
MAN167 1

SYSTEM REFERENCE

User Guide

Revision A

July 1975

i

MAN1671

SYSTEM REFERENCE

User Guide

Revision A

July 1975

PRIME
Computer,Inc.

145 Pennsylvania Ave.
Framingham, Mass. 01701

Copyright 1975 by

Prime Computer, Incorporated

145 Pennsylvania Avenue

Framingham, Massachusetts 01701

Performance characteristics are
subject to change without notice.

fo
ie

ho

CONTENTS

SECTION 1 GENERAL DESCRIPTION

INTRODUCTION
THE PRIME COMPUTER USER PLAN
SUMMARY DESCRIPTION
PRINCIPLES OF OPERATION
ELECTRO MECHANICAL PACKAGE
EXTENDED CONTROL STORE FEATURES
DATA STRUCTURE
HIGH SPEED REGISTER FILE
MEMORY ADDRESSING
INSTRUCTION SUMMARY
SCOPE OF USER GUIDE

SECTION 2 CENTRAL PROCESSOR ORGANIZATION

PROCESSOR ORGANIZATION
CENTRAL PROCESSOR DESCRIPTION
STANDARD CPU FUNCTIONS
INSTRUCTION EXECUTION
MEMORY CYCLING
INTERRUPT AND TRAP HANDLING
INTERNAL INTERRUPTS
INPUT/OUTPUT
DATA INTEGRITY FEATURES

SECTION 3 INSTRUCTION FORMATS §& ADDRESSING TECHNIQUES

NUMBER AND INSTRUCTION FORMATS
INSTRUCTION GROUPS
SYMBOLIC ADDRESSING
MEMORY ADDRESSING TECHNIQUES

SECTION 4 STANDARD INSTRUCTION SET

ADDRESS MODE SELECTION

CONTROL INSTRUCTIONS

LOAD AND STORE INSTRUCTIONS

JUMP INSTRUCTIONS

SKIP INSTRUCTIONS

REGISTER OPERATE

BYTE MANIPULATION

SHIFT GROUP

LOGIC

FIXED POINT ARITHMETIC
STATUS KEYS an

111

P
E
P
E
R
E
A
R
E
S

N
D
N
P
E

BR
O
t
B
D

e
e '

B
e
e
B
E
E
E
O
R
e
e

N
e
©

B
O

B
O

B
O
f
a

B
O

BD
O
B
O

BD
O
P
O

'

e
t

es
t
e
t
J

O
N
U
T

D
O
D
O

“
I
N
O
O
M
R
W

CONTENTS (Cont)

SECTION 5 STANDARD INPUT/OUTPUT

PROGRAMMED INPUT/OUTPUT (PIO)
CONTROL PANEL COMMUNICATION
PROCESSOR SERIAL INTERFACE
EXTERNAL INTERRUPT
DIRECT MEMORY ACCESS

SECTION 6 PERFORMANCE OPTIONS

DOUBLE PRECISION INTEGER ARITHMETIC
MULTIPLY/DIVIDE
DIRECT MEMORY CHANNEL, DIRECT MEMORY TRANSFER
MICROVERIFICATION

SECTION 7 PRIME 300 FEATURES

PRIME 300 EXTENDED INSTRUCTIONS
OTHER EXTENDED INSTRUCTIONS
VIRTUAL MEMORY

SECTION 8 EXTENDED CONTROL STORE OPTIONS

SINGLE § DOUBLE PRECISION FLOATING POINT ARITHMETIC
WRITEABLE CONTROL STORE

SECTION 9 AUXILIARY CPU FUNCTIONS

POWER MONITOR, POWER FAILURE INTERRUPT, AND
AUTOMATIC RESTART

AUTOMATIC PROGRAM LOAD

APPENDIX A TWOS COMPLEMENT CONVENTION:
APPENDIX B ADDRESSING
APPENDIX C INSTRUCTION TIMING & MNEMONICS
APPENDIX D INPUT/OUTPUT CODES
APPENDIX E OP CODE ASSIGNMENTS

1V

9-4

Figure No.

2-1

7-1

7-2

7-3

7-4

8-1

TLLUSTRATIONS

Title

CPU Block Diagram

Virtual Address

Page Map Entries

Formation of Virtual Address

Content Associative Memory (CAM)

Floating Point Summary

Table

1-1

1-2

1-3

List of Tables

Title

Central Processor Features

Performance Comparison

Electromechanical Specifications

Addressing Classes

Extended Instruction Op Codes

Floating Point Exponent and Mantissa Ranges

Floating Excepticn Codes

vi

3-6

3-13

8-4

8-10

SECTION 1

GENERAL DESCRIPTION

INTRODUCTION

All Prime computers share a common, general-purpose, microprogrammed
architecture. Within this basic framework are three, program-
compatible performance steps: The Prime 100, 200 and 300 central
processors. From the 100 to the 300, each processor provides an
increasingly powerful combination of standard computation and control
features, plus various performance enhancement options that can be
selected by the usér to satisfy specific application requirements.

A single 16" X 18" circuit board contains the logic for a complete
processor, and upgrading the processor performance of a system usually
requires little more than unplugging oné board and plugging in another.
For example, by substituting a Prime 300 board for a 200, the
following resources are made available as standard features: virtual
memory capability, main memory addressing up to 262,144 16-bit words,
hardware multiply/divide as well as over two dozen additional machine-
language i:structions, expanded direct memory access features
Supporting a maximum data transfer rate of 1.25M words/second, automatic
program loaders for disk, magnetic tape and paper tape, and micro-
verification routines. The new processor will work with the original
chassis, power supply, peripherals and controllers, even the original
processor's main memory. Equally important, the new processor will run
all existing software without modification, and will also support
virtual memory versions of Prime's disk and real-time operating systems
for multi-user configurations. (See the Prime Computer Software Guide
for a 48-page summary of all Prime system software, including operating
systems, FORTRAN IV, BASIC, Macro Assembler, Micro Assembler,
debugging aids, loaders and libraries.)

THE PRIME COMPUTER USER PLAN

To encourage users to take advantage of the ease with which Prime
systems can be upgraded and expanded, Prime's unique ''Computer User
Plan'' provides a two-year trade-in policy which permits upgrading of
central processors, processor enhancements, chassis, power supplies and
memories - all with guaranteed trade-in allowances toward the purchase
of new equipment. (This and other features of the Plan are described
in a Computer User Plan booklet available from any Prime sales office.)

SUMMARY DESCRIPTION

The following tables summarize standard and optional features and compare
the performance characteristics of all processors. Certain processor-
related features listed in these charts, such as real-time clocks and
watch-dog timers, are available on a separate System Option controller

1-1

board and are described in detail in the SOC Users Guide. Peripheral
devices, data communication interfaces, and digital and analog
input/output systems are described in the appropriate user guides.

1-2

Table 1-1. Central Processor Features

Central Processor 100 200 300

Feature: Availability Btd. Opt Std. Opt. Std.} Opt.

1. Multi-level, vectored. priority interrupt} @ @ @
system. :

2. Four-channel, bit-serial, full-duplex ® e@ ®
interface.

3. Eight channel, programmable DMA ® @ e
system,

4, Full control panel. @ @ @

5. Unimplemented instruction trap. @ e e
6. Illegal instruction trap. @ e e
7. Power supply e @ ®
8. High-speed register file (32 addressable @ @ e

16-bit regs.) .
9. Hardware multiply/divide, and double @ e @

precision arith.
10. Extended direct memory access (DMC,IDMT). @ @ e
11. Automatic program loaders (standard eo. e @

devices). . :
12. Processor byte parity. @ e

13. Memory byte parity. e . @
14. Microverification routines. e @
15. Single-and double recision fl. pt. “@ ®@

arith .
16, Virtual memory capability. @
17. ‘Stack processing instructions @
18. Field exerciser panel. e ® @
19. Automatic program loader (custom). @ e ®
20. Power monitor, with battery backup o ¢ $

for MOS mem. | |
21. Real-time clock (see Product @ e @

Description 2). .
22. Watch-dog timer (see Product @ @ e

Description 2).
23. Interprocessor controller e @ 2

(see Product Description 6). |
24. Writable control store. @

1-3

Table 1-2. Performance Comparison

|Central Processor 100 200 300

1. Word Size 16 bits 16 bits plus 2 16 bits plus 2
parity bits parity bits |

2. Instruction Size basic format 16 bits; extended format, 32 bits

3. Addressing direct, indexed and indirect in sectored and
relative modes; extended (double word format) ;

and stackprocessing.
4, Minimum-maximum main memory 4-64K 4-64K 8-256K
5. Memory access time 680 nanosec. 600 nanosec. 600 or 400 nanosec.
6. Memory increment per board| AK 8K, 32K, AK 8K, 32K 8K , 32K
7. Maximum direct addressing range| 64K wordsper program (K = 1,024)
8. Maximum virtual memory space - - 64K words

per user.
9. I/O data path 16 bits 16 bits plus 2 16 bits plus 2

parity bits parity bits
10. Four-channel, bit-serial 110-9600 baud

interface. .
1. Maximum DMI I/O rate 694K words/ 1.0M words/sec. 1.25M words/sec.

sec.
{[2. External interrupts party line or multi-level vectored priority
13. Typical interrupt latency 8.2 microsec. 6-8 microsec. 5.4 microsec.
14. Addressable registers in 32 (includes index register, accumulators, stack

high speed register file register, DMA addresses, etc.)
15. Standard instructions Liz 1i7 141
16. Optional instructions 9 37 31
7. Instruction types memory reference, input/out, generic, shift
19. Typical instruction times all times in microseconds ,* P300 times with

600 nsec. memory
Add to memory 2.44 1.96 1.56 |
Skip on condition 2.84-3.30 2.04-2.32 1.80-2.00 ©
Shift A right, n bits 1.4+.36n 1.08+.24n .92+.2n
Complement A 1.76 1.36 1.12
Hardware multiply 14 ~ 10.48 8.72
Hardware divide 18.2-19.6 13.68.-14.72 10.95:
Fl. pt. load - 4.04
Fl. pt. add - 7.8
Fl. pt. multiply - 20
Fl. pt. divide - 40

1-4

Table 1-3. Electromechanical Specifications

Chassis Capacity
Chassis dimensions (WXHXD)
Weight (including fans and

power supply)
Operating temp. range °F
Max. rel.humidity (no cond.)
Mounting
Typical hea¥ dissapation

(BTU/hr)
Voltage range (VAC)
Hz (single phase)
Amps (typical
Power Supply

Typical battery backup time
(one battery, 32K memory)

5 boards
19"x10-1/2"x19-1/2"

- 50° - 1049
95%
table tope or rack

2,000

95-125 or 190-250
47-63

5
40 amp. main
supply, chassis-
mounted.

6 hours

10 boards
19"'x15-3/4"'x19-1/2"

50° - 104°
95%
rack
3,600

95-125 or 190-250
47-63

9
40 amp. main
supply, chassis
mounted; 40 amp
aux. supply rack
mounted.

6 hours

17 boards

19"'x26-1/4"'x19-1/2"

50° - 104°
95%
rack
4,000

95-125 or 190-250
47-63

10
two 40 amp. main
supplies, each
chassis mounted;
one 40 amp aux.
supply, rack
mounted; one power
dist. unit.
6 hours

1-5

PRINCIPLES OF OPERATTON

Microprogrammed Logic

A Prime central processor can be thought of as a processor within a
processor. The outer processor is visible to the user, executes the
machine language instructions of user programs, and interfaces with the
main memory and I/O bus. The inner processor, a microprogrammed control-
ler, is transparent to the user, and through a series of micro-
instructions stored in a read-only memory, provides the logic to control
and monitor the outer processor's activities. A writable control store

option on the Prime 300 makes the inner processor accessible to the user

by providing 256 words of random access control memory (RAM) in which to

store and execute user-prepared microprograms. This feature allows the
user to apply the speed (240 nanosecond typical instruction cycle) and
large word size (52 bits) of the inner processor directly to the

execution of application programs. By microprogramming frequently used

subroutines, algorithms and special-purpose instructions, the user can

improve the computer's efficiency in terms of both increased speed and
reduced main memory storage requirements.

32 Addressable Registers

A general-purpose arithmetic unit and high-speed register file are the

basic tools used by an outer processor to perform machine language

functions and store transient data and control information. The
arithmetic unit performs arithmetic and logical operations while the
32 addressable registers in the register file handle such functions as

address indexing, stack processing, program sequenceing, and control

of direct-to-memory I/O data transfers. All processing is done on
16-bit words, with all bits in a word processed in parallel.

System Integrity Features

Prime 200 and 300 processors include a comprehensive array of error

detection and fault location features to monitor the integrity of data

as it is stored, moved and processed within the system, and to help the

user manage a quick and orderly recover in the event of a system

malfunction.

Memory Parity: For parity checking purposes, every word in main memory

is treated as a pair of eight-bit bytes, each with a ninth parity bit.

Memory parity is checked when a word is read and generated when a word

is written. The response to a memory parity error is determined by the

user via program control. If the machine has been set to operate in

"check mode’, a parity error causes an interrupt and automatic program

branch to a reserved memory location. If the check mode has not been

enabled, a parity error sets a flag that can be tested under program

control.

1-6

Processor Parity: Byte parity is checked or generated for all data
transfers on the bus between the main memory and processor, among all
processor registers, on all internal processor busses, and on the bus
between the processor and all I/O devices. If the machine is operating
in machine check mode and is also equipped with the microverification
option, a processor parity error will automatically initiate entry to a
series of microverification routines. Without microverification, a pro-
cessor parity error will set a flag that can be tested under program control.

Microverification: The microverification routines are a series of
microprograms that can verify the integrity of the processor components
other than basic clocks and control circuits. In addition to being
activated by a processor parity error or a system master-clear, the
microverification routines can also be entered under control of a user's
program. When oneof the microverification routines detects a fault
condition, the identity of theroutine is displayed on the control panel
and the processor stalls by loopingon this routine. If the fault
condition clears, the processor automatically resumes normal program
execution. The stalled condition of the processor can be detected
automatically by a watch-dog timer (see System Option Controller
User Guide) that in turn can initiate some remedial action.

Comprehensive Instruction Set

The machine-language instruction set permits manipulation of data on a
bit, byte, word and multiword basis. Included in the standard
instruction set for all processors is a group of memory reference
instructions that minimize register housekeeping overhead, and a group
of "logicize'' instructions that enhance compiler efficiency by
converting comparison relationships directly to truth values.

Prime 200 and 300 processors can be equipped with optionally available
single- and double-precision floating point arithmetic hardware which
has been optimized to run FORTRAN IV real arithmetic operations.
Unique to the Prime 300 are a set of stack procedure instructions for
recursive and reentrant programming, and powerful conditional jump
instructions that combine condition testing and branching in a single
instruction.

While each central processor provides a different mix of standard and
optional instructions, instruction set compatibility among all
processors is maintained by unimplemented-instruction interrupt hardware
and a virtual instruction package containing software equivalents of
unimplemented machine-language instructions. Thus, programs written to
utilize the full instruction set of a Prime 300 (virtual memory management
instructions excluded) can usually be run on a Prime 200 or 100 without
modification.

All processors automaticallytrap illegal instructions. This feature
reserves a subset of op codes for the user (they will not be implemented
in Prime system software) and permits automatic branching to user-pre-
pared subroutines when these op codes are encountered in a program.

1-7

Automatic Program Loaders

Automatic program loaders are available, either as standard or optional
features (See Table 1-1), with all Prime processors. loaders for media
such as paper tape, magnetic tape, and disk are stored in a read only
memory (ROM), physically located on the processor's control panel
circuit board. This board can also be equipped with a user-specified
custom loader that Prime will produce using up to 512 X 16 bits of
programmable read-only memory (PROM).

MOS Memory

Instructions and data are stored in MOS main memory. Prime systems
use MOS memory exclusively and, depending on which processor is used
(see Table 1-1), memory access times of 680, 600 or 440 nanoseconds,
and maximum capacities of 64K or 256K words are available. A system's
main memory can be expanded in modular increments of 4K, 8K or 32K
words on a single 16" X 18" circuit board. (Using 32K word memory
boards, a Prime 300 processor with 256K word memory and seven controller
and interface boards can be housed in a chassis only 26-1/4" high.)

Automatic Power Monitor With Battery Backup

Any configuration of processor and MOS memory can be equipped with an
optional power monitor system to preserve the memory's contents if AC
power is interrupted, and automatically restart program execution when
power is restored. Four major functions are handled by the power
monitor option: sensing line voltage not within operational limits,
issuing an interrupt at the onset of power failure, battery refreshing
of MOS memory, and automatic restart when power is restored.

The battery backup system includes onr or two 20 Amp-hour, sealed
gel-electrolyte cells and automatic charger. The batteries are housed
on a rack-mountable panel that can be installed in any position in a
system rack or cabinet.

Direct-To-Memory Data Transfers

Data transfers between the main memory and high-speed devices can be
performed through the use of the programmable, eight-channel direct
memory access (DMA) system standard on all Prime processors. The
number of direct memory channels and the maximum data rate can be
expanded with DMC and DMI modes of operation (optional on the Prime 100
and 200, and standard on the 300). DMC which provides up to 2,000
direct memory channels, is similar to DMA, except that where DMA uses
registers in the high-speed register file to store control information,
DMC uses main memory locations. DMI is used with certain high-speed
device controllers in which the controllers themselves monitor direct
memory transfers with minimal processor intervention.

1-8

Processor Serial I/O Ports

In addition to the data transfers handled via the I/O bus, EIA binary
Signals up to 9600 baud can be handled by afour. channel , bit-serial,
full-duplex interface which is an integral part of all Prime processors.
By means of programmed control of this interface, serial data can be
transmitted on four output lines and simultaneously received on four
input lines. The,Antena.operates,,on,BLA standard levels, and all
lines are easily accessible at the back edge-connector strip ofthe
processor board.

Vectored Priority Interrupts

A flexible interrupt processing capability is a standard feature on all
Prime processors and augments programmed control of I/O data transfers.
I/O processing on an interrupt basis frees the central processor for
other activities between data transfers, and automatically resolves
processing priorities when multiple activities require servicing at
the same time. An interrupt vectoring technique minimizes interrupt
response time by assigning each interrupt source a program selectable
memory location for subroutine entry. Interrupt priorities are
established by. the physical sequence in which device controllers are
plugged into the back plane.

Prime 300 Virtual Memory Capability

The Prime 300 includes as a standard feature a virtual memory capability
for secure and automatic allocation of processor and memory resources
for multi-user and multi-task operations. Virtual memory expands the
processing and storage capability of the Prime 300 by:

1. extending the maximum main memory addressing range to
262,144 words,

i
) providing hardware memory protection for all users and tasks

running simultaneously,

3. automating memory management so that programs can be written
without any special consideration of the fact that they may
be executed in a virtual memory environment.

With virtual memory, a Prime 300 can support multi-user time shared
disk operating systems providing each of up to 15 users with a 65,536
word virtual memory space. It can also support multi-tasking real-time
operating systems, foreground/background systems with real-time
multi-user or multi-task processing in the protected foreground, and
processing of single programs larger than 65,536 words.

The implementation of virtual memory is transparent to the system's users.
As a result, each user is free to create, test, modify and execute
programs without concern for how system resources will be managed to
perform these functions. Furthermore, programs written for single-user
Prime 100 or 200 systems can be executed by a virtual memory Prime 300
without modification, and vice versa.

1-9

licre is a simplified overview of the four key features involved in
virtual memory operation.

Paging: Information is stored in main memory in fixed-length, 512-word
pages. All memory accesses are automatically intercepted and translated
from their normal 16-bit format to 18-bit address fields, permitting
the maximum addressing range to be expanded from 65,536 words to 262,144
words. The correspondence between the original "virtual'' addrésses and
the "real'', or physical, addresses which they are translated into is
maintained by a 128-entry page map stored in main memory. A separate
map is stored for each user in a multi-user system.

Page map referencing overhead is held to an absolute minimum through the
use of four high-speed, content-associative memory registers (CAMs).
The CAMs are continually updated with copies of the four most recently
used page map entries so that in over 96% of all subsequent memory
accesses, one of the registers will contain the required map entries.
This reduces the need to actually access the user's page map in memory
and cuts address translation overhead from the memory cycle needed to
access the page mape to only 80 nanoseconds to access the CAMs.

Page Turning: In a virtual memory system, the computer's main memory
and disk storage appear to be one continuous memory space. Physical
and logical differences between the tg types of memory, as well as
the actual location of the pages in a user's program are transparent
to the user. These and other memory management functions are handled
automatically by the Virtual Memory Disk Operating System. When a task
requires execution of a program page not currently located in main
memory, the disk operating system is notified via a "page fault"
interrupt and automatically performs a page turning operation in which
an inactive page in main memory and the required page in disk storage
are swapped.

Write Protection: A user's page map, in addition to keeping track of
where program pages are stored, can also keep track of which pages are
permitted to be altered (unprotected) and which are not (protected).
Thus, the page map is consulted whenever a write operation is attempted;
writing into unprotected pages is permitted, writing into protected
pages is automatically inhibited.

Restricted Execution: User-level programs operate in a restricted
execution mode in which input/output, interrupt and control instructions
are not executed directly. These instructions, when encountered in a
program, cause control to be turned over to the operating system which
then either performs the necessary operations or returns error messages
if execution of the instruction (such as a Halt) would alter the
machine state. By allowing the operating system to provide standard-
ized procedures for handling these functions, programs originally
written for memory-resident or single-user disk operating systems can
run in a multi-user virtual memory system without modification.

1-10

Virtual memory operation is initiated and terminated via program
control, using the following group of four, double-word control,
instructions: Enter Paging Mode and Jump (EPMJ), Leave Paging Mode
and Jump (LPMJ), Enter Restricted Execution Mode and Jump (ERMJ),
Enter Virtual Memory and Jump (EVMJ). The last instruction combines
the functions of EPMJ and ERMJ.

ELECTROMECHANICAL PACKAGE

Each central processor, memory increments of up to 32K words, periph-
eral device controllers, I/0 interfaces, and integral power supplies are
fabricated on individual 16" X 18" circuit boards. This function-on-a-
board packaging simplifies system configuration and, when combined with
error detection and fault location features such as byte parity,
microverification and controller loop-back, permits accurate isolation
of a system malfunction and quick board-replacement maintenance.

Configuration flexibility is further enhanced by a choice of three
standard chassis and power supply combinations: a 5-board chassis with
integral 40 amp power supply, a 10-board chassis with integral 40 amp
supply and externally mounted 40 amp auxiliary supply, and a 17-board
chassis with two integrally mounted 40 amp supplied and one extemally
mounted 40 amp auxiliary supply with power distribution unit. By
referring to the Prime Computer Configurator, a user can quickly
determine the best chassis/power supply combination for his application.
Also, should system expansion require additional chassis capacity, the
Prime Computer User Plan offers a two-year trade-in policy with guaran-
teed allowances toward the purchase of larger chassis/power supply
combinations.

Except for board capacity, all chassis are essentially the same, with
all circuit boards and integral power supplies plugged-in through the
rear to an etched interconnect-plane at the front of the chassis. All
external cabling is attached to rear-edge connector strips on the
processor and controller circuit boards. Side-mounted fans provide air
circulation within the chassis. All systems use a common control
panel assembly which plugs into the front of any chassis.

EXTENDED CONTROL STORE FEATURES

The performance of systems with Prime 200 or 300 processors can be
enhanced through the addition of an optional Extended Control Store
(XCS) board. When used in conjunction with the Prime 200, the XCS
board provides the microprogrammed logic for single- and double-
precision, floating point arithmetic. With the Prime 300, the XCS
board can be used to provide either floating-point hardware, writable
control store, or a combination of both features.

1-11

Floating Point Arithmetic: The floating point arithmetic feature
provides direct hardware execution of the 27 floating-point arithmetic
instructions in the Prime instruction repertoire. (On systems without
floating-point hardware, these instructions are automatically trapped
and emulated via software subroutines in the Virtual Instruction Package.)
The floating-point hardware produces direct in-line coding of floating-
point instructions in FORTRAN and assembly language programs, eliminating
the idle time associated with branching to and from floating-point sub-
routines. Floating point arithmetic can be performed in either single-
or double-precision formats. In the single precision format, two words
are used to store the mantissa and characteristic, and accuracy is
maintained to seven significant digits. The double-precision format
uses four words and maintains accuracy to 14 significant digits.

Writable Control Store: This feature provides user-access to the
control store of the Prime 300 and adds 256 words of random-access
memory for storage of user-prepared microprograms. Microprograms can
be written symbolically using Prime's Micro Assembler language, and
loaded from main memory into the control store using a Prime-supplied
loader. The assembler and loader operate under control of the Disk
Operating System. For details of microprogramming techniques, refer to
the Microprogrammers Handbook.

A special group of four jump instructions are provided with this
feature to transfer control to the writable control store. These
instructions use a double-word format, with the first word containing
a pointer to a main memory location containing the address of a micro-
instruction in the control store. When operating in the restricted
execution mode, the machine traps these instructions so that the
operating system can determine how to handle user-program requests for
access to the writable control store.

DATA STRUCTURE

Prime instruction and data word formats are discussed in Section 3.
The bits of a word are numbered 1 to 16, left-to-right, and can be
interpreted as an instruction, a logical word, an address, a pair of
8-bit bytes, or a 16-bit signed or unsigned number.

HIGH-SPEED REGISTER FILE

All processor registers are physically located in a high-speed register
file and logically addressed as if they were MOS memory locations.
Memory addresses 0-37 are reserved for this purpose and correspond to
the following registers:

1-12

Memory Register
Address Designation Function

0 X Index Register
1 A Arithmetic Register
2 B Extension Arithmetic Register
3 S Stack Register
4 FLTH Floating Point
5 FLTL Accumulators
6 VSC Visible Shift Count
7 P Program Counter

10 PMAR Page Map Address Register
11 Reserved for microprogram
12 PFAR Page Fault Address Register
13-17 Reserved for microprogram
20-37 DMA 1-8 Word pairs for DMA channels

(address and word counts)

MEMORY ADDRESSING

The main memory is addressed as a set of continuous word locations.
The number of words that can be addressed by an instruction, and the
location of those words relative to the instruction depend on which
of two addressing modes - sectored or relative - the machine is
operating in. In either mode, contiguous word locations are
organized into groups called sectors.

Sectored and Relative AddressingModes

In sectored mode addressing, all sectors are 512 words long and an
instruction may address either the locations in sector 0 (locations
0-777) or the locations in the sector in which the instruction is

stored.

Relative mode addressing permits direct references to locations in
sector zero, as in sectored mode, or references to locations in a range

relative to the contents of the program counter (P-256 to P+255).
The sixteen values from P-241 to P-256 are interpreted as special
address formation such as stack register operation, base-plus-displace-
ment, and direct addressing of the entire memory space.

Indexed and Indirect Addressing

Each memory reference instruction calculates an effective address.
This calculation may include one or more levels of indirect addressing,
as well as pre- and post-indexing. A stack register is available for
use in push-pop stack operations and fully recursive reentry procedures.

1-13

Summary of Memory Addressing Modes

Addressing S Displacement Addressing No. of
Mode (bit 7) (bits 8-16) Class Words

16 Sectored 0 or 1 0-7778 Sectored 1
32 Sectored

32 Relative 0 0-7778 Sectored 1
64 Relative

52 Relative 1 -240 to Relative 1
64 Relative +255

32 Relative 1 -256 to Extended Addressing
64 Relative -241

(op code ex- Long Reach 2
tension Stack Relative] 2
rather than Stack Post- 1
address value)| increment

Stack Pre- 1
decrement

INSTRUCTION SUMMARY

Listed in Appendix C are execution times for all machine-language
instructions. Two sets of timing data are shown for the Prime 300:
one for a processor with 600 nanosecond access memory, the other for
440 nanosecond memory.

1-14

SCOPE OF USER GUEDE

TL 4
This docu prov

im nt 4 des an cay

program the“Prime 100, 200 and

ion to evaluate the canahill
ealw xXaa LV eVaiuate aie

300 computers
The following Prime documents should

ties and1
2eivs

be available for reference:

Prime CPU Operators Guide (Control panel and paper tape MAN1672

device operation)

Prime Macro Assembler Lanaugage Reference Manual MAN1673

(Assembly language syntax and pseudo operation)

General Purpose Interface Manual MAN1676

Prime Installation and Maintenance (CPU physical MAN1677

characteristics, maintenance practices)

Prime Microcoders Handbook (Microprogramming techniques) MAN1857

Magnetic Tape Controller User Guide (Operation, MAN1940

maintenance, and programming for systems with magnetic

tape)

System Option Controller User Guide (Controller to MAN1944

interface custom devices on communications iine)

1-15

SECTION 2

CENTRAL PROCESSOR ORGANIZATION

This section contains a CPU block diagram, and a brief description of
processor organization, description of standard CPU functions, including
microprocessor control, instruction execution, memory cycling, interrupt
and trap handling, input/output, and data integrity features. The block
diagram (Figure 2-1) is an overview of processor functions. A more
detailed diagram in given in the Microprogrammer's Handbook.

PROCESSOR ORGANIZATION

From the user's point of view, the central processor is the control
unit for the entire system; it performs all arithmetic, logical, and
data handling operations, manages address calculations, and sequences
the program. It is connected to the memory bya memory bus and to the
peripheral equipment by an I/O data, address and control busses. The
processor (Figure 2-1) consists of a set of high speed hardware
registers addressed by a register file, an Arithmetic Logic Unit, and
other registers such as the Y and M memory buffers that are connected
to the memory and I/O busses. Microprocessing logic manipulates data
contained in these system elements to execute each instruction.

Micropgoram Control

Processor arithmetic operations are performed by manipulating data
contained in the register file in conjunction with the arithmetic logic
unit. Processor arithmetic operations, data transfers to and from main
memory and peripheral I/O operation are all controlled by a microprogram
stored in read-only memory. The microprogram is a separate program
stored in increments of 256 52-bit micro-instructions. The microprocessor
executes one or two micro-instructions during each nominal machine cycle
to execute user-level instructions, calculate addresses, accomplish
interrupts, oversee I/O transfers, and in general perform internal system
control functions.

 High Speed Register File

The first 32 memory locations (0-'37) are high speed hardware that permits
multi-step instruction op-codes, (e.g., multiply, double-precision) to
proceed at several times the memory cycle time under microprogram control.
The X, A and B registers can be addressed symbolically or as memory
locations.

A detailed discussion of microprogramming and the associated registers is
given in the Microprogrammers handbook, ,

Z2-1

 a HS ARITH

MICRO

WCS
PROCESSOR

FLOATING
POINT

ARITHMETIC MEMORY BUS
LOGIC
UNIT
(ALU) r---7

| : >vm |! _
ls] PAGE +

Ld M REG. DATA ' Y REG. ADDR.
“47 I

PRIME 300
HIGH SPEED REGISTER FILE (Part of MICRO PROCESSOR)

0 - X REGISTER
1 - A REGISTER
2 - B REGISTER
3 - S REGISTER
4-5 RESERVED
6 - SHIFT COUNT
7 - PROG. COUNTER

10-17 RESERVED
20-27 DMA WORD PAIRS SHIFT KEYS

COUNTER

!

D BUS B BUS

} f
|

SERIAL Ss CONTROL I/O DATA I/O ADDR
OUT IN DMA/

|

or -—_ PIO

|

nc j
— FF| po--n

|

[-----
Idd | | } , APL 1¥

| CONTROL PANEL

Figure 2-1.

— en

PERIPHERAL DEVICES

CPU Block Diagram

2-2

CENTRAL PROCESSOR DESCRIPTION

As stated in Section 1, Prime's microprogrammed computer can be thought

of as having a processor within a processor. From the user standpoint,

the outer processor is a stored program digital computer and consists

of a control unit, main memory, arithmetic, and 1/0 logic. In a micro-

programmed computer, however, the function of the control unit is

implemented with an inner control memory containing an orderly arrange-

ment of instruction sub-elements. These sub-elements, called micro-

instructions, are arranged into a series of steps (a micro-program) to

execute a user level or outer processor level instruction.

The inner processor or micro-processor also contains a control unit,

memory, and I/O facilities. It too contains a program address register,

fetches instructions, and executes them. It is even capable of being

interrupted from normal instruction level sequences in order to handle

DMA, Power Failure, Machine Checks, etc.

In order to achieve speed in executing user level instructions and.

minimize random discrete logic, the micro-instruction word is 52 bits

wide and is expandable to 64 bits wide. The micro-instruction is

divided into 12 fields, with each field controlling a portion of

the processors operation.

The microprogram resides in a read-only control memory (ROM) , which

makes it impervious to power outages and programming errors.

Every function that the outer processor would normally perform is

controlled by a series of micro-instruction steps. This includes fetching

user-level instructions from memory, incrementing the program address

register, and executing the instruction. Unlike the outer processor, the

microprogram never stops. Even when the outer processor is executing a

HALT instruction, the microprogram is monitoring the control panel and

is ready to respond to control panel input. On Prime systems, the control
 parél is an 1/0 device and the switch settings are interpreted by the CPU

as’data words, each bit having a particular function. The microprogram

decodes the sense switch data and then controls user program execution,

and displays data and program addresses on the control panel displays.

STANDARD CPU FUNCTIONS

Sequenctial Instruction Execution

The address for a memory access is held in register &, and data read from

memory or about to be stored in memory is held in register M. The

processor performs a program by executing instructions retrieved from

consecutive mememory locations as counted by the program counter (P),

Register file 7 on the block diagram. As one instruction is being

fetched,P_is incrementedby1sothat thenextinstruction is normally
taken from the next consecutive location. Sequentialprogram flow is

altered by changing the contents of P, either by incrementing it an extra

time in a test skip instruction or by replacing its contents with the

value specified by a jump instruction.

2-3

Addressable Registers

A general-purpose arithmetic unit and high-speed register file are used
by the outer processor to perform machine-language functions and store
transient data and control information. The arithmetic unit performs
arithmetic and logical operations while the 32 addressable registers in
the register file handle such functions as address indexing, stack
processing, program sequencing, and control of direct-to-memory I/O
data transfers. All processing is done on 16-bit words, with all bits
in a word processed in parallel.

Arithmetic Register

All computations are performed using the ALU and the Arithmetic or A
register. Data can be moved in either direction between A and any
memory location via the D Bus and the M Register. The contents of a
memory location can be combined arithmetically or logically with the
contents of A. The A register also serves as the data connection with
the programmed I/O bus, via the D Bus and B Bus. A secondary arithmetic
register, the B Register, serves as a right extension of A for double
length operations. The processor also has a single-bit register, the
C Register (or Carry Bit), that is set on overflow in arithmetic
operations and is loaded with the last bit dropped out of A or B in
shift operations.

Referencing Memory

Each memory reference instruction calculates an effective address that
is stored in the Y register address. This calculation may include
indirection, where an address calculated at an intermediate step is
used to retrieve another address, and may include indexing, where a
fixed quantity is added to a given address. The index register (X)
as well as the S (stack) register may be used for storing the indexing
quantity. The S register is used for push-popstack operations as well
as fully recursive reentry procedur@$. The recursive procedure is
essentially an indexing technique that is performed independently of
and addition to the indexing in the effective address calculation
involving X.

MOS Memory

Instructions and data are stored in MOS main memory. Prime systems use
MOS memory exclusively and depending on which processor is used, memory
access times of 680, 600 or 440 nanoseconds, and maximum cd§acities of
64K or 256K words are available. A system's main memory can be expanded
in modular increments of ~— 8K or 32K words on a single 16" X 18"
circuit board.

2-4

Automatic Power Monitor with Battery Backup

Any configuration of processor and MOS memory can be equipped with an

optional power monitor system to preserve the memory's contents if AC

power is interrupted, and automatically restart program execution when

power is restored. Four major functions are handled by the power

monitor option: sensing line voltage not within operational limits,

issuing an interrupt at the onset of power failure, battery refreshing

of MOS memory, and automatic restart when power is restored.

The battery backup system includes one or 20 Amp-hour, sealed gel-

electrolyte cells and automatic charger. The batteries are housed on

a rack-mountable panel which can be installed in any position in a

system rack or cabinet.

Direct-To-Memory Data Transfers

Data transfers between the main memory and high-speed devices can be

performed through the use ‘of the programmable, eight-channel direct

memory access (DMA) system, standard on all Prime processors. The

number of direct memory channels and the maximum data rate can be

expanded with DMC and DMI modes of operation (optional on the Prime 100

and 200, and standard on the 300). DMC, which provides up to 2,000

direct memory channels, is similar to DMA, except that where DMA uses

registers in the high-speed register file to store control information,

DMC uses main memory location. DMI is used with certain high-speed

device controllers in which the controllers themselves monitor direct

memory transfers with minimal processor intervention.

Processor Serial I/O Ports

In addition to the data transfers handled via the I/O bus, EIA binary

signals up to 9600 baud can be handled by a four-channel, bit-serial,

full-duplex interface which is an integral part of all Prime processors.

By means of programmed control of this interface, serial data can be

transmitted on four output lines and simultaneously received on four

input lines. The interface operates on EIA standard levels, and all

lines are easily accessible at the back edge-connector strip of the

processor board.

Vectored Priority Interrupts

A flexible interrupt processing capability is a standard feature on all

Prime processors and augments programmed control of I/O data transfers.

I/O processing on an interrupt basis frees the central processor for

other activities between data transfers, and automatically resolves

processing priorities when multiple activities require servicing at the

same time. An interrupt vectoring technique minimizes interrupt

response time by assigning each interrupt source a program selectable

memory location forsubroutineentry. Interrupt priorities are established

by the physical sequence in which device controllers are plugged into

the back plane.

2-5

Virtual Memory

The Prime 300 includes, as a standard feature, a virtual memory
capability. For details, refer to Section 7.

INSTRUCTION EXECUTION

Refer to the block diagram, Figure 2-1 to supplement reading of this
discussion of instruction execution.

High-Speed Register File

All processor registers are physically located in a high-speed register
file and logically addressed as if they were MOS memory locations.
Memory addresses 0-37 are reserved for this purpose and correspond to
the following registers:

Memory Register

Address Designation Function

0 X Index Register
1 A Arithmetic Register
2 B Extension Arithmetic Register
3 S Stack Register
4 FLTH Floating Point
5 FLTL Accumulators
6 VSC Visible Shift Count
7 P Program Counter

10 PMAR Page Map Address Register
11 Reserved for microprogram
12 PFAR Page Fault Address Register
13-17 Reserved for microprogram
20-37 DMA- 18 Word Pairs for DMA channels

(address and word counts)

Transfer of Information

Thg@ simplest CPU operation is the transfer of information from one
register to another register or a series of registers; for example,
to transfer the contents of the A-Register in the register file to
Register M and thence to the memory bus. To do this, the A Register
must be selected; the register file must be allowed on the Bus D;
the resultant data on Bus D must be put into the M Register and its
effective address must be calculated and stored in the Y Register, then
the M Register and Y Register address must be transferred to the Memory
Bus. Prior to transfer of data from the Memory Bus to MOS memory, if
the machine is a Prime 300; the paging hardware must be utilized to
(1) check if the page is in memory and (2) if not, bring the page into
memory. Finally, the data in the memory bus must be transferred to
memory at the specific memory address. The program Counter (Register
file Register 7) must have been incremented when the instruction was
fetched. This process is roughly a Store A (STA) instruction.

2-6

Conversely, information may be taken from memory and moved back down to

a register in the register file. ‘This process is roughly equivalent

to a Load A (LDA) instruction. ‘To do this, information must be trans-

ferred from the memory to Memory Bus to the M Register which must be

selected as the source of Bus D via a transfer through Bus B. ‘Then

the register file must be used as the source of the information on

Bus D. Finally, the P counter (Register File 7) must have been

incremented when the instruction was fetched. These operations are

accomplished by selecting and setting the proper microcode fields

then executing the microcode. For details of the fields that are set

and how to construct microcode information, refer to the Microcoders

Handbook (MAN 1940).

Transfers Using the ALU

To add two values, the first of which is in the M Register and the

second of which is in the A Register and then load the result into the

A Register; it is necessary to first get the correct data to the inputs

of the Arithmetic Logic Unit (ALU). This is doneby selecting the

M Register as the source of the B Bus and the A Register as the register

file register. Next, the ALU must be conditioned to add. This is done

by selecting the microcode fields for addition (Refer to the Microcoder's

Handbook). After the add operation, the results have to be loaded back

into the A register by selecting the ALU as the source of Bus D and the

A Register as the destination of the information on Bus D.

Shifting

Shifting is controlled by microcode. This includes both the type of

shift and the end conditions. It is accomplished by using the inform-

ation in the S Register (Register File Register Number 6) as the source

for the information on the D Bus. Each output of the S register is

shifted (right or left) one place before being placed into the D Bus;

the Shift Counter is used to keep count of the number of shifts. This

counter is created outside of the register file and can be loaded

from Bus B and read in as the low order half of Bus B. The shift

counter incrementation takes place at the end of the shift cycle.

MEMORY CYCLING

MOS memory provides an optimum combination of high speed, simple plug-in

expansion and high density packaging. Memory cycle times are either

600 or 750 nanoseconds on the Prime 300, 750 nanoseconds on the 200 and

1 microsecond on the 100. A single etched circuit board provides 8k

words available in increments up to 32K per board with integral byte

parity. Memory capacity is expandable to 64K in 8K increments on all

Prime computers, and to 256K in 32K increments of 750 ns memory on

300-series machines.

2-7

The main memorv is addressed as a set of contiguous word locations

whose. addresses range from 0 to "177777 or 65 ,996. (Memory locations ure

always specified by their octal addresses.) The number of words that
can be addressed by an instruction, and the location of those words
relative to the instruction depend on which of two addressing modes -
sectored or relative - the machine is operating in. In either mode,
contiguous word locations are organized into fixed-length groups called
sectors.

Sectored and, Relative Addressing Modes

In sectored mode addressing, all sectors are 512 words long and an
instruction may directly address either the locations in sector 0
(locations 0-'777) or the locations in the sector in which the instruc-
tion is stored. Relative mode address ing permits direct references
to locations in sector zero, as in sectored mode, a27teTrEr

LAILMEYELe Qtcmctepiy~ or references to
locations in a range relative to "the contents of the program counter P
(P-239 to P+256). Sixteen unused addresses from P-240 to P-256 are
interpreted as special addressing codes that provide additional methods
of address formation such as stack register operation, base-plus-displace-
ment and direct addressing of any location from 0 to '177777.

Automatic Memory Refresh

The computer's semiconductor memory is continually refreshed by a
sequence of staggered refresh cycles, each of which refreshes 3/32 of
the entire memory. Although refreshing does take some time from the
program, the effect is usually negligible as the microprogrammed
processor logic continues in operation while the refreshing is in
progress.

Reserved Memory Locations

Locations '40 through '777 of sector zero are reserved for the specific
purposes listed in Table 3-1. ?

Locations '40-'57 are reserved for eight Direct Memory Channel (DMC)
data words and eight channel control words. Locations '60 through '74
are dedicated for specific interrupts, both internal (i.e., memory
parity errors and illegal instructions) or external (peripheral device
interrupts). Locations '100-'177 are set aside for vectored interrupts
from peripheral devices (i.e., the locations used for a particular
interrupt is typically '100 plus the code of the device causing the
interrupt).

INTERRUPT AND TRAP HANDLING

Traps and Interrupts

Traps result in branching in the microcode. Interrups result in
pranching in the executing program. Some traps also cause interrupts.

2-8

There are external and internal interrupts. Internal interrupts are

those caused by traps, such as unimplemented instruction interrupts,

etc. [xtemal interrupts are caused by real-time interrupt requests

from device controllers plugged into the backplane. [External interrupts

can be enabled or disabled by the INH and ENB instructions.

Extemal interrupts have two modes, vectored and standard, selected by

the EVIM and ESIM instructions. In standard mode, an indirect JST

through location '63 is executed. In vectored mode, the indirect JST

is through a vector address provided by the interrupting controller.

In both modes, interrupt priority is determined by the backplane.

Interrupts
There are 13 different interrupt vectors now allowed for in the Prime

processors. They fall into several broad classes: hardware monitoring,

external, and software aids.

All of these interrupts have some properties in common. First, all of

the interrupts check their vector location to see if it is zero before

going indirect through it. If it is zero, a HALT or HLT is executed.

Second, the vector is interpreted as a 16 bit absolute address independ-

ent of address mode in force. Third, the program counter is deposited

at the address pointed to by the vector and execution begins at the

next address. Fourth, the non-visible keys are changed by clearing out

the ‘system clear' and 'permit external interrupts' flops. Fifth, all

vectors do an absolute vector.
zz

Hardware Monitoring

These interrupts as a class check on the operability of the system and

give the user warning of past or approaching failures:

1. Missing Memory Module

The memory does not exist at a location accessed. This interrupt

may be used to determine memory size. It may result from the CEA

instruction as well as any memory reference instruction.

The interrupt cannot be inhibited and deposits the P counter

pointing to the next instruction to be executed. The Machine

Check Flag is cleared by this interrupt.

2. Memory Parity

An error has been detected in the memory data most recently read.

3. Machine Check

An internal data transfer or 1/0 bus transfer generated a parity

error.

2-9

4. Parity Fail

This uninhibitable interrupt is taken when a failure of system
power is detected. The interrupt is through location '60 and is
given 1 millisecond before an internal system clear signal is given.
If location '60 has an address other than zero in it, an interrupt
to that location will be executed. If the contents of location '60
is zero, a halt occurs.

Systems with battery backup can mainimize the effect of power loss
by saving applicable data registers, terminating peripheral transfers
and setting up for an auto restart at location '1000 when power is
restored. |

External Interrupts

These interrupts serve as the normal asynchronous sources of external
stimuli to the processor. Included in this class are all of the normal
peripheral interrupts. -

1. Real Time Clock (Increment)

This interrupt does not interrupt program execution. However,
it does increment location '61 of memory every 16.6 milliseconds
(20 milliseconds for 50 Hz systems). On incrementing to zero, an
external interrupt through location '63 is requested.

Incrementing the clock is not affected by the ENB and INH instruc-
tions, but can be started and stopped using programmed I/O.

2. Real Time Clock (Overflow)

This is a standard external interrupt. (See 3.)

3. Interrupt (Compatible Mode)

This interrupt is for all external devices. It can be enabled
or inhibited using the ENB and INH instructions, respectively.
The actual device interrupting must be determined by a polling
method. External interrupts are automatically inhibitedby this
interrupt. External interrupts come here if the processor is in
compatible mode.

4, Interrupt (Vectored Mode)

Identical in function to compatible mode, this method is used if
the processor has been put into the vectored interrupt mode.
ENB and INH word as before.

This time, however, each interrupt uses a vector specified by the
controller (normally '100 + Device Address) and the vector can be
anywhere in the first 64K memory.

2-10

Software Aids

These vectors serve as a link to tie user developed software to Prime
developed software along a clearly defined path. In addition, standard
software can use these traps to run efficiently on large Prime machines
while still running successfully on smaller Prime machines.

SVC (SerVice Call): This interrupt is a convenient way unambiguously
demanding the attention of the executive software. Argument transfer
will typically be done using the computer words in memory that follow
the SVC.

Prime executive software defines the SVC calls. The advantage of using
SVC is: an SVC works the same in normal, restricted, or virtual
execution mode. Thus standard software is able to run in different
execution environments.

Restricted Execution Violation: This interrupt is enabled by executing
an ERM and disabled by any interrupt (in¢luding SVC).

If enabled, this interrupt occurs whenever a restricted user executes
any I/O (including ISI and OSI) instructions, or machine mode change
of any non-visible key, or over n levels of indirection (n = a
convenient number), or execution of a HALT. This feature is found only
in systems with virtual memory.

UII (Unimplemented Instruction): To permit upward compatible software,
Prime has reserved octal codes that when executed cause an unimplemented
instruction interrupt. On the Prime 100 and 200, Multiply and Divide
are examples of instructions that cause this unimhibitable interrupt.

As a result, a package that decodes and software-implements these
instructions, can be added. To help this unimplemented instruction
(UII) package, the program counter contents is saved so that a
deposited program counter always points to the instruction that caused
the interrupt.

ILL (Illegal Instruction): To permit customer use of special op codes
which act as UII's, Prime has defined many codes as illegal. Execution
of these causes an interrupt similar to the UII (Unimplemented
Instruction package). The difference is that an instruction that is
unimplemented can easily become implemented in the future by microcode
changes. Illegal instructions, however, will remain illegal.

INTERNAL INTERRUPTS

Besides the use of interrupts to handle the peripheral equipment, a
number of internal processor situations can interrupt the program.
The action taken inresponse to‘an internalinterrupt is essentially
the same as for an external interrupt, but many of the conditions
associated with the latter are not applicable to the former. All
internal interrupts are vectored regardless of the mode of the external
interrupt.

2-11

Although a particular type of internal interrupt may be inhibited at
its source, it is never affected by the enabling or inhibiting of
external interrupts as a class; e.g., a memory parity error can cause
an interrupt only if the processor is in machine check mode, but with
that mode in effect, an error always causes an interrupt even if
external interrupts are inhibited. All internal interrupts have
priority over external interrupts simply by virtue of the circumstances
they represent among internal interrupts, priority is a fumction of
logical necessity.

In response to an internal interrupt, the processor vectors through a
specific location. If the 16-bit absolute address in this locationis
zero, the processor halts. If the address is nonzero, the processor
inhibits external interrupts, saves the P register in the location and
resumes normal program execution at the location following that in
which the P register was stored. Since an internal interrupt has
nothing to do with the bus priority structure, the service routine need
not give a CIA upon completion.

Internal interrupts are used to monitor the hardware ard aid in soft-
ware execution. Interrupt locations and the conditions that generate
interrupts through them are as follows:

"60 Power Failure - incoming power is not up to specification.
This vector must be left unimplemented(zero) unless the
processor has the memory save option.

"61 Real Time Clock Counter - this is not an internal interrupt at
all, but is used as a counter by the real time clock.

"62 Restricted execution in VM.

‘63 External interrupts use this location.

'64 Page Fault.

'65 Supervisor Call - an interrupt to this Service.

INPUT/OUTPUT

As shown on the block diagram, a Prime computer system can be connected
to a variety of peripheral and/or terminal devices. A more complete
discussion of I/O is given in Section 4.

Generally, I/O Data is transferred to and from the B Bus from the
serial interface or AMLC or SMLC devices. Device types other than the
serial interface (bit banger) interact with the B Bus through an
1/0 Data Buffer and and I/O Buffer, similar to the way in which the
CPU interacts with the memory bus through the memory data and address
buffers. Serial input is routed to the B Bus; however, serial output
is directed from the D Bus directly to the serial interface buffer.
Note also, that the control panel has a buffer and is treated as an
I/O device; thus setting sense switches can input information directly
into the CPU.

2-12

DATA INTEGRITY FEATURES

The following paragraphs summarize data integrity features available
on Prime systems and the purpose of traps, and interrupts within the
central processor.

The Prime 200 and 300 CPU's include several levels of automatic,
program-+?ndependent data integrity check features:

Memory Parity

Machine Check
Mode

Machine Checks

Trap

Memory Parity
Error

Machine Check

Error

Checks parity of every 8-bit byte read from
high-speed memory. If machine check mode is
in effect, an interrupt through location '67
is taken. |

Enabled or disabled by EMCM and LMCM instructions.
Enables memory parity interrupts and microverifi-
cation, if present. ¥,

Parity checks of byte transfers between internal
registers and busses. Errors cause entry into
microverification routines, if the option 1s
present and machine check is enabled.

Optional microcode test routines tl e
logic of the entire CPU. (See Section 5.

Associated with the user level program. An
interrupt performs a control transfer to a
location specified by the location associated
with the type of interrupt found. This amounts
to an indirect JST.

Associated with microcode. A trap transfers
micro-control to a specific trap catching
microroutine. Some traps also generate
interrupts; others do not.

A parity error in a word read from memory.

A parity error in any other situation (in a
register, over the I/O bus, etc.)

Memory Parity and machine checks are standard on the Prime 200 and 300
and microverification is optional on both processors. These features

are not implemented in Prime 200's.

Machine Check Functions

Occurrence of either memory parity error or machine check error in any
Prime processor always sets the Machine Check Flag, depends on the type
of processor (does it have microverification or not?), its operation

2-13

mode (Nomal Operating Mode or Machine Check Mode), type of error
(memory parity or machine check), and type of failure (solid or
transient).

Normal Operating Mode (Enabled by MASTER CLEAR or LMCM Instruction)

Memory Parity Error: Memory Parity Error in any Prime machine operating
in Normal Operating Mode always sets the Machine Check Flay. ‘There is
no interrupt to the operating program. To check for parity error, the
operating program may use the SMCS (Skip on Machine Check Set) or SMCR
(Skip on Machine Check Reset) instruction. It is then up to the system
programmer to handle this problem. Master Clear or RMC (Reset Machine
Check) can be used to reset the flag.

Machine Check Error: The same procedure as for Memory Parity Error
applies.

Machine Check Mode (Enabled by EMCM)

Memory Parity Error: In any Prime processof operating in Machine Check
Mode, a memory parity error sets the Machine Check Flag. This causes
a microcode trap that executes a microroutine to reset the machine
check flag and causes a program interrupt through location '67.
Response to this interrupt is decided by the system programmer's
interrupt service routine.

Machine Check Error: CPU Without Microverification. A machine check
error occurring in a Prime Type 211 or Type 215 central processor
running in Machine Check MOde, causes a microprogrammed interrupt that
resets the Machine Check Flag and causes the processor to halt
(indicated by the control panel STOP light). If the operator turns
the function selector to STOP/STEP, all address lights will be lit.

CPU with Microverification: A machine check error occurring in a Prime
computer with microverification running in Machine Check Mode, initiates
execution of the microprogram verification routine to check (verify)
proper operation of the processor. The verification routine always
resets the Machine Check Flag. - , :

Parity Errors

Several alternative ways of detecting and recovering from parity
errors are provded by Prime hardware. —

Prime 200 and 300 series computers detect Memory Parity errors by
checking byte parity on each memory read operation. Byte parity errors
that occur during data transfers between CPU registers, the backplane
and the arithmetic unit, are all classified as Machine Check parity
errors. Both memory and machine check parity errors set the Machine
Check Flag.

In the Normal operating mode, Prime 200 and 300 computers resemble the
Prime 100, which has no parity check hardware. The user may employ
the SMCS (Skip on Machine Check Set) and SMCR (Skip on Machine Check
Reset) instructions to sense parity errors by testing the Machine Check
Flag and may provide subroutines to handle parity errors.

Special instructions (EMCM, LMCM) are provided that cause the computer
to enter the Machine Check Mode. In the Machine Check Mode, when a
Memory Parity error sets the Machine Check Flag; a microcode program
resets thé flag and causes an interrupt through location '67.

Depending on a program's sensitivity to memory parity errors, a user may
choose to provide reentry points and a service routine to repeat the
calculation or a user may choose some other solution.

In Prime 300 computers, memory is organized into 512-word sectors or
pages; and the Virtual Memory paging technique enables the user to edit
out and work around a defective page if interrupts through location '67
occur consistently from a particular area an memory. Also, operating
system software checks for bad memory and takes appropriate action to
work around that memory (refer to the Disk and Virtual Memory Operating
Systems User Guide).

In processors without microverification, machine check parity errors
cause the processor to halt, as indicated by the controlpanel stop
light. In this case, turning the function selector to the STOP/STEP
position lights all the ADDRESS lights. This action confirms that a
CPU parity error has occurred.

In 200 and 300 series machines with the microverify option, a Machine
Check error activates the microcode verification program. This program
runs a series of tests on individual registers in the processor,
arithmetic unit and I/O bus. If the entire microverify routine is
cycled without a failure being diagnosed in a particular circuit, the
parity error is assumed to have been caused by transient condition.
The microverify routine then clears the Register File and Machine
Status Keys and causes interrupt through location '70. The program can
then resume execution after the machine state is restored if the user
program has been set up to handle this situation.

If the microverification routine encounters a nontransient circuit
failure, it continues to cycle as long as the failure persists; and
the number of the test is displayed in the ADDRESS lights when the
function selector is set at the RUN or LOAD position. The processor
leaves the Machine Check mode and reenters the Normal operating mode
when it encounters the LMCM (Leave Machine Check Mode) instruction.
Thus, there are two operating modes: Normal and Machine Check. In
Normal mode, parity errors do not influence program flow unless explicit
instructions are inserted into the user's program. In the Machine Check
mode, a parity error during memory read causes an interrupt through
location '67 that may be acted upon at the user's discretion; otherwise,
program execution continues. In processors without microverification,
a Machine Check parity error halts the machine because processor parity

2-15

Crrors are assumed to be more serious than memory parity crrors.
In Machines with the microverify option, if the CPU passes the tests
performed by the microverify routine; the assumption is that the
trouble was a transient one and processing resumes.

When power is turned-on (and when the MASTER CLEAR button is pressed),
processors with microverification perform a CPU circuit integrity check.
Then, the computer operates in Normal mode. The Machine Check Flag
signifying a memory/CPU parity error is ignored in this case.

The microverification routine can be executed at any time by means of
the VIRY instruction to assure the integrity of processor circuits.
Similarly, the user can assure himself that the CPU is functioning
properly by turning on the power and pressing MASTER CLEAR to initiate
the microverify sequence.

The following paragraphs describe instructions that may be used to
enter, leave and reset Machine Check mode and to execute the verifica-
tion routine.

2-16

0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Enter Machine check mode so that the microprogram responds to

a parity error. ,

LMCM Leave Machine Check Mode "000501

0 00 00 00 10 1 0 0 0 0 0 1.

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Leave machine check mode so that a parity error will simply set the
Machine Check flag but will not cause the machine to halt.

RMC Reset Machine Check ‘000021

 0 0 0 0 0 0 0 0 0 0 0 1°0 0 0 #1

123 4 5 6 7 8 9 10 11 12 13 14 15 16

Reset the Machine Check flag.

Note: The assembler recognizes the mnemonic RMP as equivalent to RMC.

2-17

SMCS Skip on Machine Check Set "101200 —

1 0 0 0 0 0 1 6 1 060 060 0 0 9 4g 0

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If the Machine Check flag is set (indicating a machine detected
error), skip the next instruction in sequence. (When the processor
is Nop)ne check mode, this instruction has no meaning and executes
as a .

Note: The assembler recognizes the memonic SPS as equivalent to SMCS.

SMCR Skip on Machine Check Reset "100200

 1 0 0 0 0 0 0 0 21 0 0 0 0 0 0 0

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If the Machine Check flag is reset (indicating no machine detected
error), skip the next instruction in sequence. (When the processor
is in machine check mode, this instruction has no meaning and
executes as an absolute skip.)

Note: The assembler recognizes the mnemonic SPN as equivalent to SMCR.

2-18

MI CROVERI FICATION

The microverify feature provides the Prime processor (200 (optional),

300, s74nasRD) with a self-test capability. This self-test capability

consists of a set of microcode routines that verify the operations that

can be successfully performed by the processor. These tests are care-

fully constructed to verify successively larger portions of the CPU

hardware, always building on those portions that are already verified.

Table 2-2 lists the verification routines and describes the microcode

logic that the test exercises.

One of the fundamental tasks of the microverify feature is to verify

that the machine checking hardware (Machine Check) is detecting both

good and bad parity correctly; this is done with Tests 4, 5, and 6.

Machine Check checks byte parity on internal and external data paths.

Parity is generated only when necessary (i.e., on shift and ALU

operations), and parity is normally transmitted from one register to

another unchanged. Each processor register includes parity checking

logic. This parity checking normally detects all single bit parity

failures and detects looping multiple faults after a few data patterns

have been used. A parity error detected by the machine check hardware

traps to the microprocessor and causes the verify microcode to be

executed. The verify microcode is a series of microcode tests (refer

to Table 2-2). The tests begin by testing as little as possible and

continue by testing larger portions of the machine and using more

involved data patterns. Finally, the microcodes test large extemal

blocks of logic (e.g., memory and I/O).

The verify microcode exercises the processor's control unit as well as

the ALU, the registers, and the various data paths (See Figure 2-1).

Because address and data busses of both memory and I/O (Bus D, Memory

Bus, Bus B, etc.) are tri-state and because all but the memory address

bus are bi-directional, a failed component (board) anywhere in the

system can stop all data transfer to and from a bus. Two microverify

tests (11 and 12) explicitly check for this condition by verifying

that both ones and zeroes can be placed upon the busses.

Microverify status is displayed at the Control Panel Indicator Lights.

The VIRY Instruction

The self-test (microverify) routines described in this section may be

initiated by a VIRY instruction. The VIRY instruction is described in

Section 6. The VIRY instruction skips on no error and returns with

the failed test number on error. The microverify routines are also

initiated by a MASTER CLEAR and by a Machine Check error.

Table 2-3 shows how entry and exit of the verify test operates.

2-19

Test No.

0

10

Table 2-2. Verification Routines

Test Exercises:

ALU - 0, Condition Code
Jump on not equal

RM, RY, EMIT, RA (Register A) all can be set = 0
ALU (subtract)
Internal busses - transmit 0

BB can be loaded from RY

Modals and Traps are tested to verify reset

RX can be incremented
BD can transmit bits on lower byte
RSC words (it counts and loads correctly)
RCM emit # 0 can be done

RY parity detection
Control unit 16 way branch
BB, BD data transmission
Jump Logic

RM parity detection
Control unit 16 way branch
BB, BD data transmission
Jump Logic

Register files parity detection and all tested in 5

ALU = -1
BD shift left, BD parity generate
RF parity check
RSC increment

Jump

Carry bit, Load, set and reset
ALU = subtract
Jump Logic

Register file with various patterns of bits
RSC increment
BB, BD various sources and patterns
Jump Logic

2-20

Test No.

11

12

13

Table 2-2. (Cont)

Test Exercises:

I/O busses, BPA, BPD are able to transmit a one and

zero in each bit.
Right Shift
RM, RY, RF data and parity

Memory Busses, BMA, BMD. Memory Location 5
BMD is tested for a 1 and 0 in each bit
Memory timing must work

Discovers a parity failure in tests 7-12

2-21

Table 2-3. Microverify Entry § Exit

ENTRY to microverify
routines will be upon:

System Clear (MASTER CLEAR)

CPU parity error (Machine Check)

VIRY instruction

2-22

EXIT from microverify
routines will be upon:

No Error

Successful pass or first
error detected.

Successful pass or first
error detected.

SECTION 3

INSTRUCTION FORMATS §& ADDRESSING TECHNIQUES

The Prime instruction set is subdivided into classes by function
(control, arithmetic, I/O, interrupt, memory reference, I/0, shifts,
and generics) which include logical operations, byte manipulation
and internal processor control. See Appendix C for a summary of
all instructions.

NUMBER AND INSTRUCTION FORMATS

To perform logical operations, the hardware interprets operands as
logical words. For arithmetic, the hardware operates on 16-bit
unsigned numbers or signed numbers in twos complement notation.
A 16-bit unsigned number is_usually regarded as an integer and
hence has a range of 0 to 216-1. In Signed number, bit 1 represents
the sign (0 for plus, 1 for minus) and bits 2-15 represent the
magnitude in twos complement notation. Signed numbers are generally
regarded as having an arbitrary binary point, which the computer does
not keep track of; the programmer must adopt a point convention and
shift the magnitude of the result to conform to the convention used.

Two common conventions are to regard a number as an integer (binary
point at the right) or as a proper fraction (binary point at the left);
in these two cases _the range of signed numbers represented by a single
word is -215 to 215-1, or -1 to 1-27-15, For instructions that operate
on double precision numbers, the high order word has the usual format,
and the low order word has a 0 in bit 1 and a 15-bit low-order
extension of the number in bits 2-16.

INSTRUCTION GROUPS

The instruction set can be conveniently divided into four major groups:
generic, shift, memory-reference, and input/output.

Generic Instructions

In the generic group, the entire instruction word is treated as an
op code, as follows:

Op Code

I 2 35 4 5 6 7 8 9 TO It 12 13 T4 15 16

Certain instructions for virtual memory and extended control store
operations include a target address in the word following the op-code
word.

3-1

Shitt Instructions

Instructions in the shift group consist of an op code plus a field
that indicates the number of places to be shifted as follows:

2's complement of no.
Op Code of places

Pt 2 3 4 5 6 7 8 9 JO TI 12°13 14 JS T6

Memory Reference Instructions

Memory reference instructions take one of three formats, depending on
the type of instruction and the addressing mode. A single-word
format is used for all standard instructions in the sectored addressing
modes, in relative mode when S=0, and for procedure-relative addressing
(S=1, D is between -240 and +255):

I X OP S D

2 3 4 5 6 7 8 9 10 11 12 13 #14 I5 16

The op code identifies the type of instruction. The I specifies
indirect addressing, X specifies indexing, and D is an address
displacement value. These fields determine the effective address
of the operand. (For more information on techniques of effective
address formation, see the descriptions of the addressing modes.)

A two-word format is used in relative mode for the long reach and
stack relative classes of special addressing:

| Instruction
1 I} X OP 11 0 0 0 0;xX xX] Y Y¥ Word
1 2 7 13 16

Instruction
A Word +1

1 2 16

4

32R: 0

64R: MSB of Address

C
A 4

N
O

In this addressing class, the D field in the first word of the
instruction contains op code extension bits (XX) used by extended
instructions such as DFLD, etc., and a special code (YY) that
specifies the special addressing class. (The address value A is in
the second word of the instruction.)

For the stack postincrement and predecrement classes of special
addressing, only the first word is required: |

 1 0 0 0 O{fX XX] Y Y
12 13 14 15 16

I |X OP 1
1 2 3 6 7

The address displacement value is obtained from the stack register,
eliminating the need for a second word.

Instructions of the extended type (DFLD, etc.) always use one of the
special addressing formats and thus may be used only in relative
addressing mode.

1/0 Instructions

The format for I/O instructions is shown below. Bits 1 and 2 of the
op code select among four subclasses of instructions for sending out
control information, sensing conditions in a device, or moving data
in or out. Bits 7-10 specify the particular function within the
subclass, and that function takes place using the device specified
by bits 11-16. For example, a high-speed ievice that transfers data
through a DMA channel would have one function in the output class for
sending an interrupt address to the device, another for sending a
channel address, and so on.

OP CODE FUNCTION DEVICE CODE

 X X 1 1 0 0 |
I 7 10 Ti 16

PROGRAMMING CONVENTIONS

The assembly program recognizes mnemonics and other symbols to construct
complete instruction words and organize them into a program. Refer to
Appendix C for Op Code Mnemonics. For example, the mnemonic

| LDA |

assembles as '004000, and

LDA 3

C
N '

ta
d

assembles as '004003. The latter word, when executed as an instruction,
loads the contents of memory location '3 (the stack register S) into
the A register.

Source Statements: The program in symbolic language for assembly is
made up of source statements, each containing up to four variable
length fields separated by spaces or tabs. The sequence of fields
from left to right in a source statement line is label, operation,
address, and comment. The operation field contains the op code or its
mnemonic, and the address field contains the address used by a memory
reference instruction. The example above contains only operation
and address fields. For other types of instructions, the address field
is used to specify bits not included in the op code (e.g., the function
and device code in an I/O instruction), and the number of shifts in a
shift instruction. In the example above, the number in the address
field assembles directly into the displacement part of the instruction
word because the location addressed is in sector 0 and the number has
only one digit. If the instruction is written as, LDA 13, the assembler
generates '004015, because it interprets all unqualified numbers as
decimal. On the other hand, LDA '13 assembles as '004013 and actually
accesses location '13.

An asterisk appended to an op code mnemonic indicates indirect
addressing. For example:

LDA* ‘13

assembles as '104013, and produces indirect addressing. Placing
'',1"" following the memory address causes modification of the address
by the contents of the index register. Hence, LDA* '13,1 assembles
as '144013 and, depending on the addressing mode, the processor either
indexes the initial address and then continues the effective address
calculation, or post-indexes the result.

In the above examples, addressing is in sector 0 so the displacement
is equivalent to the address given. But the programmer can give any
address in the available memory space; e.g., to load A from location
"4000 the programmer specifies LDA '4000. The assembled form of this
instruction depends upon the curent addressing mode and where location
"4000 is in relation to the position of the instruction. In other
words, the programmer can give any address, and the assembler and
loader together set up whatever effective address calculation is
necessary to access the desired location.

Other assembler syntax conventions are mentioned in the later
description of special addressing techniques. (For example, LDA% '13
generates a two-word instruction with the address value in the second
word.)

3-4

SYMBOLIC ADDRESSING

Ordinarily the programmer dispenses with keeping track of numbers and
uses symbolic addressing. One way to define a symbolic address is
through use of the label field.

Q ADD '20 indicates that the location containing ADD '20 may be
addressed symbolically as Q. Additional conventions for symbolic
addressing are described in the Prime Macro Assembler manual.

MEMORY ADDRESSING TECHNIQUES

This section explains the procedures used to calculate the effective
address of all memory reference instructions. The program controls
the effective address calculation by the information given in
instruction and address words, and by specifying the addressing
mode. The mode determines both the type of addressing and the size of
the address space. Bits 1, 2, and 7-16 have the same format in the
first word of every memory reference instruction whether the
effective address is used for storage or retrieval of an operand or
to alter program flow:

 I{ X OP CODE S D
1 2 7 : 16

Bit 1 is the indirect or I bit, bit 2 is the index or X bit, bit 7
is the sector bit, and bits 8-16 are the displacement. (NOTE: in an
instruction that loads or stores the index register, what would other-
wise be the X bit is used instead as part of the op code.)

There are six distinct addressing classes: sectored, relative, and
four varieties of extended addressing. The class is determined by
the addressing mode, the sector bit, and the value in the D field of
the instruction, as shown in Table 3-1. Effective address formation
for each class will be described separately.

Sectored Addressing

In the sectored addressing modes, and in the relative modes when S=0,
memory is organized in sectors of 512 words each. (8K memory
consists of sixteen 512-word sectors.) Prime memory reference
instructions use the 9-bit displacement field, D, to specify memory
location within a sector.

The simplest case is when the indexing and indirect bits are both 0.
The effective address of the instruction then depends only on the value
in the D field and the sector bit.

Table 3-1. Addressing Classes

| Addressing Addressing No. of
Mode S D Class Words

16S 0,1 0-777 Sectored 1
32S

32R 0 0-777 Sectored 1
64R

32R 1 -240 to Reese 1
64R £255 elative

32R 1 -256 to Extended Addressing
64R -241

Long Reach 2
(op code
extension Stack Relative 2
rather than
address Stack Postincrement| 1
value)

Stack Predecrement 1

3-6

If the sector bit is a 0, the displacement field is used directly to

specify one of '777 locations in sector 0. This is accomplished by

transferring bits 8-16 of the instruction to corresponding bits of the

memory address (Y) register and forcing 0's in bits 1-7 of Y:

LAY OP 9} D | | Instruction

S=0

0000000 D Y Reg.

1 7 8 16

When the sector bit is a 1, the D field is concatenated with high-order

bits from the program counter (P register), indicated by the notation

PID. For example, in 16S mode a current sector address is formed

as follows:

P Reg| XX] YYYYY[222222222

IjX OP] D Instruction

S=1 +
¥

fololyyyyy| D | Y Reg
123 7 8 16

The displacement value from the instruction word itself is transferred

to Y 8 through 16; bits 3 through 7 of the P register are transferred

to corresponding bits of Y. Bits 1 and 2 of Y are set to zeroes in

16S mode.

Indexing: If the X bit is a 1, the contents of the index register

(location 0) are summed with the address being formed, by 2's comple-

ment addition. (The X register may be preset by the program to any

value between -32768 and +32767.) The result of the addition is then

truncated to the number of significant bits permitted by the address-

ing mode. Higher-order bits of the result are filled with zeros.

The X bit of the instruction word usually specifies pre-indexing, that

is, the X register is added to the displacement field before the next

memoryaccess. In certain special cases, described later, the X bit

of the instruction word specifies post-indexing, in which adding of

the X register is postponed until an indirect address word is

accessed.

Indirect Addressing: The base plus displacement plus conditional

indexing calculation produces an effective memory address if I is

zero, or an intermediate address if I is one (specifying indirect

addressing). The intermediate addressword may, depending on the
addressing mode, also contain X and I bits and is processed in a

manner similar to the original instruction word. Any number of levels

of indirect addressing are permitted; the process continues until a

location is found with a zero in the I bit. In 64R mode, address words

do not contain an I bit, so only one level of indirection (specified

by the instruction word itself) 1s possible.

3-7

Address Truncation: After effective address formation is complete,
the resulting address in the Y register is truncated to the number
of address bits appropriate to the addressing mode in effect:

Mode Address Bits Size of Memory Addressable

16S 14 16K

325 15 32K
32R

64R 16 64K

Higher order bits of the Y register are forced to zeroes. Thus,
an address cannot be formed that addresses a memory location beyond
the range of the current addressing mode. However, it is possible
for an executing program to increment the program counter out of the
current range (instead of overflowing to zero).

Any addressing mode operates legally with as little as 4K memory.
However, in any mode, it is possible to form an address that is beyond
the range of the available memory. When this happens, a missing
memory module trap occurs.

16K Sectored Addressing

The 16K sectored mode (abbreviated as "16S" mode) is the default

mode of operation when the machine is first turned on or the computer

is cleared from the control panel. In this mode, indexing may occur

both before and after indirect references since an absolute address

requires only 14 bits - leaving room in address words for both I and

X bits. Note that when operating in this mode, effective addresses

reference the first 16K of memory.

The following table lists the address word configurations and the

calculation procedures for all cases in 16S mode. P is the contents

of the program counter prior to the instruction fetch, the symbol

P|D represents the sectored address formed by concatenation, X is

the contents of the index register, A is an absolute address, and

I (expression) is the result of the indirect chain beginning with

access to the location addressed by (expression). Assembler syntax

is shown for each case as an LDA to location Q in sector 0 or location

R in the current sector.

3-8

Assembler

IX S$ EA Notation Type

0 0 0 D LDA Q Direct

0 1 0 D+X LDA Q, 1 Indexed

1 0 0 I(D) LDA Q, * Indirect

1 1 0 I (D+X) LDA Q, 1* Indirect, preindexed

001° #&»PID LDA R Direct

011 &«2»PilD+x LDA R, 1 Indexed

1 0 1 1(p|D) LDA R, * Indirect

111 1(P|D + X) LDA R, 1* Indirect, preindexed

NOTE: The asterisk, meaning indirection, may be appended to the
mnemonic, as in LDA* R (indirect) or LDA* R,1 (indirect, preindexed).

All indexing cycles indicated in the table are pre-indexing. Post-
indexing occurs if the X bit of an indirect address word is set.
Indirect address words in 165 mode are in the following form:

I} X 14-BIT ADDRESS

32K Sectored Addressing

The sectored modes for 32K (32S and 32R with S=0) extend the
addressing range to 32K by using a 15-bit address field in each
address word:

15-BIT ADDRESS

2 16

Such address words have no X bit. Therefore, except for a special
case, indexing must be done after all levels of indirect addressing
have been performed. The special case permits indexing to occur prior
to the first indirect access if the sector bit is zero and the displace-
ment is less than '100.

Address word configurations and calculations for all cases of indexing
and indirect addressing are: .

3-9

{
r
m

[
>
<

[
m
n D

0 0 0 Oto '777

1 1 0 Oto '77

Assembler

1 1 0 '100 to '777 1(D)+X LDA Q,

0 0 1 Oto '777

Relative Addressing

EA Notation

D LDA Q

D+X LDA Q, 1

I() LDA Q, *

1 (D+X) LDA Q, 1*

*]

PID LDA R

P| D+x LDA R, 1

I(P|D) LDA R,

I(PID)+X LDAR, *]

Type

Direct

Indexed

Indirect

Indirect,
preindexed

Indirect,
postindexed

Direct

Indexed

Indirect

Indirect,
postindexed

In 32R or 64R addressing mode, when the sector bit is a 1 and the

displacement field is a two's-complement number in the range from

-240 to +255 (decimal), addressing is relative to the current program

counter value. The effective address is formed by adding the value

of the displacement field to the program counter value plus 1, and

then performing indirection and indexing as specified by the I and

X bits:

EX EA

0 0 P+1+D

0 il P+1+D+X

1 0 I (P+1+D)

1 1 I (P+1+D)+X

Assembler
Notation

LDA D

LDA D, 1

LDA D, *

LDA D, *1

Type

Direct

Indexed

Indirect

Indirect,
postindexed

This addressing method cannot be used by two-word instructions

(DFLD, etc.), all of which have, by definition, a displacement

field out of the -240 to +255 range.

3-10

(See 'Extended Addressing’.

The 32R and 64R modes are identical in this class except for the inter-

pretation of indirect address words. 32R is the same as 325. 64R

address words are interpreted in this way:

16-BIT ADDRESS

12 3 4 5 6 7 8 9 10 il 12 13 14 15 16

Since the entire word is used for addressing, only one level of

indirection is possible.

Extended Addressing (32R and 64R Modes)

In 32R and 64R modes, when the sector bit is a 1 and the displacement

field is a two's-complement number below -240 decimal, the instruction

word format is interpreted as follows:

 OP CODE i 1 0 6 0 Bj gk. Class

T 2 34 5 6 7 8 9 10 11 12 13 14 15 16

The I and X and op-code bits perform the same functions as in sectored

mode, but Bits 7-12 no longer indicate dis,lacement, they exhibit .

the fixed pattern 11000. Bits 13 and 14 are op-code extensions. For

instructions of the basic set, they are always 00. Other values

extend the normal op-code to define the floating point instructions

and the Prime 300 extended instruction set. Table 3-2 shows the

combinations that are currently assigned. Unassigned combinations

cause an unimplemented instruction interrupt. .

Bits 15 and 16, in combination with I and X bits, select one of the

extended addressing classes:

Class Code (Bits 15, 16)
‘

0 1 2 3

Long Stack Stack Stack
Reach Relative Postincrement 'Predecrement

Indirect ,| Indirect Long Reach , Stack Relative,
Prein- Prein- Indirect, Indirect,
dexed dexed Postindexed Postindexed

3-12

Table 3-2, Extended Instruction Op Codes

Op Code Extended Gp-Code Bits 15-14

Bits 3-6 00 01 10 Tl

00 Generic -- -- --

01 JMP EAA XEC ENTR

02 LDA/DLD FLD DFLD JEQ

03 ANA -- -- JNE

04 STA/DST FST DEST JLE

05 ERA -- -- JGT

06 ADD/DAD FAD DFAD JLT

07 SUB/DSB FSB DESB JGE

10 JST ~~ CREP --

11 CAS FCS DFCS --

12 IRS -- -- --

13 IMA -- -- --

14 1/0 Group} -- a --

15 STX FLX JDX JIX

35% LDX -- JSX

16 MPY FMP DFMP --

17 DIV FOV. | CDF --

* Including X Bit

fhe long reach and stack relative classes force two-word instructions.
lhe word tollowing the instruction must contain an address value, 4,
in the following format:

Lo] A | (32R)
16

 A (64R)
T 16

Stack postincrement and predecrement classes require only the first
word of the extended format since the address value is obtained from
the S register.

Long Reach (Two-Word): The value of A in location P+l1 is used for
etfective address calculation in combination with the I and X bits of
the instruction word itself:

Class Bits Assembler
15,16 I X EA Notation _Type_

0 0 0 A LDA%S A Direct

0 O 1 AtX LDAS A, 1 Indexed

0 1 0 I(A) LDA’ A, * Indirect

0 1 1 I(AtX) LDA% A, 1* Indirect, preindexed

2 1 1 I(Aj+X LDAS A, *1 Indirect, postindexed

In 64R mode, the resulting EA is the final effective address (no
further indirection is possible because all 16 bits of EA are signif-
icant.) In 32R mode, indirection may continue until an EA is formed
which contains a 0 in bit 1.

Stack Relative (Two-Word): This class is identical to two-word long
reach except that the contents of the stack pointer are added to A
during the initial effective address calculation. Indexing and
indirection take place under control of the I and X bits of the
instruction word:

3-14

Class Bits Assembler

15,16 IX EA Notation Type

1 0 0 AS LDA @+A Direct

1 O 1 AtS+X LDA @+A, 1 Indexed

1 1 0 I(AtS) LDA @+A, * Indirect

1 1 i I(AtS+X) LDA @+A, 1* Indirect, preindexed

3 1 1 I(AtS)+X

~~

LDA @+A, *1 Indirect, postindexed

NOTE:

S = Contents of stack register.

Stack Postincrement, Predecrement: These classes use the stack

pointer as the address displacement, and perform an auxiliary post-

increment or predecrement of the pointer, Instructions using these

address methods are always l-word instructions, even those such as

DFLD that are normally two-word instructions. The I and X bits are

interpreted as follows:

Class Bits Auxiliary Assembler

15, 16 I X EA Action Notation Type

2 00 S S+l + S LDA @+ Postincrement

2 0 1 I(S)+X Stl+S LDA @+,1 Postincrement,
indirect, post-
indexed

2 1 0 I(S) St1 > S LDA @+, * Postincrement ,
| indirect

3 00 Sl S155 LDA -@ Predecrement,

3 0 1 I(S-1)+X S-1 +5 LDA -@,1 Predecrement,
indirect, post-
indexed

3 1 0 I(S-1) S-1>+5 LDA -@, * Predecrement,
indirect

w
a I
~

w
t

In 64R mode, address calculation is complete after the first level of

indirection. In 32R mode, further indirect cycles proceed if the

indirect word I bit is set.

Push-Pop: Classes 2 and 3 provide the basic implementation of the

push-pop stack. If the stack is regarded as made up of locations

N, N+l, N+2,... and it is assumed that S always points to the next

open location, then class 2 is push and class 3 is pop. On the other

hand, if the stack is viewed as locations N, N -1, N -2,... and S

always points to the last filled location, then class 3 is push and
class 2 is pop.

3-16

SECTION 4

STANDARD INSTRUCTION SET

This section describes the computer instructions that are implemented

in all Prime central processors.

For easy reference, all instruction descriptions are presented in the

following format: mnemonic and instruction name at top left and

octal op code at top right, over a diagram of the binary word(s) into

which the mmemonic is assembled by the Macro Assembler:

Mnemonic Description Octal op code

LDA Load A '02

I} x}o0 0 1 O|}S D

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

For extended instructions, the octal code of the op code extension

in bits 13-14 appears below the octal op code:

ENTR Enter Recursive Procedure Stack | "Ol

W r}/xl|o o 1 0 f1 1 =O 0 0 Oj}; 1 1] Class

1235 4 5 6 7 8 9 10 11 12 13 14 15 16

W+l

4-1

The following abbreviations are used in instruction words to indicate

variable information:

I Indirect Addressing Bit
X Indexed Addressing Bit
S Sector Bit
D Address Displacement (Single-word instructions)

A Full Word Address (Two-word instructions)

Class Extended Addressing Class Code

ADDRESS MODE SELECTION

The following instructions alter the current addressing mode. See

'Memory Addressing Techniques' for detailed information on effective

address formation, indexing, and indirect addressing in each mode.

E16S Enter 16K Sectored Mode "000011

0 0 0 0 0 0 0.0 0 0 0 0 1 0 0 #1

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

In subsequent effective address calculations, use absolute sectors

with 0<D«<'777 and interpret address words this way:

I X 14-BIT ADDRESS

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Indexing may be performed before or after indirect references.

E32S Enter. 32K Sectored Mode ‘9000013

0 0 0 0 0 00 0 0 0 0 0 1 0 1 +21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4-2

In subsequent effective address calculations, use absolute

sectors with 0 <D <'777, use postindexing when S = 1 or D >'100

and S = 0, and interpret address word this way:

I 15-BIT ADDRESS

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E32R Enter 32K Relative Mode *001013

0 0 0 0 00 1 0 0 0 0 0 1 0 1 ~=21

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

In subsequent effective address calculations if S = 0 proceed as in
32S mode; if S = 1, interpret D field as 2's complement number to
determine type of addressing:

D Field Addressing Type

-240 to +255 Procedure Relative

-256 to -241 Extended Addressing:

Long Reach (two word)
Stack Relative (two word)
Stack Post-Increment
Stack Pre-Decrement

(See 'Memory Addressing Techniques' for details.) Interpret
indirect address words this way:

15-BIT ADDRESS

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E64R Enter 64K Relative Mode 001011

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4-3

In subsequent effective address calculations, proceed as in [52R

mode but interpret indirect address words this way:

16-BIT ADDRESS

CONTROL INSTRUCTIONS

Here are several miscellaneous control instructions and those

associated with parity errors and the status keys.

HLT Halt "000000

 0 0 0 0 0 0 0 0 0 0 0 40

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Halt the processor with the STOP indicator lit on the control panel

and P pointing to the next instruction in sequence (the instruction

that would have been executed had the HLT been replaced by a no-op).

The data lights display the next instruction, and the address lights

display the instruction OTA'1720. (This latter instruction is part

of the control panel micro-routine; turning the function switch to

any of the right five positions displays P instead.)

NOP No Operation "000001

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

3 4 5 6 7 8 9 10 11 12 13 14 15 16

Do nothing but go on to the next instruction.

SCB Set C Bit : "140600

0 0 1 1 0 0 0 0 0 0 0

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Set C.

4-4

RCB Reset C Bit '140200

nf nm

U U
n n

G (0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 #15 16

a Q
S

4 o
o

>
)

i
)

fa
n)

c pe
d

c & ©

Reset C.

SVC Supervisor Call *000505

0 0 0 0 0 0 0 1 0 1 0 0 01 0 4

‘ 10 11 12 13 14 #15 #16

— n
N

W = w
n

o
O

| o
o

©

Place the CPU in 16S mode and generate an interrupt through location
"65.

To understand the actual implications of this instruction, the
reader must be familiar with the interrupt.

CEA Compute Effective Address "000111

0 0 0 0 0 0 0 00 1 0 0 21 0 0 1

4 5 6 7 8 9 10 11 12 13 14 15 16

Calculate the effective address indicated by the contents of A inter-
preted as an address word in the current addressing mode, and place
the result in A.

LOAD AND STORE INSTRUCTIONS

There are five instructions for moving data between memory and the A
' and the index registers.

LDA Load A "02

I}/X}/0 0 1 Offs D
123 4 5 6 7 8 9 10 11 12 13 14 15 16

Load the contents of location EA into A. The contents of FA ar:
unaffected, the previous contents of EA are lost.

4-5

"04

STA

I S D
] l l l i l

1 7 8 9 10 11 12 13 14 15 16

Store the contents of A in location EA. The contents of A are

unaffected, the previous contents of EA are lost.

IMA Interchange Memory and A "13

I S D
i i i L j l

1 7 8 9 10 11 12 13 14 15 16

Store the contents of A in location EA and load the original contents

of location EA into A.

LDX Load Index Register "35

I S 7 D
l l j I j i

1 7 8 9 10 11 12 13 14 15 16

Load the contents of location EA into the index register. The

contents of EA are unaffected, the previous contents of the index

register are lost. This instruction cannot itself specify indexing,

although an address word retrieved in the effective address

calculation may do so.

STX Store Index Register "15

I/0 1 170 1 =5 “ D
] i] 1 i j i j j i

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Store the contents of the index register in location EA. The

contents of the index register are unaffected and the previous

contents of EA are lost. This instruction cannot itself specify

indexing, although an address word retrieved in the effective

address calculation may do so.

4-6

JUMP INSTRUCTIONS

Iwo instructions allow the programmer to alter the normal program

sequence by jumping to a location calculated from the LA.

JMP Jump "O]

D

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

6 = = j
p N

Load EA into P. Take the next instruction from location FA and

continue sequential operation from there.

JST Jump and Store "10

 rilxl1 00 o|s D

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Store a return address (the next address to be executed) in location

EA. I£ the current instruction is a single-word instruction, store

P+] in location EA; if the current instruction is a double-word

instruction, store P+2 in EA. Hence, location EA receives the

address of the next executable location following the JST instruction.

Load EA+1 (or EA+2) into P. Take the next instruction from location

EA+1] (or EA+2) and continue sequential operation from there.

Interrupts are inhibited for one instruction time following a JST.

The return address is truncated according to the addressing mode

before it is stored, and higher-order bits of the memory location

are not altered. It is thus possible to preset the I or X bits of

such locations:

Mode Preset Allowed

16S | I, X

325, 32R I

64R -

The usual procedure for calling a subroutine is to use a JST with an

effective address that specifies the subroutine's starting location.

Since P+l (or P+2) is saved attheentry point, a subsequent return

can be made to the instruction following the JST by an indirect JMP

through the entry point.

4-7

SKIP INSTRUCTIONS

This group of instructions includes the entire skip group plus three

instructions that increment or decrement a number and test the result,

and two that compare one number with another. All instructions in

the skip group have op codes beginning with 100000 in bits 1-6,

whereas each of the other sets includes a memory reference instruc-

tion and instructions having op codes beginning with 110000.

Increment and Decrement

These instructions allow the program to keep a count in a memory

location and to count the contents of the index register up cr down.

The skip test is always for a zero result. The instructions are used

to count loop iterations or successively to modify a word for a

series of operations.

IRS Increment Memory, Replace, and Skip "12

X 1 O]1 0 8S | D
i L i l i j l l l i

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Add 1 to the contents of location EA and place the result back in EA.

Skip the next instruction in sequence if the result is zero.

IRX Increment and Replace Index "140114

 if1,0,0]{0,0,0 fo ,o ,i1f0,0,1}41,0,0
12 35 4 5 6 7 8&8 9 10 11 12 13 14 15 16

Add 1 to the contents of the presently selected index register and

place the result back in that register. Skip the next instruction

in sequence if the result is zero.

DRX Decrement and Replace Index "140210

1/1 0 0f0 0 o0f0 1 04/0. 0 1);0 0 ; 0

l

12 3 4 5 6 7 8 9.10 11 12 13 14 15 16

Subtract 1 from the contents of the presently selected index register

and place the result back in that register. Skip the next instruction

in sequence if the result is zero.

4-8

Compare

These two instructions do an algebraic comparison of the number in

A with zero or a number in memory. They use a three-way test to

allow skipping one or two locations as well as not skipping at all.

CAS Compare A and Skip "11

1;7X 1 070 1 S D

L l l l i] J] j }

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Compare the contents of A algebraically with the contents of location

EA and act on the result as follows: if A is greater, go on to the

next instruction in normal sequence; if the two are equal, skip the

next instruction in sequence; if A is less, skip the next two
instructions in sequence.

CAZ Compare A with Zero "140214

1/1 0 0/f70 0 89140 1 070 0 17212 0 40

12 3 4 5 67 8 9 10 11 12 13 14 15 16

Compare the contents of A (fixed or floating) algebraically with

zero and act on the result as follows: if A > 0, execute the next

instruction in sequence; if A = 0, skip the next instruction in |

sequence; if A < 0, skip the next two instructions in sequence.

Skip Group

This group includes a number of miscellaneous skip instructions and

also a combining set wherein skip conditions are selected by

individual bits that may be combined to select several conditions

at once. Bits 1-6 of all instructions are 100000. A 0 in bit 9

indicates the combining set, with individual conditions selected

by ls in bits 8 and 10-16. Bit 7 determines whether the condition

is as given or is inverted; i.e., a 1 in bit 7 indicates the

condition is that specified by the remaining bits (any of those

specified in the combining set), whereas a 0 indicates the condition

is opposite that specified (equivalent in the combining set to none

of the specified conditions being satisfied). Any instruction can

be given using the memonic SKP (which assembles as 100000) and

giving the bit 7-16 configuration in the address field.

4-9

Combination Skip

Alé SS1 SS2]SS3 S54. C
1} O 0 CY OO ANYASO C0 cer Af cor seT|SET SET, SET
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Skip the next instruction in sequence if bit 7 is 1 and any of the
conditions specified by ls in bits 8 and 10-16 is satisfied, or if
bit 7 is 0 and none of the conditions specified by ls in bits 8 and
10-16 is satisfied. (The conditions listed in the format box are
those selected by Is.) The various conditions, the bits that select
them, and the mnemonics and op codes for them are as follows:

Selector

Mnemonic Bits Bit 7 Skip on Condition OpCode

NOP 1 Non (no-op) "101000
SkP 0 Skip unconditionally "100000
SMI 8 1 A Minus (Aj = 1) '101400
SPL 8 G A Plus (Aj = 0) "100400
SLN 10 0 LSB Nonzero (Ay6 = 1) "101100
SLz 10) LSB Zero (Aj¢g = 0) "100100
SNZ 11 1 A Nonzero 101640
SZE ll 0 A Zero ‘100040
SS1 12 1 Sense Switch 1 Set '101020
SR1 12 0 Sense Switch 1 Reset ‘100020
SS2 13 1 Sense Switch 2 Set "101010
SR2 13 0 Sense Switch 2 Reset "100010
SS3 14 1 Sense Switch 3 Set "101004
SR3 4 °* 0 Sense Switch 3 Reset '100004'
SS4 1 1 Sense Switch 4 Set "101002
SR4 15 0 Sense Switch 4 Reset '100002
SSS 12-15 1 Any of Sense Switches

1-4 Set "101036

SSR 12-15 0 Any of Sense Switches
1-4 Reset "100036

SSC 16 1 Set C "101001
SRC 16 0 Reset C "100001

Skip conditions can be combined using SKP and giving the bit 7-16
configuration for the combination in the address field.

4-10

SGT Skip if A Greater Than Zero ‘100220

ijo o ofo0 0 of0 1 Of0 1 O0}]0 0 9
l L j L L I j l

i123 4 5 6 7 8 9 10 11 12 13 14 15 16

If the number contained in A (fixed or floating) is greater than

zero, skip the nextinstruction in sequence.

SLE Skip if A Less Than or Equal to Zero "101220

1 0, 0} 0,0,1]40,1, 0 0,1, 0; 0,0, 0

1 3 5. 6OhUW7~COSC 9 «(0 Ss 12 «13s 14 15 «16

If the number contained in A (fixed or floating) is less than or

equal to zero, skip the next instruction in sequence.

SASn. Skip on A Bit Set '10126-
'10127-

1 0 0 0 0 1 0 1 1 N-1

123 4 5 6 7 8 9 10 ll 12 13 14 15 16

If A bit n is 1, skip the next instructi

Note:

an
WL

The assembler will convert n to the octal equivalent of the

bit number minus one. |

SARn Skip on A Bit Reset '10026-
'10027-

0 0 0 0 1 0 1 1 N-1

2 4 6 7 8 9 10 11 12 13 14 15 16

If A bit n is 0, skip the next instruction in sequence.

Note: The assembler will convert n to octal equivalent of the

bit number minus one.

4-11

SNSn. Skip on Sense Switch Set '10124-
'10125-

1 0 0 0 0 0 1 0 1 0 1 =«90 N-1

123 4 5 6 7 8 9 10 11 12 13 144 15 16

If sense switch n is on (up), skip the next instruction in
sequence.

SNRn Skip on Sense Switch Reset '10024-
'10025-

1 0 0 0 0 0 0 0 1 0 1 =0 N-1

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If sense switch n is off (not up), skip the next instruction in
sequence.

Summary of Sense Switch and Bit Test Instruction Op Codes

SNS 1 - 101240 SNR 1 - 100240
SNS 2 - 101241 SNR 2 - 100241
SNS 3 - 101242 SNR 3 - 100242
SNS 4 - 101243 SNR 4 - 100243
SNS 5 - 101244 SNR 5 - 100244
SNS 6 - 101245 SNR 6 - 100245
SNS 7 - 101246 SNR 7 - 100246
SNS 8 - 101247 SNR 8 - 100247
SNS 9 - 101250 SNR 9 - 100250
SNS10 = 101251 SNR10 - 100251
SNS11 - 101252 SNR11 - 100252
SNS12 - 101253 SNR12 - 100253
SNS13 - 101254 SNR13 - 100254
SNS14 - 101255 SNR14 - 100255
SNS15 - 101256 SNR15 - 100256
SNS16 - 101257 SNR16 - 100257

SAS 1 - 101260 SAR 1 -- 100260
SAS 2 - 101261 SAR 2 - 100261
SAS 3 - 101262 SAR 3 - 100262
SAS 4 - 101263 SAR 4 - 100263
SAS 5 - 101264 SAR 5 - 100264
SAS 6 - 101265 SAR 6 - 100265
SAS 7 - 101266 SAR 7 - 100266
SAS 8 - 101267 SAR 8 - 100267
SAS 9 - 101270 SAR 9 - 100270
SAS10 - 101271 SAR10 - 100271
SAS11 - 101272 SAR11 - 100272
SAS12 - 101273 SAR12 - 100273
SAS13 - 101274 SAR13 - 100274
SAS14 - 101275 SAR14 - 100275
SAS15 - 101276 SARI5 - 100276
SAS16 - 101277 SARI6 - 100277

4-12

NOTE

The SMCS and SMCR skip instructions are
tm

described under 'Machine Check".

REGISTER OPERATE

These instructions are simply for clearing the A and B registers and

moving data between then. :

CRA Clear A "140040

1/1 0 0f/0 0 0 f0 0 O0};1 0 O0f70 0 0

I i l l | I I Ij L] .

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Change the contents of A to all 0s.

CRB Clear B "140014

 1}/1.0,0]{0,0,0]{0 ,0,0]{0,0,1 41 ,0 ,0

3 4 5 6 7 8&8 9 10 11 12 13 14 15 16

Change the contents of B to all 0s.

CRL Clear Long "140010

 1/1 0 0/70 0 0,0 0 O0;0 0 1470 O 0
ll 1 i L i i j j

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Clear A and B.

IAB Interchange A and B "000201

070 ,0,0;0 ,0 0 70 IF, O0F;0,0,0]70 90,1

l l i. l 1 l L L lL

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Move the contents of A to B and the contents of B to A.

4-13

XCA Transfer and Clear A "140104

040 0 170 0 0471 0 0
L I I t i i

7 8 9 10 11 #12 #13 14 #15 16

Move the contents of A to B and clear A. The original contents of

B are lost.

XCB Transfer and Clear B "140204

1 070 1 O07 0 0 071 0 0
1 I I I i i

1 7 8 9 10 11 12 13 14 15 16

Move the contents of B to A and clear B. The original contents of
A are lost.

BYTE MANIPULATION

These instructions are for manipulating half words in A. They are
useful for handling ASCII characters, 8-bit data bytes packed two to
a word in memory, tables where half of each table location is used
for the entry and the other half for a label, etc.

CAL Clear A Left "141050

1,.0,0;7;0 0 1/0 0 0; 1 0 170 0 0

I i l j 1 J j l 1 I

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Clear A bits 1-8 without affecting bits 9-16.

CAR Clear A Right "141044

1 1{o 0 ,of1,0,0]f1 0 0
1 7 8 9 10 11 12 13 14 «15 16

Clear A bits 9-16 without affecting bits 1-8.

4-14

ICA Interchange A "141346

1 0 of0 0 1 f70 1 1 f1 0 CC [0 ODO G
i i L L. I l 4 l

1 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Interchange the two halves of A (move the contents of bits 1-8
to bits 9-16 and the contents of bits 9-16 to bits 1-8).

ICL Interchange and Clear Left "141140

1/1 0 0/0 0 170 0 171 0 04f70 O 0
L tL A j j I j i l l

12 3 4 5 6 7 8 9 10 J1 12 13 14 15 16

Move the contents of A bits 1-8 to bits 9-16 and clear bits 1-8.

The original contents of bits 9-16 are lost.

"141240ICR Interchange and Clear Right

>1} 1 6 O07; 0 O 1,6 1 OF 1 O 0 0 0
] 1 L | i L 1 l

i123 4 5 6 7 8 9 10 ii 12 135 14 i5 16

Move the contents of A bits 9-16 to bits 1-8 and clear bits 9-16.
The original contents of bits 1-8 are lost.

»

SHIFT GROUP

Shifting is the movement of the contents of a register bit-to-bit.
The instructions in this group shift or rotate right or left the
contents of A or the contents of A and B treated as a single register
with A on the left. Although these instructions are similar in
format and operation, functionally some are logical and others
arithmetic, so they also belong to one or the other of the categories
discussed in the next two sections.

A shift is logical or arithmetic simply in terms of the way the data
word is interpreted: a logical shift treats it as a logical word,
whereas an arithmetic shift treats it as a signed number. Ina
logical shift, the contents of the register or registers are moved
bit-to-bit with 0s brought in at the end being vacated and information
shifted out at the other end is lost. Rotation is a cyclic shift
such that information rotated out at one end is put back in at the
other.

4-15

A right arithmetic shift fills the vacated left positions with the
contents cf the sign bit and does not change the sign. A left
arithmetic shift includes the sign (A bit 1 only - B bit 1 is left
out), but interprets a sign change as overflow and fills the
vacated right positions with 0's. Hence, arithmetic shifting is
equivalent to multiplying the number by a power of 2 provided
no information is lost. These operations also use the C bit to
detect the loss of any bit of significance in a left arithmetic
shift, and in all other cases to save the last bit shifted out.

In a shift instruction word, bits 3-6 are all 0's and the group is
indicated by 01 in bits 1 and 2. Bits 7-10 indicate the particular
type of shift, and bits 11-16 specify the twos complement of the
number of places to be shifted. Mnemonics are available for the
individual types, so the op code may be regarded as the left four
digits of the instruction word, with the word completed by adding
the right the right two digits for the number of places. Note that
the mnemonics are constructed using "logical" to mean a logical
shift and "shift'' to mean specifically an arithmetic shift.

ALL/LGL A Left Logical "0414

0 1 0 0 0 0 21 1 0 #0 -N

12 3 4 5 6 7 8 9 10 11 12 13 14 15 126

Shift the contents of A left N places, bringing 0s into bit 16;
data shifted out of bit 1 is lost, except that the last bit shifted
out is saved in C.

cC+—A, -- Aig +— 0

Note: The assembler recognizes ALL and LGL as equivalent.

ARL/LGR A Right Logical "0404

0 1 0 909 0 0 0 1 0 0 -N
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Shift the contents of A right N places, bring 0s into bit 1; data
shifted out of bit 16 is lost, except that the last bit shifted out
is saved in C.

4-16

O ——» A, -- Ayg —» ©

Note: The assembler recognizes ARI and LGR as equivalent.

LLL Long Left Logical "0410

0 1 0 0 0 0 1 0 0 9 -N

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Shift the contents of A and B left N places, bringing 0s into A

bit 16; B bit 16; B bit 1 is shifted into A bit 16; data shifted

out of A bit 1 is lost, except that the last bit shifted out is

saved in C.

Cw—— A} -- Aig #+——_ 8] -- B16 0

LRL Long Right Logical "0400

0 10 0 0 0 0 0 0 0 -N

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

the contents of A and B right N places, bringing 0s into

1; A bit 16 is shifted into B bit 1; data shifted out of

16 is lost, except that the last bit shifted out 1s saved in C.

0 ——wA, -- Ajg——*8] -- Big—— ©

ALR A Left Rotate "0416

 0 1 0 0 0 0 1 1 21 ~=«90 -N

5 6 7 8 9 10 11 12 13 14 15 16

Shift the contents of A left N places, rotating bit 1 into bit 16.

The last bit rotated back in at the right is also saved in C.

La, -- get ¢

4-17

ARR ‘A Right Rotate "040€

1 0 0 0 0 0 1 1 0 -N

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Shift the contents of A right N places, rotating bit 16 into bit 1.
The last bit rotated back in at the left is also saved in C.

cat, Ay -- A16 —

LLR Long Left Rotate "0412

0 1 0 1 £90 -N

2 3 4 5 6 7 8 9 10 Jl 12 13 14 15 16

Shift the contents of A and B left N places, rotating A bit 1 into
B bit 16; B bit 1 is shifted into A bit 16. The last bit rotated
from A back to B is also saved in C.

 Loa -- Al6 =«— B, -- Byé6 «!_»

LRR Long Right Rotate "0402

0 1 0 .0 0 0 0 0 1 0 -N .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 #15 16

Shift the contents of A and B right N places, rotating B bit 16 into
A bit 1; A bit 16 is shifted into B bit 1. The last bit rotated
from B back to A is also saved in C.

catea, ~- Ajg6——>B] -- B16 —

ALS A Left Shift "0415

0 1 0 0 0 0 1 21 0 21 -N

12 3 4 5 6 7 8 9 10 11 12 13 14 #15 16

Shift the contents of A left arithmetically N places, bringing 0s
into bit 16; data shifted out of bit 1 is lost. If the sign (bit 1)
changes state, set C; otherwise reset it. A sign change indicates that
a bit of significance (a 1 in a positive number, a 0 in a negative)
has been shifted out of the magnitude part.

4-18

ARS A Right Shift "0405

0 10 00 0010 21 -N

12 34 5 6 7 8 9 10 11 12 13 14 15 16

Shift the contents of A right arithmetically N places, leaving

the sign (bit 1) unaffected, but shifting it into the magnitude

part (0s in a positive number, ls in a negative); data shifted

out of bit 16 is lost, except that the last bit shifted out is saved

in C.

Latea, -- Aig ——>¢
1

LLS Long Left Shift "0411

0 1 0 0 0 0 1 0 0 1 -N

123 4 5 6 7 8 9 10 11 12 13 14 15 16

Shift the contents of A and B left arithmetically N places, bringing

0s into B bit 16 and bypassing B bit 1; B bit 2 is shifted in A bit

16; data shifted out of A bit 1 is lost. If the sign (A bit 1)

changes state, set C; otherwise reset it. A sign change indicates

that a bit of significance (a 1 in a positive number, a 0 in a

negative) has been shifted out of the magnitude part.

LRS Long Right Shift "0401

0 1 0 00 0 060 0 0 1 | -N

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Shift the contents of A and B right arithmetically N places, leaving
A bit 1 unaffected and bypassing B bit 1, but shifting the sign
(A bit 1) into the magnitude part (0s in a positive number, 1s in a
negative); A bit 16 is shifted into B bit 2; data shifted out of B
bit 16 is lost, except that the last bit shifted out is saved in C.

4-19

 La —> A, -- hie—3,

be

B -- Bi6-—~ C
1 1

LOGIC

Besides the logical shift and rotate instructions described in the

preceding section, the Prime 200 repertoire includes instructions

for performing the complement, AND, and exclusive OR functions (the

latter two being memory reference), and a group of instructions that

'logicize" numbers. A number is logicized by replacing it with a

truth value that indicates the result of a comparison between the

number and zero.

CMA Complement A "140401

14/1 0 oOof0 0 O0f1 0 O07; 0, 0 . 07; 0 O ; 1
] I i i j 1 j l

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Form the (logical) complement of th contents of A in A (replace all

ls in A with 0s, all 0s with ls).

ANA And to A "03

r}x}]o0 0-1 11g D |

i125 4 5 6 7 8 9 10 11 12 13 14 I5 16

Form the AND function of the contents of location EA with the

contents of A and place the result in A. A given bit of the result

is 1 if the corresponding bits of both operands are 1; otherwise the

resulting bit is 0.

A Bit © _ Memory Bit Resulting Bit

0 8) 0

0 1 0

1 0 0

1 1 1

4-20

ERA Exclusive Or to A "05

 I; xX}o 1 0 1385 D

12 3 4 5 6 7 8 9 10 ll 12 13 14 15 16

Form the exclusive OR function of the contents of location EA with the

contents of A and place the result in A. A given bit of the result

is 1 if the corresponding bits of the operands differ; otherwise the

resulting bit is 0.

A Bit Memory Bit Resulting Bit

0 0 0
0 1 1
1 0 1
1 1 0

Logicize Group

Logicize "14041 -

1 ,0,070,0 ,0 {1 ,0,9 0,0 1 _cf,

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4-21

If the number in A satisfies the condition C, replace it with 1;
i.e., with a 1 in bit 16 and Os elsewhere; otherwise clear A. The
conditions selected by bits 14-16 and the memonics and op codes for
them are as follows:

Mnemonic Bits 14-16 Condition Op Code

LLT 0 <0 "140410
LLE 1 <0 "140411
LNE 2 #0 "140412
LEQ 3 =0 "140413
LGE 4 20 "140414
LGT 5 >0 "140415
LF 6 False* "140416
LT 7 True* "140417

*These two instructions do not specify any condition:
LF and LT simply set A to the truth values 0 and 1
respectively.

FIXED POINT ARITHMETIC

The computer has memory reference instructions for performing
addition, subtraction, multiplication and division of numbers in
fixed point format [Appendix C]. The add and subtract instructions
can operate on either single length or double length nunbers.

Besides the instructions for the basic operations and the arithmetic
shift instructions, there are also instructions for manipulating signs
incrementing and decrementing numbers, negating, manipulating
operands to allow multiplication and division using single length
integers exclusively, and even instructions for facilitating floating
point arithmetic. With many of the instructions, the C bit detects
overflow; i.e., the condition where the magnitude of a number is
larger than can be accommodated. In division C indicates when the
division process cannot generate a meaningful result.

ADD Add. "06

TI} X}/0 1 1 OFS D
1 2 3 4 5 6 7 8 9 30 il 12 13 i4 15 16

Add the contents of memory location EA to the contents of A and place
the result in A. If the sum is >215 or <-215, set C; otherwise
reset it. In the first overflow case, the result has a minus sign
but a magnitude in positive form equal to the sum less 215; in the
second the result has a plus Sign but a magnitude in negative form
equal to the sum plus 215,

4-22

SUB Subtract "07

I X 0 1 1 1 i) D

1 2 3 4 5 6 7 8 9 10 11 12 13 14 #15 16

Subtract the contents of location EA from the contents of A and
place the result in A.
otherwise reset it.

minus sign but
less 215

o
da

; in the second the result has a plus si
in negative form equal to the difference plus 215.

If the difference is >215 or <-215, set C;
In the first overflow case, the result has a

magnitude in positive form equal to the difference
gn but a magnitude

TCA Twos Complement A "140407

1};1,0,0;0,0 ,0 41 ,0 ,0}0,0,0)f1 ,i,1

12 3%4 5 6 7 8 9 10 11 12 13 14 15 16

Form the twos complement negative of the contents of A in A.
number produced by negation, negated is 0-215
result of -215; otherwise reset C.

If the
, set C and give a

AOA/AITA Add One to A "141206

1}/1 0 O0f0 0 140 1 Of0 60 O}f1 1 0
jl jt jt | | l

123 4 5 6 7 8 9 10 11 12 13 14 15 16

Add 1 to the contents of A and place the result in A. the number
incremented is 215-1, set C and give a result of -215; otherwise
reset C.

Note: The assembler recognizes the memonic AlA as equivalent to
AOA.

A2A Add 2 to A "140304

1f1,0,070,0 070 ,1,170,0,0)]1 0 , 20

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Add 2 to the contents of A in A.
or 215
reset C.

If the number incremented is 215-2
-1, set C and give a result of -215 or -(215-1); otherwise

SOA/S1A Subtract One from A "140110

1}/1,0,0 {0,0 ,0 jo ,o ,1}0 ,0 ,0f1 0 0

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Subtract 1 from the contents of A in A.

is -215, set C and give a result of 215

Note:

SOA.

S2A Subtract 2 from A

If the number decremented

-1; otherwise reset C.

The assembler recomizes the memonic S1A as equivalent to

"140310

0

L.
1 1

0 0 1

0 0 0

1

Subtract 2 from the contents of A in A.

8

If th

j

9 10 11 12 13 14 15 16

fsumber decremented is

-(215-1) or -215, set C and give a result of 245-1 or 215-2;

otherwise reset C.

ACA Add C to A "141216

1] 1 ofo o 170 1 Of O O- 171 =+21~ 0
j 1 1 L l i i l i L

123 4 5 6 7 8 9 10 11 12 13 14 15 16

Add the contents of C to the contents of A in A (C is taken as being
If the numberof the same order of magnitude as A bit 16).

originally in A is 215-1, set C and give a result of -2!5; otherwise
clear C.

SSP Set Sign Plus "140100

1f2,0,0}f0,0,0 Jo 0 1] ,0,0]f0 0 0
1 2 3 4 5 6 7 8 9 410 11 12 13 14 #15 16

Reset A bit 1 to zero without affecting the rest of the register.

SSM Set Sign Minus "140500

1/1 0 of;0 0 Of71 0 14/0 0 070 0 0
1 l i L i | i 1 i l

1 2 3 4 5 6 7 8 9 10 Ji 12 13 14 15 16

Set A bit 1 to one without affecting the rest of the register.

4-24

CHS Change Sign "140624

 1{1,0,0 {0,0 ,0 {0 ,0,0]/0,1,0] 1, 0 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Complement A bit 1 without affecting the rest of the register.

CSA Copy Sign of A | "140320

1/1.0.0]0 0 0 j;0 12 17,0 1 G6 {0 O 0

] i l 1 j j I A. __f j

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Make C equal to A bit 1, and reset A bit 1 (plus) without affecting
the rest of the register.

Double Precision Mode

Single-precision mode is the normal CPU state after a power-on or
master clear. The ADD, SUB, LDA and STA instructions operate as
described above. Also available is an optional double-precision
mode in which these operations act on double-word operands, with
the B register serving as an extension of the A register. Double
precision arithmetic, along with high-speed hardware multiply
divide, is described in Section 5.

If double precision mode is selected in a CPU without the option, a
UII interrupt results whenever an ADD, SUB, LDA or STA instruction
is encountered. The MPY, DIV, PIM and PID instructions cause a UII
interrupt in either mode. (See Section 3.) Because of the UII
handling features of the assembler and linking loader, the user can
use any of these instructions as though the option were present.
During loading, the appropriate subroutines from the UII library are
added to the program automatically. When such an instruction is
encountered, a UII interrupt through location '66 directs the CPU to
a UII library subroutine that emulates the unimplemented instruction
using instructions of the standard set.

DBL Double Precision 000007

010 0 0/0 0 0f0 0 O70 0 O71 1 1
j { i L i I i L 1 L

1 2 3 4 5 6 7 8 9 10 11 12 13 14 #15 16

Enter double precision mode so that subsequently every LDA, STA, ADD
or SUB instruction handles double length operands (i.e., is executed
respectively as a DLD, DST, DAD or DSB as described in Section).

A-25

SGL Single Precision "000005

010 0 0,0 0 070 0 0 };0 0 0f1 0 0
1 i l j l i j I j L

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Return to single precision mode so that subsequently any LDA, STA,
ADD or SUB instruction handles single precision operands.

Normalize

In order to prevent excessive information loss, it is necessary to
adopt a consistent procedure for keeping floating point numbers in
a normal form. The usual procedure is to make the fractions as large
as possible, thus keeping the exponents as small as possible. The
processor has these two instructions to facilitate the manipulation
of floating point numbers in normal form.

NRM Normalize "000101

07170 0 0 ;70 0 070 0 3170 0 070 O 1
l I l l i l i l i 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Shift the contents of A and B left arithmetically, bringing 0s into
B bit 16, bypassing B bit 1, leaving A bit 1 unaffected, and dropping
bits out of A bit 2, until A bit 2 is in the state opposite that of

Since the only data shifted out of A bit 2 is equal to theA bit 1.
Sign, no information is lost.
in location 6 (the previous contents of location 6 are lost).

Place the number of shifts performed

SCA Load Shift Count into A "000041

0o;0 O O70 OO 0 f0 OO OF1 O0 OF0 OO J
L l i L l I I I l i

1 2 3 4 5 6 7 8 9 10 Il 12 13 14 #15 16

Load the contents of bits 9-16 of location 6 into A bits 9-16 and
clear A bits 1-8.

By shifting until bit 2 differs from the sign, normalization produces
a fraction in the range 1/2 to (1-LSB) or -(1/2 + LSB) to -l.
Saving the number of shifts allows the program to determine any
change in the order of magnitude of a result due to a fixed point
operation on the fractions of floating point operands. The program
can then use the information stored in location 6 to adjust the
exponent. Finally, the result is put in proper format by shifting
the fraction to the correct pcsition and inserting the exponent in the
high order word.

4-26

ws ere rer.

STATUS KEYS

In order that the program be able to determine which register is
being used for indexing, what the currently specified size of the
address space is, what the present type of addressing is, and so
forth, a number of internal machine conditions, referred to as ''keys",
are available in a status word that can be read by the program. The
format of this key word is as follows:

C Double nfode>8 Bits 9-16 of Location 6

12 3 4 5 6 7 8 9 10 11 12 13 14 #15 16

The state of C.
Q - Single precision, 1 - Double precision.

4 Reserved
-6 The current addressing mode as follows:M

W
N
W
N
e

’

00 16K Sectored
01 32K Sectored
11 32K Relative
10 64K Relative

— = SS am ae UR ~ _ sate 9Note that a 1 in bit 5 indicates relative mode, a
1 in bit 6 indicates a 32K addressing. space.

7-8 Reserved
9-16 Bits 9-16 of location 6, which may contain a

normalize shift count.

Not only can the program read the above information, but it can also
set up the machine state according to a similar key word supplied by
the program, @.g., giving a key word with a 1 in bit 2 places the
arithmetic logic in double-precision mode; giving the word with a 0
in bit 2 limits the basic arithmetic operations to single-precision.

The processor has two instructions for reading and setting up the
keys. The principle use of these instructions is for saving and
restoring the keys in conjunction with program interrupts. Before
doing its own operations, an interrupt service routine should save
any parts of the register file it will use and should save the keys
if it is going to make any change in the modes of operation. After
completing its own task, the routine should restore the original
machine state before returning to the interrupted program.

4-27

INK Input Keys "000043

070 0 070 0 070 0 071 0 070 1 =«221
1 I A. j L I I i j i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Read the key word defined above into A.

OTK Output Keys "000405

070 0 0;0 0 0 f,1 0 070 0 0471 0 1
J I 4 l 1 j i l L 1

123 4 5 6 7 8 9 10 11 12 13 14 15 16

Set up C and the various machine modes according to A bits 1-6 as
defined by the key word given above, and load A bits 9-16 into bits
9-16 of location 6 (shift counter). Clear bits 1-8 of location 6.

4-28

SECTION 5

STANDARD INPUT/OUTPUT

This section describes the standard input/output functions common
to all Prime CPU's: programmed input/output, vectored and
compatible interrupts, and Direct Memory Access (DMA). Optional
features such as Direct Memory Channels (DMC) and Direct Memory
Transfers (DMI) are described in Section 6.

PROGRAMMED INPUT/OUTPUT

Instructions in the I/O class govern the transfer of data to and
from the peripheral equipment, and also perform some functions in
the processor. The class comprises four types of instructions for
sending control pulses out to a device, testing conditions in a
device for a skip, and moving data or other information out to a
device or in from it. An instruction in the I/O class is designated
by 1100 in bits 3-6, and the type is indicated by bits 1 and 2;
hence the four types of I/O instructions have op codes '14, '34, '54
and '74, Bits 7-10 specify the particular function the instruction
is to perform, and bits 11-16 select the device that is to respond
to the instruction. The format thus allows sixty-four codes for
addressing devices ('00-'77) and sixteen for specifying functions
('00-'77) that a given type of I/O instruction can perform using
the addressed device.

Device code '20 is used for commmication with the control panel and
for controlling interrupts and the real time clock. The other. sixty-
three codes are available for external devices, but many are assigned
to standard equipment.

The meanings of the function codes differ with the type of instruction
and the type of device, although some are common to all devices. With
the control type of instruction, the function code 00 usually "turns
on'' or ''starts' the device (with whatever meaning that term may have
vis-a-vis the particular device), and code '17 initializes the device,
making it ready for use. An I/O skip instruction invariably uses
function code 00 to determine whether a device is ready and code '04.
to determine whether it is requesting an interrupt. The data
instructions, in and out, generally use code 00 specifically for
real data - as against moving control information, word counts,
addresses, or status. A table in Appendix lists all devices for
which device codes have been assigned, and lists the function codes
used with them.

Typically a device interface has a 6-bit device selection network,
Ready and Interrupt Enableflags, and logicnets that supply the
device code, the device identification, and the number of the slot
in which the interface is mounted. The selection network decodes

o-1

bits 11-16 of the instruction so that only the addressed device
responds to signals sent by the processor over the I/O bus. The
Ready flag indicates just that: the device is ready - meaning it has
just completed a task requiring some response by the processor, or
it is idle and may be used. Considering devices at the simplest

' level, the program places an output device in operation by giving a
data-out instruction that resets Ready and sends the first unit of
data - a word or character depending on how the device handles
information. When the device has processed the unit of data, it
sets Ready to indicate that it is ready to receive new data for output.
With an input device, the program gives a control instruction to
place the device in operation and reset Ready. When the device has
read a unit of data, it sets Ready to indicate that it has data
ready for the processor. The program responds by giving a data-in
instruction that not only brings in the data but also resets Ready
and tells the device to read more data; to end the process the
program must actually issue a control command to stop the device.
With either type of device, the setting of Ready requests an

_ interrupt if the Interrupt Enable flag is set. If the program
does not wish to use the device, it can reset Interrupt Enable to
prevent the idle state of the device from continually requesting
an interrupt.

Every device can supply its device code for use by the interrupt
system (although a more complex device may be set up to supply an
interrupt address specified by the program rather than using its
own device code). The program can read the slot number in order to
determine the position of any device on the I/O bus (this determines
priority with respect to the vectored interrupt) and can read the
identification number of each device. The latter number not only
identifies the type of device, but also indicates any modification
from the standard, and indicates which one it is if several of the
Same type are connected to the bus.

In the discussions of the various 1/0 devices in Chapter 3 and beyond,
all instructions described are special cases of these four 1/0
instructions types:

OCP Output Control Pulse "14

0 oO} 1 1 =O O F D

123 4 5 6 7 8 9 10 11 12 13 14 15 16

Send a control pulse for the function specified by F to device D.

SKS —s Skip if Satisfied "34

0 l;1 1 0 0 C D

12 3 4 $5 6 7 8 9 10 11 12 13 14 15 16
Skip the next instruction in sequence if the condition specified by.
C is satisfied in device D.

5-2

INA Input to A "54

1 oO}; 1 1 +O 0 F D

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If the function F specifies a transfer for which Ready must be set,
then if the Ready flag in device D is reset, do nothing but go on
to the next instruction, whereas if Ready is set, perform the
function F and skip the next instruction in sequence. To perform the
function, the processor reads the information specified by F from
device D into A and performs whatever control operations are
appropriate to the function and the device. Depending on F, the
information read may be data, status, an address, a word count, or
anything else.

The number of bits brought into A depends on the type of information,
the size of the device register, the mode of operation, etc. Bits
in A that do not receive information are cleared.

INA instructions for any device except device '20 use a ready test
and skip the next instruction if the device was ready. When the INA
is used to input a status register, the controllers are always ready.

OTA Output from A '74

1 1/1 1 0 0 F D

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If the function F specifies a transfer for which Ready must beset,

then if the Ready flag in device D is reset, do nothing but go on to

the next instruction, whereas if Ready is set, perform the function

F and skip the next instruction in sequence. On the other hand if the

state of Ready is irrelevant to the specified transfer, then perform

the function F and go on to the next instruction in normal sequence

without making any ready test at all. To perform the function, the
processor sends the contents of A to device D for the purpose
specified by F and performs whatever control operations are appropriate

to the function andthe device. Depending on F, the information sent

may go to a data buffer, a control or address register, a word counter,

or any other destination.

The number of bits actually accepted by the device depends on the

type of information, the size of the device register, the mode of

operation, etc. The contents of A are unaffected.

5-3

An OTA instruction for any device discussed in the remainder of this
manual uses a ready test and the skipping procedure as stated in the
description of the instruction. An OTA to device '20 mikes no test
and cannot skip.

In the symbolic program, an instruction is given using the defined
mnemonic and placing the 4-digit octal code for function and device
(with the function on the left) in the address field. E.g., the
device code for the paper tape reader is 01, and the function code
for sensing whether a device is requesting an interrupt is '04; hence

SKS '0401

is an instruction that skips if the reader is not presently requesting
an interrupt.

The fact that the input and output instructions for data or other
information include a ready test allows the program to give such an
instruction without knowing whether the device is ready. If the
program is ready to move data, it can just give an INA or OTA; if
the device is not ready, the program can then go off to do something
else and come back later to try again. Or the program can wait for
Say the reader to get a character from tape like this:

INA '0001 If ready, read; otherwise
JMP #*-1 go back until ready,
wee then continue

The INA causes the device to read another frame, so if the program
prefers not to have the tape continue it must give

OCP '0101

to stop the reader.

A device may require no transfers of real data at all, as is the case
with the real time clock, but any device still uses a least three of
the four instruction types. An output-only device or a device with
no data requirements responds nonetheless to an INA for identification
and generally recognizes another for supplying status information.
Even a simple input-only device may recognize an OTA instruction for
sending out control information. A high speed device such as magnetic
disk or tape, generally uses INA and OTA instructions only for status
and control information with data moving directly between the device
and memory via a direct memory channel. An instruction addressing
a nonexistent device or specifying a function that is inapplicable to
the addressed device is just a no-op.

o-4

CONTROL PANEL COMMUNICATION

The program can communicate with the operator via the control panel
by virtue of the fact that it can address the panel as an I/O device.
With the following instructions, the program reads the contents of
the switch register as data or as sense switches and loads a data
register whose contents can be displayed in the lights (in no case is
a ready test necessary).

INA '1620 Read Sense Switches "131620

170 1 170 0 1 j1 2 O70 1 O70 O ODO
] l j i j I i 1 L i

1 2 3 4 5 6 7 8 9 10 Ji 12 13 14 15 16

Read the contents of the control panel switch register as sense
switch into A, where a switch that is on is read as al. A switch is
on aS a sense switch if it is up. This instruction does not skip.

INA '1720 Read Data Switches "131720

1}; 0 21 a1; 0 O lTyl 1 da1y_o0 edi dof; 0 Od. ODO

J i 3 ij t 4 L i

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Read the contents of the control panel switch register as data switches
into A, where a switch that is on is read as al. A switch is on as
a data switch if it is in the momentary down position; in any other
position it is regarded as off. This instruction does not skip.

OTA '1720 Load Lights "171720

 }
1}; 1 21 =+#21)]O0.0 +dyi 1d diy o , 1 ; 010 C0 0

1 7 8 9 10 11 12 13 14 15 16

Load the contents of A into the control panel data register. If the

address/data switch is set to DATA, the data register is displayed in
the lights (a 1 turns on the corresponding light). This instruction
does not skip.

PROCESSOR SERIAL INTERFACE

Besides the many peripheral devices connected to the 1/O bus and

controlled by I/O instructions, there is a basic serial interface that

is built right into the processer and is controlled by special

instructions. By means of this device, the program can control the

transmission of serial data on four output lines and can receive

serial data simultaneously over four input lines. The program

handles output by periodically changing the contents of a 4-bit output

register in which each bit is connected to a separate output line;

thus, successive changes in the register contents produce bit-by-bit

serial transmission over the lines. Data is received by sampling

the input lines to pick up bit-by-bit serial input. The device

operates entirely on EIA standard levels and the lines are available

at the back edge connector of the processor board. Output lines

1-4 are respectively at pins CF-41, CF-35, CF-39 and CF-37; signals

can be supplied to input lines 1-4 at pins CF-36, CF-38, CF-40 and

CF-42. The program supplies data to and receives data from the lines

via A bits 13-16, where line 1 corresponds to bit 13. Input and

output are handled by these two instructions.

OSI Output Serial Interface "000515

 o0}/o0 0 o0f0 0 041 0 1470 +0 , 1j;1 0 1
l } l 1 j 1 j. i i

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Load the contents of A bits 13-16 into the 4-bit buffer whose contents

are held on the serial interface output lines. Bit 13 supplies the

data for line l.

ISI Input Serial Interface '000511

ofo o ofo0 0 071 0 140 0 17,0 0 1
i j i I } I I ! i i

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Read the contents of the serial interface input lines into A bits

13-16, with line 1 corresponding to bit 15.

The lines may be used for anything that involves transmission or

reception of binary EIA signals. An output line could be used to

control a light to signal the operator; an input line might be

connected to a switch, allowing a person or a device to supply a

binary signal that can be sampled at appropriate times by the program.

The lines can also be used for standard data communication where the

program is entirely responsible for all timing, for constructing

characters with appropriate start and stop bits, and for stripping

the data out of received characters. For output, the usual procedure

is simply to change the signal on the output line for each bit ina

serial transmission. The program determines character length and

5-6

transmission frequency, and can actually run the output lines at
As fLAnant wmatac - ac wraitA ha +¢ha raAcA uwaAra ann Tana hai
ULALICLeoIlLe Lalo Gao WYULU VO LID LGAOO WEL Wit 4411S UAL

‘serial transmission and another to control a signal light. Whenever
any bit of the output register is changed, information previously
given for the other lines must be repeated to keep the appropriate
Signals on them.

any yicad far
MAOYU 2

For input, both the frequency and character length must be known. In
conventional data communications, an idle line is constantly marking
(continuous 1s) and the beginning of an asynchronous character is
indicated by a starting space (a 0 bit). The usual procedure is to
sample the line at five times the bit rate. Upon reading a 0 on a
line that has been idle, the program should assume it has discovered
only a possible space; if a 0 is still read at the next two sample
times, it can be assumed that the line has a true space rather than
a transient, and transmission has started. The program should then
read the line at every fifth sample time so that reading is
centered within each bit time. If a number of lines. are operating,
the program must keep track of them separately, i.e., the program
must keep the read times centered on each line independently of the
others. With sophisticated software, the serial interface could
actually be used for a complete data communication channel with even
the automatic answering of incoming calls in a private network or
the public dial telephone system. For such an arrangement, one
input line would be used for data and the others for modem control
Signals such as Ring Indicator, Clear To Send, Carrier Detected, and
Data Set Ready. Output would require three lines: one for data,
and two for the control signals Request To Send and Data Terminal
Ready.

EXTERNAL INTERRUPT

Many I/O devices must be serviced infrequently relative to the
processor speed and only a small amount of processor time is required
to service them, but they must be serviced within a short time after
they request it. Failure to do so within the specified time (which
varies among devices) can result in loss of information and certainly
results in operating the device below its maximum speed. The external
priority interrupt is designed with these considerations in mind,
1.e., the use of interruptions in the current program sequence
facilitiates concurrent operation of the main program and a number
of peripheral devices, The interrupt system also allows conditions
internal to the processor (traps) to interrupt the program, but here
we are concerned only with external interrupts.

Interrupt requests by a device are governed by its Interrupt Ready
and Interrupt Enable flags. When a device completes an operation it
sets the Ready flag, and this action requests an interrupt if
Interrupt Enable is set - if Interrupt Enable has been reset by the
program, the device cannot request an interrupt. The program controls
the enabling flags bymeansofOCP. instructions; moreover,the flags
in some devices are also connected to the I/O bus data lines, so the
program can set up the enabling flags in all such devices at once by
means of a mask sent over the bus.

5-7

At appropriate times the processor synchronizes any requests that are
then being made. Once a request has been synchronized, the device
that made it must wait for an interrupt to start. Although the
interrupt signal on the bus is disabled once an interrupt starts,
the request made by the device remains until the program resets
Ready or Interrupt Enable. If the program does reset Interrupt
Enable in a device, that device not only cannot request an interrupt
when its Ready flag sets, but any request it has already made is
voided, so it is no longer waiting for an interrupt (and no I/0
skip instruction can determine that it had requested one). However,
if Ready is left set, setting Interrupt Enable restores the request.

Before beginning each instruction, the processor takes care of all
direct memory requests, including any additional requests that are
made while direct memory transfers are being handled. When no more
devices are requesting access, the processor starts an interrupt if
the external interrupt system is enabled and a device that has
priority is requesting an interrupt. The way in which the hardware
handles an interrupt and the way in which the program should respond
depends upon the interrupt mode.

Standard Interrupt Mode

In standard mode, any device that can make an interrupt request has
priority to interrupt any program, even an interrupt service routine,
unless the interrupt system is inhibited. The processor starts to
service an interrupt by inhibiting the interrupt system so no
further interrupts can be started, saving P (which points to the next
instruction) in the location addressed by the contents of location
"63, and begins the interrupt service routine by resuming normal
instruction execution at the location following that in which P was
stored.

CAUTION

The contents of any interrupt location ('63 for the standard
interrupt) are always interpreted as a 16-bit absolute
address. Therefore, when setting up interrupt locations,
the program must make sure not to use addresses larger than
available memory.

The service routine should determine which device requires service,
save the keys and any parts of the register file that it will use, and
service the device. The device can be identified by means of SKS
instructions that test for interrupt requests. The program may
leave the interrupt inhibited while servicing the device (or devices),
or it can enable interrupts and establish a priority structure to
allow higher priority devices to interrupt the current routine.

There are two ways in which the program can structure device priority.
The service routine establishes a basic priority by the order in which
it tests the devices. It can also define higher and lower priorities
by setting up the Interrupt Enable flags in the devices and then
reenabling the interrupt. In this way, any device whose Interrupt
Enable flag is reset cannot interrupt the current routine and is
therefore defined as being of lower priority, whereas a device that
is allowed to interrupt is defined as being of higher priority.

578

After servicing a device (or all devices found to be interrupting
' by an SKS chain), the routine should restore the preinterrupt states
of the keys and the register file, enable the interrupt, and return
to the interrupted program by jumping indirect through the location
in which P was stored. If the routine allows interrupts by higher
priority devices, then before returning to the interrupted program
it should reenable lower priority devices that were not allowed to
interrupt the current routine, but will be allowed to interrupt
the program to which the processor is returning.

Vectored Interrupt Mode

In vectored mode, the processor responds to an interrupt request
from a specific device and has a built-in priority structure such
that lower priority devices cannot interrupt while the processor is
holding an interrupt for a device of higher priority. The conditions
for starting an interrupt are therefore the same as those given for
the standard case with one exception: if the processor is already
in an interrupt routine, it will go on to the next instruction even
if interrupts are enabled, unless the requesting device is of higher
priority than that for which the current interrupt is being held.
When an interrupt is started and several devices are making requests
simultaneously, the processor responds to that requesting device
that has the highest priority (mounted in the lowest-numbered slot).

As in standard mode, the processor inhibits further interrupts, saves
P as specified by the contents of an interrupt location, and proceeds
with the service routine at the position following that in which P was
stored. However, unlike a standard interrupt, here there is no fixed
interrupt location - instead the location is specified by the device
to which the processor is responding. In most cases, the device
specifies an address '100 greater than its device code, but.a complex
device may have an address register for this purpose so that the
program can specify the location through which the device will
interrupt.

Since the system uses a location unique to each device, there is no
need for testing, and the service routine acts only for the interrup-
ting device (it should of course save keys and registers as usual).
There is also a built-in priority determined by bus position, so
even if the routine allows interrupts, no device higher on the bus
can do so (in other words, all devices in higher-numbered slots are
of lessor priority). Moreover, the program can still pick and choose
among the nearer devices by adjusting the individual Interrupt Enable
flags. Hence in vectored mode, devices of higher interrupt priority
can interrupt a given routine once interrupts are reenabled.

When returning to the interrupted program, the routine must restore
the preinterrupt state and either reenable interrupts or reestablish
the appropriate priority structure. Furthermore, a routine for a
vectored interrupt must also give a specific instruction (CAI,
defined below) to clear the presently active interrupt so the
processor can then respond to requests from devices of lower
interrupt priority.

5-9

Interrupt Programming

The instructions that control the interrupt system are all of the
type with a full word op code, but associated with the system are
two I/O instructions that deal with the mask used for setting up
the Interrupt Enable flags in certain devices. When power is turned
on or the computer is cleared from the control panel, the processor
is automatically in standard interrupt mode with interrupts inhibited.

ENB Enable Interrupt "000401

0} 0 , 0 07/0 0 O7;71 0 0]0 0 07,0 0 #1

A l j I i L l_. i

12 3 4 5 6 7 8 9 10 ll 12 13 14 15 16

Enable the external interrupt system so the processor will respond
to interrupt requests over the I/O bus. This instruction becomes
effective following execution of the next sequential instruction.

INH Inhibit Interrupts "001001

 07;0,0,0;0,0,1 40 ,0,0;0,0,0;,0 ,0,1
Jt ai l I l i l i j

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Inhibit the external interrupt system so the processor will not
respond to interrupt requests over the I/O bus. This instruction
takes effect immediately.

ESIM Enter Standard Interrupt Mode "000415

o70 0 070 0 0 f71 0 070 0 171 0 1
1 I l l i I I l i l

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Enter standard interrupt mode so that all interrupts are made through
location '63.

EVIM Enter Vectored Interrupt Mode "000417

010 0 070 0 0 f1 0 070 0 171 1 21
1 | j 1 i J } 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Enter vectored interrupt mode so that for interrupt purposes the
priority of a device is determined by its position on the I/O bus
(with lower devices having higher priority) and each interrupt is
made through the location specified by the sole interrupting device.

5-10

CAI Clear Active Interrupt "000411

o}0,0,0/0,0,0]1 0, 0/0 0 1/0 0 1

i L 1 L L]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Terminate the presently active interrupt so that the processor can
recognize interrupt requests from devices in higher slots than the
device for which the current interrupt is being held. This instruction
is of use only in vectored interrupt mode.

SMK Send Mask "170020

1}/1i 1 31/0 0 07,0 0 070 1 070 O 0
j i i j L l I i lL

123 4 5 6 7 8 9 10 11 12 13 14 15 16

Set up the Interrupt Enable flags in the devices according to the
mask in A (a 1 in a mask bit sets the flag in the device corresponding
to that bit; a 0 resets it). Note that this instruction is equivalent
to OTA'0020; and it never skips.

The bits in the mask and the devices assigned to them are as follows
(note that the mask does not necessarily control the Interrupt
Enable flags in all devices):

1
2
3
4 Moving head disk
5
6
7
8 Fixed head disk
9 Paper tape reader

10 Paper tape punch
11 Teletypewriter
12
13
14
15
16 Real time clock

IMK Input Mask : "130020

17}0 1 170 0 040 0 070 1 O7FO0 O 8
j | j l L i l j L i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

For those devices associated with the mask that can be supplied by an
SMK, read the states of their Interrupt Enable flags into A (the

5-11

correspondence of devices to mask bits is the same as given above).
Note that this instruction is equivalent to INA'0020; and it never
Skips.

Timin

The time a device must wait for an interrupt to start depends on how
many devices are using interrupts, how long the service routines are
for devices of higher priority, and whether the direct memory channels
are in use. In vectored mode, a single device will shut out all
others of lower priority until a CAI instruction is executed; and the
direct memory channels shut out all interrupts when they operate at
the maximum rate. If the DMA channels are not in use and only one
device is using interrupts, it need never wait longer than the time
required for the processor to finish the instruction that is being
performed when the request is made. Without delays caused by
indirect addressing, the maximum interrupt waiting time is the
latency given in the table at the end of Appendix.

Programming Suggestions

If the program has little computing to do and is using only one or
two fast I/O devices or several slow ones, it may not be necessary
to use the interrupt at all. On the other hand, if there are many
calculations to perform and the program is using a fast device or
data is being processed using several slower devices, then the
interrupt is necessary. The critical factors in determining whether
to use the interrupt, and in what ways the program should determine
priority, are what the program is doing besides input/output and
the time required by the service routines.

A convenient method for handling a large number of priority levels
is to use a push-pop stack for saving the machine state. This obviates
setting aside so many specific locations for saving registers, and
makes it very easy for a routine at any level in a sequence of nested
routines to restore the state for the interrupted program.

For those who do program interrupt routines, there are several rules
to remember:

1. An interrupt cannot be started until the current instruction
is finished. Therefore, do not use lengthy indirect address
chains if a device that requires very fast service can request
an interrupt.

2. The service routine should save the keys and any parts of the
register file that it will use.

3. The JST and ENB instructions delay external interrupt
servicing for one full instruction cycle. So do the ILL
and UII internal interrupts.

9-12

The principal function of an interrupt routine is to respond
to the situation that caused the interrupt. E.g., computations
that can be performed outside the routine should not be included
within it.

t
o

5. Before returning to the interrupted program, the routine should
restore the keys and the register file, and in vectored mode it
must give a CAI.

DIRECT MEMORY ACCESS

Handling data transfers between external devices and memory under
programmed I/O control requires the execution of several instructions
for each word transferred. To allow greater transfer rates, the
processor contains eight direct memory channels through which
devices, at their own request, can gain direct access to memory
using a minimum of processor time. At rates lower than the
maximum, the channels free the processor to allow execution of a
program concurrently with data transfers for high speed devices such
as disk and magnetic tape.

To control a direct memory transfer, the program sets up a device
to use a particular channel and sets up a pair of memory locations
to define the channel. The channels use locations '20-'37 in the
register file, with locations '20 and '21 governing channel one,
'22 and '23 governing channel two, and so on to '36 and '37*. To
set up the device, the program gives an OTA that supplies the controller
the address of the first channel location to be used. The program
places a 12-bit word count in the first location, and the address of
the first word to be transferred in the second.

FIRST LOCATION

-WORD COUNT RESERVED

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SECOND LOCATION

 ADDRESS

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

*The processor permits any contiguous pair of locations in the
register file to be used, although some locations, such as the
program counter or those reserved for microprogram functions,
are obviously not appropriate for this purpose. The programmer
can use X, A, B, S, and certain other locations when necessary.

9-13

The word count is in bits 1-12 and is the twos complement of the
number of words to be transferred; the maximum number of words in a
Single block on one channel is therefore 4096, produced by a negative
count of zero’ (a single device can handle larger blocks by stepping
through successive channels). The contents of the second address
are interpreted as a 16-bit absolute address regardless of memory
size.

When the device requires data service, it requests access to memory
via its channel. Between instructions and at various points within
an instruction, the processor can pause to handle a transfer. If
several devices are waiting for service simultaneously, the first to
receive it is the one that is mounted in the lowest-numbered slot.
Whenever the processor pauses to handle a DMA request, it handles all
pending requests before resuming the instruction, starting an
interrupt, or going on to the next instruction.

To service a channel request, the processor accesses the location
specified by the channel address, sends its contents out over the
bus or stores in it a word taken from the bus as specified by the
device, and increments both the address and the word count by one.
When the word count overflows (goes to zero), the processor signals
the device that the block is complete. Typically, complex device
controllers such as those for fixed and moving head disks can
automatically chain DMA channels thereby facilitating scatter/gather
data transfers.

Timing

The time a device must wait for channel access depends on when its
request is made within an instruction and how many devices of higher
priority are also requesting access; a given device must wait until
all devices of higher priority have been serviced, so the highest
priority device can preempt all processor time if it requests access
at the maximum rate. The microprogram must save certain registers
to service the channel, and although it can pause within an instruc-
tion, it cannot take direct memory requests while starting an
interrupt, so the worst case waiting time for the highest priority
device is 3-4 us for an isolated transfer. But once an initial
transfer can be handled at the rate of one very 1.2 us; this allows
a maximum of 833,333 words per second, but at this rate all other
processing activity is suspended.

5-14

SECTION 6

PERFORMANCE OPTIONS

This section describes three featuresthat are standard on the
Prime 300 and optional on the Prime 200 and 100:

Double Precision Integer Arithmetic
and Multiply/Divide

Microverification

Microverification is not available for the Prime 100, which lacks
the machine check function.

These features are implemented by extensions to the standard
microcode on the CPU board; no mechanical extensions are required.

Double Precision Load, Store, Add and Subtract

When the processor is in double precision mode, the instructions
that ordinarily load, store, add and subtract single-word numbers,
instead operate on double-word numbers. The op codes for these
memory reference instructions are the same as their single
precision counterparts, but the assembler recognizes unique
memonics for clarity of documentation.

Depending on the operation, the double precision operands and
results are held in the A and B registers or memory locations
EA and EA+l.

The format is:

A or (EA)

 HIGH ORDER MAGNITUDE

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B or (EA+t1)

0 LOW ORDER MAGNITUDE

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

6-1

DLD Double Load "02

Ty} x}o oO 1 0785 D

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Load the contents of location EA into A and location EA+1 into B.
The contents of memory are unaffected, the original contents of A
and B are lost.

DST Double Store "04

 I} xj}/o 1 0 OFS D

12 34 5 6 7 8 9 10 11 12 13 14 15 16

Store the contents of A in location EA and the contents of B in

location EAtl. The contents of A and B are unaffected, the original

contents of the specified memory locations are lost.

DAD Double Add | "06

I} x} o 1 1 OFS D

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Add the double length contents of locations EA and EA+l to the

double length contents of A and B, and place the result in A and

B. If the sum is >250 or <-230 set C; otherwise reset it. In the
first overflow case, the result has a minus sign but a magnitude
in positive form equal to the sum less 250; in the second, the
result has a plus sign but a magnitude in negative form equal to
the sum plus 250

By definition, bit 1 of the low order part of a double precision

number must be 0. However, this instruction produces a correct

result as long as the sign bits (B, and bit 1 of EA+1) are the same.

DSB Double Subtract. '07

 I} X}/0 1 1 #148 D

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Subtract the double length contents of locations EA and EA+1 from

the double length contents of A_and B, and place the result in A

and B. If the difference is >2°0 or <-230, set C; otherwise

reset it. In the first overflow case, the result has a minus sign

but a magnitude in positive form equal to the difference less 230.

in the second, the result has a plus sign but a magnitude in negative

form equal to the difference plus 2”.

6-2

_ Although bit 1 of the low order part of a double precision number
should be 0, this instruction does produce a correct result if the
Sign bits of the low order parts are both 1. However, the result

the low order sign bits are not the same.\alaA:
18 inVa@iiad i

To negate a double length number, simply subtract it from zero.

Multiply/Divide (Fixed-Point)

Prime computers have two basic instructions for performing multi-
plication and division of fixed point numbers. As previously
mentioned, multiplication produces a double length product and
division uses a double length dividend.

MPY

—-

Multiply '16

 I} X}/ 1 1 1 OFS D

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Multiply the contents of A by the contents of location EA, and place
the double length result in A and B.

DIV Divide "17

 I} x} 1 1 1 1178S D

12 3 4 5 6 7 8 9 10 ji 12 13 14 15 16

If the absolute value of the number in location EA is less than the
absolute value of the number in A (taking both numbers as represen-
ting the same order of magnitude), set C; otherwise clear it. Then
divide the double length contents of A and B by the contents of
location FA, calculating a quotient of fifteen magnitude bits
including leading zeros. Place the quotient in A and the remainder
with the sign of the original dividend in B. The results in A and
B are the correct quotient and remainder provided C is not set;
otherwise they are unchanged.

The overflow condition for division requires that the quotient be a
proper fraction or a single length integer. With fractions, the bits
of the high order parts of dividend and divisor are of the same
order of magnitude; hence the condition is that the divisor be
larger in magnitude and the answer less than unity. With integers,
the overflow test effectively treats the dividend as though the
binary point were between the high and low parts, so that the actual
dividend (with the binary point at the right end of B) is guaranteed
to be greater than the divisor by no more than fifteen binary orders
of magnitude, and hence the integral quotient will fit in one register.
If the initial test is not satisfied, there is simply no way to

6-3

determine the true position of the binary point in the result. Of
course, the program would compensate for this by shifting the
operands and keeping track of the number of shifts (i.e., the change

in order of magnitude) required to produce a meaningful division.

As given above, the instructions are somewhat cumbersome for working

entirely with single-length integers. In a multiplication of small

integers, the significant bits of the result are all in B, whereas

the sign is in A. Similarly, it would be convenient to be able

say to divide 15 by 3 and get an answer of 5 without having to use

pairs of locations to hold the numbers. The following two instruc-

tions facilitate such operations.

PIM Position following Integer Multiply "000205

 of o,0,0}/0,0,0]0,1,0}0,0,0}f1,0,1
123 4 5 6 7 8 9 10 11 12 13 14 15 16

Move the contents of A bits 2-16 to B bits 2-16 and reset B bit l.

Fill A bits 2-16 with the sign of A.

PID Position for Integer Divide "000211

o1f0.0.0]/0 0.0 f0 1, 07;0,0, 1]40 0,1
1 j j L L l I i

12 3 4 5 6 7 8 9 10 11.12 13 14 15 16

Move the contents of B bits 2-16 into A bits 2-16. The original

contents of A bits 2-16 are lost, but A bit 1 is unaffected.

The first of these instructions is used following MPY to reduce the

product to single length. However, if there are more than fifteen

significant bits in the product, the high oerder bits are lost. If

there is any chance that the integers multiplied will produce a

product larger than one word, the program should include a test to

make sure A bits 2-16 are all null before giving the PIM.

The PID allows the programmer to use a single length dividend and

guarantees the division to be meaningful (producing the integral part

of the quotient) except in the obvious case of a zero divisor.

Effectively, the PID multiplies the given dividend by 2-15 so that

the divisor is bound (wmless it is zero) to satisfy the condition

that it be greater in magnitude than the high order part in A. The

result of a subsequent DIV is thus actually a proper fraction,

which is multiplied by 215 simply by interpreting it as an integer.

_ DIRECT MEMORY CHANNEL, DIRECT MEMORY TRANSFER (DMC, DMT)

The DMC and DMT modes of input/output operation extend the speedand flexibility of the standard DMA System avaiiabie in all Primecomputers. DMC is used to extend the number of direct memorychannels (up to 2000) and the maximum block size handled by eachchannel (up to 64K words). DMI increases the maximum directmemory data rate to one million words per second. In contrast toprogrammed I/O, which requires the execution of several instructionsfor each word transferred, direct memory transfers reduce the numberof instructions needed for I/O control, allow multiple high speedtransfers to be handled concurrently and permit processing to beoverlapped with I/O operations.

DMC Operation

to establish at what memory location the transfer will begin andhow many words will be transferred. Unlike the DMA System, whichuses preassigned pairs of high-speed registers to control the DMAChannels, DMC transfers are controlled by pairs of adjacent locationsin main memory. This permits up to 2000 DMC channels to be specifiedusing memory locations between 64g to 7776g. The first word of acontrol word pair contains the Starting address for the transfer, andthe second word contains the ending address as illustrated below.

lst Control Word

 Starting/Current Address
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Znd Control Word

 Ending Address

 123 4 5 6 7 8 9 10 11 12 13 14 15 16

Data blocks of up to 64K words can be transferred at input and outputrates of up to 271,739 and 268,817 words per second. At the maximminput and output rates, processing is suspended, while at lower ratesprocessing and I/O transfers are overlapped.

When a device requires DMC service, it requests access to memory viaits specified channel. The DMC microcode automatically synchronizeswith the instruction currently being executed and causes the processorto pause either at some point within the instruction or upon itscompletion. If several devices request servicing simultaneously, theorder in which the requests are acknowledged is determined by the

6-5

priority relationship among the device controllers and the central
processor. In general, the controller closest to the processor
in the chassis (i.e., mounted in the lowest numbered slot) is given
highest priority, while the controller in the highest slot position
is assigned the lowest priority.

To service a channel request, the processor accesses the location
specified by the first channel control word (starting or current
address) and either reads or writes a word as specified by the device
controller. The current address is incremented by one after each
channel request is serviced until the current address is equal to the
ending address, signaling that the block transter is complete.

Chaining

DMC channels may be chained together to facilitate scatter/gather
data transfers. An OTA 14XX loads a device controller with the
required DMC set up information from the A register as shown below.
A one in bit 5 specifies a DMC transfer (a zero specifies DMA).

Chain No. 1 Channel Address

12 3 4 5 6 7 8 9 10 11 12 13 14 #15 16

The chain number specifies how many DMC channels in addition to one
specified by the channel address portion of the word will be used
for a data transfer. A.chain number of zero causes the transfer to
terminate after one end of range. A chain number greater than zero
causes the controller to wait for that number of ends of range plus
one before terminating the transfer. In this case, the channel
address is automatically incremented by two after each end of range,
thereby automatically switching control to the next higher DMC
channel.

DMT Operation

Certain controllers are capable of providing the necessary memory
addresses for direct memory transfers without using external
control words stored in the processor or memory as with DMA or DMC
transfers. This permits all channel control functions to be completely
overlapped with processor and memory functions thereby increasing
the computer's maximum input and output rates to 1, 086, 956 and
1, 041, 666 words per second respectively. When operating in the
DMT mode, the controller automatically places the memory address of
each word to be transferred directly on the I/O bus and terminates
the transfer when the end of range has been reached. Because of
its high speed and low control overhead, the DMI mode can multiplex
data on a word-by-word basis.

. Specification Summary*

DMC
Maximum Transfer Rate
(processing suspended)

Input (words/sec.) 271,739
Output (words/sec.) 268 ,817

Interruption To Processing
Per Word Transferred at Max,

Input Rate at Max. 3.68 microsec
Output Rate 3.72 microsec
Interleaved Input 4.7 microsec
Interleaved Output 4,7 microsec

* Assumes microsec memory cycle time.

6-7

1,086,956
1,041,666

920 nanosec
960 nanosec
2 microsec
2 microsec

MICROVERIFICATION

Microverification Routines provide a powerful and flexible means
of verifying data integrity and preventing the propagation of
erroneous data within the system. The Microverification Routines
consist of microprogrammed firmware sequences that can test the
logic of the entire CPU, verify the reliability of the computer's
error detection logic, and test the operation of all data registers,
peripheral address and data bus lines, memory address and data bus
lines, and the high-speed register file. In addition to these
operational tests, the Microverification Routines can also force
selected error conditions to occur and then verify that the CPU
properly detects those conditions.

Operation

Since the Microverification Routines are implemented in the CPU's
microcode, they are always resident within the system yet do not
require memory space for storage. A microverification sequence is
initiated whenever the system is cleared from the control panel
(Master Clear), a machine check flag is set (hardware detection of
a CPU error), or a VIRY (Verify) instruction is executed. For
greater operating flexibility, initiation of the sequence following
a machine check can be enabled or disabled under program control.
(See EMCM and LMMinstructions in Section 4.) This is an important
feature since if microverification is enabled for machine checks,
the detection of a processor error automatically suspends normal
processing for as long as the error condition exists. In certain
Situations, the user may wish to continue processing to predetermined
check points and at such points initiate microverification under
program control. When microverification is enabled for machine
checks and a transient error is detected, the machine will auto-
matically resume normal operation when proper operational status has
been verified.

The result of a pass through the microverification routines depends
on CPU status and the method of entering the routines. The various
alternatives are summarized in Figure 5-1.

Transient Failure

If the entire routine runs (verification routine did not find an
error), the failure may have been a transient one, therefore the
micro-routine clears the keys and register file, and issues a programmed
interrupt through location '70. This returns control to the system
program (which can provide for recovery and continued operation).

Solid Failure

The micro-processor will recycle through the micro-verification
routines as long as the failure exists (indefinitely). The number of
the failing test is displayed in the address lights. Refer to
Figure 8-4,

6-8

VIRY Verify "000311

0 n Nn nN Yn Nn nN Nn 1 1 Vn Nn 1 nN 0 1
Vv vy vy ¥ vi, v yY¥ vo,t i, t vi, vy t vi, Yv yt

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Execute the verification routine, and if there is a failure of any
kind go on to the next instruction with the number of the test that
failed in A. If there are no errors, skip the next instruction in
sequence.

If the processor does not have the verification routine, this
instruction executes as a no-op.

6-9

SECTION 7

PRIME 300 FEATURES

These CPU functions are standard in the Prime 300 and are notimplemented in the 100 or 200. However, most of the instructionsof the extended set can be executed by Unimplemented InstructionInterrupt (UII) software in the smaller processors. (Virtualmemory instructions and the XEC instruction are not emulated by
UII software.)

PRIME 300 EXTENDED INSTRUCTIONS

This group of instructions is hardware - implemented only in thePrime 300. The op-codes are obtained by using the extendedinstruction format. (See Appendix E.) However, all instructions ofthis group (except XEC) can be implemented on the Prime 100 or 200through the UII software library. (See Section 2.)

7-1

Extended Jump Instructions

There are nine jump instructions in the extended, two-word instruction
set. Six of them are conditional on whether the contents of the A
register are equal to zero, greater than zero, etc. Other jump
instructions combine a jump with incrementing, decrementing and
storing the index register.

JEQ Jump If Equal to Zero "02
- 3

WIT tX}o0 0 1 Of 2 2 0 0 O Of 1 1 Class

“1 2 3 4 5 6 7 8 9. 10 11 12 13 14 «15 16

Wel OA

1 | | 16

If the contents of the A register are equal to zero, then load FA into
P, take the next instruction from location EA and continue sequential
operation.

JNE Jump If Not Equal to Zero '03
3

we i]r{x}o o 2 af2 2 0 0 0 0 f1 1 Class

“1 2 3 4 5 6 7 8 99: 10 12 #12 13 14 «15 #16

W+1 A

1 | | 16

If the contents of the A register are not equal to zero, then load FA into

P, take the next instruction from location EA and continue sequential

operation. |

7-2

_ JLE | Jump If Less Than or Equal to Zero "04

weilr{x}o 1 0 Of1 4 6 0 0 O }1 1 Class
“1 2 3 4 5 6 7 8 9. 10 11 12 13 14 15 16

W+i A

1 | | 16

If the contents of the A register are less than or equal to zero, then load
FA into P, take the next instruction from location EA and continue sequential
operation. |

-JGT Jump If Greater Than Zero "05

W IiX}o 232 0 24212 23 0 0 #060 +91 #=1-] Class

“1 s2 3 4 5 6 7 #8 9: 10 11 12 13 14 15°16

W+1 A

1 | 160

If the contents of the A register are greater than zero, then load EA into
P, take the next instruction from location EA and continue sequential
operation.

7-3

JLT Jump If Less Than Zero "06

3

W Ir{X}o 1 1 072 1 0 0 O Of 1 1 Class

“1 2 3 4 5 6 7 8 9 40 11 12 13 14 #15 16

W+l A

1 16

If the contents of the A register are less than zero, then load EA

into P, take the next instruction from location EA and continue

sequential operation.

JGE Jump If Greater Than or Equal to Zero '07

w ittlx!o121 1 14a 1

am) 0 0 Of;1 #1 |Class

“>. 2 3 4 5 6 7 8 9: 10 11 12 13 14 15 16

W+1 A.

1 16

If the contents of the A register are greater than or equal to
zero, then load EA into P, take the next instruction from location
EA and continue sequential operation.

7-4

b
l

h
t

O
TJDX Jump and Decrement Index '

W It{xX]}1 1 0 1 1 1 0 0 0 oOf1 £O Class

1 2 3 4 5 6 7 8 9 10 11 #12 13 «14 «#15 16

W+1 A

1 | 16

Decrement the contents of the index register by one; then, if the
contents of X are not equal to zero, load the contents of EA into
the program counter and execute EA as the next instruction. Otherwise,
increment the address currently in P and continue.

JIX Jump and Increment index "15

Wor ex}.d 1 0 141 2 0 0 0 off Ff Class

12 3 4 5 6 7 8 9 1G 11 12 13 14 15 16

Wri A

Same as JDX but increment index register.

7-5

JSX Jump and Store Return in Index '35%
5

WoJTyr}i 1 0 2ftl 1 0 0 O0 Of 2 1 Class

1 #2 3 4 5 6 7 8 9 10 11 12 13 #14 «+15 16

W+1 A

1 16

Increment the program counter by one and load into the index register.
Load EA into P and execute FA as the next instruction in sequence.

* X Bit = 1

7-6

Procedure Stack Control

This group of instructions simplifies programming of pure procedures,
recursive or reentrant subroutines, and dynamic storage allocation.
ENTR alters the stack pointer (S Register) to create an n-word stack
frame, and links the new frame with the previous one. CREP saves the
program counter in the current stack frame and transfers control to
a subroutine. RIN undoes the work of both CREP and ENTR by deleting
the current frame and restoring the saved program counter value for
the calling program.

ENTR Enter Recursive Procedure Stack ‘Ol

WwyT tx} o oO 0 141-1 0 0 0 9471 #21 Class -

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

W+1 STACK FRAME SIZE

1 16

Alter the stack pointer by subtracting the value of EA and store the
previcus value of S in the new location.

(S), > (SyEA J
(S)]-EA. > (S),

The ENTR instruction allocates a block of memory as a stack frame
containing EA locations:

(S)> + {Pointer to (Sh)

+ Frame 2
—— — a aS aaa

4
}

peee

a Je
—_— ST le Tl

Frame 1
7-7

W+1

The frame is created by subtracting EA locations from the stack
pointer contents, (S)y> to form (S)7, and then storing (S)4 at that
address. Thus, the first word of the frame points to the previous
frame.

Stack frames created by recursive or reentrant procedures are assumed
to contain n+2 words, where n is the number of locations required
for variable or parameter storage during a recursion of the sub-
routine. The other two words are reserved for the frame linkword
(inserted by ENTR) and a return address (inserted by CREP).

CREP Call Recursive Entry Procedure 10

ITijX/}1 0 0 0/1 1 0 0 Q 9 1 0-| Class

123 4 5 6 7 8 9 JO I1 12 13 14 15 16

1 16

Increment P and load P+1 into the location following the one specified
by the current stack pointer. Load EA into P and execute (EA) as the
next instruction:

(P)+1 + [(S) +1]

EA + (P)

The CREP instruction performs subroutine linkage for recursive or
reentrant procedures. CREP stores the return address in the second
word of a stack frame created by the ENTR instruction, rather than in
the destination address as in a JST:

(S) > Frame Pointer

>

(S)+1 Return Address

 Stack

Frame

7-8

_ RIN Return from Recursive Procedure "105

0 0 O;79 0 0 {0 O 170 0 O F1 O08 1

5 6 7 8 9 10 11 12 13 14 15 16

Fetch the return address from word 2 of the current stack frame
and load the result in the program counter; then transfer word 1
(the pointer to the preceding stack frame) to the S register.

[(S)#1] > P

[(S)] + (S)

If the return address is 0, (S) is unchanged and the microcode causes
a PSU (Procedure Stack Underflow) interrupt through location '75.

7-9

OTHER EXTENDED INSTRUCTIONS

EAA Effective Address to A Register "Ol
]

wirlr}]x}9 O O 1), 1 12 0 08 6-.0/f0 1 Class

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Wl A

Calculate the effective address and load it into register A. The
contents of EA are unaffected and the original contents of A are
overwritten and lost.

XEC Execute Effective Address Contents as Next Instruction

"01
2

wWwiliXto oo if|2 1 0 0 0 0j;1 «40 Class

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Wr] A

1 16

Load the contents of EA into register A and execute (EA) as the next
instruction in sequence. This instruction permits portions of program
previously coded to be reiterated with one instruction. There are
three restrictions:

1. Double or multiple word instructions use the location(s)
following the XEC for expansion beyond a single word.

2. XEC's using the stack in Push/Pop mode have unpredictable results

if the instruction to be executed is unimplemented and a
double-word or page fault occurs.

7-10

3. Memory reference instructions are "'relativized"' on the XFC
program counter leading to results not anticipated by the
assembler or loader.

FLX Load Double Word Index 15

]

Wily Xit 1. o 1}1 1 0 0 0 0)j,0 JI Class

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

W+1 A

1 16

Double the contents of the effective address and load the result into
the index register X. This instruction facilitates indexing sequences
that involve double-word memory reference operations. It works
directly for two-word indexing, e.g., double precision integer
or floating point.

7-1]

VIRTUAL MEMORY

see Virtual Memory Data Sheet

| r
o

The Virtual Memory feature (VM) VM is implemented by the following

greatly expands the processing and features:
storage resources of your PRIME small

computer. 1. Paging

VM adds the following three basic Paging is a technique of segmenting

capabilities: memory into a fixed length of 512
; . words or 'pages', intercepting memory

1. Expansion of memory addressing access, and translating the access
to 262,144 words of High Speed from a 'virtual' address to a 'real'
Memory (HSM) - i.e., real or or physical address. This transla-
physical memory. tion expands the normal 16 bit

address field (216 = 65,536 words)
2. Hardware protection of software to 18 bits (21 = 262,144 words).

integrity. Each translation references a
'page map' that contains the 'real'

*specific areas within a task address for each of the ‘virtual’
(user-level) can be protected addresses. When paging operations
against being altered by the are enabled, the processor is said
task itself to be in the 'Paging Mode’.

. ¥tasks can be protected against 2. Page-turning
access and alterations from

other tasks A disk based system can effectively
expand the 'size' of HSM to be as

*executive routines (base and big as the storage size of the disk.
supervisory level) can be pro- This is done by swapping program

tected against alteration by segments in and out of HSM or page-

(user-level) tasks turning. This is a practical
technique for many applications

3. Automatic swapping of program since a program usually executes
segments (pages) between HSM and one portion at a time. To make
disk. page-turning efficient and practi-

, cal, the executive program is auto-

VM's capabilities facilitate: matically notified when a task tried
to access a page not in HSM. The

1, Multi-user time shared disk information of which pages are in
operating systems. or out of HSM is stored in the page

map. This condition is called a
2. Multi-tasking real time operating 'page fault'. The executive is

systems (HSM only). also told what page the program
tried to access and then brings the

3. Foreground/Background systems required page into HSM. This feature
with real time multi-user or means that user-level programs can
multi-tasking in the (protected) be written without concern for
foreground and batch operations paging; i.e., paging is the executive's
in the background. responsibility and is transparent to

the user-level programs.
4. Execution of single programs larger

than 64K with or without a disk,

7-lza

Write Protection

The page map can also specify which
pages can be altered and those that

cannot. Thus, the map is consulted

for each write operation. If a
task tries to write into a protected
page, the executive is automatically

notified of the attempted violation.

Restricted Execution

User-level programs operate in the
restricted execution mode (RXM).
In the RXM mode, the executive is
automatically notified when the
user-level program attempts to
execute any one of a class of I/O,
interrupt and control instructions.
This insures a delineation of
responsibilities between the user-
level programs and the executive
program that controls all I/0,
interrupts, and processor modes.
In this way, ‘stand alone' user-
level programs needn't be re-written
to run under a time-sharing execu-
tive, and they can run without
danger of alteration to the execu-
tive or other tasks.

Hierarchy cf ProcessingStates

Three district processing states
can be defined as a direct result

of the Paging Mode and the
Restricted Execution Mode. These
are:

User-level: usually the 'appli-
eation' software operating in both
the Paging and Restricted
Execution Mode.

Supervisory-level: A portion of
the executive program that needn't
be resident in HSM and operates
in the Paging and non-Restricted
Execution Modes.

Base-level: A fundamental

portion of the executive program
that must reside in HSM and

operates in the non-Paging and

non-Restricted Execution Modes.

TECHNICAL DISCUSSION

Paging

A page is a 512 word contiguous address
space whose starting address is a
multiple of 512. Normally on a PRIME
200 or 300 the maximum address space
ofsegment available to a program is

2-~ = 65,536 words because of the
inherent 16 bit address field.
Consider the format of a 16 bit
effective address associated with a
program segment.

VIRTUAL ADDRESS

1 7 8 iT}

[VIRTUAL PAGE ADDRESS| WORD ADDRESS
0-127 so (0-511 io

Figure 1

Page Map

In the page mode, the Virtual Page
Address (VPA) points to an entry in
the page map. That entry contains
the real page address and indicates
if the page is in HSM and if it is
‘'write-protected'. The contents of
the map are created by the base-
level executive software. Each user-
level program has a map that normally
consists of 128 entries - one for
each virtual page address. The
format for each map entry is:

7-12b

to the program. Tha
eeess only those paage:ww Masry

program can
s in its map.tai’

7

To reallocate the computers resources

to another program, the executive

need only change the PMAR to a new

map address. Time-sharing and multi-

tasking is facilitated in this manner.

The reallocation process can be

initiated by an external interrupt,

specfically the Real Time Clock, or

by a call to the executive from a

user-level program.

Within a user-level program, pages can

be protected against being altered.

This is done by the executive setting

the write protect bit in each of the

protected pages map entries (Figure 2).

When a protected page is accessed by

an instruction that would alter its
contents, a page write violation

interrupt is generated.

A
A

by restricting selected programs from

executing instructions that would

alter the processors control state.
These instructions include all I/0,
interrupt, and mode control. The
executive program would normally
enable the Restricted Execution Mode

(RXM) as part of its transfer to a

user-level program. This mode is
exited by an external interrupt or
when a restricted instruetion is

attempted. The later case causes a

RXM interrupt and, as with an external

interrupt, would normally branch to the
base-level executive program.

third level of protect

Hierarchy of Processing States

The combination of page mode and

restricted execution mode results in

three fundamental processing states.

7-12¢c

Processing Paging Restricted
State . Mode Execution Mode

User-level ON ON

Supervisor-level ON OFF
(executive)

Base-level OFF OFF
(executive)

The base-level program is always
resident in HSM and is responsible for

handling

1. interrupts

- I/O devices
Real Time Clock

page-fault
. restricted execution fault

e. disk transfers

a
a
a

2. bookkeeping

a. operating state
b. HSM allocation

The supervisor level is part of the

operating systems executive and is a

continuation of the base-level
executive. The supervisory level can

be page-turned and therefore inher-

ently slower to respond to stimuli than
the base. It can be used for such

functions as file management and

internal operating system commands such

as:

-~ Attach a user file space to a

terminal
- Read batch commands from a

specified file and execute

- Load a memory image file into HSM

- Save HSM on a user file

START HERE

Virtual Page

Phase 3 Update CAM*

*If reference was in CAM, that entry is pushed

CAM = Content Associative Memory registers

VPA = Virtual Page Address
RPA = Real Page Address
HSM = High Speed Memory

PMAR = Page Map Address Register

Figure 7-4

to the top of the CAM

VIRTUAL

AL:DRVSS

e
s
e
s
e
e
e
e
e
e
a
s
e
e
€
e
O
8
F
e
e
e

e
e
o
e
1
e
e
s

6
4
6

6
8
H
H

F
E
H
R

O
H
S
S
H
a
s
e

e
H
H
e
T
H
d
r
e
e
K
A
S
H
a
d

e
H
a
e
d

16

Word

Address Address

Te99 0C1 7

REAL ADDRESS

—_—lcowWT8 16
Qa

setcereemrea ce sece lessees ceca ses cerecee cee:

.*Page ?

.” Map Xi0 000 O| Yj Real Page iq|------~-

: Entry Address I
: |
s |

: {

|

|

|
|

|
5 ATcam |

|
Ly. <¢———\vPaA 3 X10 0 00 Oly RPA 3 | |

N e 2
: : | |
g | 2] |

, PA 4 —Phkfo 00 0 ofy | RPA 4 _ l

“Pop Off CAM . |

4] 4 :

|

l 16
00000 0 0|Z|Page Map PMAR (R'10) |

Address

Z=0, Even _ et ee ne eee eG |
Z=1, Odd 9 ise!

a Page Map Fntry . |
| Address “|

pra
Not in CAM bce fens ame ee ee mm me oe eee me oem em ee ates ewes ee eee ee ee eee Voce ee ow ee receree

—p Points to X = Page is in HSM; 1=Yes
—/ Transferred to O=No

Y = Page is write protected;
Phase 1 First check CAM* 1=Yes

Phase 2 - - - If not in CAM O=No

1 78 16

VIRTUAL PAGE ADDRESS WORD ADDRESS VIRTUAL ADDRESS
= Y 7 Y = (16 bits)

1 7 8 9 14

000 0 0 0 O| Z| PAGE MAP ADDRESS PMAR
x > (R'10)

t Z=0, Even

Z-1, Odd

PAGE MAP

 ENTRY ADDRESS

PAGE MAP

—P X}o 0 0 0 O]Y REAL PAGE ADDRESS
 ENTRY
 ‘Ne y

x

 > To HSM

99 00 1 7 8 16

< REAL ADDRESS >
(18 bits)

X=Page is in HSM; 1=Yes

——) Points to O=No

> Transferred to Y=Page is write protecved
1=Yes

HSM=High Speed Memory O=No

7

Figure 7-3

-12e

TB 16
[xX] ly] Physical Page Address |

end word

[_ RESERVED

X: page in HSM; 1 = yes, O = no

Y: page is write protected; 1 = yes,
QO = no

end word is usually used by the

supervisor for the pages disk
address. It can also be used

for a 2nd interleaved map.

Figure 2

A page map consists of 128 entries
(2 words per entry). When a map is
in HSM, it starts at a multiple of
256 or 256 n +l. To activate a
user-level program in the page mode,
its map must be in HSM and the map's
starting address loaded into
Register '10 called the Page Map
Address Register (PMAR).

As illustrated in Figure 3, when the
user-level program initiatee a fetch
to an effective address (Figure 1),
the following sequence of events
occurs:

The virtual page address is doubled
and 'added' to the PMAR to create an
address that points to the appropriate
entry in the map. The physical page
address (Figure 2) becomes the high
order 9 bits of the physical HSM
address; the word address (Figure 1)
becomes the low order 9 bits. This
is the full 18 bit physical HSM
address.

CONTENT ASSOCIATIVE MEMORY REGISTERS
(CAM)

The process described above requires

an extra memory cycle for each 'virtual'
memory reference. The VM feature has
four Content Associative Memory (CAM)

Registers that reduce the overhead to

80 ns per memory reference. The CAM
registers contain a copy of the four

last referenced page map entries (see
Figure 4). The contents of these
registers are inspected before the HSM
map. If the CAM registers contain the

required map entry, the overhead is
80 ns; if not, the HSM map is accessed
and copied into the particular CAM
register that has gone the longest

time since it was last accessed.
Most programs spend most of the time

within a page and would usually find
the map entry in CAM. PRIME has
measured the performance of typical
programs operating under its VM opera-
ting systems and found that only 3% to

4% of map references are not found in
CAM.

Page-fault/Page-turning

The page map entries have a bit that
indicates if the page is in HSM or on
the disk. When a program accesses a
new page and its map entry indicates
it is not in HSM, a page-fault interrupt
occurs and the virtual address causing
the page-fault is loaded into register
"12. The base-level executive program
must respond to the interrupt, decide
what physical space to use for the new
page, load the page off the disk into
that space, update the page map entry,
and return control over to the user-
level program. This procedure is
referred to as page-turning. One
technique used in page-turning is to
use the second word of a page map
entryto store the page's disk
address.

Hardware Memory Protection

VM provides three levels of protection
for maintaining program integrity. The
first is inherent in the page mode
operation. Fach user-level program is

associated with a page map. To
activate that program, the executive
must load the PMAR with the maps
physical address and turn control over

7-126

VM Interrupts

Octal

Vector Location Description

"65

164

173

"62

7-12g

SuperVisor Call. Generated

by the execution of the SVC

instruction. The contents of the

Program Counter is copied into the

location addressed in '65. The
Program Counter points to the

location following the SVC

instruction.

Page-fault. This interrupts

occurs when the page map (see
Figure 2) indicates the page
required by the executing
instruction is not in memory. The

Program Counter pointing to the

faulted instruction is copied into
the location addressed in '64. The
address of the requested page is

copied to location 'l2g. The
interrupt can occur only when the

paging mode is enabled. When a
page fault interrupt occurs,

paging mode is disabled.

Pege Write Violation. This
interrupt occurs when the page

map (see Figure 2} indicates
the page about to be written

into is write protected. The

Program Counter pointing to the

violating instruction is copied
into the location addressed in
‘73, The interrupt can occur only
when paging mode is enabled. When a
page write violation interrupt

occurs, the paging mode is disabled.

Restricted Execution Violation. This

interrupt oceurs when the following

types of instructions try to execute:

I/O INTERRUPTS CONTROL
OCP ENB HLT
SKS” INH EMCM
INA ESIM IMCM
OTA EVIM RYC/RMP
ISI CAI VIRY.
OSI SMK EPMJ

IMK LPMJ
EVMJ
ERMJ

The Program Counter pointing to the

violating instruction is copied into

the location addressed in '62. The

interrupt can oceur only when

restricted execution mode is enabled.

When a. restricted executionviolation

interrupt occurs, the restricted

execution mode is disabled.

This page is intentionally left blank!

7-12h

Virtual Memory Instructions

Tha fA TaAurinna Inr c ~ q A
24440 424UViiUw iiss 41iO ions control page, virtual, and restricted
execution modes. They are not emulated by UII software on the Prime
100 or 200, which lack the virtual memory hardware, and so cause an
illegal instruction trap.

L:PMJ Inter Paging Mode and Jump "000217

W 0 0 0 0 0 0 0 0 1 060 0 0 4 1 1 Y

lt 23 4 5 6 7 8 9 10 11 12 13 14 15 16

W+] A

1 16

EPMJ is a two-word instruction. The first word is the OP Code "000217;
the second word contains a 16-bit address pointing to the final
effective address which is transferred to the Program Counter; theCAM registers are cleared, and the page mode is enabled.

LPMJ Leave Paging Mode and Jump "000215

W
0 0 0 0 0 0 0 @ 1 0 60 6031 21 9 Y

12 3 4 5 6 7 8 9 10 11 12 13 14 #15 16

W+1 A.

1 16

LPMJ is a two-word instruction. The first word is the OP Code 'yuuz15,;

the second word contains a 16 bit address pointing to the final
effective address which is transferred to the Program Counter, and the
paging mode is disabled.

ERM] Enter Restricted Execution Mode and Jump

=

'000701

Wjio 0 0 0 0 00 1 1 1 6 0 0 0 0 2

123 4 5 6 7 8 9 10 11 12 13 14 15 16

Wel A

1 16

ERMJ is a two-word instruction. The first is the OP Code ‘000701; the
second word contains a 16 bit address pointing to the final effective
address which is transferred to the Program Counter; restricted
execution mode is enabled, and interrupts are enabled,

EVM) Enter Virtual Mode and Jump "000703

Wio 0 0 0 0 0 0 1 1 =43 0 0 0 0 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

W+] , A

1 16

EVMJ is a two-word instruction that has the effect of an EPMJ and FRM)
combined. The first word contains the OP Code '000703. The second
word contains a 16 bit address pointing to the final effective
address which is transferred to the Program Counter; the CAM registers
cleared, paging mode is enabled, restricted execution mode is enabled,
and interrupts are enabled.

7-15

SECTION 8

EXTENDED CONTROL STORE OPTIONSthe Suk

This group of options is implemented by a mechanical extension to
the microprocessor control store on the CPU board of a Prime 200
or 300. Floating point arithmetic is optional for the Prime 200 or
300, and can be emulated by. Unimplemented Instruction Interrupt
(UII) software on any Prime CPU. Writable control store is optional
only on the 300 and is not emulated by UII.

&-1

SINGLE AND DOUBLE PRECISION FLOATING POINT ARITHMETIC

Single and double precision floating point arithmetic operations are

programmable by means of an optional 26-instruction repertroire on

Prime 200 and 300 machines. There are 18 single-precision and 8

double-precision instructions, described below and summarized in Figure

8-1. Floating point instructions use extended addressing formats and

so operate only in the relative addressing modes (E32R, E64R).

Floating point hardware is available as an option where execution time

is a critical consideration. Alternatively, floating point arithmetic

can be performed by the VIP software routines provided in the FORTRAN/

Math Library that accompanies all Prime computers. The formats for

single and double precision floating point numbers are shown in

Figure 8-1. Mantissa and exponent ranges are compared in Table 8-1.

Single Precision

Single-precision floating point numbers consist of a sign, a 23-bit

mantissa and an eight-bit exponent, packed into two consecutive memory

locations as follows:

FA |S| 20 --~-----7- MANTISSA — --—-—-------7-7-2

1 +? 3 4 5 6 7 8 9 10 11 12 13 4 15 16

Binary Point

BAt1

|

2-28-— manrissa--—-— 272] 27 —— exponenr —-—--—-- 20

123 4 5 6 7 8 9 10 11 12 13 14 15 16

The sign bit is 0 for positive, 1 for negative. The mantissa is a two's
complement binary fraction with the binary point between the sign and
the most significant mantissa bit. It provides about 6-1/2 decimal
digits of resolution (+8,388,607). The eight-bit exponent uses excess

roeseytation to represent a power of 2 from -128 to +127. (Approximately

102:

Power of 2 | Excess 128 Notation

2*127 11 111 111

29 10 000 000

2 128 00 000 000

8-2

INSTRUCTIONS

Single Double Description

FLD DFLD Load
FST DFST Store
FAD DFAD Add

FSB DFSB Subtract

FMP DFMP Multiply

FDV DFDV Divide

FCS DFCS Compare

FLX FLX Load Floating Index

FLOT FLOT + CRB Float A{B
INT INT Integer part of floating AC => A|B
FRAC FRAC Fractional part of floating AC => A|B
F™ DFCM Floating complement

FRN Round up

FSZE FSZE
FSNZ FSNZ
FSMI FOMI - Floating skips: work equally well

FSPC FSPC for both single and double precision.

FSLE FSLE
FSGT FSGT

FORMATS

Single | Double

Word - Memory Word - Memory
_Acc Reg.

Ist [|S] Mantissa | Ist [5S Mantissa | R04

1 2 16
2nd {——sSOMantissa {| R'05

2nd | Mantissa_ Exponent | ;
1 8 9 16 3rd_ | ~~ Mantissa } R'02

Floating Accumulator Reg. 4th | Exponent | R'06

{ S] Mantissa | R'04
1 2 16

{_ Mantissa —| ROS

[Exponent | R'06

Figure 8-1. Floating Point Summary

8-3

Table 8-1. Floating Point Mantissa and Exponent Ranges

Field SP (MEM) | SP (FAC) DP (MEM and DFAC)

Mantissa

Bits 23 + Sign 31 + Sign 47 + Sign

Precision + 8,388,607 2,147,483 ,647 + 140,737,488 ,355 ,327

Exponent

Bits 8 16 16

Range -128 to +127 -32896 to +32639 -32896 to +32639

8-4

“ero 1s represented by two words of all zeroes. Below arc samples

of single-precision values as they would be generated by Assembler

DATA statements. (Clhe E specifies a decimal exponent)

CGJ)1) * FLOATIVG POINT FKASPLES

(NNI2) *

(3903) * SINGLE PRECISIO"

CQJU4) *

GUUGud: GuGQod CU5g5) DATA GEY
UdJad rT: JSIGS

O99CCe: 040000 (0004) DATA .SEL

090903: J99290

Q99004: J40090 (0007) DATA 1£0

JIo0GS: VOI? GI

O9DUUS: Toud du (JU08) DATA -.5EU

Q)JIGI?: JIT 7?

0390010: 190000 (C909) DATA -1TEV0

O90011: NQ03200

OJUUTe2: U400U0 (9910) DATA 128E0

QJIJUTS: JUD2T)

GugG14&: THIICU (bu11) DATS ~-128E0

gI9015: dyueS?

030076: 977777 C6012) DATA &3&8&8607EIV

939017: 17762?

0JI020: 190990 (y913) DATA -8388607ED0

QIIGeT: VWIGbe?

CJuee: S77 744 (G414) DATA 1.7E38

CIIG23: 147777

090024: 056216 (9915) DATA 1.7E-36

099025: 195903

8-5

Single Precision Floating Accumulators (FAC)

The operands for the main arithmetic functions (ADD, FLD, FST, FAD,
FSB, FMP, FDV, FCS) are assumed to be in two consecutive memory words
Starting at the effective address (EA). However, the results of
floating point operations are returned in a three-word format in
registers 4, 5, and 6 - called the Single Precision Float ing
Accumulator (FAC). Floating loads (FLD) convert two-word memory
data to the three-word format in FAC, and the FAC is assumed to
contain the multiplicand or dividend prior to the FMP or FDV operations.
In the FAC, the mantissa is expanded to 31 bits of precision
(72,147, 483.647 decimal) and the exponent is allowed a full 16-bit

word (1079902 to 10*9825) .

s gt1-------=~-wanissa- - -- ----—---- g715

142 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Binary Point

2716MANTISSA-—~~~2-3

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

gr? ------- EXPONENT (EXCESS 128)----—--—-—-—~ 2°
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

During a series of floating operations, the FAC accumulates results
with the increased accuracy of the three-word format. When the
results are packed into the two-word memory format by an FST _
operation, the mantissa is truncated to 23 bits and only the eight
least significant bits of the exponent are retained. An attempt to
store an FAC exponent larger than the eight-bit field is defined as
one of the floating exceptions (described later).

8-6

Double Precision

Double precision arithmetic employs a four-word format both in memory
and in the double-precision floating accumulators (DFAC). The
format is:

Memory
Register Location

'04 FA |s{ 2!-~~----- MANTISSA ~~ -----------2-15}

1 he 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Binary Point

‘OS EAty 2°16 -----—---- MANTISSA — ~ — - ~-~~~--~--—2-51

‘02 EAt2

|

27°94 -~----~---- MANTISSA — —- —-—-—-—-—-—~——~— — 2°47

"06 BA#3 215EXPONENT (EXCESS 128) --~—---—--——20

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

The format is identical to the single-precision floating accumulators

(FAC) except that an additional 16 bits of mantissa are provided in

register '02 (or the third memory word). The additional word extends

the decimal precision to 14-1/2 decimal digits, or + 140,737,488 3334327.

The full 16-bit exponent permits a decimal exponent range from 10 9902

to 10°9825 in memory as well as in the DFAC.

Because the FAC overlaps the DFAC (except for the 16 least significant

magnitude bits), numbers placed in the DFAC by double precision

instructions. can be processed by single precision instructions.

Following are examples of double-precision values as generated by

Assembler DATA statements. (The D specifies double precision.)

8-7

fag. eS?

GOGH? :

AVS:

QYIU371:

Po yot Se:

ig 3S:

edus3a:

099035:

N39036:

CG 47:

Ducuade

NNCCSE1:

A3yGcées

JI0uU43:

O)2u464s

OG JUL4aS 2

SJG54Ss:

HOG047:

S925):

UILIU51:

Syuo2:

OguV53:

cds D4S

QO90C55:

JICGSS$:

JIUUS?:

Go dueuU:

Cotlé1:

JJouse?:

090063:

939264:

JIIUH5:

CjIvGS:

Qyuusl:

Jour:

NIOO71:

O3707e:

UI3Du73:

JG076:

bJLL75:3

JJUU7S:

O30C7?:

JIA:

JO5T1T:

eran JEL

YOGRIS

VAG

Jo Ud did

TARE

Dyas hea

boul

VIVO

3400908)

wot dah

JuuJduu

YNI2 61

POGC0D

JIGS

JOOQII)

uuul el?

Toul

Oona

eI]

Judge da

MQWG

ube

yOu9 aS

NN! TL

169009

JIQQ000

JUGIGU

GUG2U?

3777 ??
177777.

177777

JIS0257

Tegada

ve ddud

JIJIIG?

GAAS?

044732

Jel???

1360552

lel e

T5AV7e2
“ayTP

1593152

1o9003

CG 16)

Co 477)

(. 18)

(aide)

Clade tt)

(ue 3)

(iit 24)

(y925)

Cusen)

(5928)

C212)

*

*

x

8-8

PU ILE

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

para

PREC IGA

ae

2999

-1Du

12*D0

-12800

1.407374688355327014

—1.407374688355328014

1.209825

T.Ad-990e

Normalization

The result of every floating point calculation is normalized in the FAC

(or DFAC). In normal form, the most significant digit of the mantissa

follows the binary point. If an operation produces a mantissa that is

smaller than normal, the mantissa is shifted left until the most

significant bit differs from the sign bit, and the exponent is decreased

by one for each shift. Bits vacated at the right are filled by zeroes.

If the result of an operation overflows the mantissa, it is shifted

right one place, the overflow bit is made the most significant bit, and

the exponent is increased by 1. |

Floating Point Exceptions

Error conditions that arise during floating point operations may be

detected and handled by floating exception (FLEX) interrupts. These
are enabled when a user program makes location '74 non-zero (1.e.,

inserts a pointer to a routine that identifies and processes floating

point error conditions). When any one of several types of error

occurs, the CPU interrupts through location '74 to the error handling-
routine. A standard error handler, F$FLEX, is supplied as part of
the Prime software library.

If location '74 is zero, FLEX interrupts do not occur; instead, the C

bit is set. The user can test the C bit after possible error situations

and take action as appropriate.

All FLEX interrupts vector through location '74 and locations '1l and

'12 are set in certain cases to indicate the type of error condition.

Table 8-2 shows the codes currently assigned.

In the basic arithmetic operations, increasing the exponent in the FAC

(or DFAC) beyond 32639 is an overflow; decreasing it below -32896 is an

underflow. Note that the exception is detected during an overflow or

underflow of the full 16-bit exponent in the FAC or DFAC.

An attempt to store a single-precision number with an exponent greater

than 127 or less than -128 in the two-word memory format results in a

different type of exception. The number in FAC is not altered by the

FST operation and so can be recovered if necessary.

Other detected exceptions are an attempt to divide by zero or to form

an integer exceeding the capacity of the concatenated A and B registers

(* 30 bits or about * 1 billion decimal).

8-9

Table 8-2.

Register 11

Single Pre. Double Pre.

lt loating Exception Codes

Register 12

Type of Exception

(Exponent exceeds approx.

8-bit memory format

Attempt to form INT
exceeding capacity of
concatenated A and B

$100 $200 -- Overflow/Underflow

10 * 9800)

$101 $201 -- Division by zero

$102 ~~ (EA) Attempt to store
Single precision
exponent exceeding

(>127, <-128)

$103 -- --

registers (approx.
+ 1 billion).

Note: $ indicates hexadecimal codes

8-10

i
i

Single Precision Floating Point Instructions

FLD Floating Load "02
1

W Ti} xX; 9 O 1 Of1 1 606 60 O Of O 1} Class
2 3 4 5 6 7 8 9 10 11 12 13. 14 15 16

W+1

Load the double precision number contained in the two successive
words at EA into the floating point accumulators (registers '04,
"0S, and '06).

FST Floating Store "04

1

W Tj} X}/0 1 0 of 1 1 0 0 0 Ofo 1] Class

1 2 3 4 5 6 7 8 9 410 11 12 13 14 #15 16

W+1

1 16

Store the single precision floating point number contained in the FAC
in two memory words Starting at the effective address. Bits 24-3] ofthe 31-bit mantissa are truncated when written into the 23-bit capacitymemory storage. However, the programmer can precede the FST with aRND instruction which adds 1 to bit 23 if bit 24 is 1. If the FACcontains an exponent outside the 8-bit range (-12&F<+127), set C bitor initiate a floating exception.

8-11

PAD Floating Add "06

W Ij X 0 12 1 OFT 1 0 0 0 OF DO]{ Class

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Wrl

Add the contents of the floating point number in the FAC to the.
floating point number at the effective address, and leave the result-
ing floating point number in the FAC registers. Addition of floating
point numbers requires that their exponents be the same power of two.
This is accomplished by incrementing the smaller exponent while
right shifting its mantissa until the exponents match. With the
exponents thus aligned, the mantissas are added.

If there is an overflow from the most significant bit (not the sign),
the sum mantissa is shifted right one place, the exponent is
incremented by one and the overflow bit becomes the high-order bit
in the normalized mantissa. If the result is otherwise not in normal
form (as when numbers with unlike signs are added), the result is
normalized. If there is an exponent under/overflow (<-32896, >+32639)

the C bit is set or a floating exception is initiated.

FSB Floating Subtract "07
. 4]

W I} x; 9 1 1 1)1 1 0 0 0 Of O 1} Class

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

W+l

 A |

1 16

Subtract the contents of EA from FAC by aligningexponents, forming
the two's complement of the mantissa of (EA) and proceeding as in FAD.

8-12

c]

Fi Floating Multiply "16
1

W I; Xi i 1 1] =0 1 1 0 0 0 0,69 #374 Class

1 2 3 4 5 6 7 8 9 10 Ii 12 13 14 #15 16

W+1
A

1 16

Multiply the contents of FAC by (EA) and place the results in FAC.
The mantissa of the quotient is a normalized binary fraction and its
exponent is the sum of the multiplier and multiplicand exponents plus
the number of powers of two needed to compensate the shifts required
to normalize the mantissa. If there is an exponent under/overflow, the
C bit is set or floating exception is initiated.

FDV Floating Divide "17
1

W I Ch 2 2 2 vit. oO 0 0 O10 #421! Class

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

W+1

b
= 16

Divide the contents of FAC by the number in EA and leave the quotient

in FAC with the mantissa normalized.

If there is an exponent under/overflow, the C bit is set or a floating

exception is initiated.

8-13

CS Compare and Skip "hl
l

W I} xX; 1 0 212 1]71 21 0 0 0 Of © I] Class

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

W+1

1 16

If the contents of FAC are greater than the contents of EA, execute
the next instruction. If FAC contents equal those of EA, skip the
instruction following location FCS and execute FCS+2. If FAC contents
are less than EA, skip 2 locations and execute the FCS+3 instruciton.

FLOT Float "140550

1100 00 01 0121 060 1 0 0 0
12 3 4 5 6 7 8 910 11 12 13 14 15 16

Take the double precision integer in the concatenated A and B
registers and convert it into a normalized floating point number in
the FAC registers.

INT Fix As Integer "140554

1 1 0 0 00 01 0 1 1 0 1 1 «0 0

1 2 3 4 § 6 7 8 9 10 11 12 13 14 15 16

Convert the integer part of floating point number in the FAC to a
double precision two's-complement integer in the concatenated A and
B registers with the binary point following bit 31. If the FAC
contains a number too large to be represented in the double precision
integer format, the C Bit is set or a floating exception is.
initiated.

8-14

TMNAM mr... A Teen pa 2. '1405

FRAL FIA AS FYrACtION

11 000 0°01 0 1 1 4 «2 0 Od 0
t

1} 2 3 4 5 6 7 8 9 JO 11 12 15 VW 15 16

Convert the fractional part of the floating point number in FAC to a
binary fraction in the concatenated A and B registers with the binarypoint
between A, and A>.

FCM Complement *140530

 0 0 0 0 1 0 17 0 21 212 0 0 0 ~~.

2 3 4 5 6 7 8 9 JO 11 12 13 14 15 16

Two's complement the mantissa of FAC and normalize if necessary.
(Overflow is possible.)

FRN Round Up "140534

FSZE Floating Skip if Zero "140510

11 0 0 0.0 0 1 0 1 969 9g 1 0 0 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If register '04 =0, skip next location.

FSNZ Floating Skip if Not Zero "140511

 1 1 0 0 0 0 041 0 1 060 0 21 ~29 0 1

1 2 3 4 5 6 7 8 9 4106 11 #12 #13 14 15 16

If register '04 is not equal to zero, skip next location.

8-15

Floating Skip Tf Minus "140512

1 0 0 0 0 0 1 0 Jj 9 9 4 4g 1 0

Lt o2 3 4 5 6 7 8 9 40 W412 13 44 15 16

If bit 1 of register '04 is 1, skip next location.

FSPL Floating Skip If Plus "140513

1 1 0 0 0 0 0 1 0°1 0 01 01 43

2 3 4 5 6 7 8 9 16 11 12 13 14 15 16

If bit 1 of register '04 is 0, skip next location.

FSLE Floating Skip If Less or Equal Than Zero "140514

 IT 1 0 0 0 0 0 1 0 421 0.0 1 21 0 0
1 2 3 4 5 6 7 8 9 40 11 12 13 14 15 16

If register '04 is less than or equal to zero, skip next location.

FSGT Floating Skip If Greater Than Zero "140515

 1 1 0 0 0 0 0 1 0 1 0 0 1 1 0 #21

td 2 3 4 S$ 6 7 8 9 10 i121 12 15 14 #15 16

If register '04 is greater than zero, skip next location.

8-16

Double Precision Floating Point Instructions

DFLD Doubie Precision Fioating Load ©
B
O

B
R

W Ij} X!o0 0 1 071 1 0 0 0 #071 &40Of Class

2 3 4 5 6 7 8 9 10 li 12 13 14 15 16

W+1

Load the double precision number contained in the four memory words

at EA into the DFAC registers.

DFST Double Precision Floating Store "04
2

W Ij} xX} 0 1 0 07;1 1 0 0 0 Of 1 OF Class

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Wri

 1 16

Store the double precision number contained in four double precision
FACs into the location specified by EA. Exponent and mantissa bit
Capacities are the same so that no floating point exceptions are
possible.

8-17

DFAD Double Precision Floating Add "06
2

W I} xj} O0 1 1 Of 1 1 0 0 0 Of 1. Of Class

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

W+l

1 | 16

Add the double precision number in DFAC to the double precision number
starting at EA and leave the result in DFAC. (Same procedure as FAD
except a 47-bit mantissa is produced.)

DFSB Double Precision Floating Subtract "07

wo ofty xX; eo 2 tf LTf1 1:0 0-0 OF} 1 OF Class

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

W+1

Subtract the double precision floating point number starting at EA
from the double precision floating point number in DFAC. (Same
procedure as FSB except a 47-bit mantissa is produced.)

8-18

DIMP Double Precision Float ing Mult iply "16

2

W Ij] XX} 1 #1] 1 O71 1 0 0 O Of 1 OF Class
1 2 3 4 5 6 7 8 9 10 11 12 13 14 #15 16

W+1

1 16

Multiply the double precision floating point number in DFAC by the
double precision floating number starting at EA and leave the result
in DFAC. Exponents are added and, after mantissas are multiplied, the
product is normalized.

An exponent under/overflow sets the C bit or initiates a floating
exception interrupt.

fa
xe

d
t
o
oDFDV Double Precision Floating Divide

, a

W It} X; 1 1 1 1/1 #21 +0 06 +0 Of 1 OF} Class

2 3 4 5 6 7 8 9 10 Jl 12 13 14 15 16

W+1

1 16

Divide the double precision floating point number in DFAC by the
double precision floating point number starting at EA and leave the
result in DFAC. Exponents are subtracted, and after the divisor
mantissa is divided into the dividend mantissa, the quotient is
normalized.

An under/overflow or an attempt to divide by zero sets the C bit
or initiates a floating exception interrupt.

8-19

DECS Double Floating Point Compare and Skip 1]
2

W I}/x{/1i 0 0 1 f71 1 0 0 0 Of 1 OF Class

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

W+1

If DFAC is greater than (EA), execute the next instruction.

If DEAC equals (EA), skip the instruction at the next location and
execute the instruction at second location following.

If DFAC is less than (EA), skip next two locations in instruction
sequence and execute the instruction at third instruction location.

DFCM Double Precision Floating Complement '140574

11000001 0 1 1 1 1 «21 ~0 =09

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Two's complement the double precision mantissa in DFAC and normalize

if necessary. Overflow is possible.

8-20

WRITABLE CONTROL STORE

See Writable Control Store Data Sheet

8-21

AUXILIARY CPU FUNCTIONS

These functions are available as options for any Prime CPU.
(Automatic Program Load for ASR and HSR is standard on the 300.)

9-1

PRIME's family of computers are micro-
programmed using a 64-bit wide micropro-
cessor as the control unit. This micro-
processor or "inner processor" has a
control store containing microinstruc-
tions arranged as microprograms. These
execute the computer's or "outer
processor's" machine instructions, I/0
and control panel functions. WSC
extends the PRIME 300's basie control
store (512 words of PROM, Programmable
Read Only Memory) with 256 words of
RAM (Random Access Memory). Micropro-
grams for WCS are written using PRIME's
Micro Assembler and are loaded from main
memory using a. PRIME-supplied loader.
Control is turned over to WCS micropro-
grams by executing a set of special 'Jump
to WCS' instructions.

WCS CAPABILITIES

The capabilities of WCS are a function of
both the inner and outer processors. The
outer processor has 32 general purpose
registers, an arithmetic and logic unit,
main memory interface, I/O bus interface
and an 8-bit auxiliary counter. This
general architecture is enhanced by hard-
ware assists to speed the execution of
skips, instruction fetches, and decode
operations.

The inner processor contains a control
unit and control store. It features a
three-deep push/pop stack and condition
testing to assist in subroutining, and
microprogram trapping. The microprocessor
fetches and executes microinstructions
from control store. The 64-bit wide
microinstruction format permits multiple
functions to be performed by a single
instruction. A narrower word may require
several instructions to accomplish an
equivalent task. Also, the generalized
structure of the outer processor broadens

9-2

the spectrum of tasks that can be
implemented with the powerful

inner processor.

Microprogramming can be used to gain
a speed advantage and minimize main
memory storage compared to in-line
programming with the standard instruc-
tion set. A microprogrammed subroutine
eliminates individual instruction
fetches from main memory. A typical
microinstruction executes in 280 ns -
much faster than main memory cycle time.
Thus, when main memory references are
minimized, execution speed increases.
Furthermore, since a single in-line
instruction transfers control to a WCS
subroutine, there can also be a more
efficient use of main memory.

XCS BOARD

The PRIME microprocessor can address up
to 4096 words of control store. To
extend the control store past the 512
words located on the central processor
(ep) board, a second board is used. The
extended control store (XCS) board
connects to the cp board in adjacent
chassis slots with three short ribbon
cables attached to the boards' rear
edge connectors.

Both WCS (RAM) and floating point
arithmetic (PROM) can populate the XCS
board depending upon which type pro-
cessor and option has been ordered.

PROGRAMMING

Loading WCS

The XCS board also interfaces to the I/0
bus to facilitate the loading of WCS from
main memory. This is accomplished by
first loading the A register with the

starting address of WCS and transferring
this to the XCS board with an OTA instruc-

tion. Data is transferred to WCS by a

sequence of LDA & OTA instructions.
The WCS control logic automatically

ynacks four sequential 16-bit words into
one 64-bit microinstruction, and advances
to the next WCS location.

"Jump to WCS" Instructions

Four "Jump to WCS" instructions have

been added to the PRIME 331, 332, 333

and 334 processors:

EPMX ~ Enter page mode and jump to XCS.

EVMX Enter virtual mode and jump
to XCS.

(Virtual mode = page mode &
restricted execution mode)

ERMX - Enter restricted execution

mode and jump to XCS.

LFMX - Leave page mode and jump to XCS.

All of the above are 2 word instructions.

The first word is the op code; the second
°mast os“ Am™

is a pointer to a main memory location

containing the address of the micro-
instruction, This format permits pure
procedures to be separated from
variables (the control store address may

be a variable) and facilitates recursive,

re-entrant programming. To transfer

control to WCS takes approximately 2.5
microseconds. These are restricted
instructions and cause a trap when

executed with restricted execution mode

enabled. This feature gives the
executive software the ability to
decide how to handle user-level requests
for WCS access.

Use of PMA

RIME's Macro Assembler (PMA) can be
used to create special mnemonic
representations for microprograms.

9-3

These are actually one instruction macro's

a "jump to WCS" with a unique pointer
and WCS address. Once the macro has

been defined, the user can refer to his

microprogram as a mnemonic, the way he

would to a standard PRIMF instruction.

SOFTWARE

Micro Assembler

PRIME's macro assembler allows the user

to create microprograms with full symbolic
assembly capabilities. Symbolic source
code is assembled and object code
created in a format to be loaded into
wCS and/or printed in hexidecimal format.
The macro assembler runs under DOS and

requires a DOS system with at least
32K words of main memory. The DOS
Editor (ED) is used to enter and modify
source statements.

Loader

This enables a DOS user to load WCS from

main memory.

Test and Verification

Test and verification routines are also

provided.

Microprogramming Course

A one week microprogramming course must

be attended as a prerequisite to
installing and using the WSC feature.
The course is designed to give the
student hands-on experience writing,
debugging, and executing microprograms.
For the student to properly benefit
from the course, he should at least

familiarize himself with the reading
material that will be provided him prior
to the course. Preferably he will be
experienced in machine level programming,
logic design, and computer architecture.

The power monitor and related features
cambine to provide autamatic restart
from memory after a power failure has
been corrected and AC power is re-
stored. Four distinct and inter-
related functions are provided by
this option: sensing of line voltage
not within the PRIME 200's operating
specifications, storing of processor
status information when power fails,
battery refreshing of MOS memory, and
automatic restart when AC power is
restored.

OPERATION

When the camputer is running, AC power
is constantly monitored to assure
that it satisfies the camputer's
voltage requirement. Should voltage
drop below the specified limit
(95 VAC) an automatic power failure
interrupt is executed through location
'60. This gives the program approx-
imately one millisecond to prepare
for loss of AC power. At the end of
this interval, a system clear is
generated to prevent random logic
transitions from altering memory as
power is going down. The back-up
battery is used to refresh the con-
tents of the MOS memory and provide
power to essential processor logic.
Use of the battery is indicated by
the flashing of the STOP light on
the computer's control panel. When

9-4

power returns to proper operating
specifications, the processor auto-
matically restarts at location '1000
and the battery begins recharging.

EQUIPMENT CONFIGURATION

The equipment consists of two separ-
ate components: an assembly with
panel which mounts on the computer's
power supply, and the battery which
may be mounted at either the front
or back of the equipment rack.
The assembly which mounts on the
power supply contains the battery
charging circuitry and DC to DC
conversion circuitry to supply

16.2 volts + 0.5 volts, 2.5 amps
3.5 volts + 0.5 volts, 2.0 amps
5.0 volts +0.25 volts, 7.0 amps

with bendback and overvoltage pro-
tections. The panel associated
with this assembly contains a full-
charge indicator, meter terminals,
and battery terminals.

The battery is a sealed, gel-electro-
lyte unit whach can be stored or
charged in any position. Two
20 Amp hour cells can be housed
in the battery mounting, which
requires 7" of panel space and a
depth of 8".

SPECIFICATION SUMMARY

PRIME 200 input voltage requirement:
95 to 125 VAC, 47 to 63Hz.

Allowable Temporary Voltage Drops:

3 Drop From Maxumum Allowable

120 VAC Duration

100% 12.0 msec.

40% 20.8 msec.

24% 480.0 msec.

Battery:

20 Amp-Hour

Operating Temperature:
O0Oto 50°C

w
n

Battery Back-up Time:

Memory 1 Battery 2 Batteries

AK 6.7 Hrs. 13.4 Hrs.

8K 6 12
16K 4.3 8.7
24K 3.1 6.2
32K 2.4 4.9

HOW TO ORDER

Specify Type Number and Description

Type
Number Description

240 Power Monitor, Power Failure
Interrupt and Automatic
Restart Protection.

Specifications subject to change
without notice.

The automatic program load options
enable the operator to load programs
from devices such as fixed and moving
head disks, and paper tape simply by
initiating a hardware bootstrap from
the control panel. They may also be
used to reload programs when power is
restored following a power failure.

These features save considerable time
and effort by eliminating the tedious
and error-prone procedure of manually
keying in a bootstrap loader one word
at a time.

There are three basic types of automatic
loaders, one for the fixed-and moving-
head disks, one for magnetic tape, and
one for the ASR and high speed paper
tape readers.

All versions are implemented as
part of the central processor and
the operator uses sense switches to
specify the input device.

The disk version reads the contents of

sector 0 of the selected disk,
storing the words beginning at loca-
tion '770. After reading the data,
the processor begins normal program
execution at location '1000. (The
program executed; i.e., the data read
in from the disk, is entirely at
the discretion of the programmer).

The magnetic tape version reads
the first record from magnetic
tape unit 0 into memory beginning
at location '770. After reading

9-6

the data, the processor begins
normal program execution at loca-
tion '1000. Like the disk, the data
read from tape is entirely at the
discretion of the programmer.

The paper tape version reads any PRIME

self-loading tape. Tapes of the
assembler, linking loader, text
editor and other basic programs are
available in self-loading format. Also,
any tape punched by the memory dump
and load program (MDL) is in the self-
loading format and its data is stored
in the same part of memory fromwhich
it was punched.

SPECIFICATION SUMMARY

Operating Characteristics

ssw 141516 Function Selected

0 0 O= Start @ '1000

0 O 1 = APL fran TIY

O 1 O = APL fram HSR

0 1 1 = APL from FHD

1 0 O = APL from MHD

1 0 1 = APL from Magnetic Tape

Data Rate - Input Device Dependent

WwW 4 Y ORDER

Specity Type Number and Description

Type

Number

142

143

144

Description

Automatic Program Load from
Teletype and Paper Tape Reader
for Series 100 Processors.

Automatic Program Load from
Magnetic Disk for Series 100
processors.

Automatic Program Load fram
Magnetic Tape for Series 100
processors.

242

243

244

Automatic Program Load from
Teletype anc Paper Tape
Reader for Series 200 Proces-

sors.

Automatic Program Toad from
Magnetic Disk for Series 200
processors.

Automatic Program Load fram
Magnetic Tape for Series 290
processors.

APPENDIX A
TWOS COMPLEMENT CONVENTIONS

The signed numbersusedasrelative dis-

placements in referencing memory andas

operandsfor the arithmetic instructions
utilize the twos complementrepresentation
for negatives. In a word or byte used as a

signed number,the leftmostbit represents

the sign, 0 for positive, 1 for negative. In

a positive numberthe remainingbits are

the magnitudein ordinary binary notation.

The negative of a numberis obtained by

taking its twos complement, with the sign

bit included in the operationas thoughit

were a more significant magnitudebit.
If x is an n-digit binary number,its twos

complementis 2”-x, and its ones comple-

mentis (2” -1)-x, or equivalently (2”-x)-1.

Subtracting a numberfrom 2”-1 (i.e., from
all 1s) is equivalent to performing the
logical complement,i.e., changingall Os
to 1s andall 1s to 0s. Therefore, to form

the twos complementonetakesthelogical
complement —usuallyreferred to simply
as the complement — of the entire word
including the sign, and adds1 to the result.
A displacementof 173 and its negative
wouldlooklike this in bits 8-16 of an
instruction word wherebit 8 is the sign.

+1739 = +255, =| 010 101 101|
8 16

+1739 = —258, =[101 010 011|

8 16

The same numbers used as operandsin
memory or the A register would look
like this.

—173,9 = + 255, =| 0 000 000 010 101 101 |

_ 2553 =|1 111. 111 101 010 011|
1 16

—173;9 =

Bit 1 is now thesign andbits 2-7 are not
significant. It is thus evident that expand-
ing an integer into a full word is accom-
plished simply byfilling out the word to
the left with the sign.

Al

The arithmetic instructions manipulate
operandsas 16-bit unsigned numbers,but
the program caninterpret them as signed
sam : + 1numbers in twos complement notation.It

is a property of twos complementarith-
metic that operations on signed numbers
using twos complementconventionsare
identical to operations on unsigned num-
bers; in other words the hardware simply
treats the sign as a more significant mag-
nitude bit (although overflow is detected
as though the numbers were signed).
Regarding the above 16-bit examples as
unsigned numbers,the positive form would
still represent 173, but the negative form

nowrepresents 65,363 ('177523). Insofar
as processoroperations are concerned,
it makes no difference which way the pro-
grammerinterprets the contentsof regis-
ters provided only that heis consistent.

Zero is represented by a word containing
all ds. Complementing this numberpro-
ducesall 1s, and adding 1 to that produces
all Os again. Hencethereis only one zero
representation andits sign is positive.
Since the numbers are symmetrical in mag-
nitude abouta single zero representation,

all even numbersboth positive and nega-
tive end in 0, all odd numbersin 1 (a num-

berall 1s represents -1). But since there are
the same numberofpositive and negative
numbersandzerois positive, there is one
more negative numberthanthere are non-
zero positive numbers.This is the most
negative numberandit cannot be pro-
duced by negating any positive number(its
octal representation as a 16-bit numberis
100000 andits magnitudeis one greater
than the largest positive number).

If ones complements wereused for nega-
tives, one could read a negative numberby

attaching significanceto the Os instead of

the 1s. In twos complementnotation each

negative numberis onegreater than the

complementof the positive numberof the

same magnitude,so one can read a nega-

ive numberbyattaching significance to

the rightmost 1 and attaching significance

to the Os at the left of it (the negative num-

ber of largest magnitude has a 1 in only the
sign position). Assuming the binary point
to be stationary, 1s may be discardedat the
left in a negative integer, just as leading Os
may be dropped in a positive integer;
equivalently an integer can be extended to
the left by prefixing 1s or Os respectively
(1.e., by prefixing the sign). In a negative
(proper) fraction, 0s may bediscarded at
the right; as long as only Os are discarded,
the numberremains in twos complement
form becauseit still has a 1 that possesses
significance; but if a portion including the
rightmost 1 is discarded, the remaining
part of the fraction is now a ones comple-
ment. Truncation of a negative number
thus increasesits absolute value. Multi-
plication produces a double length product,

and the programmer must rememberthat
discarding the low orderpart of a double
length negative leaves the high order part
in correct twos complementform only if
the low orderpart is null.

Since each bit position represents a binary
order of magnitude,shifting a numberis
equivalent to multiplication by a powerof
2, provided of course that the binary point
is assumedstationary. Shifting one place
to the left multiplies the numberby 2. A 0
should be entered at the right, and no
informationis lost if the sign bit remains
the same —a changein the sign indicates
that a bit of significance has been shifted
out. Shifting one place to the right divides
by 2. Truncation occursat the right, and a
bit equal to the sign must be entered at
theleft.

A2

APPENDIX B
ADDRESSING

P Address of instruction location (contents of Program
counter before instruction fetch)

PD Sectored address formed by concatenation of theleft
seven bits of P with the right nine bits of D

A For standard addressing: an absolute address of 14 or
15 bits; for extended addressing: specifically the 15-bit
absolute address in location P + 1 (bit 1 is ignored)

S$ Contents of stack register
X Contents of currently selected index register
I(g) Result of indirect chain beginning with access to loca-

tions addressed by :

16K Sectored 0<D<’777

1 xX § D Address Word EA

00 0 D
o 1 0 D+xX

10 0 1,X,A 1(D)
171 £=«0 1,X,A (D +X)

oo 1 P|D
1 | PIDi xX

101 1,X,A (PD)
1141 LX,A K(P'D + X)

32K Sectored 0<D<’777

0 0 0 D
01 0 D+xX

1 0 0 LA 1(D)
11 £0 < 7100 LA \(D + X)
17 £0 = *100 1A (D} + X

oo 17 PID
o6ii1 P|jD + xX
10 1 LA (P'D)
14 £1 LA (P}D) + X

32K Relative §=0:0<D<'777
S§ = 1:— 240 <D < 255
{for D < —240 see § 2.9}

0 0 0 D
0 1 0 D+ xX
10 0 LA (D)
11 #0 < °100 LA KD + X)
11 £40 = 100 1A (D) + X

001 3-240 P+14D
0411 => —240 P+14+D+4
101 = —240 1A (P+ 1+ D)
11 £é41 = —240 1A (P +-14 D)

32K Relative: Extended Effective Address Calculation

Bits 7-12 —1 100 00(S = 1, —256<D< —241)

Bits Ancillary Type of
1 xX 15-16 EA Action Addressing

0 0 0 A Address

0 60 1 A+S Base plus
displacement

0 0 2 S$ S$+1-—-S Push/pop

0 0 3 Ss —1 S—1->S Pop/push

o 1 0 A+*xX Address,
indexed

a | 1 A+S4xX Base plus
displacement,
indexed

| 2 (S$) + X §$+1—->S Push/pop
indirect,
postindexed

Oo 1 3 KS —1)+X S—1-—>S Pop/push
indirect,
postindexed

1 0 0 I(A) Address
indirect

1 0 1 WA + S) Base plus,
displacement,
indirect

140 2 \(S) $+1 S$ Push/pop
indirect

1 #0 3 ys — I) sS—1 S Pop/push
indirect

1 1 0 KA + X) Address
indexed,
indirect

11 1 WA+ S + X) Base plus
displacement
indexed,
indirect

1 #1 2 (A) + X Address
indirect,
postindexed

11 3 WA+S)+X Base pius
displacement
indirect,

Bl

postindexed

APPENDIX C

INSTRUCTION ‘TIMING

Mnemonw Function 100 CP 200 CP 300 CP 300 CP

(600 n sec.) (440 nsec.)

ALA \dd One Lo A 1.76 1.36 1.28 112 pp?
VIA Add Pwo bon 1.76 1.36 1.28 ti?

ACA Add C TOA 1.76 1.36 1.28 1.12

ADD Add To \ 2.44 1.96 1.88 1.56

ALl A Left Lovical L4+0.36N L.O8t0.24N 1.O8#0.2N O.9240,2N

ALR A Pett Rotate 1.440.36N 1.0840.24N 1.0810.2N O.9240.2N

ALS A Left Shitt 1.7640.36N L.28t0,04N }.2810.2N 1.1 240.2N

ANA And With A 2.44 1.96 1.88 1.56

AQA Add One Po A 1.76 1.36 1.28 1.12

ART. A Right Logical 1.440.36N L.O8t0.24N 1.08+0,2N .92+0.2N

ARR A Right Rotate L.440.36N 1.8 tO.24N 1.0840.2N O.9240,.2N

ARS A Right Shitt 1.440.36N bOStOL24N 1.0840,2N 0.9240.2N

CAL Clear Active Interrupt 1.76 1.28 1.28 1.12

CAI Clear A Left Byte 1.76 1.36 1.28 1.12

CAR Clear A Right Byte 1.76 1.36 1.28 1.12

CAS Compare And Skip 3.52 2.16 2.26 1.94

3.83 2.44 2.48 2.16

4,24 2.72 2.60 2.36

CAL Compare A With 0 And Skip 2.12 1.52 1.48 1.32

2.48 1.80) 1.78 1.52

2.84 2.08 1.88 1.72

ChA Compute F ffective Address 3.2441.041 2.8440. 881 2.16+0.841 2.0441 0.68)

CHS Change Sign 1.76 1.36 1.28 1.12

CMA Complement A 1.76 1.36 1.28 1.12

CRA Clear A 1.76 1.28 1.28 1.12

CRB Clear B 1.76 1.28 1.28 1.12

CREP Cali Recursive Procedure 3.48 3.08

CRI Clear Long 2.12 1.48 1.48 1.32

CSA Copy Sign OF A 1.76 1.36 1.28 1.12

DAD Double Precision Add 4.56 3.56 3.28 2.80

DBI. Enter Dbl Pree Mode 1.76 1.28 1.28 1.12

DEAD Dbl Precision Floating Add Lisl 11.0+ 10.04

JTIAFILN .64A+.92N 64A+.92N

DECM Dbl Pree Fiting Complement 5.96 6.52 6.20

DECS Db} Pr Fiting Comp & Skip S.18 4.725 4,245

DEDY Dbl1 Pr Floating Divide 73.3 67.52 66.56

DIEFLD Dbl Pr Floating Load S84 5.56 4.60

DEMP Db! Pr Floating Multiply $6.73 52.62 51.66

DIFSB Dbi Pr Floating Subtract LESd+ 11.0+ 10.04+

-72A+1.N 64A+,92N .64A+,92N

DEST Dbl Pree Floating Store 6.56 5.48 5.00

DIV Divide 13.78 13.24 11.2725 10.9525

DLD Double Load 3.72 2.96 2.72 2,24

DRX Decrement Replace Index & Skip 2.48 2.12 1.84 1.56 1.78-1.48 1.52 -1.32

DSB Double Precision Subtract 3.6 3.32 3.22 2.74

DST Double Store 3.72 3.04 2.64 2.32

16S Inter LOK Sectored Mode 1.76 1.28 1,28 1.12

F32R Enter 32K Relative Mode 1.76 1.28 1.28 1.12

1328 Enter 32K Sectored Mode 1.76 1.28 1.28 1.12

E64R Enter 64K Relative Mode 1.76 1.28 1.28 1.12

FAA lffective Address To A 2.52 2.20

EMCM Enter Machine Check Mode 1.28 1.28 1.12

ENB Enable Interrupt 1.76 1.28 1.28 1.12

ENTR Enter Recursive Procedure - - 3.24 2.84

EPMJ Enter Page Mode & Jump 3.72 3.28 2.80

FRA Exchisive Or To A 2.44 1.96 1.88. 1.56

ERMJ Enter Restricted Mode & Jump 3.72 3.28 2.80

ESIM Enter Std Interrupt Mode 1.76 1.28 1.28 1.12

VIM Enter Vectored Interrupt Mode 1.76 1.28 1.28 1.12

ILVMJ Enter Virtual Mode & Jump 3.72 3.28 2.80

PAD Floating Add 9.35+ 8. 75+ Bb d+

ABAEN ASATTIN ABAT.7IN

PCM I foating Complement 3.96 3.45 3.32

FCS Hloating Compare & Skip 4.71 4.62 3.98

EDV lloating Divide 39.46 37.92 37.28

Mnemonic Func tion hao cP 200 CP 300 CP 300 CP
(600 nsec.) (440 nsec

bib Plouting Load 4.6 4.36 3.72

PLOT Float (A & B) As An Intever S.8+.8N §,2+.72N 4.884.72N

Normalized

FEN Load Floating Indes 3.36 3.32 2.84

EMP Hloating Multiply 27.82 25.20) 24.56

ERAC Pixs As Fraction 4.964+.48N 4.62+.44N 4.3+.44N

PERN Round-Up 3.68 3.32 3.16

ESB Floating Subtract 935+ 8.754 4.BKt

ABATBN ABAT. TIN ABATTIN

ESGE Floating Skip HW > 0 3.42 2.84 2.88 2.68 2.72 2.52

PSLT Mloating Skip [>= 0 3.12 2.84 2.88 2.68 2.72 2.52

PSMI Floating Skip It Minus 3.12 2.84 2.88 2.68 2,72 2.52

ESNZ Floating Skip ly Not 0 3.12 2.84 2.48 2.68 2.72 2.52

ESPI Floating Skip If Plus 3.12 2.84 2.88 2.68 2.72 2.52

VSI Floating Store 5.24 4.80 4.40

ESZE Floating Skip 1f 0 3.12 2.84 2.88 2.68 2.72 2.82

TEE Halt N/A N/A N/A N/A

IAB Interchange A & B 2.84 1.88 L.&4 1.68

ICA Interchange Bytes OF A 1.76 1.36 1.28 1.12

cl Interchange Bytes OF A 1.76 1.36 1.28 1.12

& Clear Lett By te ,

ICR Interchange Bytes OF A 1.76 1.36 1.28 infC

& Clear Right Byte

IMA Interchange Memory & A 3.72 2.88 2.72 2.32

INA Input fo A From 1/O 3.92 3.2 2.72 2.06 2.64 - 2.04 2.28 1.88

INT Inhibit Interrupt 1.76 1.28 1.28 L412

INK Input Keys To A 3.56 2.44 2.28 2.12

INT Fix As Interger 6. 2040,6N S.7040.62N S.S0+0.62N

IRS Increment Memory Replace & Skip 3.16 3.04 2.80 2.64 2.72 256 2.33 2.16

IRX Increment Replace Index & Skip 2.48 2.12 1.84 1.56 1.78 L.48 h.32 4.32

ISI Input Serial Intertace L.76 1.56 1.48 1.32

IDX Jump & Decrement X 2.72 2.4

JEQ Jump If Fqual To 0 2.72 24

IGE Jump If > = 0 2.72 24

IGT Jump tf >0 2.72 24

JIX Jump & Increment X 2.72 24

JLE Jump If <=0 272 24

JLT JumpIf <0 2.72 2.4

JMP Unconditional Jump 1.76 1.28 1.28 1.12

INE Jump If Not Fqual To 0 2.72 2.4

JST Jump To Subroutine 3.36) 64 2.56 2.16

JSX Jump & Store Return In & 2.88 2.56

LDA Load A 2.44 1.88 1.88 1.36

LDX Load Index (Not Indexed) 2.44 1.88 1.88 1.56

LEQ Convert A=0 To True 748 2.12 184 1.64 1.76 1.56 1.60 1.40

LE Convert A To False 2.48 1.84 1.56 1.40

LGE Convert A >= 0 To True 248 2.12 1.84 1.64 L760 1.56 160) 1.40

LGL A Lett Logical 14+0.30N 1.08+0.24N 1.Q8+0,2N O24IN

LGR A Right Logical 1.44+0.36N 1.08+0.24N 1.OS8t0,2N OO 240,2N

LGT Convert A) > 0 To True 248 2.12 L.s4 L.6o4 176) 1.56 1.60) 1.40

LLE Convert A HC = 0 To True Z48 2.12 1.84 1.64 1.76 b.56 1.60) 1.40

LLL Long Left Logical L.44+0,72N L.OS8t+0.4BN L.OS+0,4N QO 2+AN

LLR Long Lett Rotate 1.44 1.08N L.OS8+0.68N L.OX+0,6N WY 2+0.6N

LLS Long Lett Shift 1.7640,72N 1.284048 L.O8+0,4N LI 2+0,4N

LLT Convert A <0 To True 2.48 2.12 L.S4 1.64 1.76 1.56 1.60 1.40

LMCM Leave Machine Check Mode 1.28 1.28 12

LNI Convert A Not = 0 To True 248 2.12 1.84 1.64 1.76 1.36 160) 140

LPM] Leave Page Mode & Jump 3.28 2.80

LRL Long Right Logical 1.44 .72N L.OS8+ 084 .48N E08 4N Q.02+ 4N

LRR Long Right Rotate P44 1.Q8N LOS.68N 1.O8+.6N WY 2+ ON

LRS Long Right Shitt 14+.72N LQSH.08N 108+ .4N (O24 4N

LT Convert A To Prue 2.12 1.64 1.36 140

MPY Multiply 11.26 10.48 O04 x. 2

NOP No Operation 248 1.08 Lots 1.52

C-2

Mnemonic Function i606 CP 206 CP 366 CP 300 CP
(600 n sec.) (440 nsec.)

NRM Normuilize 3.42117.08N 2.964 .608N 2.96!1.6N 2.241.60N

OCP Output Control Pulse 3.2 2.64 2.64 2.48

Os Output Seriat Interface 2.12 1.48 1.48 1.32

OLA Output Abo 1/O 4.28 2.84 2.84 1.88 2.64 2.04 2.28 1.88

OK Output A “Fo Status Keys 2.84 2.12 2.04 1.88

PID Positive For Interger Divide 2.84 2.08 1.88 1.72

PIM Pos. For Interger Multiply 2.48 1.84 1.6% 1.52

RCB Reset C Bit 1.76 1.36 1.28 1.12

RMC Reset Machine Check Flag 1.28 1.28 1.42

RIN Return From Recursive Proc 4.36 3.88

STA Subtract One From A 1.76 1.36 1.28 1.12

S2A Subtract Pwo From A 1.76 1.36 1.32 1.16

SCB Set C Bit 1.76 1.36 1.2 1.12 PB G

SGL Inter Single Precision Mode 1.76 1.28 1. 1.12

SKP Skip Unconditionally 3.2 2,32 2.12 1.96

AIL Skips Skip On Conditions 3.2. 2.84 2.32 -2.04 2.12 1.92 1.96 1.76

SOA Subtract One From A 1.76 1.36 1.28 1.12

SSM Set Sign Minus 1.76 1.36 1.28 1.12

SSP Set Sign Plus 1.76 1.36 1.28 1.12

STA Store A 2,32 1.96 1.76 1.52

SEX Store Index (Not Indexed) 2.32 1.96 1.76 1.52

SUB Subtract From A 2.44 1.96 1.88 1.56

SVC Supervisor Call 4,24 3,24 3.20 2.80

TOA Two’s Complement A 2.12 1.64 1.48 1.32

VIRY Exec Verification Routine 128 128 128

XCA Transfer A To B & Clear A 2.48 1.68 1.68 i.52

XCB ‘Transfer B To A & Clear 8 2.48 1.68 1.68 1.52

NEC execute Ftfective Address 3.24+ 2.92+

Content As Next Instruction

‘Timing Notes:

1. Values For N =

number ofsteps in shifts,

number ofsteps in normalize,

numberofsteps in normalize routine offloating point operations.

2. A = numberofadjust steps in floating point.

3. 1 = level of indirection.

C-3

APPENDIX D 227 ETB End oftransmission block; also LEM,
logical end of medium. Control W.

INPUT-OUTPUT CODES 230 CAN Cancei (CANCL). Controt X.

. . 231 EM End of medium. Control Y.

The following table lists the complete ASCII —.232 SUB

—_—

Substitute. ControlZ.
. 233 ESC Escape, prefix. Control shift K.

code, with informationpertainingtoits 234 FS File separator. Controlshift L.
1 235 GS Group separator. Control shift M.

use with Teletype Models 33 and 35. 236 RS Record separator. Control shift N.

The lowercase character set (codes 140-176) —_237 US Unit separator. Control shift O.

is not available on these models, but giving 344 sP Space.
one of these codes causestheteletype- 242 "
writer to print the corresponding upper 8-Bit

case character. The definitions of the con- Octal Character Remarks
. e

trol codes are those given by ASCII. Most 243 # |
control codes howeverhave noeffect on a $
the computer teletypewriter, and the defini- 246 &

: : 247 ‘ Accent acute or apostrophe.

tions bear no necessary relation to the 250 (
use of the codes in conjunction withthe a)
software. Following the ASCII table is a 253 +
completelisting of the Prime I/O devices oes _
with their device and identification codes 256 .

. . 257 /
and maskbit assignments. 260 0

8-Bit 261 i
Octal 262 2
Code Character Remarks 263 3
200 NUL Null, tape feed. Controlshift P. 264 4
201 SOH Start of heading; also SOM,startof 265 Ss

message. Control A. 266 6
202 STX Start of text; also EOA, end of address. 267 7

Control B. 270 8
203 ETX End of text; also EOM, end of message. 271 9

Control C. 272 :
204 EOT End of transmission (END); shuis off 273 ;

TWX machines. Control D. 274 <
205 ENQ Enquiry (ENQRY); also WRU, “Whoare 275 =

you?”Triggers identification (Here 276 =

is. . .”’) at remote stationif so 277 ‘

equipped. Control E. 300 @

206 ACK Acknowledge; also RU, “‘Are you. .. ?” 301 A
Control F. 302 B

207 BEL Ringsthebell. Control G. 303. OC
210 BS Backspace;also FEO,format effector. 304 D

Backspaces some machines. Repeats 305 E
on Model37. Control H. 306 F

211 HT Horizontal tab. ControlI. 307 G
212 LF Line feed or line space (NEW LINE); 310 H

advancespaperto nextline. Control J. 311 l
213 VT Vertical tab (VTAB). Control K. 312 J
214 FF Form feed to top of next page 313 K

(PAGE). Control L. 314 L
215 CR Carriage return to beginning ofline. 315 M

Control M.

216 so Shift out; changes ribbon color to red. 8-Bit

Control N. Octai

217 Si Shift in; changes ribbon color to black. Code Character
Control O. 316

220 DLE Data link escape. Control P (DCO). 317 oO

221 DC1 Device control 1, turns transmitter 320 P

(reader) on. Control! Q (X ON). 321 Q
222 DC2 Device control 2, turns punch or 322 R

auxiliary on. Control R (TAPE, AUX ON). 323 Ss
223 DCc3 Device control 3, turns transmitter 324 T

(reader) off. Control S (X OFF). 325 U
224 Dc* Device control 4, turns punch or 326 Vv

auxiliary off. Control T (TAPE, AUX 327 Ww
OFF). 330 x

225 NAK Negative acknowledge; also ERR, 331 Y
error. Control U. 332 z

226 SYN Synchronousidle (SYNC). Control V. 333 [

D-1

334
335
336
337
340
341
342
343
344
345
346
347
350
351
352
353
354
355
356
357
360
361
362
363
364
365
366
367
370
371
372
373
374
375
376
377

REPT

f
o
d

“
N
K
R
E
K
S
C
T
W
A
M
M
B
O
V
O
S
Z
T
E
S
N
T
a
A
“
O
A
O
T
H

~

DEL

LOC LF
LOC CR

BRK RLS
HERE IS

Device Identifi-
Code
00
o1
02
03
04

cation

X01
X02

X04

Accent grave.

On early versions of the Model 33
and 35, either of these codes may
be generated by either the ALT
MODEor ESCkey.
Delete, rub out.

Keys That Generate No Codes
Causesany other key thatis struck to
repeat continuously until REPTis
released.
Local line feed.
Local carriage return.
Openstheline (machine sends a con-
tinuousstring of null characters).
Break release (not applicable).
Transmits predetermined 20-character
message.

10 DEVICES

Mask
Bits ‘ Device

9 High speed reader
10 High speed punch

11 Teletypewriter

Device Identifi-
Code

05
06
07
10
11
12
13
14
15
16
17
20
20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37

40
41
42
43
44

D-2

cation

X20

X22-

X25

Mask
Biés

16

4,8

4.8

Device

RTC interrupt mask
Control panel

Fixed head disk

’

Moving head disk

PRIME
PRIME Computer, Inc., 145 Pennsylvania Avenue, Framingham, Massachusetts OI701

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-12a
	7-12b
	7-12c
	7-12d
	7-12e
	7-12f
	7-12g
	7-12h
	7-13
	7-14
	7-15
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	A-01
	A-02
	B-01
	C-01
	C-02
	C-03
	D-01
	D-02
	xBack

