, FARO, FARl, FLR0, and FLRl. At the end of t h i s
ins t ruc t ion , the contents of these r e g i s t e r s a re indeterminate.

FARO contains the address of the source s t r i n g . FARl contains the
address of the des t inat ion s t r i n g . FLRl contains the number of
characters t o move, N.

The ins t ruc t ion moves N characters from the source s t r i ng t o the
dest inat ion s t r i n g . Characters are moved from lower addresses t o
higher addresses.

14-119 Third Edition

DOC3060-192

When the ZMVD instruction completes, the values of FARO, FARl, FLRO,
FLR1, CBIT, LINK, and the condition codes are indeterminate.

Note

The ZMVD instruction uses GR3, GR4, the FARs, and the FLRs
during its operation. Since ZMVD does not save the contents of
these registers before using them, any data contained in them
is overwritten when this instruction executes, unless you save
it ahead of time.

This instruction does not work with overlapping strings.
Chapter 6 for more information.

^ ZTRN
Character Str ing Translate
0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0

Translates a string of characters and stores the translations in the
specified destination. Uses registers GR3 (E), GR4, FARO, FARl, FLRO,
and FLR1. At the end of this instruction, the contents of these
registers are indeterminate.

FARO contains the address of the source string (byte aligned). FARl
contains the address of the destination string (byte aligned). FLR1
specifies the length of the source and destination strings. XB
contains the address of a translation table. Each byte in the 256-byte
table contains an alphabetic character.

The instruction uses the address in FARO to reference a character. It
interprets this character as an integer, adding it to the contents of
XB to form an address into the translation table. The instruction
takes the referenced character in the translation table and writes it
into the location specified by FARl. After storing the character, the
instruction increments the contents of FARO and FARl by 1, decrements
the contents of FLRO by 1, and repeats the operation until FLR1
contains 0.

At the end of the instruction, FARO and FARl point to the last byte in
the source and destination strings, respectively. FLR1 contains 0.
Leaves the values of XB, CBIT, LINK, and the condition codes unchanged.

Note

This instruction uses GR3, GR4, the FARs, and the FLRs during
its operation. Since ZTRN does not save the contents of these
registers before using them, any data contained in them is
overwritten when this instruction executes, unless you save it
ahead of time.

Third Edition 14-120

APPENDIXES

A
Power-up

POWER-UP AND SYSTEM INITIALIZATION

All 50 Series processors perform the following s teps i n the sequence
shown for power-up and system i n i t i a l i z a t i o n .

1 . Power becomes va l i d .

2 . VCP (Virtual Control Panel) or maintenance processor conducts
self t e s t s .

3 . CPU micro-diagnostics perform processor va l ida t ion .

4 . CPU i n i t i a l i z e s t o the s t a t e shown in Table A- l .

Note

The failure of step 2, 3, or 4 stops the entire process and
causes an error message to be displayed.

A-l Third Edition

DOC3060-192

Table A-l
CPU Initialization Values

I Element Initialized

I CRS (current register set)

I Registers in CBS

I All EMA (direct memory
1 I/O registers but 6

1 EMA register 6

1 Keys

| Modal s

I Program counter

I RSAVPTR (register save

access)

pointer)

Initialized Value |

0 (specifies RF2, I
the first user |
register set) I

0, generally I

Undefined I

0 (or 3)/'1000 1
(manufacturing |
test equipment) |

0 (addressing |
mode now 16S) 1

0 1

Ring 0, segment 0, I
offset '1000 I

0 1

Third Edition A-2

INDEX

Inde x

Symbols and Numbers

50 s e r i e s ,
address formation, 3-6
address formation for

nonindexing in s t ruc t ions ,
3-16

cache s izes and h i t r a t e s , 2-3
check-produced t r aps and t h e i r

ac t ions , 11-29
control s t o r e , 1-3
d e t a i l s of cache memory, 4-17
dispatcher se lec t ion of

r eg i s t e r f i l e , 9-24
DSWFB, 11-25
DSWRMA, 11-25
DSWSTAT, 11-24
f loat ing-point accuracy, 6-27
f loat ing-point discussion,

6-29
f loat ing-point prec is ion, 6-28
format of EMA control word,

12-18
integer overflow exception,

l l r l 5
in terva l t imer, 9-22
mapped I/O, 12-11
memory data s t ruc tu re s , 4-3
memory in te r leav ing , 2-4
microcode reg i s t e r f i l e s e t ,

9-17

50 se r i e s (continued)
overview, 1-1
physical memory packaging, 2-3
reg i s te r f i l e a l loca t ion , 9-14
rounding, 6-24
STUB entry format, 4-4
STTB hashing algorithm, 4-6
syndrome b i t s , 11-35

Access r i g h t s ,
for segments, 4-9
gate access , 8-7
val idat ion during memory

access , 4-14
values and t h e i r meanings,

4-16

Address manipulation
instructions, 6-9

Address translation,
details of operation, 4-20
mechanism, 4-20
STTB, 1-3
timing information, 4-17

X-l Third Edition

DOC3060-192

Address traps,
32R mode, 3-21
64R mode, 3-24
64V mode, 3-13
discussion, 3-27

Addressing,
address formation, 3-6
components of virtual address,
3-2

direct, 3-7
discussion, 3-1
indexed, 3-7
indirect, 3-7
indirect indexed, 3-8
instr ucti ons, 6-9
modes, 3-9
register file, 9-21
traps, 3-27
units of information, 3-1

Addressing modes, 3-9

Air flow sensor, 1-12

Alignment,
burst-mode I/O, 12-14
EMC control word, 12-12
ECB in gate segments, 8-7
K B , 9-2, 10-3
QCB address, 12-13
QCBs, 6-43
queues, 6-44

Anticipatory clearance, 4-25

Architecture,
dual-stream, 1-6
Prime 9950, 1-8
single-stream, 1-1

Argument pointers, 8-6

Argument templates, 8-6, 8-11

Arithmetic logic unit, 1-3

Arithmetic overflow, 5-9

Arithmetic overflow instructions,
5-9

Arithmetic shift instructions,
6-14

Auxiliary base (XB),
alteration by PCL, 8-15
base register field, 3-6
indirect pointer calculation,
8-11

introduction, 3-4

B

Backplane, 1-8

Backward threaded stack frames,
8-3

Base registers,
discussion, 3-2, 3-6
instructions, 6-9
relationship to offsets, 3-4

Beat rate, 1-9

Beginning of list, 9-5

Binary numbers, 6-3, 6-4

Bit manipulation instructions,
6-2

Bits, 3-1

Boolean operations, 6-2

Branch cache, 1-8, 1-9, 11-31

Branch instructions, 1-8, 7-1

Breaks, 11-1

Burst-mode I/O, 12-10, 12-14

Bytes, 3-1

Cabinet overtemperature sensor,
1-12

Cache memory,
branch cache, 1-8
details of access, 4-13, 4-17

Third Edition X-2

INDEX

Cache memory (continued)
discussion, 1-3, 2-3
entry format, 4-7
inhibiting use of, 4-10
introduction, 1-1
invalidation by stream
synchronization unit, 1-6

invalidation via IOTIB, 12-8
use during address conversion,
4-2

virtual mapping, 4-17

Called procedure, 8-2

Callee, 8-2

Caller, 8-2

Calling procedure, 8-2

Calls, 8-1

OBIT, 5-9

Character manipulation,
field operation instructions,
6-17

instructions, 6-39

Character strings,
as floating-point numbers,
6-26

instructions, 6-39

Checks,
diagnost ic s t a tu s words, 11-18
discussion, 11-17
handler, 11-17
handler operation, 11-27
MCM field, 11-26
traps, 11-28
types of, 11-17
vectors , 11-18

Checksum ins t ruc t ions , 6-2

Class b i t s ,
32R mode, 3-21
64R mode, 3-24

Clear register/memory
ins t r uct i ons, 6-16

Components of an in s t ruc t ion ,
3-5

Concealed s tack, 11-10

Concurrency con t ro l ,
Prime 850 locks , 1-8
STAC ins t ruc t ion , 13-113
STCD ins t ruc t ion , 14-96
STCH ins t ruc t ion , 14-97
STLC ins t ruc t ion , 13-115

Condition codes, 5-9

Control s t o r e , 1-1, 1-3

Control word format for decimal
ins t ruc t ions , 6-35

Control ler ,
device address, 12-4
discussion, 12-1
re la t ionsh ip t o processor,

12-1

CPUNUM, 10-3

Data movement i n s t ruc t i ons , 6-10

Datatypes, 6-1

Decimal data ,
accuracy, 6-37
control word format, 6-35
packed, 6-34
precis ion, 6-37
unpacked, 6-33

Dedicated backplane, 1-8

Descriptor Table Address Register
(See DTAR)

Device address f i e l d , 12-4

Diagnostic s t a tu s word,
l i s t of, 11-18
s e t t i n g by mult iple checks,

11-27

X-3 Third Edition

DOC3060-192

Direct addressing, 3-7

Direct memory access (See DMA)

Direct memory access methods
(See DMx)

Direct memory control (See DMC)

Direct memory queue (See EMQ)

Direct memory transfer (See DMT)

Dispatcher,

discussion, 9-14
operation, 9-23
operation on Prime 850, 10-11

Displacement, 3-4, 3-6

DMA,
burst-mode I/O, 12-14
discussion, 12-9
register file, 9-18
servicing a request, 12-12

DMC, 12-12

DMQ,
discussion, 12-13
physical queues, 6-42
queue operations, 6-46

DMT, 12-13

DMx,
burst-mode I/O, 12-14
discussion, 12-5
DMA, 12-9
DMC, 12-12
DMQ, 12-13
DMT, 12-13
IOTLB, 12-8
mapped I/O, 12-7
transfer rates, 12-10

Double precision floating point,
6-19

DSWPARITY, 11-18

DSWPB, 11-18

DSWFMA, 11-18

DSWSTAT, 11-18, 11-27

DTAR,
discussion, 4-8
format, 4-8
use during address t r a n s l a t i o n ,

4-20

Dual-stream a rch i t ec tu re , 1-6

ECB,
CALF ins t ruc t ion , 11-12
discussion, 8-5
gate segments, 8-7
ring numbers, 8-7
stack a l loca t ion , 8-10

ECL, 1-8

Effective address calculation
instructions, 6-9

Embedded operating system, 8-1

Emitter coupled logic, 1-8

End of list, 9-5

Entry control block (See ECB)

Environment sensor support,
check, 11-17
discussion, 1-10

Excess 128, 6-19

Exponent, 6-19

Extension segments, 8-2

FADDR, 11-15

FAR (See Field address r eg i s t e r)

Fault address, 11-13

Third Edition X-4

INDEX

Fault bit, 4-9

Fault code, 11-13

Faults,
access, 4-16, 8-7
arithmetic exceptions, 11-15
CALF instruction, 11-9
concealed stack, 11-10
decimal, 5-6
discussion, 11-6
floating-point, 5-6
handler, 11-7
integer, 5-6
omitted argument pointer, 8-14
page, 4-24
PCB, 9-3
pointer, 3-8, 8-11, 8-14
process, 9-23, 10-11
resumable instructions, 13-3,
14-3

SEW, 4-9
semaphore overflow, 9-9, 9-12,
11-6, 11-9, 11-14

servicing, 11-12
stack overflow, 8-3, 8-10
summary of, 11-6
tables, 11-8
vectors, 11-7

FCODE, 11-15

Field address r e g i s t e r ,
format, 6-18
ins t r uct i ons, 6 -17
introduct ion, 6-17
overlap with f loat ing-point

r e g i s t e r s , 6-21

Field length r e g i s t e r ,
format, 6-18
ins t ruc t ions , 6-17
introduct ion, 6-17
overlap with f loat ing-point

r e g i s t e r s , 6-21

Field operat ions , 6-17

Firmware (See Microcode)

Fixed-point data ,
addresses, 6-9
discussion, 6-1
f i e ld operat ions, 6-17

Fixed-point data (continued)
in s t ruc t ions , 6-4, 6-10
logica l values , 6-2
signed in t ege r s , 6-3

Flag b i t s , CALF stack frame,
11-13

Floating-point numbers,
accuracy, 6-26
discussion, 6-19
format, 6-20
ins t ruc t ions , 6-22
manipulation of, 6-23
normalization, 6-25
precis ion, 6-20, 6-26
reg i s te r overlap with f i e ld

r e g i s t e r s , 6-21

FLR (See Field length reg is te r)

FORTRAN 66 considerat ions , 6-26

Fract ion, 6-19

Free poin ter , 8-3

Function f i e l d , 12-4

Gate access, 8-7

Gate segments, 8-7

General registers, alteration
during procedure call, 8-15

Guard bits, 6-23

Halfwords, 3-1

Hardware page map table (See
HMAP)

Hit rate, 2-3

X-5 Third Edition

DOC3060-192

HMAP,
discussion, 4-10
entry format, 4-10
use during address translation,
4-22

Honeywell 316 and 516, 3-10

I mode,
behavior relating to Prime 9950
pipeline, 1-10

discussion, 3-9
instructions, 14-1
performance, 1-10

I/O Controller, 12-1, 12-4

Illustrations,
16S mode formats, 3-25
321 mode formats, 3-17
32R mode formats, 3-19
32S mode formats, 3-26
64R mode formats, 3-22
64V mode formats, indirect
form, 3-14

64V mode formats, long form,
3-14

64V mode formats, short form,
3-12

actions of PCL, 8-8
address translation on non-9950
machines, 4-23

address translation on the
Prime 9950, 4-21

argument template format, 8-6
base register format, 3-3
bits used in STLB hashing
algorithm, 4-5

cache entry format, 4-7
calculating a queue mask, 6-44
calculating and storing
argument pointers, 8-12

calculating the origin and end
of a queue, 6-45

character string manipulation,
6-40, 6-41

decimal control word format,
6-35

descriptor table address
register format, 4-8

I l l u s t r a t i o n s (continued)
disk page address, 4-24
DTAR format, 4-8
dual-stream a rch i t ec tu re , 1-7
EA format for EAFA, 13-41,

14-37
ECB format, 8-5
ed i t subprogram word format,

13-130, 14-109
EIO formats, 12-3
elements of physical memory,

2-2
f loat ing-point formats, 6-20
f loat ing-point i n s t ruc t ions ,

6-22
format of EMA control word,

12-18
format of EMC control word,

12-12
format of f i e l d address and

length r e g i s t e r , 6-18
format of f loa t ing r e g i s t e r ,

6-18
format of QCB, 6-43
hardware page map t ab le entry

format, 4-10
hashing algorithm for 9950

STLB, 4-6
hashing algorithm for non-9950

STLB, 4-6
HMAP entry format, 4-10
I mode ins t ruc t ion formats,

14-6
INA, OCP, OTA, SKS operat ive

format, 12-2
in te rp re ta t ion of condition

codes, 5-10
keys format, S and R modes,

5-5
keys format, V and I modes,

5-6
keys in s t ruc t ions , 5-8
L and FAR format for ALFA,

13-10
LMAP entry format, 4-11
logical page map t ab le entry

format, 4-11
long form indi rec t ion pointer

formats, 3-8
mapped I/O, 12-7
memory map entry format, 4-13
MMAP entry format, 4-13
modals format, 5-3
modals i n s t ruc t i ons , 5-4

Third Edition X-6

INDEX

I l l u s t r a t i o n s (continued)
normal modals s e t t i n g , 5-2
NOTIFY in s t ruc t i ons , 9-13
overlapping s t r i n g s , 6-40,

6-41
page map t ab le entry format,

4-12
paging, 4-26
PMT entry format, 4-12
pointer formats for long form

ind i rec t ion , 3-8
Prime 850 NOTIFY ins t ruc t ion ,

10-8
Prime 850 WATT ins t ruc t ion ,

10-7
processor execution un i t , 1-5
protect ion r i ngs , 2-6
queues with wrapped and

unwrapped data , 6-42
read memory access , 4-15
ready l i s t and associated PCB

l i s t s , 9-4
reg is te r se t a l loca t ion

algorithm, non-9950, 9-25
reg is te r s e t a l loca t ion

algorithm, Prime 9950, 9-26
rounding pre requ is i t es and

procedures, 6-24
S, R, V mode ins t ruc t ion

formats, 13-5
sample NOTIFY algorithm, Prime

850, 10-10
sample phantom in te r rupt code

sequences, 11-4
save mask format, RRST and RSAV

ins t ruc t ions , 13-100,
13-101, 14-88

save under mask algorithm,
9-11

SEW format, 4-9
segment descriptor word format,

4-9
signed integer formats, 6-3
single-processor a rch i t ec tu re ,

1-2
stack frame format, 8-4
STLB entry format, 4-4
s t r i ng manipulation, 6-40,

6-41
timer example for 1450, 850,

and 9950, 9-22
typical ins t ruc t ion format,

3-5
unpacked decimal formats, 6-33

I l l u s t r a t i o n s (continued)
v i r t ua l address format, 3 -3 ,

4-2
v i r t ua l memory space, 2-5
WATT ins t ruc t ion , 9-10
wait l i s t and associa ted PCB

l i s t s , 9-8
wri te memory access . 4-19
ZED subprogram word format,

13-137, 14-116

Immediate types, 3-17

In Dispatcher bit, 9-24

INA action, 12-4

Index register,
discussion, 3-6
relationship to offsets, 3-4

Indexed addressing, 3-7

Indirect addressing,
argument templates, 8-6
calculation of pointers, 8-11
discussion, 3-7
format, 3-3, 3-4, 3-17
long form, 3-7
multiple levels, 3-7
pointers, 3-17, 8-6
relationship to offsets, 3-4
short form, 3-7

Indirect bit,
16S mode, 3-26
32R mode, 3-21
32S mode, 3-27
64R mode, 3-24
discussion, 3-5

Indirect indexed address, 3-8

Indirection chain,
32R mode, 3-21
32S mode, 3-27
discussion, 3-7
involving indexing, 3-8

Instruction format,
16S mode, 3-25
321 mode, 3-17
32R mode, 3-19
32S mode, 3-26

X-7 Third Edition

DOC3060-192

Instruct ion format (continued)
64R mode, 3-22
64V mode long and indi rec t

form, 3-14
64V mode short form, 3-12
typ ica l , 3-5

Inst ruct ion preprocessor un i t ,
1-1

Inst ruct ion s e t ,
address manipulation, 6-9
argument t r ans fe r , 8-14
ar i thmetic overflow, 5-9
b i t manipulation, 6-2
character s t r i n g s , 6-39
checksum, 6-2
clear register/memory, 6-16
concurrency cont ro l , 13-113,

13-115, 14-96, 14-97
conditional s t o r e , 6-13
conversion between f ixed- and

f loat ing-point , 6-31
data movement, 6-10
datatypes, 6-1
deadlock prevention, 6-13
decimal, 6-38
decimal control word format,
6-35

differences between shifts and
rotates, 6-15

effect address calculation,
6-9

EIO, 12-2
fast array reference, 6-9
fast decrement by one or two,
6-7

fast increment by one or two,
6-4

fast setting of bits in A, 6-7
faults, 11-9
fixed-point data, 6-10
floating-point, 6-22
floating-point accuracy, 6-27
formats, 13-4, 14-4
handling large integers, 6-4
I mode dictionary, 14-1
input/output, 12-2
input/output operative actions,
12-4

interrupt handling, 11-4
interval clock, 11-38
interval timer, 9-22
invalidating IOTIB, 12-8

Instruction set (continued)
jumps, 7-6
keys, 5-8
lock implementation, 6-13
logic instructions, 6-2
modals, 5-4
overlapping strings, 6-40,
6-41

phantom interrupt, 11-3
PIO, 12-2
procedure call, 8-2
process exchange, 9-7, 9-9
process exchange on the Prime

850, 10-6
process timer, 9-22
queues, 6-46, 6-47
R mode dictionary, 13-1
ready list, 9-12
restricted instructions, 5-11
results of comparisons, 5-9
resumable instructions, 13-3,
14-3

returning from procedures,
8-15

S mode dictionary, 13-1
semaphores, 9-7, 9-9
semaphores on the Prime 850,
10-6

shift instructions, 6-14
signed integers, 6-4
skips, 7-1
special load/store, 6-13
V mode dictionary, 13-1
wait list, 9-9

Instruction stream,
altering sequential flow, 7-1
self-modifying code, 1-10,
13-4, 14-4

storing data into, 1-10

Instruction stream units, 1-6,
10-1

Integers, 6-3, 6-4

Integrity,
machine check, 5-4
protection rings, 2-7

Interrupt response code, 11-3

Third Edition X-8

INDEX

Interrupts,
disabling, 5-4
discussion, 11-3
enabling, 5-4
external, 11-3
inhibiting, 5-4
memory increment, 11-5
response code, 12-6
response time, 12-6
standard, 5-4
vectored, 5-4

Interval clock, 11-37

Inward calls, 8-1, 8-7, 8-15

IOTLB, 12-8

Jump instructions, 7-6

Link base (LB) (continued)
ECB, 8-5
introduction, 3-4
offset, 3-13
PCL instruction, 8-10
PRTN instruction, 8-15
stack frame, 8-4

LMAP, 4-11

Locked memory, 4-11

Locks, 1-8

Logic instructions, 6-2

Logical page map table (See
LMAP)

Logical shift instruction, 6-14

Logical values, 6-2

Long form indirection, 3-7

K

Keys,
CALF stack frame, 11-13
CBIT, 5-9
condition codes, 5-9
discussion, 5-4
ECB, 8-5
ins t r uc t ions , 5-8
LINK, 5-9
PCL, 8-10
PRTN, 8-15
stack frame, 8-4
undefined s e t t i n g s , 5-10

L b i t , 8-6, 8-14

Last b i t , 8-6, 8-14

LINK, 5-9

Link base (IB),
base reg i s t e r f i e l d , 3-6
CALF stack frame, 11-13

M

Machine check, 11-17

Mapped I/O, 12-11

Mask word for queues, 6-44

Master ISU, 10-1

Memory,
cache, 1-1, 1-3, 2-3
data s t ruc tu re s , 4-3
d e t a i l s of access , 4-13
d e t a i l s of address t r a n s l a t i o n ,

4-20
DTAR format, 4-8
hardware page map t a b l e , 4-10
in te r leaving , 2-4
logical page map t a b l e , 4-11
management, 4-1
manager, 2-1
page f a u l t s , 4-24
par i ty e r ro r , 11-17
physical , 2-1
prepaging, 4-25
segment descriptor word, 4-9

X-9 Third Edition

DOC3060-192

Memory (continued)
timing information, 4-17, 4-18
v i r t u a l , 2-1

Memory increment in t e r rup t , 11-5

Memory in ter leaving, 2-4

Memory manager, 2-1

Memory map t ab le (See MMAP)

Memory pa r i ty e r ro r , 11-17

Microcode, 1-1

Microcode reg i s te r f i l e s , 9-15

Microsecond t imer, 10-11

Missing memory module, 11-17

MMAP, 4-13

Modals,
discussion, 5-2
instructions, 5-4
MCM field, 11-26

N

Nonindexing instructions,
16S mode, 3-26
32R mode, 3-21
32S mode, 3-27
64R mode, 3-24
64V mode, 3-16

Normalization, 6-23, 6-25

Numbers, 6-3, 6-4

OCP action, 12-5

Offsets, 3-2, 3-4

Operating system,
access via user programs, 2-5
automatic shutdown due to
sensor check, 1-12

concealed stack, 11-11
embedded, 8-1, 8-7, 8-15
environment sensor support,
1-12

gate segments, 8-7
returning from inward calls,
8-15

segmentation, 2-5
UPS support, 1-10
virtual memory management, 2-1

Operative, 12-2

OTA action, 12-5

Overflow, 6-23

OWNER, 9-20

OWNERH, 9-2, 9-20

4-11

4-10
4-11

Packed decimal data, 6-34

Page map table (See PMT)

Pages,
alternate paging device,
device index, 4-24
discussion, 2-4
disk vs. memory, 4-2
hardware page map table,
logical page map table,
page fault vector, 11-8
page faults, 4-24
prepaging, 4-25
status checking during address
translation, 4-22

Paging device index, 4-24

PCB,
concealed s tack, 11-11
discussion, 9-2
fau l t vec tors , 11-7
in terva l t imer, 9-21
OWNERH, 9-2, 10-3

Third Edition X-10

INDEX

PCB (continued)
Prime 850 dispatcher , 10-12
Prime 850 format, 10-3
PX lock, 10-6
wait l i s t , 9-7

PCBA and PCBB, 9-5

Performance,
burst-mode I/O, 12-14
character manipulation
instructions, 6-39

fast array reference
instructions, 6-9

fast decrement instructions,
6-7

fast increment instructions,
6-4

fast setting of bits in A, 6-7
mapped I/O, 12-7
pipeline flushing, 1-10
prepaging, 4-25
public vs. private shared

segments, 4-14
Ring 0 memory access, 4-16

Phantom interrupt code, 11-3,
11-4

Physical memory,
addressing, 3-1
conversion from virtual
address, 4-2

data structures, 4-3
details of access, 4-13
details of address translation,
4-20

discussion, 2-2
DTAR format, 4-8
error detection and correction,
2-3

hardware page map table, 4-10
interleaving, 2-4
introduction, 2-1
logical page map table, 4-11
packaging, 2-3
page faults, 4-24
pages, 2-4
prepaging, 4-25
segment descriptor word, 4-9
size of, 3-1
STLB, 2-7

Physical memory (continued)
timing information, 4-17, 4-18
translation from virtual
memory, 4-1

Physical queues, 6-42

PIO, 12-2

Pipeline,
discussion, 1-9
explicit flush by instruction
stream, 1-10

flushing, 1-10
handling invalidation via
branch cache, 1-9

introduction, 1-8

PMT, 4-12

Pointer,
argument, 8-6
bit number, 3-8
discussion, 3-7
extension bit, 3-8
fault bit, 3-8
indirect, 8-6

Postindexed addressing, 3-8

Power-up process, A-l

PPA and PPB, 9-5

Preindexed addressing, 3-8

Prepaging, 4-25

Prime 2250,
address formation for
nonindexing instructions,
3-16

control s t o r e , 1-3
d e t a i l s of cache memory, 4-17
f loat ing-point accuracy, 6-27
f loat ing-point discussion,

6-30
f loat ing-point prec is ion , 6-28
in terva l clock, 11-37
in terva l t imer , 9-22
IDTIB entry format, 12-8

X-l l Third Edition

DOC3060-192

Prime 2250 (continued)
microcode register file set,

9-17
physical memory packaging, 2-3
rounding, 6-24

Prime 250, microcode register
file set, 9-17

Prime 250-11,
address formation for
nonindexing instructions,
3-16

cache entry format, 4-7
control store, 1-3
details of cache memory, 4-17
interval timer, 9-22
physical memory packaging, 2-3

Prime 300, 11-6

Prime 400,
address formation for
nonindexing instructions,
3-16

microcode register file set,
9-17

Prime 550-11,
address formation for

nonindexing ins t ruc t ions ,
3-16

cache entry format, 4-7
control s t o re , 1-3
d e t a i l s of cache memory, 4-17
f loat ing-point accuracy, 6-27
f loat ing-point discussion,

6-29
f loat ing-point precis ion, 6-28
in te rva l t imer, 9-22
BDTLB entry format, 12-8
microcode reg i s t e r f i l e s e t ,

9-17
physical memory packaging, 2-3
rounding, 6-24

Prime 650,
floating-point accuracy, 6-27
floating-point discussion,
6-29

floating-point precision, 6-28
rounding, 6-24

Prime 750,
address formation for

nonindexing i n s t ruc t i ons ,
3-16

cache entry format, 4-7
control s t o re , 1-3
d e t a i l s of cache memory, 4-17
DSWPARITY, 11-21
DSWSTAT, 11-25
f loat ing-point accuracy, 6-27
f loat ing-point discussion,

6-29
f loat ing-point precis ion, 6-28
integer overflow exception,

11-15
in terval t imer, 9-22
IOTLB entry format, 12-8
microcode reg i s t e r f i l e s e t ,

9-17
physical memory packaging, 2-3
preprocessor, 1-1, 1-4
rounding, 6-24

Prime 850,
address formation for

nonindexing in s t ruc t i ons ,
3-16

a rch i t ec tu re , 1-6
cache entry format, 4-7
control s t o r e , 1-3
CPUNUM, 10-3
d e t a i l s of cache memory, 4-17
DSWPARITY, 11-21
DSWSTAT, 11-25
f loat ing-point accuracy, 6-27
f loat ing-point discussion,

6-29
f loat ing-point prec is ion , 6-28
integer overflow exception,

11-15
in terval t imer, 9-22
IOTIB entry format, 12-8
locks in stream synchronization

un i t , 1-8
microcode reg i s t e r f i l e s e t ,

9-17
microsecond t imer , 10-11
OWNERH, 10-3
physical memory packaging, 2-3
preprocessor, 1-1
process exchange mechanism,

10-1
PX lock, 10-3
rounding, 6-24

Third Edition X-12

INDEX

Prime 9950,
address format ion fo r

nonindexing i n s t r u c t i o n s ,
3-16

address t r a n s l a t i o n , 4-21
cache e n t r y format , 4-7
cache s i z e and h i t r a t e , 2-3
check-produced t r a p s and t h e i r

a c t i o n s , 11-29
c o n t r o l s t o r e , 1-3
d e t a i l s of cache memory, 4-17
d i a g n o s t i c p r o c e s s o r , 1-10
d i s c u s s i o n , 1-8
d i s p a t c h e r s e l e c t i o n of

r e g i s t e r f i l e , 9-24
DSWPARITY, 11-19
D3WSTAT, 11-23
environment sensor checks ,

11-17
environment sensor s u p p o r t ,

1-10
f l o a t i n g - p o i n t accu racy , 6-27
f l o a t i n g - p o i n t d i s c u s s i o n ,

6-29
f l o a t i n g - p o i n t p r e c i s i o n , 6-28
format of DMA c o n t r o l word,

12-18
HMAP r e s t r i c t i o n t o f i r s t 8MB,

4-9
i n t e g e r overflow e x c e p t i o n ,

11-15
i n t e r v a l c l o c k , 11-37
i n t e r v a l t i m e r , 9-22
IOTLB e n t r y format , 12-8
l ack of memory increment

i n t e r r u p t s u p p o r t , 11-5
mapped I /O , 12-11
memory d a t a s t r u c t u r e s , 4-3
memory i n t e r l e a v i n g , 2-4
microcode r e g i s t e r f i l e s e t ,

9-15
p h y s i c a l memory packaging , 2-3
PMT e n t r y format , 4-12
r e g i s t e r f i l e a l l o c a t i o n , 9-14
rounding, 6-24
segment d e s c r i p t o r t a b l e

l o c a t i o n r e s t r i c t i o n s , 4-9
semaphore f a u l t , 11-14
STLB e n t r y format , 4-4
STLB hash ing a l g o r i t h m , 4-6
s t o r i n g i n t o i n s t r u c t i o n

s t ream, 1 3 - 4 , 14-4
syndrome b i t s , 11-34
UPS s u p p o r t , 1-10

Prime 1450,
cache e n t r y format , 4-7
d e t a i l s of cache memory, 4-17
i n t e r v a l t i m e r , 9-22
IOTLB e n t r y format , 12-8

PRIM3S (See Opera t ing system)

P r i o r i t y h e a d e r s , 9-5

Procedure base (PB),
base r e g i s t e r f i e l d , 3-6
CALF s t a c k frame, 11-13
i n t r o d u c t i o n , 3-3
PCL i n s t r u c t i o n , 8-10

P rocedures ,
addres s of c u r r e n t l i n k frame,

3-4
addres s of c u r r e n t s t a c k frame,

3-4
addres s of c u r r e n t l y a c t i v e

p rocedure , 3-3
a f f e c t e d r e g i s t e r s , 8-15
argument t r a n s f e r i n s t r u c t i o n ,

8-14
d e t a i l s of c a l l i n g , 8-7
d i s c u s s i o n , 8-1
ECB, 8-5
g a t e segments , 8-7
inward c a l l s , 8-7
PCL i n s t r u c t i o n , 8-2
r e t u r n i n g t o c a l l e r , 8-15
s t a c k management, 8-2
t y p e s of c a l l s , 8-1

Process exchange mechanism,
a f f e c t i n g break h a n d l i n g , 11-2
a f f e c t i n g i n t e r r u p t h a n d l i n g ,

11-3
check hand le r o p e r a t i o n , 11-27
d i s c u s s i o n , 9 - 1 , 10-1
d i s p a t c h e r , 9 -14 , 9-23
d i spa t che r o p e r a t i o n , 10-11
dua l - s t r eam p r o c e s s o r s , 10-1
example of ready l i s t u s e , 9-6
f a u l t s e r v i c i n g , 11-12
i n s t r u c t i o n s , 9-9
i n t e r v a l t i m e r , 9-21
NOTIFY, Prime 850, 10-9
OWNER, 9-20
OWNERH, 9 - 2 , 9-20
PCS, 9-2
PCBA and PCBB, 9-5

X-13 Th i rd E d i t i o n

DOC3060-192

Process exchange mechanism
(continued)

PPA and PPB, 9-5
priority headers, 9-5
PX lock, 10-3
ready list, 9-2
register files, 9-19
semaphores, 9-7
wait list, 9-7

Processes,
dispatcher, 9-14, 9-23
fault vectors, 11-7
implementation on single-stream
processors, 9-1

instructions for scheduling,
9-9

interval timer, 9-21
introduction, 8-1
POB, 9-2
process exchange mechanism,
9-1

process exchange on Prime 850,
10-1

register files, 9-19
semaphores, 9-7
wait list, 9-7

Processor board overtemperature
sensor, 1-12

Processor execution unit,
discussion, 1-3
introduction, 1-1
power-up initialization, A-l
relationship to I/O controller,
12-1

Program counter,
relationship to PB, 3-3
relationship to processor, 1-3
transferring control, 8-1

Programmed I/O (See PIO)

Protection rings, 2-6, 3-2

Pure procedure, 1-10

PX lock, 10-3, 10-6

PXM (See Process exchange
mechanism)

QCB, 6-42

Quad precis ion, 6-19

Queue control block (See QCB)

Queues,
algorithms, 6-45, 6-46
discussion, 6-42
ins t ruc t ions , 6-46, 6-47
mask word, 6-44
maximum number of elements,

6-45
physical , 6-42
Prime 850 locks, 1-8
QCBs, 6-42
v i r t u a l , 6-42

R mode,
behavior r e l a t i ng t o Prime 9950

p ipe l ine , 1-10
c lass b i t s , 3-21, 3-24
discussion, 3-10
index l i m i t a t i o n s , 3-7
input/output , 12-2
ins t ruc t ions , 13-1
introduction, 3-9
performance, 1-10

Ready l i s t ,
data base, 9-5
discussion, 9-2
example, 9-6
ins t ruc t ions , 9-12
Prime 850, 10-6

Register f i l e ,
ac t ions during in te r rupt

handling, 11-3
a l loca t ion , 9-14
ar i thmetic exceptions, 11-15
check handling by processor,

11-25
decimal in s t ruc t ions , 6-37
d i rec t addressing, 9-21
EMA channels, 9-18, 12-9
f loat ing-point r e g i s t e r s , 6-19

Third Edition X-14

INDEX

Register f i l e (continued)
in terva l timer in dispatcher,

9-23
manipulation by dispatcher,

9-24
microcode scra tch , 9-15
NOTIFY ins t ruc t ion , 9-12
Prime 850, 10-10
Prime 850 dispatcher , 10-12
r e g i s t e r - t o - r e g i s t e r

ins t ruc t ions , 6-12
re la t ionsh ip t o processor, 1-3
res tor ing , 6-13
save by NOTIFY ins t ruc t ion ,

9-12
saving, 6-13
short save by WAIT ins t ruc t ion ,

9-9
TIMERH and TIMERL, 10-11
use by dispatcher , 9-23
user processes, 9-19
WATT ins t ruc t ion , 9-9

Restr icted in s t ruc t ions ,
discussion, 5-1
l i s t of, 5-11

Result of the chain, 3-7

Ring 0,
queues, 6-43
restricted instructions, 5-1

Ring 2, 4-16

Ring numbers,
calculation during procedure
call, 8-7

calculation during procedure
return, 8-15

discussion, 3-2
queues, 6-43
restricted instructions, 5-1
undefined results, 4-16
weakening during memory access,
4-14

S bit, 8-6, 8-11, 8-15

S mode,
behavior relating to Prime 9950
pipeline, 1-10

discussion, 3-10
index limitations, 3-7
input/output, 12-2
instructions, 13-1
introduction, 3-9
perf ormance, 1-10

Save Done bit, 9-24, 9-27, 10-12

SDT (See Segment Descriptor
Table)

SEW (See Segment Descriptor
Word)

Sector,
addressing current, 3-26, 3-27
discussion, 3-10

Security,
protection rings for, 2-6

Segment descriptor table,
discussion, 4-9
use during address translation,
4-20

Segment descriptor word, 4-9

Segment numbers,
discussion, 3-2
use during address translation,
4-20

Segment Table Lookaside Buffer
(See STLB)

Segment Table Origin Register
(See DTAR)

Rings of protection, 2-6, 3-2

Rotate instructions, 6-14

Rounding, 6-23

Segmentation, STIB, 1-3

Segments,
access rights, 4-9
CALF stack frame stack root,
11-13

dedicated to PCB, 9-2

X-15 Third Edition

DOC3060-192

Segments (continued)
descriptor words, 4-9
discussion, 2-4
faults, 4-22
gate access, 8-7
numbers, 3-2
protection rings, 2-6
segment fault handling, 11-8
segmented mode, 3-13
shared, 2-5, 4-14
stack extension, 8-2
stack root, 8-4, 8-5
transferring program control
between, 7-1, 7-6

unshared, 2-5
use of segment 0 for check
vectors, 11-18

use of segment 4 for check
headers, 11-18

Self-modifying code, 1-10, 13-4,
14-4

Semaphores, 9-7

Shared subsystem implementation
via segmentation, 2-5

Shift instructions, 6-14, 6-15

Short form indirection, 3-7

Signed integers,
formats, 6-3
instructions, 6-4

Single precision floating point,
6-19

Single-stream architecture, 1-1

Skip instructions, 7-1

SKS action, 12-5

Slave ISU, 10-1

Special loao/store instructions,
6-13

Stack,
allocation, 8-10
allocation of argument
pointers, 8-14

Stack (continued)
argument transfer instruction,
8-14

caller's state saved, 8-10
concealed, 11-10
deallocation by returning,
8-15

discussion, 8-2
ECB, 8-5
extension pointer, 8-3
extension segments, 8-2
frame size, 8-5
frames, 8-3
header, 8-2
stack root, 8-2, 8-4, 8-5

Stack base (SB),
base register field, 3-6
CALF stack frame, 11-13
introduction, 3-4
stack allocation, 8-10
stack deallocation, 8-15
stack frame, 8-4

STLB,
details of access, 4-13, 4-14,
4-18

discussion, 1-3, 2-7
entry format, 4-4
hashing algorithm, 4-5
IOTLB, 12-8
use during address conversion,
4-2

use during procedure call, 8-7

Store bit, 8-6, 8-11, 8-15

Stream synchronization un i t ,
1-6, 1-8

String manipulation,
f i e ld operation i n s t ruc t i ons ,

6-17
ins t ruc t ions , 6-39

Subroutines (See Procedures)

Syndrome b i t s , 11-34

System overview, 1-1

Third Edition X-16

INDEX

Tables,
16S mode summary, 3-25
321 mode summary, 3-18
32R mode summary, 3-20
32S mode summary, 3-27
64R mode summary, 3-23
64V mode long form and ind i rec t

summary, 3-15
64V mode short form summary,

3-12
access f i e l d values and t h e i r

meanings, 4-16
address formation for

nonindexing in s t ruc t ions ,
3-16

address t r a p information, 3-28
address t r a p / r e g i s t e r f i l e

correspondence, 3-31
address t r aps for short format

64V mode ins t ruc t ions , 3-29
ar i thmetic exception codes,

11-16
basic I/O operat ions , 12-3
branch ins t ruc t ions , 7-2
cache h i t r a t e s , 2-3
cache s i z e s , 2-3
character i n s t ruc t ions , 6-39
check header format, 11-18
check-produced t r aps and t h e i r

ac t ions , 11-29
conditional skip i n s t ruc t ions ,

7-5
contents of PCB concealed stack

loca t ions , 11-11
conversion in s t ruc t ions , 6-31
CPU i n i t i a l i z a t i o n va lues , A-2
decimal data types , 6-35
decimal in s t ruc t ions , 6-38
def in i t ion of reg i s te r f i l e

terms, 9-19
device address assignments,

12-15
dict ionary notat ion, 13-2,

14-2
DMA reg i s t e r f i l e (RF1) format,

9-18
DMx t ransfer r a t e s on non-9950

machines, 12-10
DMx t ransfer r a tes on the Prime

9950, 12-10
DSW value a f te r checks, 11-26

Tables (continued)
EA format for ROT s h i f t

command, 14-87
EA format for SHA s h i f t

command, 14-91
EA format for SHL s h i f t

command, 14-92
effect of EIO on condition

codes, 12-4
fau l t c l a s ses , 11-6
fau l t information, 11-9
f loat ing-point ins t ruc t ion

accuracy, 6-27
f loat ing-point prec is ion , 6-28
f loat ing-point skip

i n s t ruc t ions , 7-6
format of CALF stack frame,

11-13
format of DSWPARITY reg i s t e r

for 750 and 850, 11-21
format of DSWPARrTY reg i s t e r

for Prime 9950, 11-19
format of DSWRMA and DSWPB

r e g i s t e r s , 11-25
format of D ĴSTAT reg i s t e r for

non-9950 machines, 11-24
format of DSWSPAT reg i s t e r for

Prime 9950, 11-23
format of f au l t t ab l e e n t r i e s ,

11-10
ICS1 number and address

assignments, 12-17
integer ar i thmet ic

i n s t ruc t ions , 6-4
IOTLB entry format, 12-8
jump in s t ruc t i ons , 7-7
LIDT data , 14-67
logical t e s t i n s t ruc t i ons , 7-4
microcode reg i s t e r f i l e s e t 1 ,

RF0, for the Prime 9950,
9-15

microcode reg i s t e r f i l e s e t 2 ,
RF6, for the Prime 9950,
9-16

microcode reg i s t e r f i l e s e t ,
RF0, for non-9950 machines,
9-17

modes of check repor t ing ,
11-26

number of f loat ing-point
r e g i s t e r s , 6-19

order of saved r e g i s t e r s af ter
HLT, 13-55, 14-48

X-17 Third Edition

DOC3060-192

Tables (continued)
PCB fault vector locations,
11-8

PCB format, 9-3
PCB format for the Prime 850,
10-4

process timer instructions,
9-22

QINQ ac t ions , 13-96, 14-84
QIQR ac t ions , 13-97, 14-85
queue algorithms, 6-46
queue ins t ruc t ions , 6-47
reg is te r f i l e a l loca t ion , 9-14
resumable ins t ruc t ions , 13-3,

14-3
RRST and RSAV save area format,

14-88
RRST save area format, 13-100
RSAV save area format, 13-101
s ign /d ig i t representat ions for

unpacked decimal data, 6-34
skip ins t ruc t ions , 7-5 , 7-6
SKP condit ions, 13-106
software breaks caused by

t r aps , 11-37
stack header format, i n i t i a l

stack segment, 8-3
stages in Prime 9950 pipel ine ,

1-11
STAR ac t ions , 14-95
STPM memory f i e ld format,

13-117, 14-99
summary of addressing modes,

3-11
summary of data types and

applicable ins t ruc t ions ,
6-48

summary of f au l t c lasses ,
11-14

summary of software breaks,
11-2

syndrome b i t s for non-9950
machines, 11-35

syndrome b i t s for Prime 9950,
11-34

timer control words, 9-21
types of checks, 11-28
types of traps and their

p r i o r i t i e s , 11-30
use of memory management data
structures, 4-3

user register files (RF2
through RF5), 9-20

Tables (continued)
XAD decimal operations,
13-125, 14-104

XED internal variables,
13-131, 14-110

XED suboperators, 13-132,
14-111

ZED suboperators, 13-138,
14-117

Tag modifier, 3-17

Time-sharing (See Process
exchange mechanism)

Traps,
access v io la t ion , 11-33
discussion, 11-29
EMx, 11-35
error correct ing code, 11-34
fetch cycle , 11-36, 11-37
machine check, 11-35
missing memory module, 11-33
page modified, 11-33
read address, 11-33
r e s t r i c t e d ins t ruc t ion , 11-36
software breaks, 11-37
STIB miss, 11-33
write address, 11-35

U

Underflow, 6-23

Unpacked decimal data, 6-33

UPS support, 1-10

User r eg i s t e r f i l e s , 9-19

V

V mode,
behavior relating to Prime 9950
pipeline, 1-10

discussion, 3-9
index limitations, 3-7
input/output, 12-2
instructions, 13-1
pe rf ormance, 1-10

Third Edition X-18

INDEX

Virtual memory,
addressing, 3-1, 4-1
conversion to physical address,
4-2

data structures, 4-3
details of access, 4-13
details of address translation,
4-20

discussion, 2-4
disks, use of, 2-4
DTAR format, 4-8
hardware page map table, 4-10
introduction, 2-1
logical page map table, 4-11
page faults, 4-24
pages, 2-4
prepaging, 4-25
protection rings, 2-6
segment descriptor word, 4-9
segments, 2-4
size of, 2-4, 3-1
STLB, 2-7
timing information, 4-17, 4-18
translation to physical memory,
4-1

Virtual pages, 2-4

Virtual queues, 6-42

W

Wait l i s t ,
data base, 9-7
discussion, 9-7
ins t ruc t ions , 9-9
Prime 850, 10-6
semaphores, 9-7

Wired memory, 4-11

Words, 3-1

X r e g i s t e r , 3-6, 8-11

Y r e g i s t e r , 3-6

X-19 TMrd Edition

SURVEY

READER RESPONSE FORM

DOC3060-192 System Architecture Reference Guide

Your feedback will help us continue to improve the quality, accuracy,
and organization of our user publications.

1. How do you rate the document for overall usefulness?

excellent very good good fair poor

2. Please rate the document in the following areas:

Readability: hard to understand average very clear

Technical level: too simple about right too technical

Technical accuracy: poor average very good

Examples: too many about right too few

Illustrations: too many about right too few

3. What features did you find most useful?

4. What faults or errors gave you problems?

Would you like to be on a mailing list for Prime's current
documentation catalog and ordering information? yes no

Name: Position:

Company:

Address:

Z ip:

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

PRIME
Attention: Technical Publications
BldglOB
Prime Park, Natick, Ma. 01760

READER RESPONSE FORM

DOC3060-192 System Architecture Reference Guide

Your feedback will help us continue to improve the quality, accuracy,
and organization of our user publications.

1. How do you rate the document for overall usefulness?

excellent very good good fair poor

2. Please rate the document in the following areas:

Readability: hard to understand average very clear

Technical level: too simple about right too technical

Technical accuracy: poor average very good

Examples: too many __about right too few

Illustrations: too many about right too few

3. What features did you find most useful?

4. What faults or errors gave you problems?

Would you like to be on a mailing list for Prime's current
documentation catalog and ordering information? yes no

Name: Position:

Company:

Address:

Zip:

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

PRIME
Attention: Technical Publications
Bldg 10B
Prime Park, Natick, Ma. 01760

READER RESPONSE FORM

DOC3060-192 System Architecture Reference Guide

Your feedback will help us continue to improve the quality, accuracy,
and organization of our user publications.

1. How do you rate the document for overall usefulness?

excellent very good good fair poor

2. Please rate the document in the following areas:

Readability: hard to understand average very clear

Technical level: too simple about right too technical

Technical accuracy: poor average very good

Examples: too many about right too few

Illustrations: too many about right too few

3. What features did you find most useful?

4. What faults or errors gave you problems?

Would you like to be on a mailing list for Prime's current
documentation catalog and ordering information? yes no

Name: Position:

Company:

Address:

Zip:

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

PRIME
Attention: Technical Publications
BldglOB
Prime Park, Natick, Ma. 01760

READER RESPONSE FORM

DOC3060-192 System Architecture Reference Guide

Your feedback will help us continue to improve the quality, accuracy,
and organization of our user publications.

1. How do you rate the document for overall usefulness?

excellent very good good fair poor

2. Please rate the document in the following areas:

Readability: hard to understand average very clear

Technical level: too simple __about right too technical

Technical accuracy: poor average very good

Examples: too many about right too few

Illustrations: too many about right too few

3. What features did you find most useful?

4. What faults or errors gave you problems?

Would you like to be on a mailing list for Prime's current
documentation catalog and ordering information? yes no

Name: Position:

Company:

Address:

Zip:

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

PRIME
Attention: Technical Publications
Bldg 10B
Prime Park, Natick, Ma. 01760

READER RESPONSE FORM

DOC3060-192 System Architecture Reference Guide

Your feedback will help us continue to improve the quality, accuracy,
and organization of our user publications.

1. How do you rate the document for overall usefulness?

excellent very good good fair poor

2. Please rate the document in the following areas:

Readability: hard to understand average very clear

Technical level: too simple about right too technical

Technical accuracy: poor average very good

Examples: too many about right too few

Illustrations: too many about right too few

3. What features did you find most useful?

4. What faults or errors gave you problems?

Would you like to be on a mailing list for Prime's current
documentation catalog and ordering information? yes no

Name: Position:

Company:

Address:

Zip:

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

PRIME
Attention: Technical Publications
Bldg 10B
Prime Park, Natick, Ma. 01760

	Front Cover
	Title Page
	i
	Copyright
	ii
	Printing History
	iii
	Contents
	v
	vi
	vii
	About This Book
	ix
	x
	Chapter 1
	System Overview
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	1-9
	1-10
	1-11
	1-12
	Chapter 2
	Physical and Virtual Memory
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	Chapter 3
	Addressing
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	Chapter 4
	Memory Management
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	Chapter 5
	Restricted Instructions and Control Information
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	Chapter 6
	Datatypes
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	Chapter 7
	Altering Sequential Flow
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	Chapter 8
	Stacks and Procedure Calls
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	Chapter 9
	Process Exchange on Single-Stream Processors
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	9-20
	9-21
	9-22
	9-23
	9-24
	9-25
	9-26
	9-27
	Chapter 10
	Process Exchange on the 850
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	10-8
	10-9
	10-10
	10-11
	10-12
	10-13
	Chapter 11
	Interrupts, Faults, Checks, and Traps
	11-1
	11-2
	11-3
	11-4
	11-5
	11-6
	11-7
	11-8
	11-9
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	11-35
	11-36
	11-37
	11-38
	Chapter 12
	Input/Output
	12-1
	12-2
	12-3
	12-4
	12-5
	12-6
	12-7
	12-8
	12-9
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	Chapter 13
	S, R, and V Mode Instruction Dictionary
	13-1
	13-2
	13-3
	13-4
	13-5
	13-6
	13-7
	13-8
	13-9
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26
	13-27
	13-28
	13-29
	13-30
	13-31
	13-32
	13-33
	13-34
	13-35
	13-36
	13-37
	13-38
	13-39
	13-40
	13-41
	13-42
	13-43
	13-44
	13-45
	13-46
	13-47
	13-48
	13-49
	13-50
	13-51
	13-52
	13-53
	13-54
	13-55
	13-56
	13-57
	13-58
	13-59
	13-60
	13-61
	13-62
	13-63
	13-64
	13-65
	13-66
	13-67
	13-68
	13-69
	13-70
	13-71
	13-72
	13-73
	13-74
	13-75
	13-76
	13-77
	13-78
	13-79
	13-80
	13-81
	13-82
	13-83
	13-84
	13-85
	13-86
	13-87
	13-88
	13-89
	13-90
	13-91
	13-92
	13-93
	13-94
	13-95
	13-96
	13-97
	13-98
	13-99
	13-100
	13-101
	13-102
	13-103
	13-104
	13-105
	13-106
	13-107
	13-108
	13-109
	13-110
	13-111
	13-112
	13-113
	13-114
	13-115
	13-116
	13-117
	13-118
	13-119
	13-120
	13-121
	13-122
	13-123
	13-124
	13-125
	13-126
	13-127
	13-128
	13-129
	13-130
	13-131
	13-132
	13-133
	13-134
	13-135
	13-136
	13-137
	13-138
	13-139
	13-140
	13-141
	13-142
	Chapter 14
	I Mode Instruction Dictionary
	14-1
	14-2
	14-3
	14-4
	14-5
	14-6
	14-7
	14-8
	14-9
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	14-26
	14-27
	14-28
	14-29
	14-30
	14-31
	14-32
	14-33
	14-34
	14-35
	14-36
	14-37
	14-38
	14-39
	14-40
	14-41
	14-42
	14-43
	14-44
	14-45
	14-46
	14-47
	14-48
	14-49
	14-50
	14-51
	14-52
	14-53
	14-54
	14-55
	14-56
	14-57
	14-58
	14-59
	14-60
	14-61
	14-62
	14-63
	14-64
	14-65
	14-66
	14-67
	14-68
	14-69
	14-70
	14-71
	14-72
	14-73
	14-74
	14-75
	14-76
	14-77
	14-78
	14-79
	14-80
	14-81
	14-82
	14-83
	14-84
	14-85
	14-86
	14-87
	14-88
	14-89
	14-90
	14-91
	14-92
	14-93
	14-94
	14-95
	14-96
	14-97
	14-98
	14-99
	14-100
	14-101
	14-102
	14-103
	14-104
	14-105
	14-106
	14-107
	14-108
	14-109
	14-110
	14-111
	14-112
	14-113
	14-114
	14-115
	14-116
	14-117
	14-118
	14-119
	14-120
	Appendixes
	Appendix A
	Power-up
	A-1
	A-2
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8
	X-9
	X-10
	X-11
	X-12
	X-13
	X-14
	X-15
	X-16
	X-17
	X-18
	X-19
	Survey
	
	
	
	
	
	
	
	
	
	

