
MAN2798

P4800 SYSTEM REFERENCE

User Guide

Revision PRELIM. A

13 JULY 1976

PRIME
Computer,Inc.

145 Pennsylvania Ave.
Framingham, Mass. 01701

Copyright 1976 by

Prime Computer, Incorporated

145 Pennsylvania Avenue ~

Framingham, Massachusetts81701

Performance characteristics are

subject to change without notice.

REV. PRELIM. A io - 2

CONTENTS:

Section Title | Page

1. INTRODUCTION.cccccee cece cece ccc rcccesccecceseseseses Ins]

1.1 Introduction to This Document. 1-1
-1.2 Introduction to the PRIME 4@@ Processor. 1-1
1.3 Compatibility. ccc c cece ence sccece cee ceccece eee ceees]-1
1.4 Performance. 1-2
1.5 Input/Output Operation. 1-6
1.6 Firmware EnhancementS.ccccccccccccccccccesecscce eoeee 1-7
1.7. Integrity Enhancements. 1-8
1.8 Implementation. 1-19

2. PROGRAM-VISIBLE DECOR. ccc cccccccnccccccccccceccvesccsccee ol

2.1 Virtual Memory Structure. 2-1
2.2 PRIME 4@@ Instruction Set. 2-3
2.3 PRIME 400 Effective Address Calculation.seccccccees 2-16
2.4 Generic-AP Instructions. 2-29
2.5 Field Manipulation Instructions. 2-29
2.6 Procedure Call. wc... ccccrcccccccees sees eeccccscescseseres 2735
2.7 Double-Precision Integer Changes. 2-42
2.8 Double-Precision Floating-Point Changes. 2-42
2.9 Condition Codes and L-Bit. ..ccccccccccccccsscccccccecses 2743
2.18 Keys and Modals. 2-44
2.11 Process Exchange. . 2-47
2.12 Traps, Interrupts, Faults, and Checks. eeoccecee 2755

2.13 Queues and DMQ. . 2-65

2.14 Other New Instructions. 2-78

3. CONTROL PANEL. cccvcccccsccccccdcccccccccceseccccesscccces 3-1

1 - 3 13 JULY 1976

ILLUSTRATIONS

Figure Title Page
oo. oeoeoe ceeeam aeeses ~~ mycone coeeae

There are no illustrations in this document.

REV. PRELIM. A io - 4

‘TABLES

Table Title Page

1.1 COMPARISON OF PRIME 3@@ AND PRIME 498 INSTRUCTION
EXECUTION TIMES. .ccscccccccccccccccccccceccccccseesese 1-4

1.2 COMPARISON OF PRIME 308 AND PRIME 400 I/O TIMES. 1-5

2.1. VIRTUAL MEMORY FORMATS (DTARS, SDWs, PMNTs) 2-2
2.2 PRIME 400 GENERIC INSTRUCTIONS.6- cece cece cc ccceeee 2-4
2.3 PRIME 490 MEMORY-REFERENCE INSTRUCTIONS. 2-12
2.4 PRIME 400 MEMORY-REFERENCE INSTRUCTION DESCRIPTIONS. 2-13
2.5 PRIME 408 ADDRESS CALCULATION FORMATS. eee ercccccvces 2-25
2.6 PRIME 300/490 REGISTER CORRESPONDENCE. 2-27
2.7 ENTRY AND ARGUMENT CONTROL FORMATS. 2-39
2.8 STACK FORMATS. .ccccccccccvceccsees coe eceenes cececcccseeee 2-4)
2.9 KEYS AND MODALS. 2-46
2.18 PROCESS CONTROL BLOCK FORMAT. - 2-54
2.11 FAULT PROCESSING. .cccccccevevccccccccscsesesvsccens eeecee 2-62
2.12 DIAGNOSTIC STATUS WORD. 2-63
2.13 QUEUE DATA STRUCTURES. 2-68
2.14 QUEUE CONTROL BLOCK. ccccccccccecsrcccccscescecs cov ceececes 2-69

3.1 CONTROL PANEL. 3-2

i - 5 13 JULY 1976

FOREWORD

In the period prior to the publication of the official PRIME 400 System
Reference Manual, this document is intended to serve as an interim
programmer “s reference manual for systems containing the PRIME 400
central processing unit. This document contains the information
immediately necessary to allow both systems programmers as well as
application programmers to begin utilizing the advanced features of the
PRIME 490. As this document discusses only the differences between the
PRIME 400 and earlier processors, the reader is expected to have a
working familiarity with the PRIME 300.

RELATED DOCUMENTS

The following listed documents may provide useful supplemental
information to the reader of this User Guide.

Document Title Order No.

Prime 100-288-300 System Reference MAN 1671

Macro Assembler User Guide MAN 1673

FORTRAN IV User Guide MAN 1674

PRIMOS Interactive User Guide MAN 2662

PRIMOS Computer Room User Guide MAN 2683

PRIMOS File System User Guide MAN 2604

Program Development Software User Guide MAN 1879

DOCUMENT PRODUCTION

This document was produced on line via the editing and storage features
of the Prime PRIMOS operating system. Hard copy suitable for printing
has been produced via the RUNOFF command, available with software
revision Rev 8.8 of the PRIMOS operating system. User comments,
reactions, and suggestions on this document format and content are
solicited, as always.

REV. PRELIM. A i- 6

MAN2798 | INTRODUCTION

SECTION 1

INTRODUCTION

1.1 INTRODUCTION TO THIS DOCUMENT.

In the period prior to the publication of the official PRIME 40@ System
Reference Manual, this document is intended to serve as an interim
programmer’s reference manual for systems containing the PRIME 400
central processing unit. This document contains the information
immediately necessary to allow both systems programmers as well as
application programmers to begin utilizing the advanced features of the
PRIME 480. As this document discusses only the differences between the
PRIME 49@ and earlier processors, the reader is expected to have a
working familiarity with the PRIME 3@Q.

This document is provided for- information purposes only and is not a
specification. All information contained herein is subject to change
without notice.

1.2 INTRODUCTION TO THE PRIME 4@@ PROCESSOR.

The PRIME 488 is a two-board processor designed to plug into the
present chassis, to drive all current and planned peripheral devices
and controllers, to interface with all present 32K and future memories,
to operate all present user-space software, and to obey the
compatibility and family constraints of the PRIME Computer User Plan.
The processor is very fast (built with high technology) ard has
segmented addressing (for modern software organization and a very large
address space).

Thus, the PRIME 4@0 does two things. First, it provides a high-end
product with the speed and capacity to handle very demanding new
applications, such as large data bases, multi-task real-time control,
and distributed networks supporting large-scale mainframes. Second, it
provides a compatible growth path for existing or proposed PRIME 300
installations. In summary, the PRIME 4@0@ preserves the customers
existing investment in hardware and software while providing a range of
new speed and capacity features for greatly enhanced performance in new
applications.

1.3 COMPATIBILITY.

Compatibility is a stringent goal in the PRIME 40@ product offering.
The new processor is absolutely hardware compatible with the present
chassis, present power supplies, present 32K memories, all present
peripheral device controllers, and the software-visible decor of the
PRIME 100/206/300. On the software side, all existing user-space

1 - ji , 13 JULY 1976

SECTION 1 MAN2798 1.3 Compatibility

programming operates without change on the PRIME 4@@ processor, all
present data file structures are preserved without change, and aspects
of upward and downward compatibility are maintained.

Notwithstanding the above, certain architectural advantages such as
segmentation cannot be downward compatible with respect to programs
designed to utilize them effectively. A segmented addressing space
provides the basis for a simpler and more effective operating system--a
combined DOS, DOS/VM, and RTOS/VM operating system known as PRIMOS. As
PRIMOS takes heavy advantage of the advanced features of the PRIME 400 .
processor, it itself is not downward compatible. However, PRIMOS
Supports all existing DOS/VM commands, the existing DOS/VM file
structures, and all PRIME 108/200/30@8 addressing and execution modes.
Thus all existing user-space programs (including saved memory images)
run under PRIMOS without modification. Furthermore, PRIMOS can be used
to write, develop, and run new downward-compatible programs which can
be interchanged with PRIME 100/209/30@0 environments at any time.

Ta one sense then, the management of the Jownward compatibility of
segmentation is handled much the same way as the compatibility of the
paging feature of the PRIME 300, which is not available on the PRIME
100/200. That is, an operating system which does take advantage of the
feature is provided, which is compatible with previous operating
systems, and which allows user-space programs which are indifferent to
the feature to be treated in a_- completely upward-— and
downward-compatible fashion.

In another sense though, the handling of segmentation is different from
the paging feature of the PRIME 300. That is because, in addition to
itself taking advantage of the feature, PRIMOS also passes on to the
user-Space environment the ability to fully utilize segmentation when
desired.

1.4 PERFORMANCE.

The PRIME 400 performance is between two and three times that of the
PRIME 380, especially in benchmark situations. For comparison, some
PRIME 388 and PRIME 40@ instruction times are shown in Table 1.1. Note
that on the PRIME 3@@ the ADD instruction in the worst case (which is
the usual case) takes 2489 nanoseconds, because of page-translation
time (160 ns), 680 ns memory, and the use of relative mode (in which
the index operation costs 448 ns). Thus the normal PRIME 380 ADD
instruction under DOS/VM takes 248@ ns. By comparison, the best case
ADD for the PRIME 408 takes 568 ns, for an improvement factor of 4.4.
The comparison of worst to best is fair because on the PRIME 400 the
best case is readily achievable in ordinary programming and benchmarks.
The average PRIME 490 ADD time (assuming an 85 percent hit rate in the
cache and interleaved memories) is 920 ns, which is 2.7 times. better
than the PRIME 38@--a very substantial improvement.

Other integer arithmetic improvements are characterized by the MPY

REV. PRELIM. A 1 - 2

MAN2798 INTRODUCTION

instruction, which improves by 9640/4200 = 2.3 times. Floating-point
improvements are characterized by the FAD and FMP instructions, which
improve by 8996/4220 = 2.1 times and 25280/9000 = 2.8 times
respecively, which are again very substantial savings.

I/O performance is improved in four ways: shorter latency time (the
time an I/O controller must wait for service after requesting it);
faster data rates (shorter data transfer time when service is granted);
Many more direct memory access (DMA) channels (in which control
information is stored in registers rather than in memory); and
entirely new modes (for greater I/O efficiency). Table 1.2 compares
the times for the PRIME 300 and PRIME 4@@ I/O modes.

The architectural features which give these performance improvements

are as follows:

1. Cache. A 1924-word bipolar buffer between the central processor
and memory reduces the effective memory access time from 688 ns_ to
240 ns. It also eliminates (completely overlaps) the time
required for paging and segmentation translation.

2. 32-bit arithmetic and logic unit. Arithmetic performed on full
32-bit quantities greatly reduces time for arithmetic’ and
floating-point operations. The 32-bit adder also speeds up
relative address formation.

3. Faster control unit. The new microcode structure for the control
unit allows very fast steps and reduces the number of steps
required. For example, a PRIME 4@@ ADD instruction requires only
two steps, as opposed to five on the PRIME 300.

4. Registers. The live-register set is increased from 32 16-bit
registers on the PRIME 3@@ to 128 32-bit registers. This allows
multiple register sets for very fast process exchange.

5. Interleaved memory. On the PRIME 480, main memory can_ be
interleaved, which speeds up sequential access and reduces the
cache miss rate.

1 - 3 13 JULY 1976

SECTION 1

PRIME 300

instructi

ADD M,l

ADD R

(note 1

DAD M,1l

MPY M,1l

FAD M,1l

(note 2

FMP M,1

PRIME 490

MAN2798

TABLE 1.1.

COMPARISON OF PRIME 388 AND PRIME 499
INSTRUCTION EXECUTION TIMES.

TIMES:

449 ns mem 608 ns mem 608 ns mem
paging off paging off paging on

on 32S mode 32S mode 32S mode

1562 1882 2040

1768 1820 198@

)
28008 3288 3449

8728 9049 9200

)

TIMES:

Table 1.1

6028 ns mem

paging on

32R mode

2480

1900

3880

9649

8990
+480A+720N

25280

All times for interleaved 60@ ns memories, and include segmentation and
anslation times. The assumed cache hit rate is 85 percent,paging tr

with a 1208 ns cache fault time (doubleword fetch).

instruction

ADD M,1

MPY M,1

FAD M,1l

(note 1)

FMP M,1l

best case average case

5608 920

4200 4560

3500 4220
+16@A+160N +160A+160N

8280 9008

ALL TIMES IN NANOSECONDS

NOTE 1: ADD from a register, R<8.

NOTE 2: A = number of required adjust cycles; N = number of required
normalization cycles.

REV. PRELIM. A

MAN2798 INTRODUCTION

TABLE 1.2.
COMPARISON OF PRIME 308 AND PRIME 4@¢@ I/O TIMES.

input data output data
mode transfer time transfer time

(PRIME 300, 448 ns memory)

DMT, first word 2768 2600
DMT, later words 880 880

DMA, first word 2860 3000
DMA, later words 1120 1089

DMC, first word 4940 4980
DMC, later words 3449 3480

(PRIME 480, any memory)
DMT, first word 1400 1640
DMT, later words. 800 8890

DMA, first word 1400 1646

DMA, later words . 880 88

DMC, first word 25208 2920 |
DMC, later words 2088 2760

DMQ 5200 5800

ALL TIMES IN NANOSECONDS

The "first word" times refer to the first word of a block of words to
be transferred at the maximum I/O rate. The "later words" times refer
to all words of the block after the first word.

Ll - 5 13 JULY 1976

SECTION 1 MAN2798 1.5 I-O Operation

1.5 INPUT/OUTPUT OPERATION.

Compatibility requires that all PRIME 30@ I/O modes be fully supported
on the present I/O bus. Thus, I/O through the A-register as well as
the DMA, DMC, and DMT direct modes of operation are fully supported,
but with improved performance as discussed in Section 1.4. In
addition, several new features are added:

l. Mapped I/O through segment @.

2. Remote I/O bus extender and an I/O bus switch.

3. New direct-memory queue (DMQ) mode for stream I/O.

4. 32 DMA channels instead of 8.

5. Very fast DMC data rate.

6. Interrupts which automatically initiate process exchange.

The mapped I/O feature allows easy I/O access to the entire 2**22 (4
million) words of physical memory, even though the I/O bus retains its
former 18-bit address width. The mapping feature causes I/O accesses
to memory to undergo segmentation and paging translation just as
processor references; the PRIMOS operating system is responsible for
keeping the necessary virtual-to-physical correspondence in effect for
the duration of the transfer. This mapping also aids the operating
system in performing file transfers.

The remote I/O bus extender allows the addition of up to four remote
backplanes, each of which can drive ten I/O controllers, along a
38-foot cable out from the processor. The I/O bus switch allows the
Switching of controllers among several processors.

A new direct memory queue (DMQ) mode provides a ring-structured memory
buffer for the reception and transmission of stream I/O (I/O in which
data is transferred in continuous streams of bits, characters, or
words, rather than in discrete records). This mode allows the
asynchronous multi-line controller to queue messages without the need
for extensive software :«anajement of “tumble tables" on receive, nor
character-time interrupts on transmit. The DMQ mode substantially
reduces the PRIMOS overhead in dealing with user-terminal I/o.

The large register set of the PRIME 4989 provides for 32 DMA channels.
Also, since the cache is used to hold DMC cell pairs, repetitive DMC
transfers occur very quickly, as shown in Table 1.2.

For interrupts, a new central processor mode is defined which allows an
interrupt signal to be processed as an automatic notify (wakeup) of a
process without causing an actual program interruption. The mode
automatically issues the proper interrupt-clearing instructions to the
Signalling controller. This mode allows very fast process exchange
times and greatly reduces the overhead of the multiple—pr iority

REV. PRELIM. A 1 - 6

MAN2798 INTRODUCTION

scheduling schemes common to the RTOS and PRIMOS operating systems.

Overall, PRIME 400 I/O performance is considerably enhanced over the

PRIME 300.

1.6 FIRMWARE ENHANCEMENTS.

The PRIME 4@@ uses a new microcode structure with the following salient

features:

1. 64-bit microcode word width.

2. IBM-style multiway branches.

3. 16K words of microcode address space.

4. Stack of depth 16.

5. Future availability of an extended control storage (XCS)
option.

The 64-bit width of the new microcode allows more functions to be

controlled in parallel, and thus reduces the number of microcode steps

necessary to perform a given function. For example, the ADD

instruction executes in two microcode steps on the PRIME 400 as opposed

to five steps on the PRIME 300. The IBM-style multiway branches are

also important because they are very fast.

The 16K address space allows for considerable future expansion of the

microcode. The present two-board PRIME 400 provides 2K 64-bit words of

on-board programmable read-only memory (PROM) using 2K PROM parts.

However, the board layout will accommodate a 4K PROM part when it

becomes available, giving 4K words of on-board PROM.

Microcode can also be expanded with an extended control storage (XCS)

board, to-be available as an option in the future. The XCS board will

provide:

1. PROM extension of an additional 2K words (at least).

2. 1K words (at least) of program-writable control store.

3. Parity checking on all microcode words.

4. A simulate mode for writable control store (as in the PRIME

300 writable control storage option).

5. A port for connection of a PROM programmer.

The writable control storage will be loaded internally umder program

control or by I/O operations. The PRIME 490 instruction set has two

1 - 7 13 JULY 1976

SECTION 1 MAN2798 1.6 Firmware Enhancements

addressable and eight generic instructions reserved for a direct
decoding into writable control storage. The extended control storage
option is being designed specifically to Support customer microprograms
as well as packaged microcode systems, such as a business instruction
set, a fast Fourier transform processor, a matrix Operation package,
etc.

1.7 INTEGRITY ENHANCEMENTS.

The PRIME 408 is equipped with several new integrity features,
representing a considerable improvement over the PRIME 300. ‘These
features include:

1. Parity checking on processor registers and the cache.

2. AS an option to be available, an error detecting and
correcting code on each main memory word.

3. Improved program control over the disposition of machine and
parity checks.

4. Recording of the origin and status of every machine and parity
check signal in a diagnostic status word.

5. A non-destructive VIRY instruction.

6. As an option to be available, a field-engineering panel with a
ring-buffer remembering the last 64 microcode addresses
fetched by the processor.

Parity is maintained and checked on all the live-registers (128 32-bit
registers) of the processor and of the data in the cache. Parity is
also checked on all external busses. When the extended control store
option is provided, there will also be a parity check on each 64-bit
microcode word.

A further option to be available on main memory boards is an error
detecting and correcting code on each memory word. The code is capable
of correcting all single errors and detecting some double errors. When
correction is possible, it is done automatically in the memory
on-the-fly, with no delay to the processor. If a correctable error
occurs during instruction execution, a check signal which may be
requested by the software (see the discussion of the machine check
modes below) is held off until the completion of the instruction to
allow the computation in progress to benefit from the corrected value;
following the check, the operating system can elect to continue the
computation regardless of whether or not the hardware or the software
elected to run a diagnostic routine in the meanwhile. Correctable
errors which occur during direct-memory I/O Operation (DMA, DMC, DMT,
DMO) are simply corrected and cause no check signal ever, to maximize
the likelihood of completing the 1/0

_

transfer successfully.

REV. PRELIM. A i - 8

MAN2798 INTRODUCTION

Uncorrectable errors cause a check signal immediately if during
instruction execution, or following completion of the current
instruction if during direct-memory I/O, or else are completely ignored
(depending upon the machine check mode). As discussed below, all check
signals are accompanied by a complete description of the detected error
in the diagnostic status word for analysis by the check handler.

The PRIME 400 givés the software improved control over the disposition
of check signals. A two-bit machine check mode field is provided which
allows the software to run the processor in one of four check modes.
The machine check mode field is the last two bits of the processor
modals, and is set with the LPSW instruction. The four modes are:

08: "None". The processor is not in an error reporting mode. Errors
set a program-testable flag but no check is signalled. The
diagnostic status word is not set.

@1: "Memory parity". The processor sets the diagnostic status word
and generates a check signal for all memory parity errors (and all
uncorrectable memory errors detected by the error detecting and
correction option, if installed), both during instruction
execution and also during direct-memory I/O. Correctable memory
errors are ignored and processor parity failures set a
program-testable flag in this mode.

19: "Quiet". The processor sets the diagnostic status word and
generates a check signal for all detected errors other than a
correctable memory error. .Correctable memory errors are ignored
in this mode.

ll: "Record". The processor sets the diagnostic status word and-
generates a check signal for all detected errors in this mode. In
the case of a correctable memory error, the check signal is held
off until the instruction in progress completes, to allow the
software the option of resuming the computation following
servicing of the check. ‘Correctable memory errors which occur
during direct-memory I/O are always ignored, even in this mode, in
order to allow the I/O transfer to complete successfully when
possible with the correction.

The diagnostic status word is a 96-bit field set by the processor
whenever it detects an error which should result in a check signal to
the software. The software handling the check signal can read the
diagnostic status word to learn the origin of the signal and take
appropriate action.

A check is either a memory parity error or else a machine check. ‘There
are three circumstances which can cause a memory parity check. The
first is detection of a main memory parity error (or an uncorrectable
main memory error, if the error detecting and correcting option is
installed) during instruction execution when the processor is not in
machine check mode @@ ("none"). The second is occurrence of a
correctable main memory error (the error detecting and correcting

1 - 9 | 13 JULY 1976

SECTION 1 MAN2798 1.7 Integrity Enhancements

option must be installed) during instruction execution when the
processor is in machine check mode 11 ("report"). The last is
detection of a main memory parity error (or an uncorrectable error,
with the correcting option installed) during direct-memory I/O when
the processor is not in machine check mode @@ ("none"). When the error
detecting and correcting option is installed, corrected errors during
I/O execution are always ignored, never set the diagnostic status word,
and never signal a check. .

A machine check is caused by detection of a parity error on a processor
internal register or on an external bus when the processor is in
machine check mode 18 ("quiet") or 11 ("record"). When the processor
is running in modes 9@ ("none") or 61 ("memory parity"), processor
parity errors do not set the diagnostic status word and do not cause a
check signal, but do set a program-testable flag.

The VERY instruction triggers a series of microprograms that can verify
the integrity of the internal processor components without being
destructive to the state of the user’s program in execution. This
greatly eases restart of the interrupted computation following a check,
even if the check handler desires to perform verification.

1.8 IMPLEMENTATION.

The PRIME 40@ is implemented as a two-board processor with the boards
connected by a 2@@-signal bus across the top-hat connectors. The
top-hat bus carries microcode control signals as well as the full-width
source and destination busses for the arithmetic and logic unit (Band
D busses). The extended control storage option is packaged as a third
board, also connecting via the top—hat bus.

The standard two processor boards hold approximately 338 dual-inline
packages each and utilize eight-layer construction. The multilayer
construction is used to provide the necessary ground plane for the
high-speed logic signals as well as to achieve interconnections at the
high package density. The logic family is TTL throughout, mostly
Schottky—clamped. No emitter-coupled logic is used. All logic
packages are industry standard multiple-sourced units.

REV. PRELIM. A 1 - 10

MAN2798 PROGRAM-VISIBLE DECOR

SECTION 2

PROGRAM-VISIBLE DECOR

The program-visible portion of the PRIME 4@@ architecture is described

in this section. First, the virtual-memory addressing space

(segmentation and paging features) which underlies the PRIME 400

design is discussed. Then, the PRIME 400 instruction and register sets

are described in turn. Finally, a number of special features and

unique capabilities which contribute to the power of the PRIME 400

product are covered.

2.1 VIRTUAL MEMORY STRUCTURE.

Physical memory on the PRIME 490 can be as large as 4,194,304 (2**22)

16-bit words. The virtual space is 268,435,456 (2**28) 16-bit words.

The mapping of virtual space to physical space includes both

segmentation and paging. The page size is 1024 words. The segment

size is @ to 65536 words in units of 1024 words. There are 4096

segments to a virtual space. The segments are in four groups of 1624

segments each. There are four descriptor table address registers

(DTARS) , which point to tables containing segment descriptor words

(SDWs), which point to tables containing page map entries (PMNTs),

which point to physical pages of memory. Thus a 28-bit virtual address

contains 2 bits of descriptor table selection, 18 bits of segment

selection, and 16 bits of word selection. It should be noted that the

hardware-implemented automatic process-exchange mechanism does not

affect the contents of DTARS @ and 1 and, therefore, all processes

share the same first 2048 segments of virtual address space and have

the second 2048 segments as private space. Finally, the presence of

both paging and segmentation permits the separation of memory

Management from operating system management. Table 2.1 shows the

formats of descriptor table address registers, segment descriptor

words, and page map entries.

A descriptor table has from 1 to 1024 entries, must begin on an even

word, and must not cross a 65536-word boundary. A page table always

has 64 entries and must not cross a 65536-word boundary. Pages must

begin on a 1824-word boundary.

There must be no missing memory locations in the first 65536 words of

physical memory.

Virtual memory operation is under control of bit 14 of the processor

modals, loadable under program control via the LPSW instruction. When

this bit is off, no paging or segment translation is performed. The

low-order 22 bits of each virtual effective address are, taken as a

physical address directly.

2 - 41 13 JULY 1976

SECTION 2

1-18:

11-16 t

18-32:

17:

17:

18-28:

21-23:
24-26:
27-32,

1-19:

11-16:

“
B
W
h
e

5-16:

MAN2798 Table 2.1

TABLE 2.1
VIRTUAL MEMORY FORMATS

DESCRIPTOR TABLE ADDRESS REGISTER FORMAT
(32 bits)

SSSSSSSSSSDDDDDD
--DDDDDDDDDDDDDDD

1024 minus descriptor table size (SSS...S).

High-order 21 bits of 22-bit physical address descriptor
table origin, low bit taken as zero (DDD...D).
Not used.

SEGMENT DESCRIPTOR WORD FORMAT

(32 bits)

PPPPPPPPPP-—————
F'AAABBBCCCPPPPPP

Fault if 1 (F).
Access allowed from ring 1 (AAA).
900: No access.

@@1: Gate (for procedure call).

J10: Read.
Qll: Read and write.

108, 101: Reserved.

116: Read and execute,
lll: Read, write, and execute.
Reserved for future expansion (BBB).
Access allowed from ring 3, same code as above (CCC) .

High-order 16 bits of the 22-bit physical address of
the page table origin (PPP...P).
Reserved, must be zero.

PAGE MAP ENTRY
(16 bits)

VRUSAAAAAAAAAABA

Valid: page resident if 1, fault if @ (Vv).
Referenced: set by hardware when page is referenced (R).
Unmodified: reset by hardware when page is modified (U).
Shared (inhibit usage of cache buffer): set by software when
memory page is shared among processors (S).
High-order 12 bits of physical page address,
bits are taken as zero (AAA...A).

low-order 12

REV. PRELIM. A 2 - 2

MAN2798 PROGRAM-VISIBLE DECOR

2.2 PRIME 490 INSTRUCTION SET.

For downward compatibility with the PRIME 300, the PRIME 498 provides
all of the former addressing modes: 16S, 32S, 32R, and 64R. When
running in one of these modes, the PRIME 48@ decodes instructions and
develops effective addresses in the same way as the PRIME 300. Memory
addresses @ through 7 map onto the live registers in the same way, and
the program can directly or indirectly reference up to 65536 words of
memory. Support of these four modes allows existing DOS/VM user-space
programs to run under the PRIMOS operating system on the PRIME 400
without change. The 16-bit effective addresses generated in the PRIME
308 modes are expanded to a full 28-bit virtual address by automatic
concatenation of a 12-bit segment number established when the PRIME 300
mode is entered. Thus, when a DOS/VM user program is run under PRIMOS,
its entire 65536-word address space appears as a single segment to the

PRIME 400. Cy

To permit usage of multiple segments and the new instructions defined
for the PRIME 490, a new virtual-addressing mode is provided: 64V.
When run in 64V mode, the PRIME 4@@ provides access to multiple

segments via 32-bit and 48-bit indirect words, four 32-bit base
registers, and two 64-bit field address and length registers. In
addition, a second index register is provided, and all combinations of
base registers, indirection, and pre— and post-indexing by either index
register can be specified in instruction addresses.

Instruction decoding in 64V mode proceeds as follows. As in the other
modes, sequential decoding begins with bits 3-6 of the instruction
word. If these bits are all zero, the instruction is of the generic
class, and all the remaining bits of the instruction word are also
interpreted as part of the operation code. The PRIME 4@@ generic
instructions include the PRIME 3008 generics and many new ones in
addition. Table 2.2 lists the PRIME 4@@ generics and their functions.

If bits 3-6 are not zero, the instruction is of the memory-reference
class, bit 7 is the sector bit, S, and bits 8-16 are a displacement, D,
in two’s complement notation (-256 <= D < +256). If the sector bit is
one and the displacement is in the range -256 <= D < -224, then
instruction word bits 13-14, WW, are interpreted as an extension of the
Operation code, selecting a column of Table 2.3 for execution. If the
sector bit is a zero or the displacement is not in the range -256 <= D
< -224, then execution occurs from the first column of Table 2.3, as if
the extension bits had been zero. Table 2.4 explains the meanings of
the memory-reference instructions.

In all memory-reference instructions, bit 1, I, specifies indirect
addressing. In all but those with bits 3-6 equal to 1101, bit 2, X,
specifies indexing. When bits 3-6 equal 1101, bit 2 is used as an
extension of the operation code, and such instructions cannot be
indexed.

2 - 3 13 JULY 1976

SECTION 2 MAN2798 Table 2.2

TABLE 2.2.
PRIME 480 GENERIC INSTRUCTIONS.

This table summarizes all PRIME 400 generic Operations, grouped by
function. Instructions marked "RESTRICTED" can be executed only in
ring zero. Rings are discussed in Section 2.3.

The "type" column indicates the format and/or function of the operation
as follows.
AP: Three-word operation, the last two words of which are an AP

address pointer.
BR: Two-word operation, the second word of which is a word number

within the current procedure segment to which to branch.
CON: Single-word control operation.
FLD: Single-word field operation.
FOPR: Single-word floating-point operation.
F'SKP: Single-word floating-point skip operation.
IG: Single-word integrity operation.
TO: Single-word input/output operation.
LOG: Single-word logicize operation.
MODE : Single-word mode operation.
OPR: Single-word miscellaneous operation.
SH: Single-word shift operation.
SKP: Single-word skip operation.

The "C" column indicates the effect of the operation on the C-bit and
the L-bit as follows.

and L are unchanged by the operation.
is unchanged, L is carry.
is overflow, L is carry.
is overflow, L is indeterminant.
is shift extension, L is indeterminant.
is a result of the operation, L is indeterminant.
and L are indeterminant.
and L are loaded by the operation.
is cleared, L is indeterminant.O

n
A
O
T
W
h

e
S

A
A
N
A
A
N
A
N
A
N
A
N
A
N
A

The "cc" column indicates the effect of the operation on the condition
codes as follows.
—: Condition codes are unchanged by the operation.
1,4: Condition codes indicate the result of the arithmetic

operation or compare.
5: Condition codes are indeterminant.
6: Condition codes are loaded by the operation.
7: Condition codes indicate the result of the operation.

REV. PRELIM. A 2 - 4

mnem opcode type C cc

MAN2798 PROGRAM-VISIBLE DECOR

description

(MISCELLANEOUS AP OPERATIONS.)

WAIT 800315
CALF

LPSW

RSAV

RRST

STAC

STLIC

NE'YE

NFYB

INEN

INBN

INEC

INBC

RIQ

RBQ

ABQ

ATO

000785

990711

990715

900717

091200

991204

001210

@91211

901214

901215

901216

@G1217

141714

- 141715

141716

141717

b
o

om
om

Om
OU

O
h

Bd
>

~
oO

> Ug
m
o

mm
f
m

AP

TSTQ 141757 AP

7

7

(BRANCH OPERATIONS

BLE
BGT
BEQ
BNE
BLT
BLLT
BLGE
BGE
BLLE
BLGT

140619
149611
149612
149613
140614
140614
149615
140615
140709
140791

BR
BR
BR
BR
BR
BR
BR
BR
BR
BR

6

6

P
r
h
b
P
H
b
h
&

WAIT ON SEMAPHORE AT AP. RESTRICTED.

PROCEDURE CALL FROM FAULTING PROC. TO FAULT

HANDLER.

LOAD PROGRAM STATUS WORD (SEGN,WORDN,KEYS,

MODALS). RESTRICTED.

SAVE REGISTERS (GENERAL, FLOATING,TEMPORARY

BASE) «

RESTORE REGISTERS (GENERAL, FLOATING, TEMPORARY

BASE) .

STORE A CONDITIONAL ON B=[EA16]. CCEQ= SUCCESS
ELSE FAIL.
STORE L CONDITIONAL ON E=[(EA32]. CCEQ= SUCCESS
ELSE FAIL.
NOTIFY ON SEMAPHORE AT AP. USE FIFO QUEUEING.
NO CAI. RESTRICTED.
NOTIFY ON SEMAPHORE AT AP. USE LIFO QUEUEING.
NO CAI. RESTRICTED.
NOTIFY DURING INTERRUPT CODE. USE FIFO
QUEUEING. NO CAI. RESTRICTED.
NOTIFY DURING INTERRUPT CODE. USE LIFO
QUEUEING. NO CAI. RESTRICTED.
NOTIFY DURING INTERRUPT CODE. USE FIFO
QUEUEING. DO CAI. RESTRICTED.
NOTIFY DURING INTERRUPT CODE. USE LIFO
QUEUEING. DO CAI. RESTRICTED.
REMOVE FROM TOP OF QUEUE.
CC°S SET EQ.
REMOVE FROM BOTTOM OF QUEUE.

ON EMPTY, A= AND

ON EMPTY, A=@ AND
CC’S SET EQ.
ADD TO BOTTOM OF QUEUE. CCEQ = FULL ELSE NOT
FULL.
ADD TO TOP OF QUEUE. CCEQ = FULL ELSE NOT
FULL.
TEST QUEUE. A SET TO # ITEMS IN QUEUE. CC’S
SET EQ ON EMPTY.

BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH

ON A
ON A
ON A
ON A
ON A
ON L
ON L

REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER

ON A REGISTER
ON L REGISTER
ON L REGISTER

» LE.
GT.
- EQ.
»NE.
LT.
-LT.
-GE.
-GE.
- LE.
GT.

13 JULY 1976

SECTION 2 MAN2798 Table 2.2

BLEQ 149782 BR - 4 BRANCH ON L REGISTER .EQ. @.
BLNE 140783 BR - 4 BRANCH ON L REGISTER .NE. @.
BDY 140724 BR - - BRANCH ON DECREMENTED Y.
BDX 148734 BR —- - BRANCH ON DECREMENTED X.
BIY 141324 BR - - BRANCH ON INCREMENTED Y.
BIX 141334 BR - - BRANCH ON INCREMENTED X.
BCLE 141688 BR - - BRANCH ON CONDITION CODE .LE.
BCGT 141681 BR - - BRANCH ON CONDITION CODE .GT.
BMEQ 141602 BR - - BRANCH ON MAGNITUDE-CONDITIONS L,CC .EQ.
BCEQ 141602 BR - - BRANCH ON CONDITION CODE .EQ.
BCNE 141603 BR - - BRANCH ON CONDITION CODE .NE.
BMNE 141603 BR - - BRANCH ON MAGNITUDE-CONDITIONS L,CC .NE.
BCS 141604 BR -
BCGE 141605 BR -

BRANCH ON CBIT SET.
BRANCH ON CONDITION CODE .GE.

BFLE 141618 BR - 4 BRANCH ON FLOATING ACCUMULATOR .LE. @.
BFGT 141611 BR - 4 BRANCH ON FLOATING ACCUMULATOR .GT. @.
BFEO 141612 BR - 4 BRANCH ON FLOATING ACCUMULATOR .EQ. @.
BFNE 141613 BR - 4 BRANCH ON FLOATING ACCUMULATOR .NE. @.
BFLT 141614 BR - 4 BRANCH ON FLOATING ACCUMULATOR .LT. Q.
BFGE 141615 BR - 4 BRANCH ON FLOATING ACCUMULATOR .GE. @.
BCLT 141704 BR - - BRANCH ON CONDITION CODE .LT.
BCR 141785 BR -—- - BRANCH ON CBIT RESET.
BMGE 141706 BR - - BRANCH ON MAGNITUDE-CONDITIONS L,CC .GE.
BLS 141786 BR - - BRANCH ON LINK SET.
BLR 141787 BR - - BRANCH ON LINK RESET.
BMLT 141787 BR - -— BRANCH ON MAGNITUDE-CONDITIONS L,CC .LT.
BMGT 141716 BR - - BRANCH ON MAGNITUDE-CONDITIONS L,CC .GT.
BMLE 141711 BR - -. BRANCH ON MAGNITUDE-CONDITIONS L,CC .LE.

(CONTROL OPERATIONS.)

HLT 980800 CON
SVC 800585 CON

HALT COMPUTER OPERATION. RESTRICTED.
SUPERVISOR CALL.

IRIN 000601 CON 7 6 INTERRUPT RETURN, NO CAI. RESTRICTED.
IRTC 990603 CON 7 6 INTERRUPT RETURN, DO CAI. RESTRICTED.
ARGT 900685 CON - - ARGUMENT TRANSFER (USED WITH PCL).
PRIN 908611 CON 7 6 PROCEDURE RETURN.
ITLB 880615 CON - - INVALIDATE STLB ENTRY, L HAS VIRTUAL ADDRESS.

RESTRICTED.
LPID 020617 CON - - LOAD PROCESS ID FROM AQ1-Al12. RESTRICTED.
CGT 9081314 - 6 5 COMPUTED GO TO.

(FIELD OPERATIONS.)

EAFA 801308 AP EFFECTIVE ADDRESS TO FIELD REGISTER ZERO.
ALFA 001301 FLD 6 5 ADDL TO FIELD ADDRESS REGISTER ZERO.
LDC 901302 FLD - 7 LOAD CHAR TO A REG. AS SPECIFIED BY FIELD

ADDRESS REG. ZERO.
LFLI 991303 - - - LOAD FIELD LENGTH REGISTER IMMEDIATE ZERO.
EAPA 081316 AP - - EFFECTIVE ADDRESS TO FIELD REGISTER ONE.
ALFA 001311 FLD 6 5 £=ADD L TO FIELD ADDRESS REGISTER ONE.
LDC §@1312 FLD - 7 LOAD CHAR TO A REG. AS SPECIFIED BY FIELD

ADDRESS REG. ONE.

REV. PRELIM. A 2 - 6

LFLI 901313 -
STFA @91320 AP
TLFL 901321 FLD
STC 991322 FLD

TFLL 901323 FLD
STFA 001330 AP
TLFL 981331 FLD
STC 901332 FLD

TFLL 901333 FLD

MAN2798 PROGRAM-VISIBLE DECOR

LOAD FIELD LENGTH REGISTER IMMEDIATE ONE.

STORE FIELD ADDRESS REGISTER ZERO.
TRANSFER L TO FIELD LENGTH REGISTER ZERO.

STORE CHAR FROM A REG. AS SPECIFIED BY FIELD

ADDRESS REG. ZERO.
TRANSFER FIELD LENGTH REG. TO L REG. ZERO.

STORE FIELD ADDRESS REGISTER ONE.

TRANSFER L TO FIELD LENGTH REGISTER ONE.

STORE CHAR FROM A REG. AS SPECIFIED BY FIELD

ADDRESS REG. ONE.
TRANSFER FIELD LENGTH REG. TO L REG. ONE.

(FLOATING-POINT OPERATIONS.)

FDBL 140916 FOPR

FCM 1405390
INTA 149531
FLTA 140532
INTL 149533
FRN 149534
FLTL 149535

FOPR
FOPR
FOPR
FOPR
FOPR
FOPR

FLOT 140550 FOPR

INT 148554 FOPR

DFCM 149574 FOPR

C
O
W
W
W

W
w

Ww
W

o
Y

3

3

i
0
1
0
7
0
1

U
1

O
I

u
O

5

5

CONVERT SINGLE FLOATING TO DOUBLE FLOATING.

FAC=>DFAC.

FLOATING COMPLEMENT. -FAC=>FAC.

CONVERT FLOATING TO INTEGER. INT(FAC)=>A.

CONVERT INTEGER TO FLOATING. FLOT(A)=>FAC.

CONVERT FLOATING TO LONG INTEGER. INT(FAC)=>L.

FLOATING ROUND UP.
CONVERT LONG INTEGER TO FLOATING.

FLOT (L)=>FAC.

CONVERT DP INTEGER WITH HOLE TO FLOATING.

FLOT (A,B) =>FAC.

CONVERT FLOATING TO DP INTEGER WITH HOLE.

INT (FAC) =>A,B.

DOUBLE FLOATING COMPLEMENT. —DFAC=>DFAC.

(FLOATING-POINT SKIP OPERATIONS.)

FSZE 140518 FSKP
FSNZ 148511 FSKP
FSMI 149512 FSKP
FSPL 140513 FSKP
FSLE 149514 FSKP
FSGT 140515 FSKP

(INTEGRITY OPERATIONS.)

RMC 980021
VIRY 0@9311
IMCM #80501
EMCM 980583
MDEI 801304

IG
IG
IG
IG
IG

MDIT 991385 IG

MDRS @91306 IG

MDWC 891387 IG

P
b

r
h
P
b
h
b FLOATING SKIP IF

FLOATING SKIP IF
FLOATING SKIP IF
FLOATING SKIP IF
FLOATING SKIP IF
FLOATING SKIP IF

EQ. @.
NE. @.
LT. @.
GE. @.
LE. @.

RESET MACHINE CHECK FLAG. RESTRICTED.
EXECUTE VERIFICATON ROUTINE. RESTRICTED.
LEAVE MACHINE CHECK MODE. RESTRICTED.
ENTER MACHINE CHECK MODE. RESTRICTED.
MEMORY DIAGNOSTIC ENABLE INTERLEAVE.

RESTRICTED.
MEMORY DIAGNOSTIC INHIBIT INTERLEAVE.
RESTRICTED.
MEMORY DIAGNOSTIC READ SYNDROME BITS.
RESTRICTED.
MEMORY DIAGNOSTIC LOAD WRITE CONTROL REGISTER.

RESTRICTED.

13 JULY 1976

SECTION 2

MDIW 0013?? IG

(INPUT/OUTPUT OPERATIONS.)

ENB 888481 IO
CAI 90411 IO
INH 981901 I0

(LOGICIZE OPERATIONS.)

LLT

LLLT

LLE

LNE

LEQ

LGE

LUGE

LGT

LT
LELT

LFLE

LFNE

LFEQ

LEGE

LEGT

LCLT

LCLE

LCNE

LCEQ

CGE
LCGT

1404190

146419

149411

149412

148413

149414

149414

149415

140416
140417
141119

141111

141112

141113

141114

141115

141580

141591

141562

141583

141504

141585

PRELIM.

LOG

LOG

LOG

LOG

LOG

LOG

LOG

LOG

LOG
LOG
LOG

LOG

LOG

LOG

LOG

LOG

LOG

LOG

LOG

LOG

LOG

LOG

A

4

4

LOGICIZE ON FLOATING LT.
ELSE §=>A.
LOGICIZE ON FLOATING LE.
ELSE J=>A. |
LOGICIZE ON FLOATING NE.
ELSE §=>A:
LOGICIZE ON FLOATING EQ.
ELSE §=>A.
LOGICIZE ON FLOATING GE.
ELSE O=>A.
LOGICIZE ON FLOATING GT.
ELSE §=>A.
LOGICIZE ON COND CODE LT.
ELSE @=>A.
LOGICIZE ON COND CODE LE.
ELSE @=>A.
LOGICIZE ON COND CODE NE.
ELSE @=>A.
LOGICIZE ON COND CODE EO.
ELSE @=>A.
LOGICIZE ON COND CODE GE.
ELSE @=>A.
LOGICIZE ON COND CODE GT.
ELSE Q=>A.

MAN2798 Table 2.2

MEMORY DIAGNOSTIC WRITE INTERLEAVED. L=>[E].
RESTRICTED.

ENABLE INTERRUPTS. RESTRICTED.
CLEAR ACTIVE INTERRUPT. RESTRICTED.
INHIBIT INTERRUPTS. RESTRICTED.

LOGICIZE ON A REG. LT. IF A.LT.Q, 1=>A
ELSE @=>A.
LOGICIZE ON L REG. LT. IF L.LT.@, 1=>A
ELSE @=>A.
LOGICIZE ON A REG. LE. IF A.LE.@, 1=>A
ELSE @=>A.
LOGICIZE ON A REG. NE. IF A.NE.G, 1=>A
ELSE @=>A. .
LOGICIZE ON A REG. EQ. IF A.EO.@, 1=>A
ELSE @=>A.
LOGICIZE ON A REG. GE. IF A.GE.@, 1=>A
ELSE @=>A.
LOGICIZE ON L REG. GE. IF L.GE.@, 1=>A
ELSE @=>A.
LOGICIZE ON A REG. GI. IF A.GT.@, 1=>A
ELSE @=>A.
LOGICIZE FALSE. @=>A.
LOGICIZE TRUE. 1=>A.

IF FAC.LT.@, 1=>A

IF FAC.LE.@, 1=>A

IF FAC.NE.@, 1=>A

IF FAC.EQ.@, 1=>A

IF FAC.GE.@, 1=>A

IF FAC.GT.9, 1=>A

IF CC.LT. ,1=>A

IF CC.LE.,1=>A

IF CC.NE.,1=>A

IF CC.EQ.,1=>A

IF CC.GE.,1=>A

IF CC.GT. ,1=>A

LLLE 141511 LOG

LLNE 141512 LOG

LLEQ 141513 LOG

LLGT 141515 LOG

(MODE OPERATIONS.

SGL @@@005 MODE
DBL #08907 MODE

E64V 020019 MODE
E16S 900011 MODE
E32S 980913 MODE
ESIM 008415 MODE
EVIM 900417 MODE
E64R 881911 MODE
E32R 081013 MODE

MAN2798 PROGRAM-VISIBLE DECOR

LOGICIZE ON L REG. LE. IF L.LE.@, 1=>A
ELSE @=>A.
LOGICIZE ON L REG. NE. IF L.NE.@, 1=>A
ELSE @=>A.
LOGICIZE ON L REG. EQ. IF L.EQ.@, 1=>A
ELSE @=>A.
LOGICIZE ON L REG. GT. IF L.GT.@, 1=>A
ELSE @=>A.

ENTER SINGLE-PRECISION MODE.
ENTER DOUBLE-PRECISION MODE (NOT USEFUL IN
64V MODE).
ENTER P4@@ MODE.
ENTER P39@ 16K SECTORED MODE.
ENTER P3008 32K SECTORED MODE.
ENTER STANDARD INTERRUPT MODE.
ENTER VECTORED INTERUPT MODE.
ENTER P300 64K RELATIVE MODE.
ENTER P3@@ 32K RELATIVE MODE.

RESTRICTED.
RESTRICTED.

(MISCELLANEOUS OPERATIONS.)

NOP
PIMA

G00001
G298015

OPR
OPR

SCA
INK
NRM

000041
000043
990101

OPR
OPR
OPR

RIN 900195 OPR

CEA @99111 OPR

PIDA 0@@115 OPR

900201
020205
080211
090301

IAB
PIM
PID
PIML

OPR
OPR
OPR
OPR

PIDL 000305
000405
001005
001015 OPR
601315 OPR
@O16XX -

OPR
OPR
OPR

TAK
STEX
WCS

CRL 140010 OPR

i
u
n
i

n
i

NO OPERATION.
LONG INTEGER TO SHORT INTEGER CONVERSION.
L=>A. IEX ON PRECISION LOSS.
LOAD P-308 SHIFT COUNTER INTO A REG.
INPUT P-300 KEYS INTO A REG.
NORMALIZE A,B AS ON P-3@@ (NOT USEFUL IN 64V
MODE) .
-RETURN FROM P-3@@ RECURSIVE PROCEDURE (NOT
USEFUL IN 64V MODE).
CALCULATE EFFECTIVE ADDRESS.
USEFUL IN 64V MODE.)
SHORT INTEGER TO LONG INTEGER CONVERSION.
A=>L.
INTERCHANGE A REG. WITH B REG. A=>B & B=>A.
CONVERT DP INTEGER WITH HOLE TO SHORT INTEGER.
CONVERT SHORT INTEGER TO DP INTEGER WITH HOLE.
CONVERT 64BIT INTEGER TO LONG INTEGER.
(L,E)=>L.
CONVERT LONG INTEGER TO 64 BIT INTEGER.
OUTPUT A REG. TO P-30@ KEYS AND SHIFT COUNTER.
TRANSFER KEYS TO A.
TRANSFER A TO KEYS.
STACK EXTEND. L REG. HAS EXTENT.
WCS ENTRANCES. UII ON NO WCS OR WCS NOT
LOADED. MAY BE MICROPROGRAMMED TO BE
RESTRICTED.
CLEAR L REGISTER.

A AS EA=>A. (NOT

Q=>L.

13 JULY 1976

SECTION 2 MAN2798 Table 2.2

149814 OPR - - Obsolete. Clears both the B-register and the
least-significant word of the DFAC. See
Section 2.8.

CRB 149015 OPR - - CLEAR B REGISTER. JO=>B.
CHS 149024 OPR - - CHANGE SIGN OF A REGISTER.
CRA 149840 OPR
SSP 140198 OPR
XCA 14@104 OPR

CLEAR A REGISTER. @=>A.
SET SIGN OF A REG. PLUS. 9=>ABITI.

- INTERCHANGE AND CLEAR A. A=>B, @=>A.
SIA 148118 OPR 2 1 SUBTRACT 1 FROM A REGISTER. A-1=>A.
IRX 149114 OPR - - INCREMENT X AND SKIP IF @.
RCB 148288 OPR 5 - RESET CBIT. Q=>CBIT.
XCB 140204 OPR - - INTERCHANGE AND CLEAR B REG. B=>A, @=>B.
DRX 148218 OPR - - DECREMENT X AND SKIP IF @.
CAZ 140214 OPR 1 1 COMPARE A WITH @. SKIP @,1,2 INST. IFA

>,=,< @.
A2A 140304 OPR 2 1 ADD 2 TOA REGISTER. A+2=>A.
S2A 149318 OPR 2 1 SUBTRACT 2 FROM A REGISTER. A-2=>A.
TAB 1408314 OPR - - ‘TRANSFER A TO B REG. A=>B..
CSA 148328 OPR 5 - COPY SIGN OF A. Al=>CBIT, @=>Al.
CMA 149491 OPR - - ONE’S COMPLEMENT A REGISTER.
TCA 148467 OPR 2 1 ‘'TWO’S COMPLEMENT A REGISTER. -—-A=>A.
SSM 140588 OPR - - SET SIGN OF A REG. MINUS. I1=>Al.
TAX 149504 OPR - - ‘TRANSFER A REG. TO X REG. A=>X.
TAY 148585 OPR - - ‘TRANSFER A REG. TO Y REG. A=>Y.
SCB 149608 OPR 5 - SET CBIT. 1=>CBIT.
TBA 140604 OPR - - ‘TRANSFER B REG. TO A REG. B=D>A.
ADLL 141900 OPR 2 1 ADD LINK TO L REGISTER.
TXA 141934 OPR - TRANSFER X REG. TO A REG. X=>A.
CAR 141944 OPR CLEAR A REG. RIGHT BYTE.
CAL 141058 OPR - - CLEAR A REG. LEFT BYTE.
TYA 141124 OPR TRANSFER Y REG. TO A REG. Y=>A.
ICL 141148 OPR INTERCHANGE BYTES OF A REG. AND CLEAR LEFT

BYTE.
AlA 141206 OPR 2 1 ADD 1TOA REG. AtI=>A.
TCL 141210 OPR 2 1 ‘TWO’S COMPLEMENT L. -L=>L.
ACA 141216 OPR 2 1 ADD CBIT TOA REG. CBIT+tA=>A.
ICR 141249 OPR - - INTERCHANGE BYTES OF A REG. AND CLEAR RIGHT

BYTE.
ICA 141349 OPR - - INTERCHANGE BYTES OF A REG.
CRE 141404 OPR - - CLEAR E. Q@=>E.
CRLE 141419 OPR - - CLEAR LAND E. @=>L, O=>E.
ILE 141414 OPR - - INTERCHANGE L AND E. L=>E & E=>L.

(SHIFT OPERATIONS.)

LRL @40@XX SH 4 5 LONG RIGHT LOGICAL.
URS @401XX SH 4 5 LONG RIGHT SHIFT (LONG INTEGER ARITHMETIC IN

64V MODE, ELSE DP INTEGER WITH HOLE) .
LRR @482XX SH 4 5 LONG RIGHT ROTATE.
ARL @404XX SH 4 5 A RIGHT LOGICAL.
ARS @4@85XX SH 4 5. A RIGHT SHIFT (SHORT INTEGER ARITHMETIC).
ARR @406XX SH 4 5 A RIGHT ROTATE.
LLL @410XX SH 4 5 £LONG LEFT LOGICAL.

REV. PRELIM. A 2 - 10

(SKIP OPERATIONS.

SKP
SRC
SR4
SR3
SR2
SRL
SSR

SZE
SLZ
SMCR
SGT
SNR
SAR
SPL
SSC
Sss4
SS3
S82
SSL
SSS

SNZ
SLN
SMCS
SLE
SNS
SAS
SMI

@411XX

0412xx
0414XxX
Q415XX
0416XX

190000
100081
190002
190004
1989010
180920
198836

180940
189109
189200
189220
18024x
100 26X
100480
101901
181882
181904
191019
181020
181936

181948
‘181100
181200
101220
191240
191260
191400

SH

SH
SH
SH
SH

SKP
SKP
SKP
SKP
SKP
SKP
SKP

SKP
SKP
SKP
SKP
SKP
SKP
SKP
SKP
SKP
SKP
SKP
SKP
SKP

SKP
SKP
SKP
SKP
SKP
SKP
SKP

_
p
>
b
h
&

O
n

u
l
i
O
r
u

MAN2798 PROGRAM-VISIBLE DECOR

LONG LEFT SHIFT (LONG INTEGER ARITHMETIC IN 64V
MODE, ELSE DP. INTEGER WITH HOLE).
LONG LEFT ROTATE.
A LEFT LOGICAL.
A LEFT SHIFT (SHORT INTEGER ARITHMETIC) .
A LEFT ROTATE.

SKIP ONE WORD.
SKIP IF CBIT RESET.
SKIP IF SENSE SWITCH 4 RESET. RESTRICTED.
SKIP IF SENSE SWITCH 3 RESET. RESTRICTED.
SKIP IF SENSE SWITCH 2 RESET. RESTRICTED.
SKIP IF SENSE SWITCH 1 RESET. RESTRICTED.
SKIP IF SENSE SWITCHES 1,2,3 AND 4 RESET.
RESTRICTED. ,
SKIP
SKIP
SKIP
SKIP
SKIP
SKIP
OKIP
SKIP
SKIP
SKIP
SKIP
SKIP
SKIP

IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF

A REG. .EQ. @.
A REG. BIT 16 .EQ. @.
MACHINE CHECK RESET.
A REG. .GT. @.
SENSE SWITCH N RESET. RESTRICTED.
A REG. BIT N RESET.
A REG. .GE. @.
CBIT SET.
SENSE SWITCH 4 SET. RESTRICTED.
SENSE SWITCH 3 SET. RESTRICTED.
SENSE SWITCH 2 SET. RESTRICTED.
SENSE SWITCH 1 SET. RESTRICTED.
SENSE SWITCHES 1,2,3 AND 4 SET.

RESTRICTED.
SKIP
SKIP
SKIP
SKIP
SKIP
SKIP
SKIP

IF
IF
IF
IF
IF
IF
IF

A REG. NE. @.
A REG. BIT 16 SET.
MACHINE CHECK SET.
A REG. .LE. Q@.
SENSE SWITCH N SET. RESTRICTED.
A REG. BIT N SET.
A REG. .LT. @.

- ll 13 JULY 1976

SECTION 2

instruction

bits 3-6

9001
9019
@G11
9190
0191
01198
Q111
1990
1081
1919
1911
11080
1101*
11@1**
1119

MAN2798 Table 2.3

TABLE 2.3.
PRIME 400 MEMORY-REFERENCE INSTRUCTIONS

(WHEN IN 64V MODE).

instruction bits 13-14
(if S=]l and -256<=D<-224)

80 G1 19 11

JMP EAL XEC _
LDA FLD DELD LDL
ANA STLR ORA ANL
STA FST DEST STL
ERA LDLR - ERL
ADD FAD DEAD ADL
SUB FSB DFSB SBL
JST = PCL -
CAS FCS DFCS CLS
IRS MIA EAXB ~
IMA MIB EALB -
JSY EIO JSXB -
STX FLX DFLX =
LDX LDY STY JSX
MPY FMP DEMP MPL
DIV FDV DFDV DVL1111

Use column @@ if S (bit 7)
range -256 <= D < -224.

Ks Use this row if bit 2 of the instruction word is a zero.

is 9 or if D (bits 8-16) is not

instructions cannot be indexed.

**: Use this row if bit 2 of the instruction word
instructions cannot be indexed.

REV. PRELIM. A

is a one.

in the

These

These

MAN2798 PROGRAM-VISIBLE DECOR

TABLE 2.4.
PRIME 400 MEMORY-REFERENCE INSTRUCTION DESCRIPTIONS.

This list summarizes all PRIME 400 memory-reference and programmed
input/output instructions, sorted by operation code. The first number
in the "opcode" column is the octal representation of instruction bits
3-6. The second number is the octal representation of bits 13-14 (bits
13-14 are inspected only if bits 6-11 are 11000, i.e., S=l1 and -256 <=
D < -224). Instructions marked "restricted" can be executed only in

ring zero.

The "type" column indicates the format of the operation as follows.
MR: Memory-reference operation.
PIO: Programmed input/output operation.

The "C" column indicates the effect of the operation on the C-bit and
the [-bit as follows.

and L are unchanged by the operation.
is unchanged, L is carry.
is overflow, L is carry.
is overflow, L is indeterminant.
and L are indeterminant.
and L are loaded by the operation.S

W
H
N
W
N
E

I

A
Q
A
A
A
I
A
N
A

The "cc" column indicates the effect of the operation on the condition
codes as follows.
—: Condition codes are unchanged by the operation.
1: Condition codes indicate the result of the arithmetic

operation or compare.
5: Condition codes are indeterminant.
6: Condition codes are loaded by the operation.
7: Condition codes indicate the result of the operation.

The "avail" column indicates in which addressing modes the operation is

available as follows.

S: The operation is available in 16S and 32S modes.

R: ‘The operation is available in 32R and 64Rmodes.
V: The operation is available in 64Vmode.

mnem opcode type C cc avail description

JMP @1 MR —- -— SRV Unconditional jump. EA => PB,P.

FAA 8101 MR - - R Effective address to A-register. EA => A.

FAL @1901 MR - - V Load effective address. EA => A,B.

XEC @102 MR -—- - RV Execute instruction at effective address.
Not all instructions can be executed.

ENTR 01903 MR - - R Enter P-30@ recursive procedure (use with
CREP and RIN). (S) => [(S)-EA]16, (S)-EA

=> S.

LDA 2 MR — - SRV Load A-register. [EA]16 => A.
DLD @2(DP) MR - - SR Double load. [EA]32 => A,B.

FLD @2 01 MR —- — RV Floating load. [EA]32 => FAC.

DFLD @2 @2 MR —- - RV Double floating load. ([EA]64 => DFAC.

2 - 13 13 JULY 1976

SECTION 2

LDL @2 93

JEQ
ANA
STLR
ORA ~

JNE
STA
DST
FST
DFST
STL
JLE

ERA
LDLR
ERL

JGT
ADD

FAD
DFAD

ADL
JLT
SUB
DSB

FSB
DFSB

SBL

JGE

JST
CREP

PCL
CAS

FCS

DECS

CLS

IRS

MIA

G2
G3
)
1)
83.
)
04
04 (DP)
B4
G4
G4
04

05
@5
@5

@5
G6
G6 (DP)

06
G6

B6
96
07
07 (DP)

Q7
Q7

Q7

10
19

1@
ll

11

11

11

12
12

93

G1
02
Q3
G3

Ol
G2
93
G3

G1
G3

Q3

@1
G2

03
03

G1
G2

G3

G3

B2

G2

Ol

G2

83

01

MR
MR
MR
MR

MR
MR
MR
MR
MR
MR

MR

MR
MR
MR

MR
MR
MR

MR

MR

MR
MR
MR
MR

MR
MR

MR

MR

MR

MR

MR

MR

MR

MR

MR

MR

MR

» PRELIM. A

b
o
h
m

|
b
d
W
w

W
w

Ww
W

u
u

e
e
)

m
u

MAN2798 Table 2.4

Load long. [EA]32 => A,B.
Jump if equal. If (A) .EQ. @, EA => P.
AND. (A) .AND. [EA]16 => A.

Store long into register-file location EA.
OR. (A) .OR. [EA]16 => A.

AND long. (A,B) .AND. [EA]32 => A,B. |
Jump if not equal. If (A) .NE. @, EA => P.
Store A-register. (A) => [EFA]16.
Double store. (A,B) => [EA]32.
Floating store. (FAC) => [EA] 32.
Double floating store. (DFAC) => [EA]64.
Store long. (A,B) => [EA]32.

Jump if less-equal. If (A) .LE. @, EA =>
P.

Exclusive OR. (A) .XOR. [EA]16 => A.
Load long from register-file location EA.
Exclusive OR long. (A,B) .XOR. [EA]32 =>
A,B.

Jump if greater. If (A) .GT. @, EA => P.
Add. (A) + [FA]16 => A.
Double add (with hole). (A,B) + [EA]32 =>
A,B.

Floating add. (FAC) + [EA]32 => FAC. _
Double floating add. (DFAC) + [EA]64 =>
DFAC.

Add long (no hole). (A,B) + [EA]32 => A,B.
Jump if less. If (A) .LT. @, EA => P.
Subtract. (A) - [EA]16 => A.

Double subtract (with hole). (A,B) -
=> A,B.

Floating subtract. (FAC) -— [EA]32 => FAC.
Double floating subtract. (DFAC) - [FA]64
=> DFAC.

Subtract long (no hole). (A,B) - [EA]32 =>
A,B. -

Jump if greater-equal. If (A) .GE. @, EA
=> P.

Jump and store. (P) => [EA]16, EA+tl => P.
Call P-30@ recursive procedure (use with
ENTR and RIN). (P) => [(S)+1]16, EA => P.
P-49@ procedure call.
Compare. Skip @,1,2 instructions if (A)
>,=,< [EA]16.
Floating compare. Skip 8,1,2 instructions
if (FAC) >,=,< [EA]32.

Double floating compare. Skip @,1,2
instructions if (DFAC) >,=,< [EA]64.
Compare long (no hole). Skip 9,1,2
instructions if (A,B) >,=,< [EA] 32.
Increment, replace, and skip if zero.
Microcode entrance. May be microprogrammed
to be restricted.

IMA
MIB

JSY

OCP
EIO

JSXB

STX
FLX
DFLX
JDX
JIX
MPY
MPY

FMP
DFMP

MPL

DIV

DIV

FDV
DFDV

DVL

SMK
SKS
LDX
LDY
STY
JSX

INA
OTA

12

13
13

13

14

14
14

17
17

17

178820
34
35
35
35
35

54
74

92

G1

G2

01

Q2

Q1

G2
@3

Ol
G2

G3

91
2

03

G1
G2
Ve)

MR

MR
MR

MR

MR

PIO
MR

MR
MR
MR
MR
MR
MR
MR

MR
MR

MR

MR

MR
MR

MR

PIO
PIO
MR
MR
MR
MR

PIO
PIO

SR

RV
RV

SR
SR
SRV

RV

SR
SR

MAN2798 _ PROGRAM-VISIBLE DECOR

Effective address to temporary base
register. EA => XB.
Interchange memory and A-register.
Microcode entrance. May be microprogrammed
to be restricted.
Effective address to linkage base register.
EA => LB.

Jump and set Y-register. (P) => Y, EA =>
P.

Output control pulse. Restricted.
Execute EA as I/O instruction. Restricted.
Set cc equal if P-30@@ would have skipped.
Jump and set temporary base register.
(PB,P) => XB, EA => PB,P.

Store X-register. (X) => [EA]16.
Load floating index. 2*[EA]16 => X.
Load double floating index. 4*[EA]16 => X.
Jump on decremented X-register zero.
Jump on incremented X-register zero.
Multiply (with hole). (A) * [EA]16 => A,B.
Multiply (integer, no hole). (A) * [EA]16
=> A,B.
Floating multiply. (FAC) * [EA]32 => FAC.
Double floating multiply. (DFAC) * [EA]64

=> DFAC.
Multiply long (integer, no hole). (A,B) *
[EA] 32 => A,B,EH,EL.

Divide (with hole). (A,B) / [EA]16 => A;

remainder => B.
Divide (integer, no hole). (A,B) / [EA]16
=> As remainder => B.
Floating divide. (FAC) / [EA]32 => FAC.
Double floating divide. (DFAC) / [EA]64 =>

DFAC.
Divide long (integer, no hole). (A,B,EH,EL)
/ [EA]32 => A,B; remainder => EH,EL.
Set interrupt masks. Restricted.
Skip if condition set. Restricted.
Load X-register. [EA]16 => X.
Load Y-register. [EA]16 => Y.
Store Y-register. (Y) => [EA]16.
Jump and set X-register. (P) => X, EA =>
P.
Input to A-register. Restricted.
Output from A-register. Restricted.

13 JULY 1976

SECTION 2 MAN2798 2.3 Effect. Addr. Calculation

2.3 PRIME 4090 EFFECTIVE ADDRESS CALCULATION.

Effective address calculation in 64V mode proceeds as follows: A PRIME
490 virtual address is 30 bits long total, comprising a 2-bit ring
number field, a 12-bit segment number field, and a 16-bit word number
field. The segment and word number fields define what word of virtual
memory is to be accessed, and the ring field governs what access
privileges will be granted.

For the purposes of regulating access, the PRIME 4@@ has three rings
(numbered 9, 1, and 3) of nested, sequentially more restricted
privilege. Ring @ is the most privileged, and ring 3 the least.
Restricted instructions can be executed only in ring @. If the
effective address has a ring field of @ or if virtual memory operation
is turned off by bit 14 of the processor modals, access is unrestricted
(reading, writing, and executing are permitted, regardless of what
segment is being accessed). If the effective address has a ring field
of 1 or 3, the access granted is determined by bits 18-20 or 24-26
respectively of the accessed segment’s segment descriptor word (SDW),
as shown in Table 2.1. Attempted references which are in violation of
the granted access privileges are suppressed and an access violation
fault occurs.

The four base registers provided in the PRIME 409 are referred to as
shown in Table 2.5. Each base register is 32 bits wide and holds a
complete virtual address as shown in Table 2.5. Indirect words fetched
during instruction address preparation also specify (either explicitly
or implicitly) a complete virtual address. Their format is also shown
in Table 2.5. Note that there are two types of indirect words: 16-bit
type, which are referenced by one-word instructions (S=@ or D not in
the range -256 <= D < -224) amd which always implicitly refer to the
Same segment as the instruction; and 48-bit type, which are referenced
by two-word instructions (S=l and -256 <= D < -224) and which
explicitly refer to a segment by number.

Address calculation is broken down into many cases below. In all of
these cases, the following symbols are used:

TI Instruction bit 1, the indirect bit.

xX Instruction bit 2, the index bit (except X
is always considered zero when bits 3-6
are 1101, the instructions which cannot be
indexed) .

S Instruction bit 7, the sector bit.

D Instruction bits 8-16, read as a two’s
complement displacement (-256 <= D <
+256). In a very few instances (all
explicitly noted below), Dis treated as
an unsigned integer (@ <= D < +512).

REV. PRELIM. A 2 - 16

LIVE

(X)

(Y)

(PB)R

(PB)S

(PB) W

(SB)R, (SB)S, (SB)W

(LB)R, (LB)S, (LB) W

(P)

(EA)R, (EBA)S, (EA)W

(temp)R, (temp)S, (temp) W

(live register ?)

[r,S,wW]

(base register ?)R,
(base register ?)S,
(base register ?)W

MAN2798 PROGRAM-VISIBLE DECOR

The number of accessible live registers.
If virtual memory is in operation (bit 14
of the processor modals), the value of
LIVE is 8. If virtual memory is not in
operation, the value is 32.

Contents of the X-register (16-bits).

Contents of the Y-register (16-bits).

Ring number field of the procedure base
register (2 bits).

Segment number field of the procedure base
register (12 bits).

Always taken as 16 bits of zeros. The
procedure base register behaves as if its
word offset is always zero.

The ring number, segment number, and word
number fields of the stack base register.

The ring number, segment number, and word
number fields of the temporary base
register.

Contents of the program counter after it
has been incremented past the current
instruction (16 bits).

The ring number, segment number, and word
number fields of the calculated effective

address.

The ring number, segment number, and word
number of a temporary effective address
from which an indirect word must_ be

fetched. .

The 16-bit contents of live register
number ? (@<=?<LIVE).

The 16-bit contents of word w of segment
s, from ring r (i.e., ring r must have
read access to segment s or else a fault
occurs).

The ring number, segment number, and word
number fields of base register ?, where ?
of @ is the procedure base, 1 is the stack

2 - 17 13 JULY 1976

SECTION 2 MAN2798 2.3 Effect. Addr. Calculation

base, 2 is the linkage base, and 3 is the
temporary base. The word number portion
of the procedure base is always taken as
zero.

RING The current ring of execution (2 bits).
This is not necessarily the same as (PB)R,
Since (PB)R can be changed at any time
without special privileges.

SEG The current procedure segment number (12
bits). AS with RING, this is not
necessarily the same as (PB)S.

[r,S,w]R Bits 2-3 of word w of segment s, from ring
r (the ring number field of a 48-bit
indirect word).

[r,S,w]S Bits 5-16 of word w of segment s, from
ring r (the segment number field of a
48-bit indirect word).

[r,S,w]W Bits 1-16 of word wtl of segment s, from
ring r (the word number field of a 48-bit
indirect word).

A 16-bit word offset from the second word of
the instruction (present only when S=1 and
~256<=D<-224) .

Y Instruction bit 12, the extended index bit
(inspected only when S=1 and
~256<=D<-224).

ZZ Instruction bits 15-16, the base register
bits (inspected only when S=l and
-256<=D<-224). 22 o0f @ is the procedure
base, 1 is the stack base, 2 is the
linkage base, and 3 is the temporary base.

All additions shown below are modulo 65536, l.e., 16-bit arithmetic
with overflows ignored. On all fetches shown for indirect words, read
access is required of the segment containing the indirect word. Access
to live registers (which are not contained in any segment) is always
read, execute, and write.

(S=@ AND I=@ CASES.)

In these cases, access is to any of 256 locations offset from either
the stack base register or the linkage base register. Indexing can
modify which location is selected. These cases allow an efficient,

REV. PRELIM. A 2 - 18

MAN2798 PROGRAM-VISIBLE DECOR

one-word format of instruction addressing to the most often accessed

locations of a procedure stack or linkage area.

Case 1. S=0, I=@, X=.

If Q@<=D<LIVE, then the effective address is live register D.
If LIVE<=D, then the effective address is given by

(EA)R <-— MAX (RING, (SB)R);
(EA)S <- (SB)S;
(EA)W <- (SB)W + D.

If C<@, then the effective address is given by
(EA)R <-— MAX (RING, (LB)R);

(EA)S <- (LB)S;
(EA)W <- (LB)W + D+ 512.

Note that use of D+512 is the same as interpreting D as an unsigned

integer.

Case 2. S=0, I=0, X=l.

If D<@, then the effective address is given by

(EA)R <- MAX (RING, (LB)R);
(EA)S <-— (LB)S;

(EA)W <- (LB)W + D+ 512 + (X).

Else if D+(X)<LIVE, then the effective address is live register D+(X).

Else, the effective address is given by
(EA)R <- MAX (RING, (SB)R);

(EA)S <- (SB)S;
(EA)W <-— (SB)W + D + (X).

Note that the decision to use the linkage base register is made prior

to indexing.

(S=@ AND I=1 CASES.)

In these cases, all references, both intermediate and final, are to the

live registers (addresses less than LIVE) or to the procedure segment

(all others). Indirect words are of the 16-bit format.

Case 3. S=@, I=l, X=.

If @<=D<LIVE, then the location of the 16-bit indirect word is live

register D, so set (temp)W via
(temp)W <- D

and go to Case 4 to perform the indirect cycle.

Else, the location of the 16-bit indirect word is word Dof the

procedure segment, considering D as an unsigned 9-bit number

(Q@<=D<+512), so set (temp)W via
(temp) W <- D treated as an unsigned 9-bit number (@<=D<+512)

and go to Case 5 to perform the indirect cycle.

2 - 19 13 JULY 1976

SECTION 2 MAN2798 2.3 Effect. Addr. Calculation

Case 4. Indirect through live register (temp) W.

If (live register (temp) W)<LIVE, then the effective address is live
register (live register (temp)W).
Else, the effective address is in the procedure segment and is given by

(EA) R <- RING;

(EA)S <— SEG;
(EA)W <- (live register (temp) W).

Case 5. Indirect through 16-bit word of procedure segment.

If [RING, SEG, (temp)W] < LIVE, then the effective address is live
register [RING, SEG, (temp) W].
Else, the effective address is in the procedure segment and is given by

(EA)R <- RING; |
(EA)S <- SEG;
(EA)W <- [RING, SEG, (temp) W].

Case 6. S=@, I=l, X=1.

If @<=D<64, pre-indexing is selected. In this case, if D+(X) <LIVE,
then the 16-bit indirect word is in live register D+(X), So set (temp) W
via

(temp) W <- D + (xX)
and go to Case 4 to perform the indirect cycle. But if LIVE<=D+ (X) ,
then the 16-bit indirect word is in the procedure segment at word
D+(X), So set (temp)W via

(temp)W <- D+ (xX)
and go to Case 5 to perform the indirect cycle.

On the other hand, if D is not in the range @<=D<64, then post-indexing
is selected, and the 16-bit indirect word is in the procedure segment
at word D, treating D as an unsigned 9-bit number (@<=D<+512). In this
case, if [RING, SEG, D unsigned]+(X) is less than LIVE, the effective
address is live register [RING, SEG, D unsigned]+(X). But if [RING,
SEG, D unsigned]+(X) is greater than or equal to LIVE, the effective
address is in the procedure segment and is given by

(EA)R <- RING;

(EA)S <- SEG;
(EA)W <- [RING, SEG, D unsigned]+(xX).

(S=]1 AND ~224<=D<+256 CASES.)

In these cases, indexing is always post-indexing, and all references
are either to a live register (for word number less than LIVE) or to
the procedure segment (for word number greater than or equal to LIVE).
Any indirects are through 16-bit indirect words. ‘The intermediate

REV. PRELIM. A 2 -- 26

MAN2798 PROGRAM-VISIBLE DECOR

address is relative to the program counter after it has been advanced
to the next instruction.

Case 7. S=l, -224<=D<+256, I=.

In this case there is no indirection, so the intermediate address is

the final address. If X=@ there is no indexing, so the intermediate

address is
(temp) W <- (P) + D;

but if X=1 there is indexing, and the intermediate address is

(temp) W <- (P) + D+ (X).

Tf (temp)W<LIVE then the effective address is live register (temp) W.

But if LIVE<=(temp)W, then the effective address is given by

(EA)R <- RING;

(EA)S <- SEG;

(EA)W <-— (temp) W.

Case 8. S=l, -—224=D<+256, I=l, X=@.

The intermediate address is (P)+D.

If (P)+D<LIVE, the 16-bit indirect word is in live register (P)+D. In

this case, if (live register (P)+D)<LIVE, the effective address is live

register (live register (P)+D). But if LIVE<=(live register (P)+D),

the effective address is given by
(EA)R <— RING;

(EA)S <- SEG;

(EA)W <- (live register (P)+D).

On the other hand, if LIVE<=(P)+D, the 16-bit indirect word is in the

procedure segment at word (P)+D. In this case, if [RING, SEG,

(P)+D]<LIVE, the effective address is live register [RING, SEG, (P)+D].

But if LIVE<=[RING, SEG, (P)+D], the effective address is given by

(EA)R <-— RING;

(EA)S <- SEG;

(EA)W <-— [RING, SEG, (P)+D].

Case 9. S=l, -224<=D<+256, I=l, X=l.

The intermediate address is (P)+D.

If (P)+D<LIVE, the 16-bit indirect word is in live register (P)+D. In

this case, if (live register (P)+D)+(X)<LIVE, the effective address is

live register (live register (P)+D)+(X). But if LIVE<=(live register

(P)+D)+(X), the effective address is given by

(EA)R <-— RING;

(FA)S <- SEG;
(EA)W <- (live register (P)+D) + (X).

On the other hand, if LIVE<=(P)+D, the 16-bit indirect word is in the

2 - 21 13 JULY 1976

SECTION 2 MAN2798 2.3 Effect. Addr. Calculation

procedure segment at word (P)+D. In this case, if [RING, SEG,
(P)+D]+(X)<LIVE, the effective address is live register [RING, SEG,
(P)+D]+(X). But if LIVE<=[RING, SEG, (P)+D]+X), the effective address
is given by

(EA)R <-— RING;

(EA)S <- SEG;
(EA)W <- [RING, SEG, (P)+D] + (X).

(S=1 AND -256<=D<-224 CASES.)

In these cases, the instruction is extended by an additional 16-bit
word, A, giving a full 65536 range of word number, and bit 12, Y, and
bits 15-16, 2Z, of the instruction word team up with bits 1, I, and 2,
X, to specify all 32 combinations of base registers, direct or
indirect, and pre- or post-indexing by either the xX-register or the
Y-register. Also in these cases, all indirect words are of the 48-bit
format, and neither indirect words nor final effective addresses ever
land in the live registers.

Direct addressing. The effective address is given by
(EA)R <- MAX(RING, (base register ZZ)R);
(EA)S <- (base register 22Z)S;
(EA)W <- (base register 2Z)W+ A.

Case ll. S=l, -256<=D<-224, I=@, X=@, Y=l.

Indexing by the Y-register. ‘The effective address is given by
(EA)R <- MAX(RING, (base register 2Z)R);
(EA)S <- (base register 22Z)S;
(EA)W <- (base register ZZ)W+A+ (Y).

Case 12. S=l, -256<=D<-224, I=, X=1, Y=0.

Indexing by the X-register. The effective address is given by
(EA)R <- MAX(RING, (base register 2Z2Z)R);
(EA)S <- (base register 22Z)S;

(EA)W <- (base register ZZ)W +A + (X).

Case 13. S=l, -256<=D<-224, I=0, X=1, Y=1.

Indirect. The location of the 48-bit indirect word is given by
(temp) R <- MAX(RING, (base register 22Z)R);
(temp)S <- (base register 22)S;

REV. PRELIM. A 2 =—- 22

MAN2798 PROGRAM-VISIBLE DECOR

(temp) W <- (base register Z2Z2)W + A.

The effective address is given by

(EA)R <- MAX(RING, [(temp)R, (temp)S, (temp) W]R);
(EA)S <- [(temp)R, (temp)S, (temp) W]S;
(EA)W <- [(temp)R, (temp)S, (temp) W]W.

Pre-indexed by the Y-register. The location of the 48-bit indirect

word is given by
(temp) R <- MAX(RING, (base register 22Z)R);
(temp)S <- (base register 22Z)S;
(temp)W <- (base register ZZ)W+A+ (Y).

The effective address is given by

(EA)R <- MAX(RING, [(temp)R,(temp)S, (temp) W]R) ;
(EA)S <- [(temp)R, (temp)S, (temp) W]S;
(EA)W <- [(temp)R, (temp)S, (temp) W]W.

Case 15. S=l, -256<=D<-224, I=1l, X=@, Y=l.

Post-indexed by the Y-register. The location of the 48-bit indirect

word is given by
(temp) R <- MAX(RING, (base register 2Z)R);
(temp)S <- (base register 22Z)S;
(temp)W <- (base register Z22Z2)W + A.

The effective address is given by
(EA)R <- MAX(RING, [(temp)R, (temp)S, (temp) W]R);
(EA)S <- [(temp)R, (temp)S, (temp) W]S;
(EA)W <- [(temp)R, (temp)S, (temp) W]W + (Y).

Case 16. S=l1, -256<=D<-224, I=1, X=l, Y=0.

Pre-indexed by the X-register. The location of the 48-bit indirect

word is given by
(temp) R <- MAX(RING, (base register 2Z)R);

(temp)S <- (base register 22)S;
(temp)W <- (base register 2ZZ)W+A+ (X).

The effective address is given by

(EA)R <- MAX(RING, [(temp)R, (temp)S, (temp) W]R);
(EA)S <- [(temp)R, (temp)S, (temp) WIS;
(EA)W <- [(temp)R, (temp)S, (temp) W]W.

2 - 23 13 JULY 1976

SECTION 2 MAN2798 2.3 Effect. Addr. Calculation

Post-indexed by the X-register. The location of the 48-bit indirect
word is given by

(temp) R <- MAX(RING, (base register 22Z)R);
(temp)S <- (base register 22)S;
(temp)W <- (base register 2Z2Z)W+ A.

The effective address is given by

(EA)R <- MAX(RING, [(temp)R, (temp)S, (temp) W]R);
(EA)S <- [(temp)W, (temp)S, (temp) W]S;
(EA)W <- [(temp)W, (temp)S, (temp) W]W + (X).

REV. PRELIM. A 2 -—- 24

MAN2798 PROGRAM-VISIBLE DECOR

TABLE 2.5.
PRIME 480 ADDRESS CALCULATION FORMATS.

PRIME 488 BASE REGISTERS

number mnemonic name

Q PB Procedure base.

1 SB Stack base.

2 LB Linkage base.

3 XB Temporary base.

PRIME 490 EFFECTIVE ADDRESS
OR

BASE REGISTER CONTENTS

ORROSSSSSSSSSSSS
WWW

1: Not used, will be zero.
2,3: Ring of privilege (8, 1, or 3) (RR).
4: Not used, will be zero.
5-16: Segment number (SSS...S).

17-32: Word number (WWW...W).

INDIRECT WORD FOR

PRIME 408 ONE-WORD INSTRUCTIONS

This form of indirect word is used when referenced by instruction words

with S (bit 7) of @ or D (bits 8-16) not in the range -256 <= D<

—224.

WWWHIWWWWWWWWW

I-16: Word number within procedure

segment (WWW...W).

INDIRECT WORD
FOR PRIME 489 TWO-WORD INSTRUCTIONS

This form of indirect word is used in the PRIME 40@ when referenced by

instruction words with S (bit 7) of 1 and D (bits 8-16) in the range

-256 <= D -224.

2 - 25 13 JULY 1976

SECTION 2 MAN2798 Table 2.5

2,3:

5-16:

17-32:

33-36:

37-48:

FRRESSSSSSSSSSSS°

Pointer fault if set (F). In the fault case, the entire
first word (bits 1-16) forms a fault code, and no other bits
are inspected.

Ring of privilege (RR).

If zero, no third word is present and the
bit number (BBBB) of the effective
address is taken as zero. If one,
the third word is present and gives
the bit number (E).

The segment number portion of
the effective address (SSS...S).

Word number (WWW...W).

If bit 4 (E) is a one, the bit
number (BBBB) .

Must be zero,

REV. PRELIM. A 2 -—- 26

MAN2798 PROGRAM-VISIBLE DECOR

TABLE 2.6.

PRIME 300/400 REGISTER CORRESPONDENCE.

This table expresses the relation between the PRIME 30@ and PRIME 400
program-visible registers, their memory addresses for use in short-form
instructions, and their register-file address assignments for use in
LDLR and STLR instructions. Not all registers can be referenced all
ways. Note that some assignments overlap.

relative memory
register-file address

address (short-form
(LDLR/STLR) instructions) register usage

_ 7 P (program counter)

24H 1 A (accumulator)

2L 2 B (double-precision and long accumulator

extension)

3 H,L - EH,EL (accumulator extension for MPL,DVL)

5 H 3 S (stack), Y (alternate index)
74H g X (index)
10H 13 -
10,11 - FARG,FLR@ (field address and length

register @) |

12,13 - FARL,FLRI (field address and length

register 1)

12 H 4 FAC (floating accumulator, mantissa high)

12 L 5 FAC (mantissa middle)

13 H 6 FAC (exponent)

13 L - FAC (mantissa low, double-precision)

14 H,L - PB (procedure base)

15 H,L 14,15 SB (stack base)
16 H,L 16,17 LB (linkage base)

17 H,L - XB (temporary base)

20H 10 (high half of DTAR3)

20 H,L - DTAR3 (descriptor table address, segments

3872-4095)
21 H,L - DTAR2 (segments 2848-3971)
22 H,L - DTAR1L (segments 1024-2047)
23 H,L - DTARG (segments 9-1023)

24 H,L - keys, modals (see Table 2.9)

25 H,L - OWNER (address of process control block

of process owning register contents)

26 H 11 FCODE (fault code)

27 H,L - FADDR (fault address)

27 L 12 (fault address word number)

38 H - process 1024-microsecond c.p.u. timer

Register-file addresses used in LDLR ard STLR instructions are

doubleword addresses. The notation "2 H" means the high or left 16

bits of register-file address 2, while "2 L" means the low or right 16

bits. .

2 - 27 13 JULY 1976

SECTION 2 MAN2798 Table 2.6

Registers are addressed by memory-reference instructions when the
effective address is less than LIVE (Section 2.3) and the processor is
in other than 64V mode or is in 64V mode cases 3 through 9 (Section
2.3).

The following registers should not be written into by STLR
instructions, or anomalous behavior will result.
PB: The procedure base should be changed only via LPSWor

programmed transfers of control.
keys: The keys should be changed only via LPSW or the various mode

control operations.
modals: The modals should be changed only via LPSW or the various

mode control operations. In no case should an LPSW ever
attempt to change the current register set bits of the
modals.

REV. PRELIM. A 2 - 28

MAN2798 PROGRAM-VISIBLE DECOR

2.4 GENERIC-AP INSTRUCTIONS.

There has arisen a need for more instructions in the PRIME 4@@ which
develop effective addresses than can be accommodated in the
memory-reference class. These instructions are provided by a class of
generic operation codes which are followed by a so-called AP pointer.
The format of an AP pointer is:

BBBBI-ZZ--------
WWW

where bits 1-4 (BBBB) are the bit number field, bit 5 (I) is the
indirect bit, bits 7-8 (22) are the base register field, and bits
17-32 (WWW...W) are the word number field. The remaining bits must be
zero. The effective address defined by an AP pointer is calculated as

follows.

If I is zero, there is no indirect cycle, and the effective address is

(EA)R <— MAX(RING , (base register ZZ)R);
(EFA)S <- (base register 22Z)S;
(EA)W <- (base register 2Z)W + WWW...W;

(EA)B <- BBBB.
Otherwise, if I is one, there is an indirect cycle. The address of the

indirect word is
(temp) R <- MAX(RING , (base register 22Z)R);
(temp)S <- (base register 22Z)S;
(temp)W <- (base register Z2Z)W + WWW...W;

and the effective address is

(EA)R <- MAX(RING , [(temp)R,(temp)S, (temp) W]R);
(EA)S <- [(temp) R, (temp) S, (temp) W]S;
(EA)W <- [(temp) R, (temp) S, (temp) W] W;
(EA)B <— [(temp) R, (temp) S, (temp)W]B.

Note that: no bit numbers are ever extracted from base registers (they

do not have bit number fields); a bit number resulting in the

effective address can come only from the AP pointer itself (if it is

not indirect) or the fetched indirect word (if it is indirect); no

bit numbers are added; the bit number field of an indirect AP pointer

is ignored; only a single level of indirection is allowed; and_ the

indirect words referenced are of the 48-bit form shown in Table 2.5.

Like memory-reference class instructions, most generic-AP instructions

do not actually make use of a bit number even if a nonzero bit number

is inadvertently coded for them. Word referencing instructions

continue to reference complete words. The only two instructions in the

PRIME 49@ which make use of the bit number in their effective address

are Effective Address to Field Address Register Zero (881300) ard

Fffective Address to Field Address Register One (@@1310).

2.5 FIELD MANIPULATION INSTRUCTIONS.

The PRIME 409 is augmented by four new registers for the manipulation

2 - 29 13 JULY 1976

SECTION 2 MAN2798 2.5 Field Manip. Instructions

of variable-length bit and character fields. They are Field Address
Register Zero (FARQ), Field Length Register Zero (FLRQ), Field Address
Register One (FARI), and Field Length Register One (FLR1). ‘The two
Field Address Registers appear to the software to be 49 bits wide each,
organized as 2 bits of ring number (FARn)R, 12 bits of segment number
(FARnN)S, 22 bits of word number (FARn)W, and 4 bits of bit number
(FARn)B. In the PRIME 408 implementation, the hardware requires that
the upper 6 bits of the word number be zero (segments on the PRIME 400
are limited to 2**16 words). The two Field Length Registers appear to
be 27 bits wide, and the hardware presently requires that their upper 6
bits be zero. A further implementation restriction is that Field
Address and Length Registers One overlap the Floating Point Accumulator
(FAC). Thus the software must be aware that field-manipulation
instructions destroy the contents of the Floating Point Accumulator,
and conversely floating-point operations destroy the contents of the
Field Address and Length Registers.

Sixteen instuctions are provided in the PRIME 409 for the manipulation
of the Field Address and Length Registers. In summary, the
instructions are:

EAFA @ Effective Address to Field Address Register @;
EAFA 1 Effective Address to Field Address Register 1;
ALFA @ Add Long to Field Address Register Q;
ALFA 1 Add Long to Field Address Register 1;
LFLI @ Load Immediate Field Length Register @;
LFLI 1 Load Immediate Field Length Register 1;
TLFL @ Transfer Long to Field Length Register @;
TLFL 1 Transfer Long to Field Length Register 1;
STFA @ Store Field Address Register @:
STFA 1 Store Field Address Register 1;
TFLL @ Transfer Long from Field Length Register @;
TFLL 1 Transfer Long from Field Length Register 1;
LDC @ Load Character from Field @;
LDC 1 Load Character from Field 1;
STC @ Store Character into Field @;
STC 1 Store Character into Field 1.

The instructions are described below.

EAFA § (GEN-AP 901300) Effective Address to Field Address Register Q.

(FARO) R,S,W,B <- (BA) R,S,W,B.

The complete effective address of the instruction, including the bit
number portion, is placed in Field Address Register 9. Field Length
Register @ is unchanged.

EAFA 1 (GEN-AP 901318) Effective Address to Field Address Register 1.

(FAR1) R,S,W,B <- (BA) R,S,W,B;

REV. PRELIM. A 2 - 386

MAN2798 PROGRAM-VISIBLE DECOR

(FAC) <- undefined.

FAFA 1 is Similar to EAFA @. Note that the Floating Point Accumulator
is overlaid.

ALFA @ (GEN 981301) Add Long to Field Address Register Q@.

(FARO)W,B <- (FARQ)W,B + (A,B).

The 32-bit integer (with no hole) in the combined A-,B-register is
added to the 26-bit unsigned combined word- and bit-number fields of
Field Address Register @. All but the low-order 20 bits of the sum
must be zero. ‘The low-order 26 bits of the sum replace the word- and
bit-number fields of Field Address Register @. The effect is that of
adding a calculated bit offset from the A-,B-register to the address in
Field Address Register @. Field Length Register @ is unchanged.

ALFA 1 (GEN 1311) Add Long to Field Address Register l.

(FAR1)W,B <-— (FARL)W,B + (A,B);

(FAC) <- undefined.

ALFA 1 is similar to ALFA @.

LFLI @ (GEN-2 901303) Load Immediate Field Length Register Q@.

(FLRG) <- 9...|]| (second word of instruction).

The unsigned 16-bit integer in the second instruction word is loaded
into the low-order bits of Field Length Register @, the high-order bits
of which are cleared. The effect is that of loading a field length
with is known at compile-time and is less than 65536. The
interpretation of the length value depends upon following instructions
(character-type operations treat it as a length in characters;
bit-type operations treat it as a length in bits). Field Address
Register @ is unchanged.

LFLI 1 (GEN-2 091313) Load Immediate Field Length Register l.

(FLR1) <- @...|| (second word of instruction) ;
(FAC) <- undefined.

LFLI 1 is similar to LFLI @.

2 - 31 13 JULY 1976

SECTION 2 MAN2798 2.5 Field Manip. Instructions

TLFL @ (GEN 981321) Transfer Long to Field Length Register Q.

(FLRG) <- (A,B).

The unsigned integer (with no hole) in the combined A-,B-register is
transferred to Field Length Register @. The high-order 11 bits of the
A-register must be zero in order that the high-order 6 bits of the
Field Length Register will be zero. The effect is that of loading a
computed length. The 21 bits of the Field Length Register which are
allowed to be nonzero permit a length of 2**2@ to be expressed, which
is the maximum needed in the PRIME 400 (the bit-length of the largest
allowable segment) .

TLFL 1 (GEN 9@1331) Transfer Long to Field Length Register l.

(FLR1) <-— (A,B);
(FAC) <-— undefined.

TLFL 1 is similar to TLFL @.

STFA @ (GEN-AP 091328) Store Field Address Register @.

[(EA)]R,S,W,B <- (FARG)R,S,W,B.

The contents of all fields of Field Address Register @ are stored into
memory aS a hardware indirect-word pointer. If the bit-number field
(FAR@)B is zero in the Field Address Register, only the first two words
of the pointer are stored (and its E bit is reset); otherwise, all
three words must be stored (E will be set). This instruction together
with Effective Address to Field Address Register @ (EAFA 9) and Add
Long to Field Address Register @ (ALFA Q) provide a completely general
means Of manipulating arbitrary bit addresses in the PRIME 4@@. In
addition, this instruction permits access to the residual address
following a field operation whenever this is meaningful. Finally, it
can also be used to access the input field address in an
unimplemented-instruction package designed to simulate any desired
field operations.

STFA 1 (GEN-AP 981330) Store Field Address Register 1.

[(EA)]R,S,W,B <- (FAR1)R,S,W,B.

STFA 1 is similar to STFA @.

REV. PRELIM. A 2 - 32

MAN2798 PROGRAM-VISIBLE DECOR

TFLL @ (GEN 001323) Transfer Long from Field Length Register @.

(A,B) <- (FLRQ). |

The contents of Field Length Register @ are transferred to the combined
A-,B-register as an unsigned long integer (with no hole). The

high-order bits of the A-register are cleared. This instruction

permits access to the residual length following a field operation (when

meaningful), and also can be used in an wunimplemented-instruction
package simulating field operations to access the input length.

TFLL 1 (GEN 001333) Transfer Long from Field Length Register l.

(A,B) <- (FLRI).

TFLL 1 is similar to TFLL @.

LDC @ (GEN 991302) Load Character from Field 9.

If (FLR@) > @ then
(A) @1-@8 <- @...;
(A)@9-16 <- (the 8-bit character addressed by (FARQ)R,5S,W,B,

ignoring the last three bits of (FARQ)B);

(FAR@)W,B <- (FARQ)W,B + 8;
(FLRG) <- (FLR@) - 1;
condition codes <- unequal.

Else if (FLR@) = @ then
(A) <-— @...3

condition codes <- equal;
(FAR@) and (FLR@) unchanged.

If the character field described by Field Address and Length Registers

@ is of nonzero length, its first character is loaded into the

A-register right-justified and zero-bit padded, the condition codes are

set to "unequal", and Field Address and Length Registers @ are stepped

over the character (the address is advanced by 8 bits and the length is

decreased by 1 character). On the other hand, if the character field

is of zero length, the A-register is cleared, the condition codes are

set to "equal", and the address and length registers are unchanged. As

the last three bits of the field address are ignored, fields are always

treated as character-aligned by this instruction.

LDC 1 (GEN 901312) Load Character from Field 1.

Tf (FLR1) > @ then

(A) 01-08 <- @...;3
(A) 89-16 <- (the 8-bit character addressed by (FAR1) R,S,W,B,

2 - 33 13 JULY 1976

SECTION 2 MAN2798 2.5 Field Manip. Instructions

ignoring the last three bits of (FARIL)B);
(FAR1)W,B <— (FAR1)W,B + 8;
(FLR1) <- (FLR1) - 1;
condition codes <- unequal;
(FAC) <- undefined.

Flse if (FLR1) = @ then
(A) <= @...3

condition codes <- equal:
(FARL) and (FLR1) unchanged.

LDC 1 is similar to ILM @.

STC @ (GEN 981322) Store Character into Field @.

If (FLRG) > @ then

(the 8-bit character addressed by (FAR@)R,S,W,B,
ignoring the last three bits of (FAR@)B) <- (A)09-16;
(FAR@)W,B <- (FAR@)W,B + 8;

(FLR@) <- (FLR@) - 1;

condition codes <- unequal.
Else if (FLR@) = @ then

" condition codes <- equal;

(FAR@) and (FLR@) unchanged.

Tf the character field described by Field Address and Length Registers
®@ is of nonzero length, its first character is replaced by the
character in the right of the A-register, the condition codes are set
to "unequal", and Field Address and Length Registers @ are stepped over
the character (the address is advanced by 8 bits and the length is
decreased by 1 character). On the other hand, if the character field
is of zero length, the condition codes are set to "equal", and the
address and length registers are unchanged. As the last three bits of
the field address are ignored, fields are always treated as
character-aligned by this instruction.

STC 1 (GEN 981332) Store Character into Field l.

Tf (FLR1) > @ then

(the 8-bit character addressed by (FAR1)R,S,W,B,
ignoring the last three bits of (FARI)B) <- (A) @9-16;
(FAR1)W,B <-— (FAR1)W,B + 8;
(FLR1) <- (FLR1) - 1;
condition codes <- unequal;
(FAC) <- undefined.

Else if (FLR1) = @ then
condition codes <- equal;
(FAR1) and (FLR1) unchanged.

STC 1 is similar to ST @.

~

REV. PRELIM. A 2 —- 34

MAN2798 PROGRAM-VISIBLE DECOR

2.6 PROCEDURE CALL.

The PRIME 488 procedure call mechanism permits procedures to call one
another, facilitates argument passing, permits ring crossing of the

_protection mechanism, and permits shared, reentrant, and/or recursive

code. In the PRIME 490, procedure call performs the functions of JST,
FSAT, and SVC in the PRIME 300. The effective address of the procedure
call instruction is an entry control block (ECB). The. entry control
block contains the information required to set up the keys and base
registers, perform argument transfer, and do stack segment managment.
Stack segment management includes saving the current procedure base,
linkage base, stack base, and keys and also allocating space for
dynamic variables. An individual stack frame may not cross a segment
boundary. The ECB format is shown in Table 2.7. The stack frame
format is shown in Table 2.8. :

A stack is a collection of one or more segments in which stack frames
are allocated as part of the procedure call mechanism. Frames are
allocated and deleted in a= strict last-in/first-out order within a
Single stack. In general, all procedures executing in one ring share
the same stack, while procedures executing in different rings use
different stacks.

The segment number of the first segment in a stack serves to identify
the stack. This segment is called the stack root. The first two words
in this segment contain a segment number/word number pointer that
addresses the location following the last frame allocated on the stack.
The third and fourth word of each segment in a stack contain a pointer
to the next segment of the stack, if one has been allocated. When
there is not sufficient room to allocate anew frame in the segment
pointed to by the free pointer, the extension pointer is used to step
to the next segment in the stack. If none has been allocated, a_ stack
overflow fault occurs.

Stack frames are backward threaded only (each frame points to its
caller’s frame). The state of the caller (return location, stack base

register, linkage base register, keys) is saved in the called frame.
To perform a call or a return, no reference to the caller’s frame is

required.

PCL (MR 16 02) Procedure Call.

The procedure call instruction (PCL) is a memory-reference instruction
that addresses the entry control block of the procedure being called.
The instruction performs the following sequence of operations.

It computes the ring number of the called procedure;

it allocates a stack frame for the called procedure;

it saves the caller’s critical state information (program counter,

2 - 35 13 JULY 1976

SECTION 2 MAN2798 2.6 Procedure Call

stack base register, linkage base register, and keys) in the new
stack frame;

it loads the critical state for the called procedure;

it evaluates the caller’s argument template list, storing a list
of final effective addresses in the new stack frame.

The actual order in which these operations take place is determined by
the requirement that the instruction be restartable if a fault or
interrupt occurs during its execution. To avoid completely restarting
the instruction when a fault occurs during argument transfer, the
program counter is advanced to the first instruction of the called
procedure before the argument list is evaluated. This instruction must
be an Argument Transfer (ARGT, GEN 800605), which restarts the argument
list evaluation from the point at which it was interrupted. When the
transfer is complete, the program counter is stepped to the instruction
following the ARGT. The argument transfer process uses the X- and
Y-registers and the temporary base register to save control information
during the transfer.

The detailed execution of a procedure call is as follows.

Ring number calculation. The ring number of the called procedure
depends upon the caller’s access privileges to the segment containing
the addressed entry control block. No ring change takes place if the
caller has READ access. If the caller has GATE access, the ring number
is taken from the ring number field in ECB.PB without weakening. In
this case, the entry control block must start on a 16-word boundary to
ensure that a proper block is being referenced. An access violation
occurs if neither of the above cases applies.

Stack frame allocation. The stack root is obtained from the entry
control block. If zero, the stack root is fetched from the caller’s
stack frame. The free pointer is fetched from the first two words of
the stack root. If there is sufficient room in the. segment pointed to
by the free pointer for a frame of the size required by the entry
control block, the stack frame starts at the free pointer value, and
the free pointer is advanced over the new frame. If there is not
sufficient room there for the new frame, the extension pointer in words
2 and 3 of the segment pointed to by the free pointer is examined. If
zero, a Stack overflow fault is generated. If nonzero, it is taken as
a new free pointer, and the process is repeated.

Frame header fill-in. The flag word of the new frame is cleared. The
caller’s program counter, stack base register, linkage base register,
and keys are stored in the frame. The saved program counter includes
the caller’s ring and segment number. At this point, the saved program
counter points following the procedure call instruction. When argument
transfer is complete, the pointer will be updated to follow the entire
calling sequence.

Called procedure state load. The called procedure’s program counter,

REV. PRELIM. A 2 - 36

MAN2798 PROGRAM-VISIBLE DECOR

linkage base register, and keys are loaded from the entry control
block. The stack base register is set to the address of the frame
created by the procedure call instruction.

Argument transfer. The procedure call instruction is followed by a
sequence of argument transfer templates which define the argument list
for the called procedure. Argument transfer templates are described
next.

ARGUMENT TRANSFER TEMPLATES.

The list of argument transfer templates following the procedure call
instruction is evaluated to generate a list of actual argument pointers
in the new frame. The format of each argument transfer template is
shown in Table 2.7. Each argument pointer may require one or more
templates for its generation. The last template for each argument has
its S$ (store) bit set. The last template for the last argument in the
list has its L (last) bit set to terminate the argument transfer.

Each template specifies the calculation of an address by specifying a
base register, a word and bit displacement from that register, and an
optional indirection. If further offsets or indirections are required
to generate the final argument address, the template will not have its
store bit set, and the address calculated so far will be placed in the
temporary base register (ring, segment, word numbers) and X-register

(bit number) for access by the next template.

Fach time a template with its store bit set is encountered, the
calculated address is stored in the next argument pointer position in
the new stack frame. If the address has a zero bit offset, the address
is stored in the two-word indirect format (with the E-bit reset, see
Table 2.5). Otherwise it is stored in the three—word format (E-bit
set). In either case, three words are allocated to each pointer in the

argument list.

If the caller’s template list generates fewer arguments than are
expected by the callee (as specified in the entry control block),
argument pointers containing the pointer-fault bit set and all other
bits reset (pointer-fault code 100000, "omitted argument") are stored
for the missing arguments. On the other hand, if the caller’s list
generates more arguments than are specified by the callee, the surplus
arguments are ignored. If the called procedure attempts to reference
-an omitted argument, other than to simply pass it on in another call,
it will experience a pointer fault. If it passes on an omitted
argument in another call, the argument will appear omitted to the newly
called procedure.

The calling and the called procedure must agree on whether or not
arguments are expected. If no arguments are expected (as specified in
the entry control block), the procedure call instruction must not be
followed by any argument transfer templates; but if arguments are

2 - 37 13 JULY 1976

SECTION 2 MAN2798 2.6 Procedure Call

expected, a template list must follow the call. If a call intends to
omit all expected arguments, it may be followed by an argument transfer
template with its last bit set but with its store bit reset.
Procedures which specify no arguments in their entry control blocks
must not begin with ARGTinstructions.

ARGT (GEN 988605) Argument Transfer.

The Argument Transfer operation must be the first executable
instruction of any procedure which is defined as accepting arguments in
its entry control block. It serves as a holding point for the program
counter while argument transfer is taking place into the new frame.
The program counter is advanced past it when argument transfer is
complete. Procedures which specify zero arguments in their entry
control blocks should not begin with ARGT operations.

STEX (GEN @@1315) Stack Frame Extend.

The Stack Frame Extend operation is used by a procedurewhich wishes to
obtain additional space in the procedure stack for automatic variables.
Such space is automatically deallocated and reclaimed for other uses
when the procedure returns, just like the original frame created when
the procedure was entered. The combined A-,B-register (with no hole)
specifies the desired contiguous size of the extension in words. The
size is rounded up to an even number of words by the firmware. The
address of the extension is returned as a segment number/word number
pointer in the combined A-,B-register. It is possible that the
extension may not be contiguous with the initial frame (there may have
been insufficient room left in the same segment). Any number of
extensions may be made. This instruction as well as Procedure Call can
cause a stack overflow fault.

PRIN (GEN 000611) Procedure Return.

The Procedure Return instruction deallocates the stack frame created
for the executing procedure and returns to the environment of the
procedure that called it. The stack frame is deallocated by storing
the current stack base register into the free pointer. The caller’s
state is restored by loading his program counter, stack base register,
linkage base register, and keys from the frame being left. The ring
number in the progran counter is weakened with the current ring number
to allow outward returns but prevent inward returns.

REV. PRELIM. A 2 - 38

MAN2798 PROGRAM-VISIBLE DECOR

TABLE 2.7.
ENTRY AND ARGUMENT CONTROL FORMATS.

ENTRY CONTROL BLOCK

(addressed by PCL instruction)
(16 words long)

offset name usage

+8,+1 ECB.PB Pointer (ring, segment, word number) to the first
executable instruction of the called procedure.

+2 ECB.SFSIZE Stack frame size to create (in words). Must be
even.

+3 ECB.ROOTSN Stack root segment number. If zero, keep same
stack.

+4 ECB.ARGDISP Displacement in new frame of where to build
argument list.

+5 ECB .NARGS Number of arguments expected.
+6,+7 ECB.LB Pointer (ring, segment, word) to be loaded as

called procedure’s linkage base (location of
called procedure’s linkage frame less °49@).

+8 ECB.KEYS C.p.u. keys desired by called procedure.
+9...4+15 Reserved, must be zero.

Entry Control Blocks which are gates must begin on a 9 mod 16 boundary,

and must specify a new stack root.

ARGUMENT TRANSFER TEMPLATE

(follows PCL instruction)
(2 words long each)

BBBBI-Z2ZLS-----—

WWWWWWWWWWWWWWWW

1-4: Bit number (BBBB) .
5: Indirect (I).
7-8: Base register (22).
9: Last template for this call (L).
10: Last template for this argument, store argument address (S).
17-32: Word number (WWW...W).
6,11-16: Reserved, must be zero.

Operation of each template:
(temp)R <- MAX(RING , (base register Z2Z)R);
(temp)S <- (base register 22Z)S;
(temp)W,B <- (base register 2Z)W,B + WWW...W,BBBB;

where (base register ZZ)B is taken as (X)91-04 when ZZ is 3 (the
X-register behaves as a bit offset extension to the temporary base
register), otherwise as zero (base registers have no bit fields). A

2 - 39 13 JULY 1976

SECTION 2 MAN2798 Table 2.7

carry from the bit number addition propagates into the word number
field. RING is the ring of execution of the caller.
Next, if I=] (indirect):

(temp) R <- MAX(RING , [(temp)R,S,WIR);
(temp)S,W,B <— [(temp)R,S,WIS,W,B.

Then, if S=l (store this argument) :
(next argument pointer
in new stack frame) <- (temp)R,S,W,B.

Else if S=Q@ (don’t store):
(XB) R,S,W <- (temp) R,S,W;
(X) <- (temp) Bl [@....

If L=1 (last) then argument list is done, else go on to next template.

REV. PRELIM. A 2 - 49

offset

+4,4+5

+6,+7

+8

+9

MAN2798 PROGRAM-VISIBLE DECOR

TABLE 2.8.
STACK FORMATS.

STACK SEGMENT HEADER

(4 words long)

Free pointer (segment number/word number of available location

at which to build next frame). Must be even.

Extension segment pointer (segment number/word number of

location at which to build next frame when current segment

overflows). If zero, a stack overflow Fault occurs when

current segment overflows.

STACK FRAME HEADER

(18 words long)

Flag bits (set to zero when frame is created).

Stack root segment number (for locating free pointer) .

Return pointer (segment number/word number of location

following call and argument sequence which created this

frame).
Caller’s saved stack base register.
Caller’s saved linkage base register.
Caller’s saved keys.
Word number of location following call (or beginning of

argument transfer templates).

2 - Al 13 JULY 1976

SECTION 2 MAN2798 2.7 DP Integer Changes

2.7 DOUBLE-PRECISION INTEGER CHANGES.

When the PRIME 400 is operating in PRIME 300 mode (16S, 32S, 32R, or
64R), its double-precision integers are of the same format and
accessible in the same way as those of the PRIME 300. ‘These integers
have a so-called "hole" in the middle because bit 17 (the high-order
bit of the second word) is required to be zero. This gives them a
precision of 3@ bits plus a sign, and a range of -2**3] =
~2,147,483,648 to 2**31-1 = 2,147,483,647.

When in PRIME 4008 mode (64V), the processor has another form of integer
available, the so-called "long" integer, with no hole. This form
allows a precision of 31 bits plus a sign, and a range of -2**32 =
-4,294,967,296 to 2**32-1 = 4,294,967,295. This form is used (in 64V
mode) by the LDL, ANL, STL, ERL, ADL, SBL, CLS, MPY, DIV, MPL, and DVL
instructions. In 64V mode, MPY multiplies two 16-bit integers to
produce a 32-bit "long" product with no hole. DIV divides a 32-bit
"long" dividend with no hole by a 16-bit integer. MPL multiplies two
32-bit "long" integers with no holes and produces a 64-bit extended
integer product with no holes in the combined A-, B-, EH-, and
EL-registers (see Table 2.6). DVL is the inverse of MPL. Some generic
instructions are provided to clear and Swap quantities in and out of
the EH- and EL-registers.

In 64V mode, the double-precision bit of the keys can be set and reset
with the DBL, SGL, and OTK instructions, but the bit has no effect on
the LDA, STA, ADD, and SUB Operations. Thus, DLD, DST, DAD, and DSB
are not available in 64V mode. Also, in 64V mode the multiply
instructions (MPY and MPL) never overflow because there is always room
for the product.

Generic operations which specifically manipulate the double-precision
integer format with a hole (PID, PIM, FLOT, INT, and NRM) except for
the shifts (LRS and LLS) continue to operate on that format even when
executed in 64V mode, but their use. is not recommended. Similarly,
generic operations which specifically manipulate the long-integer
format with no hole (STIC, BL.., ALFA, TLFL, TFLL, INTL, FLTL, LbL..,
PIMA, PIDA, PIML, PIDL, STEX, ADLL, and TCL) also operate on that
format when the processor is not in 64V mode, but are not recommended.
The shifts LRS and LLS operate with no hole in 64V mode but with a hole
in other than 64V mode. Also note that PIMA and PIMTL, overflow on a
precision loss, while PIM ignores a precision loss. FRAC is not
provided on the PRIME 408 and causes an unimplemented-instruction fault
in any mode.

2.8 DOUBLE-PRECISION FLOATING-POINT CHANGES.

In the PRIME 408 the B-register is no longer a portion of the
double-precision floating-point accumulator. The B-register is
assigned register file location 2 L (see Table 2.6) and continues to
be addressed as memory location 2 by short-form memory-reference

REV. PRELIM. A 2 -—- 42

MAN2798 PROGRAM-VISIBLE DECOR

instructions. The double-precision floating-point accumulator is

assigned register file locations 12 H, 12 L, 13 H, and 13 L, the first

three words of which can be addressed as memory locations 4, 5, and 6

by short-form instructions. The last word of the double-precision

floating-point accumulator, 13 L, which contains the least-significant

bits of the mantissa, cannot be ajdressed by short-form instructions.

In order that existing PRIME 300 programs continue to work, the old

operation code for Clear B-Register (CRB, GEN 140014) on the PRIME 400

clears both the B-register and also the last word of the

double-precision floating-point accumulator. The Clear B-Register

instruction is assigned a new operation code (149815), which on the

PRIME 490 clears only the B-register (amd does not affect the floating

accumulator), but which on a PRIME 300 also functions as clearing the

B-register. Furthermore, a new operation FDBL is provided (GEN

140216) , which on the PRIME 40@ clears only the last word of the

double-precision floating-point accumulator (and not the B-register),

but which on a PRIME 3@@ also functions as clearing the B-register.

New programs should use CRB (140015) to clear the B-register and FDBL

(149016) to clear the low-order bits of the floating mantissa.

The accuracy of some floating-point operations on the PRIME 440 nas

been improved, so their results will not, in general, compare egual to

the last bit with those of the PRIME 300.

2.9 CONDITION-CODES AND L-BIT.

The C-bit of the PRIME 300 is joined by an L-bit and two condition—code

bits in the PRIME 4@@. ‘The C-bit continues to have the same meaning as

in the PRIME 300. The L-bit and the condition codes are set by any

arithmetic or shift operation except IRS, IRX, and DRX. Tables 2.2 and

2.4 show exactly which instructions have an effect on the C-bit, L-bit,

and condition codes.’

The LI-bit is equal to the carry out of the most significant bit of an

arithmetic operation. It is valuable for simulating multiple-precision

operations and for performing unsigned comparisons (following a CAS or

a SUB).

The two condition-code bits are designated "EQ" and "LT". EQ is set if

and only if the 16-bit or 32-bit visible portion of the result is zero

(that is, if overflow occurs, EQ reflects the state of the result after

truncation rather than before). LT reflects the extended sign of the

result (before truncation, if overflow), and is set if the result is

negative.

Many instructions have been added to the PRIME 4@@ set to test and

branch on the I-bit and the condition codes. The condition codes

appear in the PRIME 49@ keys but not in the PRIME 308 keys (see next

section).

2 - 43 13 JULY 1976

SECTION 2 MAN2798 2.19 Keys & Modals

2.18 KEYS AND MODALS.

The notion of keys on the PRIME 300 has been considerably expanded in
the PRIME 498. Status associated with a process (as opposed to the
processor) is collected in a 16-bit register known as the "keys".
Status associated with the processor (and not with any particular
process) is collected in another 16-bit register known as the
“modals". The formats of the Keys and the modals are shown in Table
2.9.

Note that the C-bit, double-precision bit, and addressing-mode bits are
Still in their PRIME 300 positions in the keys, but the shift count has
been removed to make room for other things. For compatibility with the
PRIME 30%, the INK and OTK instructions still read and set the shift
count (low-order 8 bits of the floating-point accumulator exponent)
instead of accessing bits 9-16 of the PRIME 490 keys register. For
manipulating the PRIME 490 keys, the processor is provided with the
LPSW, TKA, and TAK instructions.

The double-precision bit in the PRIME 49@ may be set and reset by DBL
and SGL (as well as all other keys operations), but in 64V mode this
bit has no effect on the LDA, STA, ADD, and SUB operations. In other
than 64V mode, double-precision works as on the PRIME 300.

Tne L-bit and the condition-code bits have Neen described in the
preceding section.

The addressing-mode bits have been expanded to three to allow the
addition of the new 64V mode (bits 4-6 = 110).

The floating-exception and integer-exception bits allow better program
control over when arithmetic exceptions cause faults. When keys bit 7
is a zero, floating-point arithmetic exceptions cause the processor to
fault; when bit 7 is a one, floating-point arithmetic exceptions
merely set the C-bit. The PRIME 400 also allows faults on integer
arithmetic exceptions. When keys bit 8 is a one, any integer
arithmetic operation which sets the C-bit on overflow (codes 2 and 3 in
the C-bit column of Tables 2.2 and 2.4) also causes an integer
exception fault; when bit 8 is a zero, no fault occurs. Note that for
bit 7 it is a zero which requests the fault and for bit 8 it is a one.
Integer exception faults share the sane vector assignment as
floating-point exception faults. The integer exception Fault code is
“901408 (hexadecimal 9300) .

The in-dispatcher and save-done bits. are managed by the
process-exchange mechanism exclusively. Software should not attempt to
alter their state.

The modals now make visible the processor state. As before, the enable
_ bit and the vectored-interrupt bit of the modals can be manipulated
with the specific instructions provided for that purpose (ENB, INH,
ESIM, VIM). But now all bits of the modals can be read or written
with the LDLR and LPSW instructions.

REV. PRELIM. A 2 -—- 44

MAN2798 PROGRAM-VISIBLE DECOR

Bits 9-11 of the modals reflect which register set the processor is

using at the moment. The PRIME 400 has two user register sets,

designated 2 and 3. ‘The process-exchange mechanism manages the

switching of register sets automatically as it switches processes.

Under no circumstances should software ever attempt to change the

settings of these bits. See the discussion of the LPSW instruction in

Section 2.14.

Bit 12 of the modals controls mapped I/O. When this bit is a zero, all

I/O addresses are physical addresses. When it is a one, all I/0

addresses are mapped by the segmentation and paging hardware as if they

were in segment zero. It is the responsibility of the operating system

to see that the desired virtual-to-physical mapping remains in effect

for the duration of the I/O transfer.

Bit 13 of the modals set to one turns on the PRIME 4@@ automatic

process-exchange mechanism. This mechanism is discussed in the next

section.

Bit 14 of the modals set to one turns on segmentation and paging

mapping. When this bit is a zero, the processor continues to develop

full 28-bit virtual addresses in its usual way, but the low-order 22

bits of them (6 bits of the segment number and 16 bits of the word

number) are used directly without translation to address physical

memory. Thus, when this bit is a zero, the machine behaves as if its

address space was 64 contiguous segments of 65536 words each, mapped

one-to-one onto physical memory.

Bits 15 and 16 of the modals control the response of the processor to

detected integrity failures. The four machine-check modes

=

are

described in Section 1.7.

The keys and modals registers have a special hardware implementation on

the PRIME 400 alongside the register file. Software must never attempt

to write into the keys or the modals with the STLR instruction. The

only valid way to change either the keys or the modals is to use the

LPSW instruction (see Section 2.14), the keys operations OTK and TAK,

or the various special-case instructions designed to manipulate

specific bits of the status. Furthermore, even LPSW should not be used

to alter the state of the in-dispatcher and save-done bits of the keys

or the register-set bits of the modals. These bits are managed by the

hardware and firmware exclusively.

2 - 45 13 JULY 1976

SECTION 2 MAN2798 Table 2.9

TABLE 2.9.

KEYS AND MODALS.

PRIME 4@@ KEYS (16 bits)

CDLMMMFXNZ—----IS

1: C-bit. (C)
2: Double-precision bit (SGL, DBL) . (D)
3: I-bit (see Section 2.9). (L)
4-6: Addressing mode; 9=16S, 1=32S, 2=64R, 3=32R, 6=64V. (MMM)
7: Allow floating-point exception faults if zero. (F)
8: Allow integer exception faults if one. (X)
9: Condition code LT (negative result). (N)
10: Condition code EQ (zero result). (Z)
11-14; Reserved, must be zero.
15: In dispatcher (set/reset only by process exchange). (I)
16: Save done (set/reset only by process exchange). (S)

These keys are found in register file cell 24 H of the current register
Set, and are referenced by the LPSW, TKA, and TAK instructions.

INK AND OTK KEYS (16 bits)

CDLMMMFXSSSSSSSS

1-8: Same as in PRIME 49@ keys above. (CDLMMMFX)
9-16: Shift count (low-order 8 bits of the floating-point

accumulator exponent register, register file 13 H).
(SSS...S)

These keys are referenced by the INK and OTK instructions.

MODALS (16 bits)

EV------CCCIPSMM

1: Interrupts enabled. (E)
2: Vectored-interrupt mode. (Vv)
3-8: Reserved, must be zero.
9-11: Current register set (set/reset only Oy process exchange).

(CCC)
12: Mappel I/O mode. (I)
13: Process-exchange mode. (P)
14: Segmentation mode. (S)
15-16: Machine-check mode. (MM)

REV. PRELIM. A 2 —- 46

MAN2798 PROGRAM-VISIBLE DECOR

2.11 PROCESS EXCHANGE.

A process is a logically continuously executing sequence of code.
Physically a process may be halted for indeterminant lengths of time,
either by an interrupt or by explicitly requesting suspension until a
specific event occurs.

The data bases included in the process exchange mechanism are process
control blocks (PCBs), the ready list, semaphores (in the sense of
Dijkstra), and wait lists. Each process must have a process control
block describing the process. All PCBs in the system are in a single
dedicated segment. The minimum size for a PCB is 64 words. ‘The
maximum number of separate processes is 1023. Table 2.10 gives the PCB
format. Movement between the ready list and the wait lists is
controlled by use of the NOTIFY and WAIT instructions. These
instructions reference a semaphore. After executing either
instruction, the highest priority process on the ready list is
executed. A NOTIFY (Dijkstra’s "Vv" operation) decrements the
semaphore counter and a WAIT (Dijkstra’s "P" operation) increments the
counter. Thus a NOTIFY may cause a process to move from non-ready to

ready and a WAIT may cause a process to move from ready to non-ready.

A process is considered either ready to execute or not ready. If
ready, the process is on the ready list. If not ready, the process is
on the wait list of some semaphore. Coordination between processes
takes place through semaphores. A semaphore defines an event whose
meaning is shared among two or more processes. A semaphore takes two
16-bit locations in memory: a counter of WAITs on the avant and the
location of the first PCB awaiting the event. Negative counts indicate
the event has already happened.

A wait list consists of a semaphore plus the PCBs of any processes
awaiting its event.

The ready list is a logically two-dimensional structure consisting of
strings of PCBs of processes which are ready to execute. Each PCB
contains a level indicator giving the priority of the process.
Multiple processes can exist on the same priority level. Processes
within a level are strung with the PCB link word.

The Process Exchange mechanism is composed of three data bases and two
basic instruction primitives. The data bases are the ready list, wait
lists, and Process Control Blocks (PCB). The basic instruction
primitives are WAIT and NOTIFY. In addition, there is an independent
mechanism for controlling the usage of two register sets which is
related to, but not part of, the ready list data base.

The ready list is a two-dimensional list structure used for priority
scheduling and dispatching of processes. The entire ready list data
base (excluding live registers) and all PCB’s are contained in a
single segment. The segment number of this segment is contained in a
16-bit register called OWNERH. Within the segment, all pointers and
addresses (except fault vectors and wait list pointers) are 16-bit

2 - 47 13 JULY 1976

SECTION 2 MAN2798 2.11 Process Exchange

word number quantities.

The two-dimensionality of the ready list is achieved with a linear
array of list headers for each priority level composed of a Beg inning
of List (BOL) pointer and an End of List (EOL) pointer.

Each pointer is the 16-bit word number address of a PCB (in the same
segment as the ready list). The PCB’s on each priority level list are
tocward-threaded through a 16-bit link word, and as many PCB’s as
desired can be threaded together on each priority level to form the
ready list. A process” priority level is both determined by and
encoded as the address of a BOL pointer in the ready list. Priority
order is determined by arithmetic comparison, i.e., smaller numbers
(addresses) are higher priorities. As a result, priority level list
headers must be allocated in contiguous memory at system startup time.

The end of the realy list is determined by a BOL containing a 1 (PCB
addresses must be even). An empty level is indicated by a BOL
containing 9. The 32-bit registers PPA (Pointer to Process A) and PPB
(Pointer to Process B) are a speed-up mechanism for locating the next
process to dispatch. PPA always contains both the level (BOL pointer)
and PCB address (designated level A and PCBA) of the currently active
process. PPB points to the NEXT process to be run when process A “goes
away’. PPA not only points to the currently active process, but, by
definition, level A is the highest level in the system. It is possible
for PPB and PPA to be ‘invalid’. This condition is indicated by a PCB
address of @. It is important NOT to disturb the level portions,
especially level A since, even if invalid, level A indicates the
highest level that WAS in the system and therefore determines where in
the ceady list to begin a scan, if necessary (PPB invalid), for the
next process to run. In a completely idle system, both PPA and PPB
will be invalid and, upon completion of the ready list scan, the u-code
will go into a ‘wait for interrupt’ loop.

It is important to notice that there is no word number pointer to the
first priority level in the ready list. The ready list allocator,
which starts the process exchange mechanism, knows where the list
begins and, during execution, level A (in PPA) will always point to
either the highest level currently in the system or the last known
highest level and, hence, acts as an effective ready list begin
pointer. In addition, level B will always be higher than the second
level to run. That is, a PCB can never be on a level higher than level
B unless it is the only PCB higher than level B (i.e., level A).

Two “queuing” algorithms are implemented for the ready list, FIFO and
LIFO.

Every PCB in the system will always be somewhere. If it is not on the
ready list, then, by definition, it will be on a wait list. A wait
list is defined by a 32-bit semaphore consisting of a 16-bit counter
(C) and a 16-bit word number BOL pointer. Since the ready list and
all PCB’s reside in one segment (OWNERH), and only PCB’s go onto wait
lists, a segment number is not needed in the Semaphore. However,

REV. PRELIM. A 2 —- 48

MAN2798 PROGRAM-VISIBLE DECOR

semaphores themselves can be anywhere and, in general, are NOT in the

PCB segment. Notice that the last block on the wait list contains a @

link word. Notice also that the semaphore contains only a BOL pointer.

The ‘queuing’ algorithm for wait lists is process priority queuing.
That is, the priority level of a PCB will determine where on the wait
list the PCB will be queued. For PCB’s of equal priority, the
algorithm becomes FIFO.

The contents of a process control block (PCB) are shown in Table 2.10.
The PCB can be broken into the following logical sections which are
ordered as shown:

a. Control
@ - level (pointer to BOL in ready list)

1 link (pointer to next PCB or 9) ©
2,3 - SN/WN of Wait List this block is currently on (SN=@

indicates on ready list)
4 - abort flags used to generate Process Fault when PCB is

dispatched.
Current bit assignments 1-15: MBZ

16: process interval
timer overflow

5,7 - reserved

0. Process State

8,9 - Process elapsed timers (nust be maintained by software

that resets the Live interval timer)

10,13 - DTAR2 and DTAR3 (never saved, always restored)

14 — Process Interval Timer with 1.024 msec resolution

15 - Reserved

16 - Save mask - used to avoid saving and restoring

registers = @
Bits l1- 8: GR@-GR7 (2 words each)

9-12: FPQ-FP1 (4 registers, 2 words each)
13-16: Base Registers(PB,SB,LB,XB)

17 - Keys
18,33 — GR@-GR7
34,41 — FPO-FPl
42,49 - Base Registers (PB,SB,LB, XB)

Note that although all the registers are assigned locations

within the PCB, only non-zero registers will actually be saved

which results in a compacted list which can only be determined

by the bits in the save mask. In general, the saved registers

(those not equal to @) will be between words 18 and 49. The
order of the registers, however, is fixed as above.

c. Fault (See section on Faults for a description of the use of

this portion of the PCB)

50,59 - Fault Vectors: SN/WN pointers to fault tables for

2 - 49 13 JULY 1976

SECTION 2 MAN2798 2.11 Process Exchange

Ring 8, Ring 1, Page Fault and Ring 3
fault handlers

68,62 - Concealed Fault Stack Header
63,.. - Concealed Stack - 6 word entries. (This stack need

not start at word 63).

There are two basic instruction primitives for the process exchange
mechanism:

.

NOTIFY and WAIT. In addition, NOTIFY has two variants.
These instructions, similar to Dijkstra’s P and V operators, are
essentially “interlock” mechanisms. These instructions are thrae—word
(48-bit) ‘instructions’ as follows:

Instruction (16-bit universal generic)
32-bit AP-pointer to semaphore address

AS suggested by the names, WAIT is used to wait for an event (CP, time,
unit record device available, whatever) and NOTIFY is used to signal
that an event has occurred. In particular, a WAIT is used to wait for
a NOTIFY and a NOTIFY is used to alert a process which is waiting.

Coordination is achieved by means of a semaphore containing a counter
and a BOL pointer. The semaphore and the PCB’s waiting for the event
of that semaphore constitute a wait list. The counter, if greater than
8, indicates the number of PCB’s on the wait list. Tf negative, it
indicates the number of processes that can obtain the resource.
Semaphores Fall into two categories: public and private. A public
semaphore is used to coordinate several processes together or control a
system resource. Private semaphores are used by a Single process to
coordinate its own activities. For example, if a disk request is made,
a process will wait on a private semaphore for the disk operation to
complete. The disk process will then notify the semaphore upon
completion. The distinguishing characteristics of a private semaphore
is that only 1 PCB can ever be on that wait list. A public semaphore
can have many different PCB’s on its wait list.

The operation of WAIT is as follows: the semaphore counter is
incremented and, if greater than ®, (resource not available/event has
not occurred), the PCB is removed from the ready list and added to the
specified wait list. If the counter is less than or equal to g, the
process continues. If the PCB is put on the wait list, the general
registers are NOT savel and the register set is made available.
Therefore, a process can NEVER depend on the general registers being
intact after a WAIT. In fact, from the point of view of an executing
process, a WAIT appears as a NOP which destroys the registers. In
addition, WAIT will turn off the process timer.

The NOTIFY instruction has two flavors:

NFYE: use FIFO queuing op code Bit 16
NFYB: use LIFO queuing op code Bit 16

@
1

The instructions differ ONLY in the ready list queuing algorithm used.
The operation of NOTIFY is as follows: the semaphore counter is

REV. PRELIM. A 2 -- 58

MAN2798 PROGRAM-VISIBLE DECOR

decremented and the notifying process continues. If the counter is

less than Q, no action is taken, but if greater than or equal to @, a

PCB is removed from the top of the wait list and added to the ready

list. No explicit action is ever taken on the notifying process, only

the notified semaphore. If a notified process is of higher priority

than the notifying process, the latter will be effectively

‘interrupted’, but will remain on the ready list.

The dispatcher is the root of the process exchange mechanism and is

responsible for determining the next process to run (be dispatched),

_and assigning that process a register set. There is considerable

overlap with NOTIFY and WAIT in functionality related to maintaining

the ready list. For example, both NOTIFY and WAIT update PPA and PPB

as appropriate, but the dispatcher scans the ready list if PPA is

invalid. Register file management, including any necessary saves and

restores, are the sole province of the dispatcher.

Upon entry, the dispatcher first asks if PPA is valid (PCBA nonzero) .

If it is, the process is assigned a register set and dispatched. If

PPA is not valid (PCBA zero), a scan of the ready list is initiated

from the level of PPA, which is always valid. If a PCB is found, PPA

is adjusted and the process dispatched. If the ready list is empty,

the dispatcher idles. Whenever a process is dispatched the process

timer is turned on. .

In each register set, a register, designated OWNER, contains a pointer

to the PCB of the process which owns the set. OWNER is a full 32-bit

pointer and OWNERH is used throughout the system to determine the

segment number of the ready list and PCB’s. Obviously, OWNERH must de

tne same in both register sets. In addition, the low order bit of the

keys register (KEYSH) is used to indicate whether the register set is

available. The bit is called the Save Done bit and, if set, indicates

that the register set and its copy in the owner’s PCB are identical (a

save has been done). This bit is set by the save routine (called from

WAIT or the dispatcher) and reset when a process is dispatched.

Whether a register set is available (SD=1) or not, it is always owned.

Therefore, if a process goes away (either as a result of a WAIT or the

notification of a higher level process) and comes back again

immediately and, if that process still owns the register set, a restore

operation is not necessary. If a register set switch is necessary, the

process timer is turned off. The dispatcher is the only code which

switches register sets.

The PRIME 4@@ contains four distinct register files. Each file is

further divided into halves, each 32 locations (registers) long, and

each 16 bits wide. One half is referred to as the high half and the

other as the low half. Since »oth halves are addressed together, each

register file contains 32 32-bit registers or 64 16-bit registers. The

register files, numbered from 8, are used as follows:

RF@ - u-code scratch and system registers

RF1 - 32 DMA channels
RF2 -— User register set

2 - 51 13 JULY 1976

SECTION 2 MAN2798 2.11 Process Exchange

RF3 - User register set

This layout of register files allows easy expansion to eight register
files, thus adding four new user register sets. All user register sets
have the same internal format and the DMA register file simply consists
of 32 channel registers. Channel register ’20 within RFI is equivalent
to the PRIME 360 DMA registers “20 and “21. Channel register “22 is
mapped to “22 and °23. In this way, the mapping proceeds for each even
register in RFl to channel register “36, mapped to “36 and ‘37. All
Other RF1 registers represent additional DMA channels over the PRIME
300. Table 2.6 shows the intecnal layout of the user register sets
(RF2, RF3). Note that all user register sets contain the segment
number of the Ready List/PCB segment (OWNERH) and a cell for the
modals (KEYSL). It is necessary, before entering process exchange
mode, to set OWNERH in ALL register sets to the proper value and to
NEVER alter it thereafter. Although all register sets contain a cell
for the modals, only the current rejister set (CRS) contains the valid
modals. It is therefore necessary, whenever register sets are
Switched, to copy the modals into the new register set. Currently,
only the Dispatcher switches register sets. CRS is defined and
specified by the three bit field labeled ‘CRS’ in the modals. Since
this field can span up to eight register files, but two are used for
u-code scratch and DMA, user register sets are numbered from 2 - 7. Of
course, only 2 and 3 are currently implemented. ‘Thus, for the PRIME
409, the CRS field must always have bit 9 off, bit 1g on, and bit 11
selects the reyister set (as if @ and 1 were the numbers). In fact,
the u-code will only look at bit 11.

Direct register file addressing (not using CRS) is accomplished either
with the LDLR/STLR instructions or via the control panel. The Register
Files are ordered sequentially with an absolute address of g addressing
RF@-register 9g (u-code scratch/system file), “40 addressing
RFl-register @ (DMA file), “109 addressing RF2-register @ (user set 2),
and “149 addressing RF3-register @ (user set 3).

Cell 3@ H of the current register set is a 16-bit wide 1024-microsecond
up-counting process c.p.u. timer. ‘The dispatcher turns it on before
dispatching a process and turns it off before saving a process into its
PCB or swapping register sets. On each tick, u-code increments the
live interval timer (TIMER) in RF(CRS). When that overflows, bit 16
in the PCB abort flags is sat to cause a process fault. It is the
cesponsibility of software that resets the interval timer to maintain
the elapsed timer.

At various points in the dispatcher a check for interrupt pending
(fetch cycle trap) is made. As a result, interrupts can occur either
in the fetch cycle or in the dispatcher. The possible Fetch Cycle
traps are:

- External interrupt and memory increment.
CP-timer increment and possible overflow.
Power failure.
Halt switch on control panel.H

m
W
D
N

e
e

REV. PRELIM. A 2 - 52

MAN2798 PROGRAM-VISIBLE DECOR

5. End-of-instruction trap.

The end-of-instruction trap occurs either from an ECC corrected error
or from a missing memory module; memory parity, or machine check during

' I/O. In all cases, if the check handling software returns (via LPSW
instruction), the possible destinations are either the fetch cycle or
the dispatcher (PB in PSW not a real program counter). In order to
Juarantee the proper destination, bit 15 of the keys (KEYSH) is used
to indicate if the trap was detected by the dispatcher (bit 15=1).
This bit is set by the dispatcher upon detecting a trap and is reset
when a process is actually dispatched (return to fetch cycle).

2 - 53 13 JULY 1976

SECTION 2 MAN2798 Table 2.198

TABLE 2.19.
PROCESS CONTROL BLOCK FORMAT.

octal field length
offset (16-bit words) field description

g 1 Level (priority).
1 1 Link to next PCB of same priority.
2 1 Wait-list sejyment aumber (zero

if ready).
3 1 Wait-list word number.
4 1 Abort flags.
5 3 Reserved.
19 2 Elapsed timer.
12 2 Descriptor table address register 2.
14 2 Descriptor table address register 3.
16 1 Interval timer (live).
17 1 Reserved.
20 1 Save mask.
21 1 Keys.
22 2 General register @.
24 2 General register l.
26 2 General register 2.
30 2 General register 3.
32 2 General register 4.
34 2 General register 5.
36 2 General register 6.
4Q 2 General register 7.
42 4 Floating-point register @.
46 4 Floating-point register l.
52 2 Procedure base register.
54 2 Stack base register.
56 2 Linkage base register.
60 2 Temporary base register.
62 2 Fault vector, ring @.
64 2 Fault vector, ring l.
66 2 Reserved.
78 2 Fault vector, ring 3.
72 2 Page fault vector.
74 1 Concealed stack FIRST.
75 l Concealed stack NEXT.
76 l Concealed stack LAST.
77-up Concealed fault stack entries, six

words per entry (see Section 2.12).

Tne data saved in locations 22 through 61 has a fixed order, but is
compacted toward low addresses over doublewords of zero. The save mask
in location 2@ has a zero bit for each doubleword of zero omitted and a
one bit for each nonzero doubleword stored. Locations are fixed again
starting at 62.

REV. PRELIM. A 2 - 54

MAN2798 PROGRAM-VISIBLE DECOR

2.12 TRAPS, INTERRUPTS, FAULTS, AND CHECKS.

Four words used frequently are ‘trap’, “interrupt” (or ‘external
interrupt’), ‘fault’, and ‘check’. ‘The meanings of these terms are
carefully distinguished for the PRIME 400. Software breaks in
execution are divided into three main categories referred to as
‘interrupts’, ‘faults’, and ‘checks’. The word “trap”, on the other
hand, refers to a break in execution flow on the u-code level.

Traps can occur for many reasons, not all of which cause software
visible action, and are always processed on the u-code level. Some
traps may directly or indirectly cause breaks in software execution,
but not all software breaks are the result of a trap.

On the PRIME 300 and in the PRIME 490 when process-exchange mode is not
turned on, interrupts, faults, and checks used the same protocol to get
to their respective software handlers, namely they caused a vector
through a dedicated sector @ location (JST* vector). On the PRIME 400
when process exchange mode is enabled, the three categories use
different protocols both from the PRIME 380 and each other. Roughly,
the three terms are used to describe:

1. Interrupt - a signal has been received from a device in the
external world (including clocks) indicating that
the device either needs to be serviced or has
completed an operation. In general, an interrupt
is not the result of an operation initiated by the
currently executing software and will not be
processed by that software (though, of course, it
may) .

2. Fault - a condition has been detected that reguires
software intervention as a direct result of the
currently executing software. In general, faults
can be handled by the current software, though in

Many cases common supervisor code within the
current process handles the fault. Also, in
general, an external device in the real world is
not directly involved in either the cause or cure
of a fault condition. Often, however, external
devices are involved indirectly as, for example,
in performing a page turn operation as a result of
a page fault.

3. Check - an internal CP consistency problem has_ been
detected which requires software intervention.
The condition could be either an integrity
violation, reference to a memory module which does
not exist, or a power failure. By contrast, a
reference to a page which is not resident or an
arithmetic operation which causes an exception is
a FAULT condition.

2 - 55 13 JULY 1976

SECTION 2 MAN2798 2.12 Traps, Interrupts, Etc.

External Interrupts.

External Interrupts operate in either of two modes depending upon
whether process exchange is turned on. If process exchange is off, all
interrupts are treated as PRIME 300 interrupts. In all cases, except
memory increment, the address presented by the controller (or “63 if in
Standard interrupt mode) is used as‘the address in segment @ of a
16-bit vector. This vector, in turn, points to interrupt response code |
(IRC), also in segment 8, which is entered via a simulated JST* through
the vector. Thus, the current program counter (RPL) is stored in
(vector) and execution begins at location (vector) +1 with interrupts
inhibited, but with no other keys or modals changed. If in vectored
interrupt mode, it is the responsibility of the software to do a CAT.
In either mode, the full RP is saved in the register PSWPB. Software
must store PSWPB before allowing another interrupt.

If process exchange mode is on, an entirely different mechanism
operates. In all cases, except memory increment, the address presented
by the controller is used as a 16-bit word number offset into the
interrupt segment (#4). This segment is guaranteed to be in memory,
but STLB misses may occur. The current PB (actually RP) and KEYS
(keys and modals) are saved in the u-code scratch registers PSWPB and
PSWKEYS. The machine is then inhibited and the IRC begins execution in
64V mode. It is the responsibility of the IRC to issue a CAI. It is
important to note that the IRC in the interrupt segment does not belong
to any process. PPA points to the PCB of the interrupted process and,
in fact, no PCB exists for the IRC. Also, except for PB and KEYS, no
registers are saved. In fact, even PSWPB and PSWKEYS are in the
register file and not inmemory. As a result, the IRC cannot do an
enable and must return to the process exchange mechanism (i.e., the
dispatcher) as soon as possible. Because of all these restrictions on
what the immediate IRC can do, as well as the fact that it does not
belong to any process, it is referred to as phantom interrupt code.
Unless the job of servicing an interrupt is very simple, phantom
interrupt code can do little more than turn off the controller’s
interrupt mask, issue a CAI, and NOTIFY the real IRC.

A memory increment interrupt is handled the same regardless of the
State of process exchange. The address presented by the controller is
used as the 16-bit word number in segment @ (I/O segment) of a 16-bit
memory cell to be incremented. If the counter does not overflow
(-1->@), the u-code simply returns. With process exchange off, the
return is always to the fetch cycle. With process exchange on, the
return is either to the fetch cycle or the dispatcher, depending upon
where the interrupt was detected. When detecting an interrupt, the
dispatcher always insures that RP=PB and that all live keys=KEYS. When
memory increment returns, it does so to the top of the dispatcher
without having touched PB or KEYS. In this way, memory increment is
guaranteed not to destroy any vital information needed by the
dispatcher. If the memory cell counter does overflow, an End-of-Range
Signal is generated and then memory increment returns. The subsequent
FOR interrupt will then be treated like any other external interrupt.

REV. PRELIM. A 2 -- 56

MAN2798 PROGRAM-VISIBLE DECOR

Phantom interrupt code has two options for the actions it can take. If
the servicing required by the interrupt is very simple, phantom code
can completely process the interrupt and return to the dispatcher. If
the servicing required is more complex, the phantom code must turn off
the controller’s interrupt maskand NOTIFY the remainder of the IRC.
In the first case, PB and KEYS must be restored from PSWPB and PSWKEYS
and then the dispatcher must be entered directly. Since PB cannot be
restored in phantom code (the program counter will point to the
instruction in phantom code) and the dispatcher cannot be entered
directly (no such instruction exists), the special instruction, IRIN, a
16-bit generic, is executed to perform these functions. After entering
the dispatcher via an IRTN, the dispatcher does not know that an

interrupt occurred.

In order to NOTIFY a process, phantom code must insure that PB and KEYS

are restored before issuing the NOTIFY. The special instruction,

INOTIFY, performs the restore and then does the NOTIFY. As NOTIFY,

INOTIFY is a three-word generic with two flavors, INOTIFYB and INOTIFYE
where the beginning of list option has bit 16=1 and the end of list
option has bit 16=@ in the opcode.

Phantom Interrupt code can issue a CAI in one of two ways. Either an
explicit CAI instruction may be issued or the IRIN/INOTIFY instructions
can issue it. Bit 15 of the IRTN/INOTIFY instructions is interpreted
as follows:

Bit 15 = @ do not issue, CAI
1 issue CAI

In all, there are four INOTIFY instructions as follows:

Name Bit 15 16 Function

INEC 1 g End + CAI

INEN Vy) Q End + no CAI
INBC 1 1 Beginning + CAI
INBN Q 1 Beginning + no CAI

Faults.

Faults are CPU events which are synchronous with and, in a loose sense,

caused by software. Eleven fault classes have been defined for the

PRIME 400. Several of these classes are further subdivided into

distinct types. Of the eleven, three are completely new for the PRIME
498 and, of the other eight, three have expanded meaning when in PRIME
499 mode. The eleven fault classes and their meanings are:

2 - 57 13 JULY 1976

SECTION 2 MAN2798 2.12 Traps, Interrupts, Etc.

Fault PRIME 402 PRIME 309

RXM Restrict mode violation same
Process Abort flags word .NE. @ N.A.

in PCB on dispatch
Page Page Fault (Page not in same

memory)
SVC N.A. 7 Supervisor Call
UII Unimplemented instruction same
ILL Tllegal instruction same
Access Violation of segment Page write violation

access rights
Arithmetic All FLEX + IEX (Integer FLEX

Exception)
Stack Stack over flow/under flow Procedure Stack (S—-Reg)

. Underflow
Segment 1: Segment # too big N.A.

2: Missing segment (SDW N.A.
fault bit set)

Pointer Fault bit in pointer set N.A.

The fault handling mechanism consists of two data bases and the CALF
instruction. The u-code is in turn divided into a set of ‘front-ends’
for each fault class and a common fault handler.

The fault data bases consist of the fault vectors and concealed stack
in the PCB and the fault tables pointed to by the PCB vectors. Table
2.11 shows these data bases as well as the mapping of PRIME 300 faults
to PRIME 400 faults. Also shown in this figure is the differential
action taken according to fault class (e.g., what ring to process the
fault in) and the set up the u-code “front end’ must do before going
to the common fault handler.

The underlying philosophy of the four fault vectors is that while some
faults may need to be processed by ring @ code, others may be
adequately handled in the current ring of the faulting process. The
vectors are in the PCB to allow different processes to have different
fault handlers. For example, process A may wish to use a system fault
routine to handle pointer faults (dynamic linker) while process B may
wish to define its own algorithms for resolving pointer faults. Notice
that it is always possible for a ‘current ring’ fault handler to call a
ring @ procedure if the need arises. Note also that page fault has its
own vector despite the fact that ring @ is entered. For the special
case of page fault, only a single, system-wide processor will be used
and all PCB page fault vectors will point to the same place.

The concealed stack, also in the PCB, is used to allow fault on fault
conditions. For example, it is quite possible to get a segment fault
while processing a segment fault. The only fault which cannot cause
another fault of any type is page fault. Each frame of the concealed
Stack contains the PB and keys (KEYSH) of the faulting procedure as

REV. PRELIM. A 2 - 58

MAN2798 _ PROGRAM-VISIBLE DECOR

well as a fault code (to distinguish different types within each class)

and a fault address, if appropriate. The stack itself is circular and

must have allocated sufficient frames to handle the longest possible

sequence of fault on fault that can occur in ring 9. Such a sequence

might be: Pointer (link) fault -> Segment fault -> Stack fault ->

Segment fault -> Page fault. Note that this particular sequence occurs

before any software fault handler is entered. Also, the first segment

fault enters ring 0, so at least a five-level stack is necessary if the

original link fault is to be processed correctly. Each frame of the

concealed stack is six words long, organized as follows:

+0,+1 Program counter (Segment number/word number);

+2 Keys;
+3 Fault code (FCODE in Table 2.11);
+4,+5 Fault address (segment number/word number, FADDR in Table

2.11).

The second data base consists of four distinct fault tables, each

pointed to by a PCB fault vector. Each entry in the table consists of

four words of which the first three must be a CALF instruction. Only

the page fault table must be locked to memory and only the ring @ table

must be in a pre-defined (SDW exists) segment (otherwise, segment

fault might recurse infinitely). Naturally, the ring @ table, as well

as the PCB, is carefully audited by ring 8 procedures.

The CALF instruction has two major functions. First, to avoid holding

off interrupts for too long, the CALF instruction defines a restart

point in fault handling since it has a PB (i.e., it is a macro-machine

instruction). AS a result, it is quite possible to suspend a process

in the middle of getting to a software fault handler. Second, it

allows a straightforward mechanism to simulate a procedure call from

the faulting procedure (at the instruction causing the fault) to the

fault handler.

The instruction itself is a three-word generic in which the second and

third words are a 32-bit AP-pointer to the fault handler. To simulate
the procedure call, the PB and KEYS from the concealed stack are placed

in the fault handler’s stack frame along with the other base registers

(only the PB and KEYS have been changed to point to the CALF and to

enter 64V addressing mode) to be used by the standard procedure return

(PRTN) instruction. In addition, the fault code and address are

placed in the fault handler“s stack as words “12, “13, and “14. After

the information is moved from the concealed stack it is popped. ‘The

flag word (°@) of the new frame is set to 1 instead of @ to

distinguish the frame as created by CALF. The entry control block

addressed by the CALF must specify no arguments. It may be a gate or

not.

The fault handler is a u-code routine that is entered from the various

fault class ‘front ends’ and, based on process exchange mode, either

simulates a PRIME 300 type fault (JST* through segment @ fault vectors)

or performs the PRIME 4@@ fault protocol which includes setting up a

concealed stack frame, switching to 64V mode, and determining, on the

basis of information provided by the “front end’, which fault vector to

2 - 59 13 JULY 1976

SECTION 2 MAN2798 2.12 Traps, Interrupts, Etc.

use and setting PB to point to the proper CALF in the fault table.
Note that for PRIME 380 faults, the full RP is also saved in the u-code
Scratch register PSWPB and the machine is inhibited for one instruction
if in Ring @.

Checks.

Checks, unlike faults, are CPU events which are asynchronous with, and
are not caused by, normal instruction execution. Rather, they are
events which are either invisible (e.g., an ECC corrected error) Or
fatal (e.g., missing memory module) to the currently executing
procedure and perhaps the CPU entirely (e.g., machine check). Checks
essentially represent processor faults as Opposed to process or
procedure faults. Four check classes have been defined as follows:

First instruction

CHeck header loc of handler DSW set?

power failure 4/° 200 4/°204 no
memory parity 4/°270 4/°274 yes
machine check 4/° 300 4/° 394 yes
missing memory module 4/°310 4/°314 yes

Unlike faults which can be stacked and interrupts which cause a process
to be suspended, each check class has a Single save area (check block)
consisting of eight words in the interrupt segment (#4) in which PB
and KEYS (high and low) are saved in the first four locations (check
header) and the remaining four locations contain software code
(probably a JMP). In addition to the memory data base, three 32-bit
registers are used as a diagnostic status word (DSW) to help a
software check handler sort out what happened. Table 2.12 shows the
format of the DSW.

Check reporting (traps) is controlled by the two low order bits in the
modals (KEYSL). - The possible modes are:

MCM=@ no reporting
1 xveport memory parity (uncorrected) only
2 report unrecovered errors only
3. report all errors

The check trap can result in two possible actions depending upon the
type of check that occurred and the type of u-codje which was trapped.
If the trapped code was either DMX, PIO, or external interrupt
processing (unless the error was a machine check for RCM parity), or if
the check was for an ECC. corrected (ECCC) error, theend-of-instruction flag is set, REOIV is set to the proper
offset/vector, MCM is set to @g (except ECCC which sets it to 2), anda
u-code RIN to the trapped step is executed. In this way, the IO bus is
always left in a clean state, In all other cases, the check to
software occurs immediately.

REV. PRELIM. A 2 -—- 60

MAN2798 © PROGRAM-VISIBLE DECOR

The common check handler is entered from various check ‘front ends’
and, based on process exchange mode, either simulates a PRIME 300 type
check (JST* through segment @ check vectors) or performs the PRIME 400

check protocol which includes setting up the check header, inhibiting
the machine, and switching to 64V addressing mode. In either mode, MCM
is set to @ before going to software.

Check-handling software has the responsibility for clearing the
Diagnostic Status Word after each check. If the software does not
clear the DSW, later checks will overwrite some of the data from

preceding checks. Enough independent fields are allowed in the DSW to
remember one each of the longest chain of checks which can occur before
software gets control, except that the RMA and PB of the last check
only can be saved. If a missing-memory-module check has occurred, then
it was the last, and the saved RMA and PB go with it. If not, then if
either a machine check or an ECC-uncorrected memory-parity check
occurred (these are mutually exclusive), then it was the last and its
RMA ard PB are in the DSW. Otherwise, the saved RMA and PB belong to

the ECC-corrected memory-parity check.

In the event that the ECC memory option is not installed, all
memory-parity errors are treated as ECC-uncorrected errors.

2 - 61 13 JULY 1976

SECTION 2 MAN2798 Table 2.11

TABLE 2.11.
FAULT PROCESSING.

Column 1 is the vector location in segment zero for an indirect JST
when process-exchange mode is off. Column 3 is the offset within the
fault vector of the applicable CALF when process-exchange mode is on.
The "ring" column shows whether the fault is handled in the ring of
occurrence or in ring zero. In the “saved P-counter" column, "current"
means the saved P-counter is not reset back to the beginning of the
most recently attempted instruction; "backed" means that it is.

PX off PX on saved
vector fault type offset ring P-counter FCODE FADDR

62 restricted
instruction @ current backed - -

63 process 4 zero current abort flags -
64 page 18 zero backed - address
65 svc 14 current current - -
66 unimplemented

instruction 2@ current backed current P-ctr eff address
72 illegal

instruction 4@ current backed current P-ctr eff address
73 access

violation 44 Zero backed - address
74 arithmetic

exception 5@ current current excep code operand addr
75 stack

over flow 54 Zero backed - last stk seg
76 segment 68 Zero backed 1=# too big

2=fault bit address
77 pointer 64 current backed ptr lst word’ addr of ptr

Exception codes for arithmetic exceptions are as on the PRIME 300 with
the addition of code “901400 (hexadecimal 9300) for integer exception
(see Section 2.10).

REV. PRELIM. A 2 - 62

MAN2798 PROGRAM-VISIBLE DECOR

TABLE 2.12.
DIAGNOSTIC STATUS WORD.

(6 words long)

Set on all.checks except power failure as follows (the Diagnostic
Status Word is untouched by a power failure check) :

Bits 1-32 (register file °34 absolute): DSWRMA.

Bits 33-64 (register file “35 absolute): DSWSTAT.
THPMKKKWCUBPPPXO
A-SSSSSN--TTTTTT

Bits 65-96 (register file °36 absolute): DSWPB.

bits

1-32 (DSWRMA)

33 I

34 H

35 P

36 M

37-39 KKK

4G W

41 U

42 C

meaning, validity

Memory address register. Valid if and only if a machine
check occurred but not a missing-memory-module check, or
else RMA invalid (bit 49) is reset on a
missing-memory-module or memory-parity check. Invalid
if and only if no check has occurred, or else RMA

invalid is set on a- missing-memory-module or
ECC-uncorrected check. In the event of multiple checks,
DSWRMA is the RMA of the missing-memory-module check if
any, else of the machine or ECC-uncorrected check (they
are mutually exclusive) if any, otherwise of the
ECC-corrected check.
Check immediate. The check could not be held off until
end-of-instruction. Always valid.
Machine check. Always valid. If set, bits 37-49 are
valid.
Memory—parity check. Always valid. If set, bit 56 is
valid.
Missing-memory-module check. Always valid. If set,
bits 49 and 56 are valid.
Machine-check code. Valid only if bit 34 is set.
Parity failure on @=peripheral data (BPD) output,
l=peripheral address (BPA) input, 2=memory data (BMD)
output, 3=cache data (RCD), 4=peripheral address (BPA)
output, 5=RDX-BPD input, 6=memory address (BMA) ,

7=register file.
Not RCM parity. Reset if and only if there is an RCM
parity error and the extended control storage option is
installed. Valid only if bit 34 is set.
ECC-uncorrected memory-parity check (or, any
memory-parity check when the ECC memory option is not
installed). Always valid. If set, bit 35 is set, and
bit 56 is valid.
ECC-corrected memory-parity check. Always valid. If
set, bit 35 is set, and bits 51-56 are valid.

2 - 63 13 JULY 1976

SECTION 2

43 B

44-46 PPP

47 x
48 0

49 A

50
51-55 SSSSS

56 N

57-58
59-64 TITTTT

65-96 (DSWPB)

REV. PRELIM. A

MAN2798 Table 2.12

Backup count invalid. Always valid. If reset, bits
44-46 are valid.
RP (P-counter) backup count. Amount to subtract from
DSWRP to find the beginning of the most recently
attempted instruction. Valid only if bit 43 is reset.
Check occurred during .DMX service. Always valid.
Check occurred during DMX service, programmed
input/output, or interrupt microcode. Always valid.
RMA invalid. If set, no RMA is available in DSWRMA.
Valid if and only if a missing-memory-module check
occurred, or else a memory-parity check occurred but not
a machine check. Invalid if and only if there was no
check, or else a machine check occurred without a
missing-memory—module.
Reserved.
ECC-corrected syndrome bits. Valid only if bit 42 is
set.

Memory module number (failing memory module in case of
interleaved memories). Valid only if bit 35 or bit 36
is set. If both bits are set, bit 56 is the module
number which goes with the missing-memory-module check.
Reserved.
Microverify failing test number. Valid only following
failure during Master Clear or VIRY instruction.
Extended program counter (ring, segment, word). Always
valid. In the event of multiple checks, DSWPB is the
program counter of the missing-memory-module check if
any, else of the machine or ECC-uncorrected check (they
are mutually exclusive) if any, otherwise of the
ECC-corrected check.

MAN2798 PROGRAM-VISIBLE DECOR

2.13 QUEUES AND DMO.

Queue structures on the PRIME 40@ are double-ended queues ("deques", to
quote Knuth), and are used for both input/output (DMQ mode, physical
queues) and interprocess communications (virtual queues). Each queue
is implemented by an array of 2**K words for data and a four-word
control block. The data block format is shown in Table 2.13 and the
control block format in Table 2.14.

The data block is constrained to be of length 2**K for some 4<=K<=16
and the origin of the queue is constrained to be M*2**K, ‘These
restrictions on the data block allow the beginning and ending of the
data block to be easily inferred from the read or write pointer. Let
us define MASK to be a word with K “1” bits on the right and 16-K ‘@°
bits on the left, i.e., MASK=2**K-1: Then if P points inside the data
block, then

ORIGIN P .AND. (.NOT. MASK)

and

END P .OR. MASK

The control block entries mean as follows:

Top (Read) Ptr: Points to the datum at the head
of the queue;

Bottom (Write) Ptr: Points to the cell after the datum
at the tail of the queue;

Segment: Six bits of address extension
or else segment number;

MASK: =2**K-] defines the size of the

queue data block.

Notice carefully that the queue could contain from @ to 2**K entries,
but to reserve the condition Top-Ptr = Bottom-Ptr for empty, we must
define the queue to be full when it has 2**K-1 entries: i.e., there is
always one slot empty.

The DMQ mode of I/O is defined by a DMX request of BPCMO...4=80001 for
input and BPCMO...4=00000 for output. In the input mode, a word is
added to the bottom of the queue if there is room, else an EOR (End of
Range) signal is returned to the controller. In output mode, data is
taken from the top of the queue or, if empty, a zero word is output
along with EOR. Note that EOR is not put out with the word that
empties the queue as with DMA. All memory operations bypass cache. An
important special case is output when the queue is empty, which
requires only two reads (the Read-Ptr and Write-Ptr), a comparison, and
a speedy exit. This efficiency consideration accounts for the peculiar
ordering of words in the control block.

The DMO modes assume that the BPA address refers to a control block in

2 - 65 13 JULY 1976

SECTION 2 MAN2798 2.13 Queues & DMO

segment zero which in turn refers toa data block in physical memory.

The instructions provided for gueue manipulation are of the gener ic-AP
class, in which a following AP-pointer (see Section 2.4) provides the
address of the queue control block.

Data is in the A-register and the results of the Operation are given in
the condition code bits for later testing. No Wait or Notify action is
taken Dy the instruction per se. The instructions are:

ATO P Add to Top of Queue

ABQ P Add to Bottom of Queue

RTQ P Remove from Top of Queue

RBQ P Remove from Bottom of Queue

TSTO P TeST Queue .

The Ptr refers to a control block in virtual space which is shown in
Table 2.14. The virtual queue control block differs from the physical
in that a segment number is provided instead of a physical address.
Ring zero privilege is required to manipulate physical queues. Also,
the ring number determines the privilege of access into both the
control block and the data block.

The algorithms for queue operation are as follows (T1,T2,T3,T4 and T5
are temporary registers):

A. RIQ or DMQ output

Tl <- Top
T2 <- Bottom

if Tl = T2 exit, Queue Empty, FOR
T3 <- Segment

- T4 <-— Mask

A <- (TI)
- Top <- Tl .AND. .NOT.. T4 .OR. (T1 + 1) .AND. T4S

O
N
U
W
D
E

Note that EOR is determined after only two memory references and the
top pointer is updated after the data is removed. Similarly, for input
the algorithm is:

B. ABQ or DMO input

- Tl <- Top

- T2 <- Bottom

T3 <- Segment
T4 <- Mask

T5 <- T2 .AND. .NOT. T4 .OR. (T2 + 1) .AND. T4

if Tl = T2 exit, Queue Full, EOR
(T2) <-A

Bottom <- T5O
n
A
O
1
®
W
b

H
Y

e
s

6
e

Note that here all four control words must be fetched before any
operation or testing can take place. Also note that the data is

REV. PRELIM. A 2 -—- 66

MAN2798 PROGRAM-VISIBLE DECOR

inserted before the pointer is updated. This insures that the sequence
ABQ/DMQ-output and DMQ-output/RTQ can work without interlock in either
microcode or software. The other two algorithms are:

C. @ 0
Tl <- Top
T2 <- Bottom
if Tl = T2 exit, Queue Empty
T3 <- Segment
T4 <- Mask
T2 <- T2 .AND. .NOT. T4 .OR. (T2 - 1) .AND. T4

A <- (T2)
Bottom <- T2C

O
n
A
I
N
O

S
P
W
H
F

e

2 a

1. Tl <- Top
2. T2 <= Bottom
3. T3 <- Segment
4. T4 <- Mask
5. Tl <- Tl .AND. .NOT. T4 .OR. (Tl -— 1) .AND. T4

6. (T1) <-A
7. Top <- Tl

In addition, the queue can be tested by the instruction TSTQ which
calculates the length of the data queue and compares the result with @
and Mask. Interestingly, the length of the data queue is:

L = (Bottom — Top) .AND. MASK

whether the data is wrapped or not!

2 - 67 13 JULY 1976

SECTION 2

Top-Read Ptr-->

Bottom—-Write Ptr—-->

Bottom-Write Ptr-->

Top-Read Ptr-->

MAN2798 Table 2.13

TABLE 2.13.
QUEUE DATA STRUCTURES.

QUEUE DATA BLOCK, DATA NOT WRAPPED

| |<--Origin = M*2**K
| |

(empty)	
[: (head)	
	Length = 2**K
(data)	
(tail)	
(empty)	V
	<--End = (M+1) *2**K-1

QUEUE DATA BLOCK, DATA WRAPPED

| (data). |<--Origin = M*2**K
| | |
| (tail) | |
| |
| (empty) | Length = 2**K
| | |
| | |
| (head) |

|
| (data) | V
| |<-—-End = (M+1) *2**K-]

2 - 68REV. PRELIM. A

bits

1-16:
17-32:

34-36:

37-48:

49-64:

MAN2798 PROGRAM-VISIBLE DECOR

TABLE 2.14.
QUEUE CONTROL BLOCK.

(4 words long)

TITTTTTITTITITITT
BBBBBBBBBBBBBBBB
V---SSSSSSSSSSSS
MMMMMMMMMMMMMMMM

function

Top (read) pointer (TTT...T).
Bottom (write) pointer (BBB...B).
Virtual/physical control bit, virtual queue if set, physical
queue if reset (V).
Reserved, must be zero.
Segment number of queue data block if a virtual queue,
high-order physical address bits if a physical queue
(SSS...S).
Mask of value 2**K-1 (MMM...M).

2 - 69 13 JULY 1976

SECTION 2 MAN2798 2.14 Other New Instructions

2.14 OTHER NEW INSTRUCTIONS.

The PRIME 490 has numerous other new instructions. Most of them are
self-explanatory, but a few which are not so obvious are described in
this section.

XEC (MR @1 02) Execute.

Not all instructions can be executed by the Execute instruction. The
instructions which can be executed differ in the PRIME 40@ from those
in the PRIME 300.

No multiple-word instructions can be executed properly. All one-word
instructions can be executed properly except JMP, JST, and
address-mode-changing generics. Instructions which skip do so relative
to the XEC instruction. Effective—address calculation of
memory-reference instructions is relative to the location of the
executed instruction. Instructions which are illegal or unimplemented
cause illegal or unimplemented instruction faults when executed.
any fault or interrupt the saved program counter is relative to the XEC
instruction.

LPSW (GEN-AP 989711) Load Program Status Word.

Toad Progran Status Word is a restricted operation which can change the
status of the processor. It can be executed only in ring zero. The
instruction addresses a four-word block containing an extended program
counter (ring, segment, and word numbers) in the first two words, keys
in the third word, and modals in the fourth. The program counter and
keys of the running process are loaded from the first three words, then
the processor modals are loaded from the fourth. If the new keys have
the in-dispatcher bit (bit 16) off, the current process continues in
execution but at a location defined by the new program counter. If the
new keys have the in-dispatcher bit on, the dispatcher is entered to
dispatch the highest priority ready process. Whenever the current
process again becomes the highest priority ready process, it will then
resume execution at the point defined by its new program counter. ‘The
modals are associated with the processor and not the process, so in
either case the new modals are effective immediately.

This instruction is used to load the four words of the register file
which cannot be correctly loaded with the STLR instruction: the
program counter (ring, segment, and word number), the keys, and the
modals. The STLR instruction should not be used to set these words, as
it does not update the separate hardware registers in which the
processor maintains duplicate information to achieve higher
per formance.

The LPSW instruction must never’ attempt to change the

REV. PRELIM. A | 2 - 70

MAN2798 PROGRAM-VISIBLE DECOR

current-register-set bits of the modals (bits 9-11). This implies
that, unless for some reason the current register set in effect for the

execution of the program is known with certainty, any program wishing

to execute an LPSW must inhibit interrupts (to prevent an unexpected

process and register exchange), read the register set currently in

effect from the present modals (as with an LDLR “24), mask those
register-set bits into the modals to be loaded, and then finally

execute the LPSW. Fortunately, in both usual applications of LPSW the
needed register-set bits are predictable: when LPSW is first used
after Master Clear to turn on process-exchange mode, the

current-register-set bits should be 918 (the processor always comes out

of Master Clear in register set 2); and when LPSW is used to return

from a fault, check, or interrupt handled by inhibited code, whatever

register-set bits were stored away by the fault, check, or interrupt

are still correct and can simply be reloaded.

Similarly, except to reload status correctly stored on a fault, check,

or interrupt, an LPSW should never attempt to set either the save-—done

bit (bit 15) or the in-dispatcher bit (bit 16) of the keys. The

initial LPSW following a Master Clear should have both these bits off. .

LDLR (MR 05 @1) Load Long from Register File.
STLR (MR 93 @1) Store Long into Register File.

These instructions load or store a 32-bit quantity in the combined

A-,B-register from or into any cell of the register file. ‘The
register-file cell selected is determined by the effective address of
the LDLR/STLR (these instructions do not access main memory). Both

absolute and relative register-file addressing is provided. In

absolute addressing, any particular cell of the 128 in the entire

register file can be specified. In relative addressing, any cell of

the 32 which are the current register set can be specified, and the

hardware uses the current-register-set bits of the modals to convert

the relative address to absolute before the access.

Only the word-number portion of the effective address of the LDLR/STLR
is inspected. Bit 2 of the word number determines whether absolute or
relative addressing is used. If bit 2 is reset, addressing is relative
to the current register set. In this case, bits 12-16 of the word
number select one of the 32 cells of the current register set. Bits 1

and 3-11 of the word number are reserved and must be zero. The layout

of each user register set (there are two in the PRIME 400) is shown in

Table 2.6.

If bit 2 of the word number is set, absolute register-file addressing
is used. In this case, bits 19-16 of the word number select one of the

128 cells of the entire register file. Bits 1 and 3-9 of the word

number are reserved and must be zero. Cells “@ through °37 absolute of

the register file are microcode temporaries. The only microcode
temporaries of interest to the programmer are:

2 - 71 13 JULY 1976

SECTION 2 MAN2798 2.14 Other New Instructions

“@2 TR2 (see Section 3);
“@3 TR3 (see Section 3);
“21 PBSAVE (see Section 2.12);
“38 PSWPB (see Section 2.12);
“31 PSWKEYS (see Section 2.12); |
“32 PPA, level and PCB location (see Section 2.11);
“33. PPB, level and PCB location (see Section 2.11);
“34 DSWRMA (see Table 2.12);
“35 DSWSTAT (see Table 2.12);
“36 DSWPB (see Table 2.12).

Register-file addresses “A through “77 absolute are
direct—memory-access (DMA) channel cells. Register-file addresses
“100 through “137 absolute are user register set 2, and addresses 149
through “177 absolute are user register set 3.

The LDLR/STLR instructions are partially restricted. In ring zero, the
full functionality described above is available. In other than ring
zero, specification of an absolute address or of a relative address
higher than “17 causes a restricted mode violation.

CGT (GEN 981314) Computed Go To.

The Computed Go To instruction implements the FORTRAN computed GO TO
construct. The instruction word is followed by N further words, the
Cirst of which must contain the integer N and the remaining N-1 of
which contain word numbers within the procedure segment of possible
branch addresses. If the contents of the A-register are less than one
or greater than N-1, no branch is taken and control passes to the
instruction following the branch list. Tf the contents of the
A-register are between one and N-1 inclusive, the corresponding branch
address is selected and control passes to that word number within the
procedure segment.

STAC (GEN-AP @01200) Store A-Register Conditionally.
STLC (GEN-AP 901204) Store Long Conditionally.

The Store A-Register Conditionally instruction stores the contents of
the A-register into memory if and only if the present contents of the
addressed memory word are identical to that of the B-register. ‘The
comparison and store are ‘guaranteed not to be separated by the
execution of any other c.p.u. instructions. That is, it is not
possible for any other instruction to change the contents of the.
addressed memory word after the comparison has been made but before the
Store takes place. The condition-code bits are set "equal" if the
store takes place, otherwise "unequal".

The Store Long Conditionally stores the 32-bit contents of the combined
A-,B-register into a memory pair if and only if the present contents of

REV. PRELIM. A 2 -—- 72

MAN2798 PROGRAM-VISIBLE DECOR

the addressed pair are identical to that of the combined

EH-,EL-register (the extended accumulator). Again, the condition-code

bits are set "equal" if the store occurs, otherwise "unequal".

These instructions are provided to aid cooperating sequential processes

in the manipulation of shared data. ‘They often permit removal of

mutually exclusive critical sections, hence possibly indefinite delays,

from algorithms which would otherwise have required them.

Neither of these instructions is interlocked against direct-memory

input/output. Hence, these instructions should not be used to

interlock a process with a DMA, DMC, or DMQ channel.

2 - 73 13 JULY 1976

MAN2798 CONTROL PANEL

SECTION 3

CONTROL PANEL

The control panel for the PRIME 4@@ is the same physical panel used for

the PRIME 3@@. Its functionality was enhanced by improving the u-code
in the CP. All switches and selectors operate exactly as for the PRIME

30@ with the exception of the sense switches in the up position. Table

3.1 is a diagram of the functionality of the switches. Notice that

with all switches down, any FETCH/STORE operations are to/from

memory-mapped. As long as segmentation mode is not turned on, mapped
and absolute are the same, thus preserving compatibility. If SS4 down

were absolute, address traps could not occur and would thus be

incompatible. Notice also that SS5-16 in the up position changes
meaning depending upon SS4. When mapped, all 12 switches are read as a

12-bit segment number. When absolute, SS11-16 are used as the 6 high

order bits of the 22-bit physical address. To address any PRIME 308

registers, all sense switches should be placed in the down position and

addresses between @ and °37 specified.

PRIME 400 registers are accessed by raising SSl. Then, if SS2 is down,

the low order 5 bits of the address are used to access 32-bit registers

@~°37 within CRS. If SS2 is raised, the full 7 bit address is used to

access any register in any register file. The addresses, as shown in

Figure 16, are 0-°37=u-code scratch/system, “49-°77=DMA, “100-°137=User

set 2, and °149-’177=User set 3. SS4 is used to access either the high

half (up) or the low half (down) of the selected register. For all

register accesses, the Y+l functions will advance the register address

before the access, exactly as for memory accesses. Wrap around will

occur on the appropriate number of bits, since any bits of higher order

are ignored for the access.

The control panel data register is TR2H and the address register is

TR3. Upon entering the control panel routine, RP is saved in TR3 and

(RP) is saved in TR2H. In addition, the keys (KEYSH) are updated to

reflect accurately the live keys. Thereafter, TR3H is not altered by

the control panel itself so RPH is always remembered. However, on

exit, PBH is used to update RPH and KEYS is used to update all the

keys. As a result, single stepping can change segments as well as keys

and modals.

The only exception to the control panel entry protocol is that if a

Fault, Check, or external Interrupt attempts to vector through a vector

containing @ in PRIME 300 mode, the following registers will contain:

RP: address of ‘trapped’ instruction
PBH: SNof “trapped” instruction

KEYSH: proper keys
TR2H: (data) @

TR3: (address) 9/0
TR2L: address, in segment 9, of the ‘vector’ containing 0

3 - id 13 JULY 1976

SECTION 3 MAN2798 Table 3-1

Ss 1 SS 2 SS 4 <{(------------ SS 5-16 ------------>

up=	up=		up=
register	absolute	lhigh hal£	
[down=		down=	<--- SS 11-16 ---—>
	cRS	[low half	
down=			up=
memory		labsolute	[high-order 6 bits
			down=
			mapped

With all switches down, the control panel works exactly as for the
PRIME 309 following a Master Clear or a HLT. It is necessary to make
mapped (SS 4,down) memory references to generate address traps (access
registers as memory, as in short-form instructions). If segmentation
mode is on, mapped references are to segment zero unless some other
segment number is entered in SS 5-16. When accessing the register file
(SS 1 up), only the low-order 5 bits (SS 2 down) or 7 bits (SS 2 up)
of the address are used for register Selection; the "Y+1" functions
increment the address for registers in the same way as for memory.

REV. PRELIM. A 3 - 2

ADDRESS CALCULATION FORMATS 2-25

ADDRESSING, DIRECT REGISTER FILE
2-52

ARGUMENT TRANSFER TEMPLATES 2-37

BASE REGISTERS 2-16

CHECK MODE FIELD 1-9

CHECKS 2-55

CHECKS 2-69

COMPATIBILITY 1-1

CONDITION CODES 2-43

CONTROL BLOCK, QUEUE 2-69

CONTROL PANEL 3-1

COUNTER, SEMAPHORE 2-58

DATA BASES, PROCESS EXCHANGE 2-47

DATA STRUCTURES, QUEUE 2-68

DESCRIPTOR TABLE 2-1

DESCRIPTOR TABLE ADDR REG FORMAT
2-2

DIAGNOSTIC STATUS WORD 2-63

DIRECT MEMORY QUEUE (DMQ) 1-6

DISGNOSTIC STATUS WORD 1-9

DISPATCHER, PROCESS EXCHANGE 2-51

DMQ 1-6

DMQ 2-65

DOCUMENTS, RELATED I-6

DOUBLE PRECISION FLOATING POINT
CHANGES 2-42

DOUBLE PRECISION INTERER CHANGES
2-42

INDEX

EFFECTIVE ADDRESS
2-16

CALCULATION

ENTRY & ARGUMENT CONTROL FORMATS
2-39

ERROR DETECTING & CORRECTING 1-8

ERRORS, UNCORRECTABLE 1-9

EXTERNAL INTERRUPTS 2-56

FAULT PROCESSING 2-62

FAULTS 2-55

FAULTS 2-57

FIELD MANIPULATION
2-29

INSTRUCTIONS

FIRMWARE ENHANCEMENTS 1-7

FLOATING POINT, DOUBLE PRECISION,
CHANGES 2-42

FORMAT, PROCESS
2-54

CONTROL BLOCK

FORMATS, ENTRY & ARGUMENT CONTROL
2-39

FORMATS, STACK 2-41

FORMATS, VIRTUAL MEMORY 2-2

GENERIC-AP INSTRUCTIONS 2-29

I BIT 2-3

I/O BUS EXTENDER 1-6

I/O OPERATION 1-6

I/O TIMES, P3008 VS. P400

IMPLEMENTATION 1-10

INDIRECT WORDS 2-16

INPUT/OUTPUT OPERATION 1-6

INSTRUCTION DECODING 2-3

INSTRUCTION SET, P4Q@ 2-3

INSTRUCTION TIMES, P3008 VS. P4Qg
1-4

INSTRUCTIONS, FIELD MANIPULATION
2-29

INSTRUCTIONS, GENERIC 2-4

INSTRUCTIONS, GENERIC-AP 2-29

INSTRUCTIONS, MEM REF 2-13

INSTRUCTIONS, MEM REF (64V MODE)
2-12

INSTRUCTIONS, OTHER NEW 2-70

INTEGER,
CHANGES 2-42

DOUBLE PRECISION,

INTEGRITY ENHANCEMENTS 1-8

INTERRUPT PENDING CHECKS 2-52

INTERRUPTS 1-6

INTERRUPTS 2-55

INTERRUPTS, EXTERNAL 2-56

INTRODUCTION 1-1

KEYS 2-44

KEYS & MODALS 2-46

L-BIT 2-43

LPSW INSTRUCTION 2-1

MACHINE CHECK 1-1¢

MAPPED I/O 1-6

MEMORY, PHYSICAL 2-1

MEMORY, VIRTUAL 2-1

MICROCODE STRUCTURE 1-7

MODALS 2-44

INDEX

MODALS & KEYS 2-46

NOTIFY INSTRUCTION 2-59

NOTIFY INSTRUCTION 2-47

PAGE MAP ENTRY 2-2

PANEL, CONTROL 3-1

PARITY 1-8

PERFORMANCE 1-1

POINTER, BEGINNING OF LIST 2-48

POINTER, END OF LIST 2-48

PROCEDURE CALL 2-35

PROCESS 2-47

PROCESS CONTROL BLOCKS 2-47

PROCESS CONTROL BLOCK FORMAT 2-54

PROCESS EXCHANGE 2-47

QUEUE CONTROL BLOCK 2-69

QUEUE DATA STRUCTURES 2-68

QUEUEING ALGORITHMS, READY LIST
2-48

QUEUEING, PROCESS PRIORITY 2-49

QUEUES 2-65

READY LIST 2-47

REGISTER
P300/P480 2~27

CORRESPONDENCE,

REGISTER FILES 2-51

REGISTER SET 1-6

RELATED DOCUMENTS I-6

REMOTE I/O BUS EXTENDER 1-6

RING FIELD 2-16

INDEX

SEGMENT DESCRIPTOR WORD FORMAT
2-2

SEGMENT DESCRIPTOR WORD 2-16

SEMAPHORE COUNTER 2-58

SEMAPHORES 2-47

STACK FORMATS 2-41

STATUS WORD, DIAGNOSTIC 2-63

TEMPLATES, ARGUMENT TRANSFER 2-37

TRAPS 2-55

VIRTUAL ADDRESSING MODE 2-3

VIRTUAL MEMORY FORMATS 2-2

VIRTUAL MEMORY STRUCTURE 2-1

VIRY INSTRUCTION 1-10

WAIT INSTRUCTION 2-47

WAIT INSTRUCTION 2-50

WAIT LIST 2-47

PRIME
PRIME Computer, Inc., 145 Pennsylvania Avenue, Framingham, Massachusetts O1701

	001
	002
	003
	004
	005
	006
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	02-47
	02-48
	02-49
	02-50
	02-51
	02-52
	02-53
	02-54
	02-55
	02-56
	02-57
	02-58
	02-59
	02-60
	02-61
	02-62
	02-63
	02-64
	02-65
	02-66
	02-67
	02-68
	02-69
	02-70
	02-71
	02-72
	02-73
	03-01
	03-02
	X-1
	X-2
	X-3
	_back

