

Prime.

Prime 50 Series
Technical Summary

Revision 19.1

DOC6904-191L

Prime 50 Series
‘Technical Summary

DOC6904-191

First Edition

by

Martha August and Sarah Lamb

This guide documents the software Operation of the Prime Computer andits supporting systems and utilities as implemented at Master DiskRevision Level 19.1 (Rev. 19.1).

Prime Computer, Ine.
500 Old Connecticut Path

Framingham, Massachusetts 01701

COPYRIGHT INFORMATION

The information in this document is subject to change without notice

and should not be construed as a commitment by Prime Computer

Corporation. Prime Computer Corporation assumes no responsibility for

any errors that may appear in this document.

The software described in this document is furnished under a license

and may be used or copied only in accordance with the terms of such

license.

Copyright © 1983 by
Prime Computer, Incorporated

500 Old Connecticut Path
Framingham, Massachusetts 01701

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.

PRIMENET™ RINGNET, Prime INFORMATION, PRIMACS, MIDASPLUS, Electronic

Design Management System, EDMS, PRIMEWAY, THE PROGRAMMER'S COMPANION,

50 Series, 22507 PST100, and Pw200, are trademarks of Prime Computer,

Inc. MEDUSA” is a trademark of Cambridge Interactive Systems, Ltd.,

Cambridge, England. DATAPAC“is a registered trademark of Bell Canada.

TELENET"is a registered trademark of GTE Telenet Communications Corp.

TYMNET“is a registered trademark of Tymshare, Inc.

CUSTOMER SUPPORT CENTER

Prime provides the following toll-free numbers for customers in the

United States needing service:

1-800-322-2838 (within Massachusetts) 1-800-541-8888 (within Alaska)

1-800-343-2320 (within other states) 1-800-651-1313 (within Hawaii)

HOW TO ORDER TECHNICAL DOCUMENTS

Follow the instructions below to obtain a catalog, price list, and

information on placing orders.

United States Only International

Call Prime Telemarketing, Contact your local Prime

toll free, at 800-343-2533, subsidiary or distributor.

Monday through Friday,

8:30 a.m. to 8:00 p.m. (EST).

ii

PRINTING HISTORY — PRIME TECHNICAL SUMMARY

Edition Date Number Documents Rev.

First Edition May 1983 DOC6904-191 19.1

SUGGESTION BOX

All correspondence on suggested changes to this document should be
directed to:

Sarah Lamb
Technical Publications Department
Prime Computer, Inc.
500 Old Connecticut Path
Framingham, Massachusetts 01701

iii

Contents

ABOUT THIS BOOK xi

1 PROFILE OF THE PRIME 50 SERIES FAMILY

Compatibility 1-2
"Software First" Design 1-2
Advanced Architecture 1-2
Networking and Data Commmications 1-3
Wide Range of Software and

Hardware Products 1-3
Summary 1-4

2 THE CENTRAL PROCESSING UNIT

Single-Stream Architecture 2-1
Cache and STLB 2-3
The Control Store Unit 2-3
The Processor Execution Unit 2-4
The Instruction Preprocessor Unit 2-5

Dual-Stream Architecture 2-6
Instruction Stream Units 2-6
Stream Synchronization Unit 2-6

Summary 2-8

3 PROCESS MANAGEMENT

Process Exchange Mechanism 3-2
Process Control Blocks 3-2
Process Abort Flags 3-2
Ready List 3-3
Wait Lists 3-3
Process Exchange Instructions 3-5
Dispatcher 3-5

The PRIMOS Scheduler 3-6
Scheduler Queues 3-6
Scheduler Parameters 3-6
Backstop Process 3-7
Scheduler Operation 3-7
Time Slices 3-8
850 Scheduler 3-9

User-Accessible Semaphores 3-11
Numbered Semaphores 3-11
Named Semaphores 3-11

Summary 3-11

4 MEMORY MANAGEMENT

Physical Memory 4-1

Cache 4-2

Main Memory 4-3

Disk 4-4

Virtual Memory 4-4

Shared and Unshared Segments 4-4

Protection Rings 4-5

Segmentation Table Lookaside

Buffer 4-6

Coordinating Physical and
Virtual Memory 4-6

Accessing the STLB and Cache 4-7

Address Translation 4-9

Paging 4-12

Summary 4-15

5 INPUT/OUTPUT MANAGEMENT

Types of I/0 5-1

Programmed I/O 5-1

DMx 1/0 5-2

Burst Mode DMA I/O 5-3

Requesting I/O Service 5-3
Phantom Interrupt Code and

Device Interrupt Managers 5-4

Handling Interrupts 5-4

Disk I/0 5-4

Associative Buffers 5-5

Summary 5-5

6 FILE MANAGEMENT

Files and Directories 6-1

The File 6-2

The Directory 6-3

Disk Quotas 6-3

Naming Files and Directories 6-4

Partitions and MFDs 6-4

Accessing Files and Directories 6-4

File Security 6-5

Access Control Lists 6-5

User Profiles 6-9

Passwords and File Access Rights 6-9

Summary 6-9

vi

7 PRIMENET

Introduction 7-1
Basic Architecture 7-2
Levels of Protocol 7-2
Advantages of a Layered
Architecture 7-4

Network Types 7-4
RINGNET 7-6
Point-to-Point Networks 7-7
Public Data Networks 7-8

PRIMENET Internals 7-8
Network Process Extension 7-8
PRIMENET Subroutines 7-9
Loopback Facility 7-9
Ports 7-10
Virtual Circuits 7-10
Network Configuration Facility 7-10

User Facilities 7-12
Remote Login 7-12
Remote File Access 7-12
NETLINK 7-12
File Transfer Service 7-13

Summary 7-13

8 PROCEDURE MANAGEMENT

Procedure, Linkage, and Stack Areas 8-2
Elements of the Procedure Call 8-2
The Stack 8-2
Entry Control Block 8-4
The Procedure Call Instructions 8-4

Making a Standard Procedure Call 8-5
Verifying Access Rights 8-5
Allocating a Stack Frame 8-5
Saving the Caller's State and
Loading the Callee's State 8-7

Calculating Indirect Pointers 8-7
The PRIN Instruction 8-7

Direct Entrance Calls 8-7
The Gate Access Segment 8-7
Making a Direct Entrance Call 8-8

Condition Mechanism 8-8
On-Units 8-9
Using On-Units 8-10

Summary 8-10

vii

9 THE COMMAND ENVIRONMENT

System Initialization Tasks
Identifying the Login System
Identifying the User
Assigning Access Rights

Site Specific Tasks
Initial Attach Point
User Tasks

Command, Login, and CPL Files
Abbreviation Files
Prompt Characters
Terminal Characteristics

Using the Command Environment
Status Checks
Wildcards and Treewalking

Generated Names
Iteration
PRIMOS Commands
User Application Programs

Logging Out
Summary

10 INTEGRITY

Software Integrity Assurances
Embedded Operating System
Access Control Lists
User Profiles
Event Logging Mechanisms
FIX_DISK

Hardware Integrity Assurances
Rings
Interrupts
Faults
Checks
Traps
Diagnostic Status Word
Error Checking and Correcting

(ECC) Code
Parity Checking
Microverification Capability
Virtual Control Panel

Summary

vili

W
W
W

W
O
O
W

1
s
t

sy
t

b
o
t

bt
b
o
d

h
m
m

B
m
W
W
D

N
N
O

b
o

i
J

{
W
M
A
A
N
T
A
A
A
H

v
W

\
o

-ll
9-12
9-13

10-1
10-2
10-2
10-2
10-2
10-3
10-3
10-4
10-4
10-4
10-4
10-5
10-5

10-5
10-5
10-6
10-6
10-6

11 SOFTWARE PRODUCTS

Languages 11-1
FORTRAN 77 11-2
BASIC/VM 11-2
Pascal 11-2
PL/I Subset G 11-3
CBL 11-3
VRPG 11-3
CPL 11-3
Prime Macro Assembler
Assembly Language 11-4

Language Support Utilities and
Development Tools 11-4

Source Level Debugger (DBG) 11-4
SEG 11-4
HELP Facility 11-5
EMACS 11=5

ED 11-5
RUNOFF 11-5
SPOOL 11-5
BATCH 11-6

Data Management Packages 11-6
FORMS 11-6
DBMS 11-7
DBMS/QUERY 11-7

PRIME/POWERPLUS 11-7

MIDASPLUS 11-8
Prime INFORMATION Software 11-8

CAD/CAM - MEDUSA 11-9

Communication Packages 11-10
PRIMENET 11-10
NETLINK 11-11

File Transfer Service 11-11
DPTX 11-11

Remote Job Entry 11-12
Backup Utilities 11-13
MAGNET 11-13
MAGSAV and MAGRST 11-13

PHYSAV and PHYRST 11-14
COPY_DISK 11-14

Office Automation 11-14
Word Processing 11-14
Management Communications and
Support 11-15

Advanced Text Management 11-15
Summary 11-15

ix

Profile ofthe PRIME

30 Series Family

Prime's 50 Series family is a sophisticated group of totally compatible
supermini computers. These systems are:

@ The 2250, an entry-level office environment system

@ The 250-II, a low priced end user system

@ The 550-II, a midrange system

e@ The 750, a high end system

@ The 850, a multistream system

Each member of the 50 Series embodies Prime's "total compatibility" and
"software first" design philosophies. All members also implement
advanced architecture concepts, making the 50 Series flexible enough to
answer a number of diverse user needs while still preserving fast and
efficient operation. In addition, Prime's full complement of data
communications and networking capabilities make it possible to link any
member of the 50 Series to a host of other machines, granting access to
information and data distributed across great distances. These
characteristics, coupled with a single operating system, PRIMOS, and a
wide range of available software and hardware products, make each of
the 50 Series systems a versatile solution to almost any commercial or
scientific application.

1-1] First Edition

DOC6904-191

COMPATIBILITY

The 50 Series family is designed to accommodate users who may have one

set of system needs today and who plan to expand into a potentially

different set of needs in the future. The process of converting froma

smaller system to a larger one can be time-consuming and expensive.

The 50 Series eliminates much of the expense and time spent on such a

conversion, since all family members are totally upward- and downward-

compatible.

Each 50 Series system supports a multiuser, multiprocess, interactive

environment, making any of them an ideal choice for many fields and

applications. Users upgrading to more powerful members of the 50

Series family can expect to use their existing application programs on

the new system without change. This is because the Prime 50 Series

software is compatible at object code level, so it does not have to be

reassembled, recompiled, or relinked to run on any other 50 Series

system. One operating system, PRIMOS, runs on all members of the 50

Series family, providing a consistent interface regardless of the

system. In addition, any disk pack suitable for use on any family

member can be transferred to and can run on any other member without

change.

In general, all Prime hardware controllers, memory boards, peripherals,

and other hardware components can be used without modification on any

50 Series system. This means that the user's hardware investment is

protected as long as any 50 Series system is in use.

"SOFTWARE FIRST" DESIGN

This philosophy has always directed Prime's design efforts. It means

that Prime is committed to producing systems that offer the user the

maximum system resources possible whenever the user needs them. To

make such resources available, Prime's hardware is designed to support

the PRIMOS operating system instead of the other way around. In

addition, user interfaces and software packages are designed to be as

simple and as straightforward to use as possible, so that the user's

time is spent productively rather than in learning the idiosyncrasies

of the system.

ADVANCED ARCHITECTURE

The 50 Series systems embody an advanced 32-bit architecture that

grants the user the ability to perform complex tasks efficiently and

quickly. Increased performance and precision are two of the major
benefits of this architecture. In addition, the virtual memory

capabilities of the 50 Series architecture give each user a virtual

address space large enough to run application and development programs

without the use of overlays, easing program complexity and development

time. To speed memory reference time, the 50 Series uses interleaved

First Edition 1-2

THE PRIME 50 SERIES FAMILY

MOS memory and a high speed bipolar cache memory. A large number of
hardware- and firmware-implemented features further enhance operation.

NETWORKING AND DATA COMMUNICATIONS

A special feature of the 50 Series systems is their ability to link
with other systems, both Prime and non-Prime, in data networks.
PRIMENET, Prime's networking software, supports the CCITT X.25 standard
protocol and allows any 50 Series system to connect into three types of
networks. Depending on the user's need and application, PRIMENET can
connect a 50 Series system into a local ring network suitable for any
environment requiring closely coupled, secure systems, such as banking,
finance, scientific reSearch, or commercial recordkeeping. A user can
also connect a system into a telecommunications network, useful to a
business with several remote sales offices. It is also easy to link
into one of the public data networks, such as TELENET, EURONET, and
DATAPAC.

In addition to PRIMENET, the 50 Series also supports Remote Job Entry,
which allows the user to communicate with systems manufactured by IBM,
Honeywell, Univac, and other vendors, and the Distributed Processing
Terminal Executive (DPTX), which allows the Prime user to communicate
with IBM 3270 equipment. These two packages make the 50 Series
compatible with many mainframe systems in widespread use, allowing
users to offload work usually performed ona large system onto the
Prime system. These capabilities, coupled with those provided by
PRIMENET, ensure that the 50 Series systems can efficiently handle
almost any communication and networking need.

WIDE RANGE OF SOFTWARE AND HARDWARE PRODUCTS

Prime offers many software and hardware products that allow the user to
tailor a system to the exact needs of an application. Products include
several database management systems, integrated development tools, and
networking packages. Other types of software products offered are
programming languages and language support utilities, CAD/CAM packages,
communications systems, and Prime's Office Automation, as well as many
third-party applications packages.

The hardware products for the 50 Series are equally versatile.
Depending on requirements, the user may choose from three types of
disks, four magnetic tape drives, and a large number of terminals,
printers, plotters, and other peripherals. In general, these products
are compatible with all members of the 50 Series family.

1-3 First Edition

DOC6904-191

SUMMARY

This section has highlighted some of the general features shared by all
members of the 50 Series. These are not the only exceptional aspects
of the 50 Series systems; many more are described in detail throughout
this book.

First Edition 1-4

12 HARDWARE PRODUCTS

CPUS
Prime 2250
Prime 250-II
Prime 550-II
Prime 750
Prime 850
Prime INFORMATION Systems

Memory Expansion Units
Terminals

PT25 Character Mode Terminal
pPT45 Block Mode Terminal
PT65 Intelligent Terminal
PST100 Block Mode Terminal
PW93 and PW95 Graphics
Workstations

Magnetic Tapes
4550 GCR Tape Drive
4522 Tape Drive
4520 Tape Drive
Cartridge Tape Drive

Disks
Storage Module Disks
Cartridge Module Disks
Fixed Media Disks
Fixed Media Disks on the 2250

Unit Record Devices
3166 and 3167 Chain Driven Line

Printers
Matrix Line Printer/Plotters
3323, 3327, 3333, and 3337 Band

Printers
3350 and 3351 Serial Matrix

Printers
3115 Low Speed Serial Matrix

Printer
3175 Letter-Quality Printer
3159 Card Reader

Summary

INDEX

About

This Book

All the 50 Series systems focus on the user's needs to provide a full
Spectrum of solutions. The descriptions in this book demonstrate the
technical efficiency and sophistication of the 50 Series systems, and
highlight the many practical benefits they offer. This book presents
two closely related views of Prime's 50 Series systems:

One view provides a technical description of the features of the
50 Series systems. This view shows the advanced architecture
concepts built into the 50 Series systems, and lists the
software and hardware products that they support.

The second view demonstrates how 50 Series systems answer the
needs of users in commercial and scientific environments. This
view shows how the architecture and software/hardware products
can be used to fit a variety of needs and applications.

The Technical Summary is organized as follows:

Chapter 1 provides a high level view of the 50 Series systems,
explaining the design features and philosophies they all embody.

Chapters 2 through 10 describe the 50 Series architecture and
the operating system, PRIMOS. These Chapters show how the
architecture and PRIMOS work together, focussing the design
Philosophies of the 50 Series on specific areas of machine
implementation,

Chapters 11 and 12 show the array of software and hardware
products supported by the 50 Series, with brief descriptions of
Many of these products.

OTHER USEFUL BOOKS

For more information on some of the topics discussed in this book, you

may find it useful to refer to:

Prime User's Guide, (DOC4130-190), which introduces the new user

to PRIMOS, and to Prime's file system, utilities, compilers, and

subroutine libraries. This book also explains how to use the

rest of Prime's user documentation.

PRIMOS Commands Reference Guide, (FDR3108-190), which describes

the format and usage Of all PRIMOS user commands.

System Administrator's Guide, (DOC5037-190), which contains

information about system planning, resource allocation, and

system security.

PRIMENET Guide, (DOC3710-190), which explains Prime's networking

system.

The guides for users of the programming languages, software and

hardware products in which you are interested.

The Central

Processing Unit

The central processing units (CPUs) of all 50 Series systems share a
common architecture and one operating system, PRIMOS. This commonality
is what makes the 50 Series a line of completely upward- and
downward-compatible systems. The implementation of the common
architecture, however, is slightly different for each member, allowing
the 50 Series systems to address a wide variety of user needs as well
as remain compatible. The first part of this chapter explores. the
single-stream CPU implemented on the 2250, 250-II, 550-II, and 750.
The second part discusses the dual-stream 850 CPU.

SINGLE-STREAM ARCHITECTURE

The CPU can be divided into four major units. The first three of these
are implemented on all single-stream members of the 50 Series family:

@ Cache memory

@ Control store

@ Processor execution unit

The fourth, the instruction preprocessor unit, is a feature of the 750
(and dual-stream 850) systems only. It serves as a speedup mechanism
to enhance the rate of throughput.

2-1 First Edition

DOC6904-191

> 1/0 bus =

Processor

execution unit <

TTF
| |

Instruction

) preprocessor* <<}
Control store

; {

|

Cache

= Memory bus =

*= 750 and 850 only

Block Diagram of Single Processor Architecture

Figure 2-1

First Edition 2-2

THE CENTRAL PROCESSING UNIT

Cache and STLB

The 50 Series architecture incorporates a large virtual memory. This
means that whenever a user specifies a virtual address, the system must
translate it into the address of a physical location in memory, and
then fetch the data from memory. The 50 Series systems contain a cache
and a segnentation table lookaside buffer (STLB) to speed up the memory
reference/address translation process.

The 50 Series uses a virtually addressed, write-through cache. Each of
the cache entries contains the contents of and additional information
about two consecutive bytes (2250, 250-II and 550-II) or four
consecutive bytes (750 and 850) of recently accessed physical memory.
If the contents of a specified location can be found in the cache, the
system saves a great deal of time; it takes only 80 nanoseconds to
access a cache entry, a vast improvement over the approximately 600
nanoseconds needed to access physical memory. The time saved can be
spent performing other operations rather than waiting for a memory
reference to complete.

To speed up the virtual-to-physical translation, the STLB contains the
results of the last 64 address translations. Since programs tend to
reference the same set of locations during their execution, the system
can perform a translation once, store the result in the STLB, and then
have it for reference the next time the user specifies the same
location. Since the STLB has a much faster access time than physical
memory does, referencing it saves translation time as well as access
time.

See Chapter 4, Memory Management, for more information about accessing
the cache and STLB, and about address translation.

The Control Store Unit

To speed up execution, the 50 Series systems implement many functions
in hardware and firmware, such as procedure calls (see Chapter 8). The
firmware that governs instruction execution is contained in the control
store ROM. Each 50 Series system can support up to 128 Kbytes of
firmware address space,

2-3 First Edition

DOC6904-191

The Processor Execution Unit

This unit performs the computation required during instruction

execution. Elements of the processor execution unit include:

@ Integer arithmetic logic unit (ALU)

@ Decimal ALU

@ Floating point mit

@ Register file

@ Program counter

Figure 2-2 shows an expanded block diagram of the processor execution

unit.

The integer arithmetic logic unit (ALU) performs the desired operation

on the user's two's complement data. Ina similar fashion, the decimal

ALU and the floating point unit handle decimal and floating point

Operations, respectively. These units can perform tests and checks as

well as arithmetic operations.

The register file contains four sets of registers, each containing 32

32-bit registers. Two of these are user register sets that contain

information about a process and the system as the process sees it.

These user register sets contain information about the general

registers a process can use, addresses of fault handlers, contents of

system registers, and other useful information.

As an example of the benefits two register sets provide, suppose one

process is running, using one of the register sets, when an interrupt

from a second process occurs. The system begins to run the second

process, using the second set of registers to contain that process's

state information. The second process completes, and the first process

is to resume execution. Since the second process did not change the

contents of the first process's register set, the system does not have

to restore any data before resuming execution of the first process.

The availability of two register sets avoids the need for saving or

restoring complete copies of a process's state 98% of the time.

One of the remaining register sets contains microcode scratch and

system status registers. The fourth set contains direct memory access

(DMA) channels to speed I/O operations (see Chapter 6).

The program counter contains the address of the next instruction to be

executed.

First Edition 2-4

THE CENTRAL PROCESSING UNIT

Floating point unit

TTT “7
| |

| Decimal ALU* =; ALU Registerfile
|

!
Lee_I

Program counter

STLB

*= 550-Il, 750, and 850 only

Processor Execution Unit
Figure 2-2

The Instruction Preprocessor Unit

A special Instruction Preprocessor Unit, on the 750 and 850, is
designed to speed up execution. The unit does this by processing as
much information about the next two instructions as possible before it
is needed. While the processor execution unit is executing one
instruction, the instruction preprocessor unit is decoding the next
immediate instruction, calculating what the next address will be and
determining what registers, if any, are to be accessed, The
preprocessor unit is also fetching the second next instruction from the
cache so that it is ready to be decoded when the next immediate
instruction begins to execute. When the processor execution wnit
completes the current instruction, the instruction preprocessor has in
most cases calculated enough to allow the processor execution unit to
execute the next immediate instruction without delay.

2-5 First Edition

DOC6904-191

DUAL-STREAM ARCHITECTURE

The 850 system implements a dual~stream version of the 50 Series

architecture, which provides 60-80% more service than the 750. Figure

2-3 shows a block diagram of the 850 dual-stream architecture.

Instruction Stream Units

The 850 contains two instruction stream units (ISUs), each of which is

similar in capabilities and power to a 750 CPU. Each ISU executes an

independent stream of instructions simultaneously, synchronized by a

Stream Synchronization Unit (SSU, see below). Each ISU is responsible

for :

e Full instruction decode

e Effective address calculation

@ Instruction execution

@ Calculation of data for the next instruction

The four blocks shown in each ISU contain the same elements and perform

the same functions as those described in the first part of this

chapter.

The two ISUS share one copy of the operating system. PRIMOS is

reentrant and can run on either ISU (as can any user program), so

duplicate copies are not needed, System actions are also simplified,

since there is no need to check for or handle discrepancies caused by

different versions of the operating system.

The Stream Synchronization Unit

The primary task of the SSU is to prevent improper information from

being loaded into the cache of either ISU. It does this by maintaining

a list of the contents of both caches; when data is written into

either cache, the SSU can detect it and invalidate the contents of the

appropriate entry in its list of cache contents. This means that the

ssuU. is always aware of which cache locations contain correct

information and which do not.

When a cache location in one of the ISUs contains information that is

out-of-date, the SSU notifies that ISU of the discrepancy. That ISU

invalidates the stale entry, which forces a memory read to the current

information the next time that location is referenced.

First Edition 2-6

Processor
execution

unit 1

Instruction
Control preprocessor

unit 1

Cache 1

0
synchronizing

logic

Inter-ISU
communication

Cache
monitor

THE CENTRAL PROCESSING UNIT

Processor
execution

unit 2

Instruction
preprocessor

unit 2

Control
store 2

Cache 2

Memory bus
Dual-Stream Architecture

Figure 2-3

2-7 First Edition

DOC6904-191

In addition to synchronizing cache references, the SSU also coordinates

references to memory and system handlers, The two ISUs share one main

memory, one operating system, and one copy of several system handlers.

To ensure that these resources are used effectively and efficiently,

the SSU contains four locks.

The process exchange lock aids the process exchange mechanism (see

Chapter 4) so that control transfers smoothly between processes on both

IsUs. The queue lock makes sure that simultaneously executing queue

instructions (one on each ISU) are both given access to the specified

queue. To guarantee that the one set of check handlers services all

checks, the check lock allows only one ISU to signal a check at a time.

The fourth lock, the mutual exclusion lock, can be used by software to

prevent both ISUs from trying to access a particular procedure or piece

of data at the same time.

Diagnostic operations and communications between ISUs are also handled

through the SSU. The former feature aids in system monitoring and

testing; the latter enhances the 850's ability to execute independent

instruction streams without high system overhead.

SUMMARY

This chapter introduced the CPU as the heart of the 50 Series systems.

It described how the common architecture implemented on each family

member makes the 50 Series totally upward and downward compatible, yet

applicable to many different needs. The rest of the chapters in this

part explore various aspects of this common architecture. The next

chapter, Process Management, begins the architecture discussion with an

overview Of processes and how control is transferred between them.

First Edition 2-8

Process Management

The last chapter described the hardware elements of the system. It
Showed the various pieces that work together to provide a variety of
resources. The means by which the user can invoke these resources is
called a process.

A process is a dynamic entity that the system recognizes and can
Schedule, For example, when the user logs onto the system, the act of
logging in commands the system to create a process for that user. The
user procesS actS as a vehicle through which the user can request
specific actions from the system. It also identifies a set of related
actions for which the system must schedule resources.

Processes are managed by the process exchange mechanism. The mechanism
embodies some of the 50 Series systems’ most advanced architectural
features to schedule and manage many processes as rapidly and
efficiently as possible. This chapter describes the elements that make
up the process exchange mechanism and shows their role in the transfer
of control between processes. It also explores the PRIMOS. scheduler
and how it determines which processes to run.

3-1 First Edition

DpOCc6904-191

PROCESS EXCHANGE MECHANISM

The process exchange mechanism transfers control from one process to

another in a smooth, well ordered fashion. In addition to these

characteristics, the mechanism is also very fast, because it is

implemented in firmware. The elements of the mechanism that make the

control transfer possible are:

e Process control blocks

@ Process abort flags

@ Ready list

e Wait lists

e WAIT and NOTIFY instructions

e@ Dispatcher

Process Control Blocks

A process control block specifies the state of one process. During

process exchange, the block holds the contents of registers and timers

used by the process as well as a variety of pointers to virtual memory

and to fault, control, and processor information. It also specifies

the level of priority of the process, a gauge of the process'

importance relative to the other processes in the system. The process

control block used on the 850 also specifies which of the two ISsUs last

ran the process and which one should run the process next.

Process Abort Fiags

Each process control block contains a set of process abort flags.

These flags are used most often to signal the occurrence of an

asynchronous event, such as typing a BREAK character or logging off the

system. If any of the abort flags are set when the associated process

is selected to run, a process fault occurs. The selected process does

not run; instead, the process fault handler takes control to clear the

fault.

First Edition 3-2

PROCESS MANAGEMENT

The ready list is a list of processes that are ready to be run. Aprocess 1S ready to be run when nothing needs to occur before it canbegin to execute. For example, such a process is not awaiting thecompletion of an I/O operation.

The ready list organizes these processes according to their relativeimportance, or priority, so that the most crucial process is run beforeall others. The elements of the ready list are:

@ Linked lists of process control blocks

@ Ready list headers

@ Two registers

Figure 3-1 shows the relationship between the elements of the readylist.

Each process control block contains the priority level of the processit represents. Each block also contains a pointer to another processcontrol block that is on the same priority level (if there are any).This means that all processes on the same Priority level are boundtogether in a linked list.

The ready list keeps track of the lists of process control blocks. Theready list is a sequential list of headers, one header for eachPriority level on the system. Each header contains two pointers thatdefine the endpoints of the linked list for that level of priority.The beginning of list pointer references the first process controlblock in the list; the end of list pointer, the last.

The process exchange mechanism uses two registers to locate the nextprocess to dispatch. The PPA register contains a pointer to thecurrently executing process. The PPB register contains a pointer tothe next process to be run.

Wait Lists

Wait lists specify a group of processes that are waiting for an eventto occur. The major elements of each wait list are;

@ A semaphore

@ A linked list of process control blocks

3-3 First Edition

UO
TI
TP
A
A
S
A
T

T
-
€

a
m
n
6
t
y

As
tT

A
p
e
s
y

e
y
L

Ready List Process Control Blocks Registers
eaten

on “ — “ ‘ cr

High Priority

a

BOL

EOL Clock PPA

BOL Disk Printer

EOL Printer

BOL 0

EOL 0

BOL

EOL

BOL

|

Backstop Backst
»| Backstop

 EOL

|

Backstop

‘

Low Priority

T
6
T
-
7
0
6
9
0
0
0

PROCESS MANAGEMENT

Semaphores are hardware implementations of Edsger Dijkstra's P and Vv
Operations. They define an event, such as process synchronization for
access to a system resource, They insure that only a set number of
users access certain system resources at a time, and that reallocation
of the resource is orderly and controlled.

PRIMOS supports two types of user-accessible Semaphores, explained at
the end of this chapter.

Each wait list has associated with it a linked list of process control
blocks. The processes represented by the process control blocks on await list all share the same Semaphore,

Process Exchange Instructions

The process exchange mechanism uses two instructions to manipulate the
wait lists. When WAIT executes, it checks the status of the event for
which the process is waiting. If the event has occurred, the process
keeps running and does not have to wait. If the event has not
occurred, WAIT invokes the process exchange mechanism to move the
process to the wait list and run a new process from the ready list.

When an event occurs, NOTIFY removes the first waiting process from the
event's wait list (if there are any) and places it on the ready list.
It then invokes the process exchange mechanism to scan the ready list
and run a new process.

Dispatcher

The firmware routine called the dispatcher is responsible for smoothly
transferring control from one process to another. When it is in
control, it turns off the process interval timer, the clock that
Specifies how long a process has been running. The dispatcher then
checks the ready list to choose the highest priority process to rn
next, and allocates a user register set for that process. Before
dispatching the new process, it reactivates the process interval timer.

Summary

The process exchange mechanism determines which process to run next,
Saves the state of the old process (if necessary), locates a register
Set for the new process, restores the state for the new process, andtransfers control to the new process, These tasks are all performed inhardware or firmware and can take as little time as 6 microseconds,They seldom require more than 24 microseconds,

3-5 First Edition

DOC6904-191

THE PRIMOS SCHEDULER

The last section showed how processes wait for an event to occur. When

the event takes place, the waiting process with the highest priority

level moves to the ready list and may begin to run. The mechanism that

controls the movement of processes between wait lists and the ready

list is called the PRIMOS scheduler. The scheduler also controls the

setting of default priority levels and the length of time processes can

run. Elements of the scheduler are:

e Scheduler queues

e Two scheduling parameters

@ Backstop process

Scheduler Queues

Each of the scheduler queues is a wait list that identifies the

priority and type of process that is waiting to run. Processes with

new terminal input are usually placed on the high priority queue. The

processes whose execution the system temporarily suspends while it is

servicing the high priority processes wait on the eligibility queue.

The low priority queue is for background or CPU-bound processes.

Scheduler Parameters

Two parameters, MAXSCH and CHAP, set boundaries for process execution.

The MAXSCH command specifies the number of processes that can be

simultaneously active on the system. The limit MAXSCH sets prevents

thrashing, which can occur if available memory resources are

overcommitted. Prior to Rev 19.1, this value is initially set to 4.

At Rev 19.1 and later, the value is initially determined by the

formula:

(m+ 3) * x+y

where

m is the number of megabytes of main memory.

x is 1 if the system is not using an alternate paging device or the

alternate paging device and the paging device are both using the

same controller, and x is 1.2 if the alternate paging device and

the paging device areon different controllers.

y is 1 if the CPU is an 850, andyis 0 otherwise.

First Edition 3-6

PROCESS MANAGEMENT

When a user process moves off one of the scheduler queues, the process
exchange mechanism places the process on the ready level specified by
its process control block. The CHAP command selects the default level
of the ready list on which user processes are placed,

Backstop Process

The backstop process is responsible for all of the movement between the
Scheduler queues and the ready list. This process has the lowest
priority on the system, which means that it runs only when there are no
other processes to run.

Scheduler Operation

The backstop process, as mentioned above, is responsible for moving the
processes from the queues to the ready list. Figure 3-2 illustrates
how the backstop chooses a process from one of the three queues and
moves it to the ready list.

When there are no other processes in the system to run, the backstop
process (which is always ready to run) begins to execute, It first
checks the high priority queue to see if a process is waiting to run.
If such a process exists, the backstop notifies the process, which
moves it up to the ready list. The backstop is suspended immediately
after the notify, since its priority is lower than that of any other
process on the system.

If there are no processes on the high priority queue, the backstop
checks the value of MAXSCH against the number of currently active
processes. If the number of currently active processes is greater than
or equal to MAXSCH, the backstop activates no new processes, If the
number of currently active processes is less than MAXSCH, the backstop
can activate a new process currently waiting on the eligibility queue
or the low priority queue. It checks the eligibility queue first.

If there are processes waiting on the eligibility queue, the backstop
notifies the eligibility queue's semaphore. This causes the first
process in the queue to move up to the ready list. At the notify, the
backstop is suspended as described above,

If there are no processes waiting on the eligibility queue, the
backstop can activate a process waiting on the low priority queue. If
there are no processes to run, the backstop idles, rechecking each
queue every cycle,

When the backstop moves a process to the ready list, that process
becomes the highest priority process in the system, so the backstop is
Suspended. Since backstop operation finishes as soon as it notifies
one of the queues, its operation is never interrupted, and it never
waits on any of the queues. It remains on the ready list and begins to

3-7 First Edition

DOC6904-191

SEM }-—~>
A5 Pe

C A

Notify Highpriority queue Readylist

SEM
D

Eligibility queue

SEM ->
E

Low priority queue

Backstop priority q

Scheduling Processes
Figure 3-2

execute from the beginning the next time there are no other processes

on the system.

Time Slices

The scheduler uses two measures of process time to determine where to

place a process on the scheduler queues.

First Edition 3-8

PROCESS MANAGEMENT

The first measure of time is called the process's current time slice,
This specifies the total length of time a process can spend on the high
priority and eligibility queues before being relegated to the low
priority queue. The default value is two seconds. This unit is
divided into smaller units called quanta, or eligibility time slices,
The default value for these smaller units is one third of a second,
Figure 3-3 and the accompanying text show how the scheduler uses these
values.

When a user types a carriage return, the scheduler places the user's
process on the high priority queue. If it does not complete by the
time the eligibility time slice has expired, the scheduler places it on
the eligibility queue and will continue to do so for the rest of the
process’ eligibility time slices,

If the process does not complete by the time its entire current time
Slice runs out, the scheduler places it on the low priority queue where
it is monitored, If it still has not completed after a predetermined
length of time, the scheduler places it back on the eligibility queue.
Processes requiring very long periods of CPU time to complete move back
and forth between eligibility and low priority queues until they
complete.

When the user types another carriage return, the user process is given
a new current time slice, and the entire cycle repeats: one
eligibility time slice on the high priority queue, then down to the
eligibility queue for the rest of the current time slice, then down to
the low priority queue,

Implementing this type of scheduler has many advantages. To the user,
the most important one is provided by the high priority queue, because
it ensures that a terminal command is given priority over less
interactive processes.

850 Scheduler

The preceding discussion showed how the scheduler worked for all single
stream 50 Series systems. The scheduler for the 850 works in the same
way, with three differences. First, the PPB register is located in the
SSU. Second, two backstop processes exist, one for each ISU. Third,
because of the two backstops, the two highest priority processes can
execute at the same time, one on either ISU. (Any process can run on
either ISU). The two backstop processes uSe a single set of queues to
move processes onto the ready list.

3-9 First Edition

poc6904~-191

START

Choose a process

to place on a queue.

Place process on

eligibility queue

for eligibility

timeslice.

 Process

done?
 First eligibility

time slice?

YES

Piace process on

high priority queue

for eligibility

time slice.

 NO
 Has current time

slice expired?

| YES

Place process on

iow priority queue

until done.

DONE

Placing a Process on the Scheduler Queues

Figure 3-3

First Edition 3-10

PROCESS MANAGEMENT

USER-ACCESSIBLE SEMAPHORES

The actions of the scheduler and the process exchange mechanism occur
transparent to the user. There are, however, two types of semaphores
that the user can access if desired. These types are called numbered
and named semaphores.

Numbered Semaphores

PRIMOS provides an array of 64 numbered semaphores. These semaphores,
numbered from 1 to 64, allow the user to synchronize the execution of
one process with that of one or more other processes. How the
semaphores are allocated and used between processes is totally under
the user's control, though PRIMOS does check specified semaphore
numbers for validity.

The user can convert a numbered semaphore into a timer by having the
System clock notify it periodically. Up to 15 of these’ timed
Semaphores can be used at once, Like regular numbered semaphores,
timed semaphores are allocated and used strictly as the user defires.

Named Semaphores

The main difference between a numbered semaphore and a named semaphore
is that the former is identified by number, while the latter uses a
name. This name, however, allows PRIMOS to subject the named semaphore
to the same access restrictions (access control lists, discussed in
Chapter 6) that operate on files in the file systen.

This restricted access makes named semaphores particularly useful with
groups of related processes. Access can be granted to a group of
cooperating processes and denied to all others. This ensures that the
coordinated actions complete smoothly and use the correct information,
and keeps outside events from upsetting the necessary timing.

SUMMARY

The process exchange mechanism provides a rapid, transparent,
consistent way to allocate time and resources to many simultaneous user
processes. This ensures that resources are not overloaded at any time,
which protects the user against slow response time or system failure,
It also gives the user a well-managed set of resources and the ability
to access them easily without waiting. The next chapter, Memory
Management, describes how the user also has easy access to physical and
virtual memory resources.

3-11 First Edition

Memory Management

The 50 Series members are virtual memory systems. This means that a
very large virtual address space is available to each user logged onto
the system. This virtual address Space iS supported by a much smaller
Physical address space invisible to the user.

Virtual memory has several advantages. To the user logged onto the
system, there appears to be an address space of almost unlimited size
which can support very large applications without using Overlays. To
the system owner, a virtual memory scheme provides the ease of use of a
large memory at the cost of a much smaller amount of hardware,

The three key parts to a virtual memory scheme are physical memory,
virtual memory, and a manager to control the virtual memory scheme. In
the 50 Series, this manager is PRIMOS, and its attendant hardware and
firmware support. This chapter describes the characteristics of the 50
Series physical and virtual memory, and shows how PRIMOS coordinates
the 50 Series virtual memory scheme. It also describes some of the
hardware protection mechanisms implemented in the 50 Series virtual
memory.

4-] First Edition

DOC6904-191

PHYSICAL MEMORY

Physical memory encompasses all hardware parts of the system used to

store large blocks of information. The three types of physical memory

are:

@ Cache

e Main memory

e Disk

Figure 4-1 shows the relationship between the three elements of

physical memory.

 OOas
sos (es es ea

Disk ™

up to 8 600- megabytes

disk drives

Main memory

up to 8 megabytes

Cache
up to 3 kilobytes

Elements of Physical Memory
Figure 4-1

Cache

The cache is a data buffer that stores copies of the information

contained in the most frequently referenced memory locations. Its size

varies from system to system (see Table 12-1). During program

execution, this buffer is used to speed up memory references.

First Edition 4-2

MEMORY MANAGEMENT

Since cache is a form of very high speed memory, it takes only 80
nanoseconds to access data stored there, whereas it takes about 600
nanoseconds to access data stored in main memory. This difference in
access times makes it very advantageous to access cache whenever
possible.

Three factors determine how often the cache contains the correct data
(the cache hit rate):

@ The size of the cache (2-32 Kbytes);

@ The information fetch rate (16-64 bits, depending on the system
and the amount of memory interleaving);

@ Locality of reference (the tendency of a program to execute
within a small part of itself at any time).

On the 50 Series, data can be found in the cache 85-95% of the time.
See Table 12-1 for the exact figures for each 50 Series system.

Main Memory

The 50 Series main memory is high speed MOS with error checking and
correction built in to correct single bit errors and detect double or
multiple bit errors. The memory is packaged on boards in units of 512
Kbytes or 1 Mbyte.

All systems use two-way interleaving to speed up memory references and
to make more efficient use of the memory bus. ‘This means that
consecutive physical locations are located on different memory boards;
when a reference to memory is made, the system fetches the same
location on each board. ‘This doubles the amount of data that can be
fetched with one memory operation. Systems with an odd number of
memory boards use interleaving for all but the odd board.

Main memory is divided into units called pages. Each page is 2 Kbytes
in size. The pages subdivide main memory into pieces that PRIMOS can
conveniently and efficiently manage. One advantage of this subdivision
is to reduce the amount of paging necessary to ensure that data is in
main memory when the user needs it.

There are many other advantages to Subdividing memory into pages. For
example, since all pages are the same size, PRIMOS can reply to all
requests for space in the same way regardless of who or what makes the
request. In addition, disk records are the same 2 Kbytes in size, so
transfers between main memory and disk are Simplified. The section,
Coordinating Physical and Virtual Memory, later in this chapter,
describes many other advantages.

4-3 First Edition

DpOC6904-191

Disk

Disks provide storage for all of virtual memory. The system or the

user can access any of this information at any time (given the proper

access rights), at which time a copy of it is moved from disk to main

MEMOLy « The Paging section in this chapter describes how the

information is moved. The Disks section in Chapter 12 describes the

physical characteristics of the disks supported on the 50 Series.

VIRTUAL MEMORY

Virtual memory is divided into units called segments. Each segnent can

contain up to 128 Kbytes, or 64 virtual pages of 2 Kbytes each.

Segments are virtual units, not physical ones, that aid both the user

and the system in organizing their virtual address spaces and the

information contained there. For example, the user can organize

program code in one segment and program data in a second one. It is

also possible to allow extra room in a program for variable length data

structures, such as arrays whose dimensions can change each time the

program runs. Segments also allow the user to build modular programs,

one module to a segment. PRIMOS uses segnents in a similar way to

organize its own code into modules.

The virtual address space of each user contains 4096 segments. These

are subdivided into four groups of 1024 segnents each. The segments

are subdivided to make address translation and segment sharing easier

(see Address Translation and Shared and Unshared Segnents, below).

Shared and Unshared Segnents

In the Prime virtual memory scheme (see Figure 4-2), each user address

space of 4096 segments is divided into shared and unshared space. The

first 2048 segments are shared with all other users. This allows the

operating system, shared libraries, and shared subsystems to be seen by

all users. The second 2048 segments are private, containing

information unique to unique to each user, This means that if two

users reference Segnent '4000, they are specifying completely different

locations.

This arrangement of shared and unshared segments means that there is no

possibility of one user's private space conflicting with that of

another user. It also means that only one copy of PRIMOS and the

shared system software need be maintained, which reduces memory use.

Additionally, it means that PRIMOS is embedded in the virtual address

space of each user and is directly accessible via a normal procedure

call (see Chapter 8, Procedure Management). No interrupts, special

supervisor calls, or system traps are necessary when the user accesses

PRIMOS or any utility or library residing in shared space.

First Edition 4-4

MEMORY MANAGEMENT

Private

user-2’s

2048 segments.

Shared

by all users

 2048 segmentsfor
Primos, sharedlibraries

and subroutines.

Private

user-1's

2048 segments.

Private

user-n’s

2048 segments.

50 Series Virtual Memory Space
Figure 4-2

Protection Rings

Three hardware implemented rings provide a simple, unbreakable form of
Security that checks each memory reference for its right to access the
specified part of memory.

The rings represent levels of protection. Ring 0 represents thehighest level of protection and grants the greatest number ofPrivileges. PRIMOS rims under Ring 0 protection, which means that its
Segnents cannot be accessed by the user except through protectedentrypoints, and that it has read, write, and execute privileges to allSegnents. PRIMOS can access any information in the system, can invokespecial routines, and so on.

Users run under Ring 3 protection, which means that they cannotarbitrarily access Ring 0 routines. Each Segnent under Ring 3protection may have a different combination of read, write, and execute
access rights,

Ring 1 provides privileges less powerful than those of Ring 0, but more
so than those of Ring 3.

4-5 First Edition

pOCc6904-191

To specify its degree of privilege and protection, each virtual address

contains a ring field that specifies a ring number. The way ring

fields guard against illegal memory accesses is explained under

"Generating the Ring Number" later in this chapter.

Rings provide a simple, effective way to protect critical parts of the

system. Without them, a Ring 3 procedure could directly access any

Ring 0 procedure, which might corrupt system operation. Screening out

such references protects the integrity of the entire system.

Segnentation Table Lookaside Buffer

Virtual memory has its counterpart of the cache, the STLB. The system

uses this buffer with the cache to reduce the time needed to access

information. Where a cache entry contains information about a recently

accessed physical memory location, an STLB entry contains the

information the system needed to find the physical location from the

virtual address the user specified.

The section, Accessing the Cache and STLB, below, explains how the STLB

entries are used. The section, Address Translation, shows how the STLB

is loaded with updated information.

COORDINATING PHYSICAL AND VIRTUAL MEMORY

How Goes PRIMOS map the segmented virtual address space onto the pages

of physical memory? The process starts when the user specifies a

virtual address. This virtual address has the format shown in Figure

4-3.

Since this address only identifies a location within the virtual

address space, not a physical location that can be referenced, PRIMDS

must find the physical location of the user's information. The steps

in this process are:

1. Check the STIB and cache. If both of these contain the correct

Information, the reference can be completed. If not, go on to

the next step.

2. Translate the user's virtual address into a poysiee address.

Once tne anslation 1S done, 10 e translation information

into the STLB for future use, then check to see if the page

containing the user's information is resident in memory. If

the page is resident, the reference can be completed. If not,

go on to the next step.

3. Find the correct on disk and move it into main memory.

The reference can be completed after the page is moved.

First Edition 4-6

MEMORY MANAGEMENT

Security Ring Segment Number Page Number Offset Number

Virtual Address Format
Figure 4-3

The first task is completely performed in hardware; the second, in
firmware. A software page fault handler performs all aspects of
paging.

Accessing the STLB and Cache

To find the user's information in the STLB and cache, the hardware
accesses both buffers at the same time. The hardware uses the segnent
number-page number pair from the virtual address to choose an STIB
entry. This entry specifies the number of the physical page containing
the user's information.

At the same time, the hardware uses the contents of the offset field
from the virtual address to choose a cache entry. The cache entry
contains the contents of a location in main memory. If the hardware
can validate the contents of both the STIB and cache entries, then the
cache entry contains the user's information. In this case, the whole
Operation has been handled in hardware, and the correct information has
been located in only 80 nanoseconds. Figure 4-4 illustrates this
process,

Suppose the hardware could not validate the contents of both cache and
STLB. When the STLB does not contain the correct translation, the
hardware must translate the user's virtual address into the correct
physical one (see Address Translation) and save the translation in the
STLB. The hardware retries the reference from the beginning after the
new translation is saved in the STIB.

4-7 First Edition

poc6904-191

START:

Are VES

both STLB Fetch data DONE
and cacheentries from cache

correct?

Is YES Use STLBentry Read data from _ ils

STLBentry to get physical a memory into this a 750

correct? page address cacheentry ora 80 CPU

Hardware

Firmware/Microcode

Translate virtual

address to physical
address.

is

page inmain
seaS

q,

NO

t Software

Page handler
loads page

into memory.

Go to

START

Accessing the STLB and Cache
Figure 4-4

First Edition 4-8

MEMORY MANAGEMENT

If the cache does not contain the correct information, the hardware
must reference memory. It takes the translation from the STLB to
identify the correct physical page, then uses the offset in the user's
virtual address to identify the correct address in the physical page.
Depending on the amount of memory interleaving used on the system,
PRIMOS loads 16 (unpaired memory boards), 32 (paired memory boards), or
64 (750/850 memory boards) bits of new data into the cache. After
loading in the new data, the reference is retried from the beginning.

When the hardware needs to load information into the cache, the
Physical page containing that information may be on disk rather than in
main memory. When this is the case, the page on disk must be moved
into main memory. ‘The section, Paging, below, describes how this is
done.

Address Translation

Several data structures aid in address translation. These structures
are:

@ The STLB described earlier

e@ DTARs, the descriptor table address registers

@ SDIs, the segment descriptor tables

@ HMAPs, the hardware page map tables

PRIMOS saves the 64 most recent virtual-to-physical address
translations in the STLB for future use. When a translation is dore,
PRIMOS stores the identity of the process, the virtual address, and the
physical address into the STIB as a triple. The next tim that
translation is needed, PRIMOS has only to read the physical address
from the STLB, rather than to perform a calculation. In addition,
Since the STLB is a high speed memory buffer, it has a much shorter
access time than does main memory. 97% of the time PRIMOS can find the
necessary translation in the STLB, and thus avoid the longer main
memory access time.

Each of the four DTARs describes one group of 1024 segnents in the
virtual address space. DIARO and DIAR] specify information about the
shared segnents, while DTAR2 and DIAR3 describe the private segnents.
All four DIARs are located in the user's register file (see Chapter 2).

Each of the four DIARs contains a pointer to a segnent descriptor table
(SDI) in main memory. These SDIs contain from 0 to 1024 entries, each
of which describes one segnent. Contained in each entry is the address
of a hardware page map table (HMAP), and segnent access information.

Each of the 64 entries in an HMAP describes one virtual page. The
entry Specifies the location of the virtual page in physical memory, as
well as access and control information,

4-9 First Edition

U
O
T
3
T
P
A

3
S
A
T
A

O
T
-
¥

20
ga

PyA
7a
Ole

yy
ct

-
(e}

pe|

VIRTUAL ADDRESS

Ring Number Segment Number Page (Hardware Page Offset

DTARTable Entry Number | Segment Descriptor Table Entry Number Map Table Entry Number) within Page

Current Ring
Numberin DTAR

Program Counter Table

@

Vv Entry x Y

Ring weakening
hardware

Ring number
that governs
the access

NOTE:

Numbers 2) through © reterto

numbered descriptions of each

operationin the text.

Segment
Descriptor

Table Address

Segment
Descriptor

Table Cc

Entry y a|

v

Hardware

Page MapTable
Address

Hardware

Page Map
Table

Entry z ee |\—

©

v

Physical Page
Address

Y
Physical Page Offset

Address within Page

FINAL PHYSICAL ADDRESS

16
1-

¥7
06

90
00

4.

MEMORY MANAGEMENT

Interpreting the Virtual Address

When the user specifies a virtual address, a firmware
routine interprets it as shown in Figure 4-5.

Generating the Ring Number

A section of hardware forms the ring number for the address
translation firmware. It does this by logically ORing the
current ring number (contained in the program counter) and
the ring number contained in the virtual address. This is
called weakening the ring number. Since higher numbered
rings cannot access lower numbered ones, weakening ensures
that the access is granted according to the highest ring
number of the program counter/virtual address pair.

Referencing the DIAR

Once the firmware has the weakened ring number, it checks
the DIAR field. This value specifies ome of the four
DIARS. The contents of the selected DTAR specify the
starting address of one of the SD?Is.

Referencing the SDI

The firmware now knows which SDI to reference. It uses the
segment field of the virtual address to choose an entry in
the table. If the entry is not in this variable-length
table, a segment fault occurs. If entry is present, it
contains a set of access rights which the firmware uses to
determine if the access can be allowed. If the access is
invalid, an access violation occurs; otherwise, the
firmware uses the rest of the information in the SDr to
reference an HMAP.

Referencing the HMAP

The firmware now knows which HMAP to reference. It uses
the page field in the virtual address to choose an entry in
the HMAP. This entry contains status information about one
page, such as whether it is currently in memory or on disk.
This discussion assumes the page is loaded into physical
memory (see the next section, Paging, for a discussion of
actions taken when the page is on disk).

Referencing the Physical Memory Location

Besides the status information, the HMAP entry specifies
the physical page address of the page in main memory.

4-11 First Edition

poc6904-191

Knowing this, the firmware uses the offset field in the
virtual address to identify the exact address in the page
to reference,

The firmware saves the result of this translation process
in the cache and the STLB in case the user wants to
reference the same location again.

Figure 4-5 illustrates these data structures and shows how the address

translation process uses them.

Paging

When a requested page is not in main memory, a page fault occurs,
Often, a page must be moved out of main memory and onto disk so that

the new page can be loaded in. Several data structures exist to assist

the page fault handler with moving pages between main memory and disk.
These structures are:

@ LMAP, the logical, or disk record, address map

e@ HMAP, the hardware page map

@ MMAP, the memory map

LMAP contains information about pages held on disk. Each LMAP entry

specifies the disk location and various control information for one

page. One LMAP entry is associated with each HMAP entry.

The HMAP table contains 64 entries, each of which contains information

about one page. Besides control information, each entry specifies

either the physical memory address of a page (if the page is in
memory), Or a pointer to an entry in LMAP (if the page is on disk).
One HMAP exists for each segnent.

Each entry of MMAP describes one physical page and whether it is
already in use, available for use, or does not exist. The first two
descriptions, in use and page is available, are self explanatory.
The last, page aces not exist, indicates that the system is not

currently accessing this page. This means that the system can still
run even if part of physical memory has a problem or does not exist.

Figure 4-6 illustrates the stages in the paging process, including

allocating a page, saving the old page contents, and loading the new

page.

First Edition 4-12

Find first

available page

Is

YES
page being

used? ”

Must YES

old page contents

be saved?

NO K

Get LMAPentry

address from

HMAPentry

l

Get disk address

from LMAPentry,

load page and

update entries

DONE

Paging
Figure 4-6

4-13

Save old page

contents on disk

MEMORY MANAGEMENT

First Edition

DOC6904-191

Allocating a Page: Before the page fault handler can load the page

into main memory, it must locate a place to put it. It checks MMAP for

an available page. If there are no available pages, it uses a least

recently used algorithm to choose a page to move out of main memory.

The LRU algorithm assures the handler that the page to be moved out of

memory is not one currently being used by another process.

The handler can be configured to check for more than ome currently

available page with the LRU algorithm. If this is the case, the

handler identifies several least recently used pages and prepares to

move the page out of main memory. This is called prepaging, and can

speed up processor execution by paging out several pages during one
page fault. When the next page fault occurs, the handler has only to
load the new page in without having to clear a space for the page

first.

Saving the Old Page Contents: After the handler identifies available

physical pages, it must choose a page to page out, and determine if it
must store the old page contents on disk before loading in the new
information. ‘The HMAP entry aids in this task.

Each HMAP entry specifies several things about its associated page.

One of the things it specifies is whether its page has been used since

this entry was last reset. If the page has not been used, then the

handler can move it out without adversely affecting any running

processes. If it has been used, the handler should locate another page
to move out, since it is likely a process is using this page.

When the handler chooses an unused page to page out, it checks the HMAP

entry again to determine if the page's contents have been modified

since it was moved into main memory. If the old contents have not been

modified, the handler can load in the new contents immediately. If the

old contents have been modified, the handler must save a copy of them

on disk first before loading in the new information.

Like the LRU algorithm, the HMAP entries save the system processing
time by limiting the number of disk accesses necessary to page in new
information. By checking the entries periodically and tracking how
they change, the handler can determine the best page to swap out of
main memory.

Some pages can be locked against being paged out. Part of the LMAP

entry associated with each physical page can be set so that the
associated page always remains in main memory and is not overwritten.
This type of page usually contains system data such as mapping tables,

I/O buffers, or some of the data structuresdescribed in this chapter.

By locking these contents into main memory, the system can always be

sure to access the correct information when it cannot stop to handle a

page fault.

First Edition 4-14

MEMORY MANAGEMENT

Loading the Available Page: Once the handler has a physical page
available, it must find the disk location of the page to be moved into
main memory. Associated with the HMAP entry is an LMAP entry, and this
LMAP entry contains the page's disk address. The handler uses this
address to fetch a copy of the information, then loads the copy into
the available page. After the move, the handler updates the affected
entries in the SDI, HMAP, LMAP, and MMAP,

SUMMARY

This chapter described the structure of physical and virtual memory and
PRIMOS's interface between them. It showed what happens within the
system when a user requests a piece of information. Through use of
Specialized data structures and algorithms, PRIMDS locates the user's
information in the fastest and most efficient way possible. The next
Chapter, Input/Output, shows how the user's information, once located,
moves ‘between main memory and system peripheral devices.

4-15 First Edition

Input/Output

Management

Because the user's address space is much larger than physical memory,
Physical memory is used to store only information that will be used
immediately. All other information is stored on peripheral devices
such as disks, where it can be quickly accessed when needed. This
chapter explains how information is transferred between these devices
and main memory and how the devices request I/O service via interrupts.
It also briefly describes the actions of the device interrupt managers
that service interrupts.

TYPES OF I/O

Depending on the application, the quantity of information to transfer,
and the speed required, I/O can take one of three forms:

@ Programmed I/O (PIO)

@ Direct memory I/O (DMx)

@ Burst mode I/O

Programmed 1/0

Programmed I/O transfers data between memory and a device, 16 bits at a
time. It is invoked by executing one of the four programmed I/O
instructions, each of which specifies a basic operation: move data in,

5-1 First Edition

DOCc6904-191

move data out, initiate a control pulse, or test for a skip condition.
One instruction must execute for each data word to be moved.

The operating system, PRIMOS, uses programmed I/O to initialize

controllers and to specify parameters for DMx transfers.

IMx I/O

While programmed I/O is suitable to use when only small amounts of data

need to be transferred, it is not practical for multiple word

transfers. DMx operations allow devices to access all of memory

without software intervention. This means that DMx operations transfer

blocks of data very quickly compared to PIO.

There are four types of DMx transfers:

e DMA, or direct memory access

e DMC, or direct memory channel

@ Dl, or direct memory transfer

@ DMQ, or direct memory queue

All four types support data transfers to all parts of Physical and

virtual memory. A mapped I/O scheme allows data blocks that are

virtually contiguous but physically disjoint to be automatically

collected in the correct sequence for transfer.

DMA is useful for bulk data transfers when speed is important. Devices

use one of the 32 DMA channels located in the system's register set to

transfer blocks of up to 8 Kbytes directly to or from memory. Devices

such as the MDLC, and the disks and some tape drives described in

Chapter 12 use DMA.

To transfer data blocks larger than 8 Kbytes, or to transfer data

between a device and several noncontiguous areas of memory, the system

can chain DMA channels together. All the system needs to do is to

specify the starting channel and the number of subsequent channels to

transfer up to 128 Kbytes of information with one I/O operation.

DMC operates in much the same way as DMA does. The differences are

that DMC provides up to 32,768 channels rather than 32, and that data
blocks can contain up to 128 Kbytes. Also, the DMC transfer rate is

Slower than that for DMA, because DMC channels are contained in memory

rather than in system registers. Typical devices using DMC to transfer

information are printers and magnetic tape drives.

Unlike DMA and DMC transfers, DMT operations do not require register
sets or memory channels to control the data flow, since the device

controller itself governs the transfer. This type of controller is

more sophisticated than those that govern devices using DMA or IMC

First Edition 5-2

INPUT/OUTPUT MANAGEMENT

transfers. Typical operations that use DMT transfers are downloading
disk channel programs to control DMA 1/0,

DMQ operations use a circular, double-ended buffer called a queue to
hold data to be transferred, [MQ is Particularly useful for serial
line output, since the system loads characters into a queue as it
generates them. No per-character interrupts are needed, so the system
does not have to concern itself with how fast information is
transferred from the queue. This results in low system overhead for
asynchronous terminals.

Table 5-1
DMx Transfer Rates and Transfer Sizes

Transfer Type Maximum Transfer Rates Max. Transfer Size

DMA 2.4 Mbytes/sec (input) 8 Kbytes
2.0 Mbytes/sec (output)

DMC 1.2 Mbytes/sec (input) 128 Kbytes
1.1 Mbytes/sec (output)

DMT 2.8 Moytes/sec (input) determined by
2.2 Mbytes/sec (output) the controller

DMQ *300 Kbytes/sec (input) 128 Kbytes
*300 Kbytes/sec (output)

*approximate values

Burst Mode DMA I/O

The 750 and 850 systems provide burst mode DMA operations for very fast
data transfers, Each of these I/O operations uses one of the 32 DMA
channels to control the transfer. The difference between burst mode
DMA and non-burst mode DMA operations is that burst mode transfers
eight bytes of data at a time, rather than just two. This enables
burst mode DMA to transfer data at a rate of 5 (output) to 8 (input)
Mbytes per second. High speed disks and tapes typically use this type
of I/O to transfer information.

REQUESTING I/O SERVICE

When a device wants to transfer information or to Signal the system, it
must request I/O service by generating an interrupt.

5-3 First Edition

pOoc6904-191

Disks and tapes are typical devices that request I/O service with an

interrupt. When an interrupt occurs, the first action performed is a

control transfer (via the process exchange mechanism) to the software

that services the interrupt. The details of the control transfer vary

with the state of the system and the type of controller, but the result

is the same: a software routine called phantom interrupt code is

designated to service the interrupt, and it begins to execute.

Phantom Interrupt Code and Device Interrupt Managers

Phantom interrupt code is usually a very brief routine that acts as a

screen to identify and service all interrupts that require only minimal

response. When an interrupt requires more than minimal handling, the

phantom interrupt code notifies the device interrupt manager (DIM) for

that particular device.

A device interrupt manager acts as the interface between the user and a

device controller. It manages all aspects of a device's operation,

such as signalling interrupts and buffering data. It also provides any

specialized interrupt service the device may require. The phantom

interrupt code ensures that the device interrupt manager is invoked

onlv when it is really needed, and then with a minimum of delay.

Handling Interrupts

The system notifies the device interrupt handler of interrupts

according to a device's level of priority. This level of priority is

determined by the board slot that the device occupies in the system;

the device occupying the slot nearest the bottom of the I/O chassis has

the highest level of priority. The order in which the interrupts are

serviced, however, depends on the process levels of priority specified

on the ready list (see Chapter 3).

DISK I/O

I/O transfers to and from disks are a crucial part of system operation.

Prime 50 Series systems have optimized these types of operations in

three ways to enhance overall system performance: overlapped seeks,

ordered seeks, and overlapped transfers.

A 50 Series system can contain up to 2 disk controllers, each of which

can coordinate operation of four disks. These controllers are Managed

by two device interrupt managers (see above). Since these DIMs can be

executing on the system at the same time, they can each be initiating

disk operations at the same time. In addition, if there is more than

one outstanding seek operation, each DIM can direct a number of its

disks to begin seeking at the same time, so that the seek operations

overlap.

First Edition 5-4

INPUT/OUTPUT MANAGEMENT

In addition to being overlapped, the seek Operations are directed toperform all seeks in one direction as a group, then all those in the
other direction. The shorter seeks are generally done first, but since
all the seeks are grouped by direction, even those involving very large
amounts of data are guaranteed to be performed. This is called ordered
seeking.

Since the two disk DIMs can execute at the same time, the disk
controllers they govern can be sending information over the T/O bus at
the same time. Since there are up to two controllers per system, up to
two transfers can overlap at once,

ASSOCIATIVE BUFFERS

Many of a device's interrupt requests occur because the device needs
additional information before it can continue Operation. The file
system, described fully in the next chapter, often has to fetch this
information for the device from disk. To minimize the time it takes to
provide this information, the 50 Series supports a group of associative
buffers.

When the file system accesses a disk, PRIMOS loads the specified file
record into one of the associative buffers. The buffers serve as a
Speed up mechanism, in much the same way the cache does. Where the
cache avoids accesses to main memory, the associative buffers cut down
the file system's accesses to disk. The initial disk reference loads
the associative buffer, so all subsequent references to the same
information can be made to the buffer rather than to the disk.

PRIMOS updates the associative buffer each time a file write is
specified. PRIMOS will automatically rewrite the buffer, however, at
least once each minute (or whenever requested) to maintain the file's
integrity on disk.

The associative buffers are maintained on a least recently used (LRU)
basis. This means that if all buffers have been used and new data is
to be loaded, PRIMOS picks the buffer that has not been used for the
longest length of time,

SUMMARY

Coordinating the smooth flow of information between the user and the
system is a demanding task with two main requirements. One of these,
an efficient method of transferring information, was described in this
chapter. The other, an efficient method of organizing information
within the system, can further speed up transfers by making information
easy to find. The next chapter, File Management, illustrates how
Prime's file system uses a hierarchical structure to organize
information.

5-5 First Edition

File Management

Prime's file management system allows easy access to informationcontained on disk. Three elements —- the file, the directory, and thepartition — form the basis of the system's hierarchical structure andallow any piece of information to be accessed. In addition, the fileSystem has several security features built in to ensure the integrityof system information,

This chapter defines the basic elements of the file system anddescribes how they organize information, It also describes some of thesecurity features,

FILES AND DIRECTORIES

The two simplest elements of Prime's hierarchical file system are thefile and the directory.

6-1 First Edition

pOoc6904-191

MFD MFD

| IL)
(FILE }

FILE UFD UFD
UFD

FILE = (FILE)

FILE
UFD

(FILE (FILE)

The 50 Series File System
Figure 6-1

The File

A file is the smallest and most basic organizational unit recognized by

the file system. It is a collection of related items and can take

several forms, depending on what the user wants to represent. To

distinguish between the various types of collection, the file system

groups files into seven basic types:

e@ Sequential access method, or SAM, files

e Direct access method, or DAM, files

e Keyed-index direct access, Or MIDASPLUS, files

@ Directories

e Segment directories

e Access categories

First Edition 6-2

FILE MANAGEMENT

The type identifies how the file system should handle the file, and
indicates what type of information the file contains. SAM files
contain a number of records, each of which contains a forward pointer
to the next record in the file and a backward pointer to the previous
record in the file. DAM files contain one multilevel index of pointers
that reference all records in the file. MIDASPLUS files, directories,
and segment directories are explained below. Access categories contain
Security information and are explained later in this chapter.

The Directory

A directory is also a file, but a special type to the system. The
items contained in a directory are pointers to files. When the file
system wants to locate a file, it references the appropriate directory
for the file pointer, much as one looks up a library book in the card
catalog. The section, Accessing Files and Directories, in this chapter
explains more about how this reference process works.

Directories can contain pointers to other’ directories. Since
directories are just special files, there is nothing to prevent any of
a directory's pointers from pointing to a secondary directory rather
than a simple file. These secondary directories are called subordinate
directories, or simply subdirectories.

There are several types of directories in the Prime file system. ‘The
most common is identical to what has already been described; a file
that contains pointers to other files. The user file directory, or
UFD, holds all the files and subdirectories (subUFDs) of a particular
user. The MIDASPLUS file is really a directory that contains an index
anda series of files containing data. The segment directory is
similar to to the UFD, but is generally referenced by programs rather
than by the user.

Prime's file system imposes no limit on the number of levels of nested
subdirectories. Each level of subdirectory represents information that
is further down the file hierarchy. This hierarchical arrangement is
called a tree structure, and it allows the user to layer information to
the depth necessary for a particular application.

Disk Quotas

A disk quota specifies the maximum number of records a directory and
all its subentries may contain. Quotas can be optionally applied to
any directory on the system. A directory under quota control is called
a quota directory. Each time a file is added to a quota directory, the
System checks to make sure the quota will not be exceeded before
allowing the addition.

6-3 First Edition

DOC6904-191

Naming Files and Directories

Prime's file system encourages a set of standard naming conventions,

In general, filenames are made up of one or more components; multiple

components are separated by periods (.). Each component is made up of

alphanumeric characters and selected punctuation symbols.

The last component of a filename is often called a suffix. For

example, if a file has the name CHARGE.TEST, TEST is the suffix (and

CHARGE is called the root of the filename). The file system recognizes
some standard suffixes, such as F77, PLIG, BIN, and LIST. These

suffixes readily identify how a file was generated. BIN, for example,

shows that a Prime translator generated a binary file. The standard

suffixes also save the user typing, since in many commands only the

filename's root needs to be specified.

Partitions and MFDs

The hierarchical level above the UFDs is called a partition.

Physically, a partition is a set of one or more disk heads, but the

file system treats the whole partition as one logical entity. A

partition contains one master file directory, or MFD, that lists all

the UFDs that are part of the partition. The MFD can also contain

files, including special ones for record allocation or badspot handling

on the partition.

Partitions are divided into two groups relative to the system. Those

Physically connected to a system are called the local partitions of

that system. The partitions visible to a system but physically

connected to another are called the remote partitions of that system.

A system can activate many partitions at once, including some that may

be physically part of other systems. The partitions list, the highest

level in the file system hierarchy, makes this possible. This list is

a set of active disk partitions. It contains the names and other

information about all the partitions currently running on the system,

regardless of where the partitions are. This means that a reference to

a remote partition is just as easy as to a local partition; the user

need never know the exact location of the information being accessed.

ACCESSING FILES AND DIRECTORIES

When logged onto the system, the user is always attached to an MFD,

UFD, or subUFD. The directory to which the user is currently attached

is called the current attach point. Accessing a single file in the

current attach point is very simple; the user merely specifies the
file's name as a parameter of the desired command.

First Edition 6-4

FILE MANAGEMENT

To access a file in another directory, or to move from the current
directory to another, is just as simple. The user Specifies a
pathname.

A pathname consists of a filename and the directory structure that
contains the named file, Its purpose is to provide the file system
with a path from a known starting point to the desired file.

Pathnames allow the user to access information with great flexibility.
They allow access to objects throughout the file system or movement
from one place to another. They can also be used in abbreviation files
(see Chapter 9).

FILE SECURITY

There are times when access to a file or directory needs to
restricted. Perhaps the user wants to restrict access to particular
information, such as programs essential to the system or sensitive
data. Whatever the reason, Prime's file system provides four means of
protection for critical data: access control lists, user profiles,
passwords, and file access rights.

Access Control Lists

Access control lists provide passive protection for files and
directories. They allow the user to specify access rights for:

e A single file

@ A group of files

@ A single directory

@ A group of directories

Once the access control lists are in place, PRIMDS automatically checks
every reference made to the protected information to make sure the
reference is allowed. In fact, the user may be quite unaware of the
protection because no user action is necessary to invoke it.

Each access control list is a series of ordered pairs that specify the
access rights for a file or directory. The first element of each pair
identifies a user or group of users; the second specifies the
combination of access rights granted to that user or group of users,
The access rights are listed in Table 6-1.

6-5 First Edition

DOC6904-191

Table 6-1
Access Rights for Access Control Lists

Access What It Rights Granted
Right Protects

Read file Open a file for reading.

Write file Open a file for writing.
Includes truncation rights.

Add directory Create files and subUFDs.

Use directory Attach to a directory and use
it in a pathname.

Delete directory Delete files and directories.

List directory List the directory.

Protect directory Create and edit access
control lists, and protect
files with ACLs.

ALL file or All access rights are
directory granted.

NONE file or All access rights are

directory denied.

Four kinds of protection can be specified using access control lists.

They are:

@e Default

e@ Specific

e Access category

e Priority

First Edition 6-6

FILE MANAGEMENT

per i ee ree ame md

YOURDIR

SUBDIRA A.ACAT > SUBDIRB

acts FILEC SEGDIRAFILEA SUBDIRC

Types of ACL Protection
Figure 6-2

Default protection provides Security for nested directories and entire
tree structures. This means that the user can specify an accesscontrol list for a directory, and all subdirectories and files will besubject to the same protection unless the user Specifies otherwise.

A file or directory with specific protection has an access control listdirectly associated with it. This control list can only be referencedthrough the name of the file or directory it protects.

6-7 First Edition

DOC6904-191

An access category is a named file system object containing an access

control list. The category provides collective protection for a group

of files and/or directories. Changing the category's access control

list changes the access rights to every file and directory in the

group. This is particularly useful for protecting information

scattered throughout the file system. See Figure 6-2 for illustration

of the use of default, specific, and access category protection.

Partition

MFD

(UFD UFD UFD

—
| FILE FILE

UFD UFD UFD

 L (ere) (FILE) (FILE } (FILE }

Priority Protection
Figure 6-3

Priority protection allows special case accesses to occur. For

example, the system administrator can specify a special priority access

when backing up the system. This type of access temporarily supercedes

all user-specified protection, thus allowing backups to be made, but it

does not alter or destroy any existing user accesses. It does not

allow other users to make invalid accesses at any time, because it is

available only to the system administrator or Operator. Figure 6-3

illustrates the use of a priority ACL.

First Edition 6-8

FILE MANAGEMENT

User Profiles

Each user process has a user profile associated with it. ‘The profile
identifies the access rights and privileges that are to govern
execution of the user process. Among other things, the profile
specifies where in the file system PRIMOS should initially attach the
user upon login, and the type of access control that should be in
effect.

Profiles allow the system administrator to tailor access protection to
the system. For the system with many individual users and individual
projects, profiles can be set up ona per user basis to associate each
user's identity with a particular data base. If Many users are working
on a single project and require access to a Single data base, a project
profile can be set up to associate all members of the project with that
data base. Combinations of individual and project profiles can be
arranged to suit the application; there is no restriction on the
number of ways a user profile identifies the user.

Passwords and File Access Rights

Passwords and file access rights are features of earlier Prime systems.
They are supported on the 50 Series because of Prime's commitment to
compatibility across its product line. This support allows
applications designed on older Prime Systems to run without reloading
Or recompiling. Although these types of security are supported, they
are not described here. Refer to the Prime User's Guide, DOCA130-190,
for information about this topic.

SUMMARY

Prime's file system is based on a hierarchical arrangement of files,
directories, and partitions. This arrangement and the associated forms
of protection ensure the integrity and Security of all information on
the system, and at the same time provide easy accessiblity for all
proper accesses, The next chapter, PRIMENET, shows how Prime's
networking facilities work with the file system to give the user easy
access to files on other systems.

6-9 First Edition

PRIMENET

The previous chapter discussed the file system and how its hierarchicalStructure grants the user easy access to information throughout theSystem. The structure of the file System makes references’ toinformation on other systems just as easy as those to informationcontained locally. This chapter describes how PRIMENET, Prime'snetworking software supported on all 50 Series systems, provides areliable, standardized medium through which remote accesses can bemade.

INTRODUCTION

With a variety of services and transmission methods at its disposal,PRIMENET supports communications between linked systems. This softwareoperates in a fashion that is completely transparent to the user. Thistransparency eliminates the need to learn new commands, details aboutthe link between systems, or details about the physical location ofinformation, Instead, PRIMENET makes referencing remote informationidentical to referencing local information.

7-1 First Edition

DOCc6904-191

In addition to its transparency and ease of use, PRIMENET software

meets the International Telegraph and Telephone Consultative

Committee's (CCITT) X.25 standard for packet switching networks. This

is advantageous in situations requiring domestic and international

public data networks, since PRIMENET's X.25 support allows it to

communicate with any other system that also supports X.25. Two other

types of networks, ring and point-to-point synchronous, are also

supported; the combination of the three types gives the user several

options that can be exercized based on need and application.

BASIC ARCHITECTURE

PRIMENET is made up of several layers, as shown in Figure 7-1. The

levels are based on the International Standards Organization's open

systems interconnection (ISO OSI) model to make the 50 Series systems

able to communicate with all other systems that support X.25 protocols.

Levels of Protocol

PRIMENET consists of several functional layers. Each one embodies a

standard interface to the adjacent layers, and each implements a

different level of protocol.

Level 3, the packet interface, creates and controls virtual circuits

across the network, handles error recovery, and controls the flow of

information, It also keeps track of the process to which each packet

is being transferred. It is this layer with which the user interfaces

(see PRIMENET Subroutines, below); its X.25 support gives the user a

standard interface to the upper levels no matter what kind of link

makes up Levels 1 and 2.

Level 2, the link protocol level, corresponds to the International

Standards Organization's open systems interconnection (ISO OSI) data

link layer. It describes a protocol that two linked nodes must adhere

to when transferring information between them. This protocol dictates

the format of the data, how the nodes should request, transfer,

receive, and acknowledge the data, and how to signal faulty

transmissions should any occur.

Level 1 is the hardware interface. It is the equivalent of the ISO

OSI's physical layer. This layer acts as an intermediary between the

physical transmission medium (twin-axial cable. or transmission line)

and the rest of PRIMENET and the system. Depending on the type of

network, one of two controllers govern action at this level. These

controllers, the PRIMENET node controller (PNC), and the multi-line

data link controller (MDLC), are described in the section, Network

Types, below.

First Edition 7-2

UPPER

LEVELS

LEVEL 3

LEVEL 2

LEVEL1

PRIMENET

USER PROGRAMSAND TERMINAL USERS

FILE IPCFINTERACTIVE SYSTEM

||

[ECFTERMINAL SERVICES NETLINK ROUTINE(X.3, X.28-X.29) NPX CALLS

PRIMENET/X.25

X.25 LINK LAYER BOS,EX RINGNET

PRIMENET NODEMDLC CONTROLLER CONTROLLER (PNC)

PUBLIC LEASED ANDDATA DIAL-UP RINGNETNETWORK SYNCHRONOUS
LINES

Levels of PRIMENET Architecture
Figure 7-1

7-3 First Edition

DOC6904-191

Other layers of PRIMENET exist in addition to the three described

above. The PRIMENET internals operate on these layers to perform an

action the user directly specifies, or one that facilitates completion

of a user task. The internals also use PRIMENET subroutines.

Advantages of a Layered Architecture

This layered approach has several benefits for the user. ‘The

simplicity and structured design is the same no matter how many systems

are linked in a network. In addition, since PRIMENET supports

internationally recognized standards such as X.25, X.3, X.28, and X.29,

the user can easily link to any other network, both Prime and

non-Prime, that supports the same standards. This allows the 50 Series

systems to be easily integrated with already existing equipment.

Users interface only with the top layers of PRIMENET. Since these top

layers perform all interaction with lower levels themselves, the user

does not have to know anything about the physical connection between

two linked systems, how the data is formatted and checked as it is

transferred, or even if a network connection exists. This makes

PRIMENET transparent to the user, so accesses to information on remote

and local systems are identical.

Another advantage to the layered architecture of PRIMENET is that any

changes made to the lower levels are transparent to the user. Because

the user sees the top levels of PRIMENET, changes made to lower levels

do not change the way the user invokes or useS PRIMENET.

NETWORK TYPES

PRIMENET's levels of protocol and support of international standards

allow it to support three types of network links: RINGNET,

point-to-point, and Public Data Networ k.

These types differ in their ranges of effectiveness and how they link

systems, but they all provide the user with the means to access

information held on other Prime and non-Prime systems. This means that

a user can log remotely into any system in the network from any

terminal. It is also possible to log onto the usual local system, and

then remotely access information contained on other systems. Figure

7-2 shows typical examples of the three types of network links.

For the rest of this discussion, the word node represents any system

that is linked to others in a network.

First Edition 7-4

PRIMENET

 QP wou
POINT-
TO POINT

G_ NETWORK —H

 RINGNET

 St 4 4

PUBLIC
DATA
NETWORK

SYMBOLS:
eOINT.

TO POINT
||COMPUTER

NETWORK HF

STORAGE

© TERMINAL
LOS

Examples of Networks

Figure 7-2

DOC6904-191

RINGNET

Prime's ring network is called RINGNET. Its protocol supports many

nodes connected through a high speed, one way, serial synchronous

coaxial cable. (See Figure 1-3.) A junction box and a PRIMENET node

controller (PNC) within each node allow information to pass between the

node and the rest of the network.

RINGNET is a token-based network. A special bit pattern circulates

around the ring, and a node cannot transmit information until it

detects the token. When it can transmit, the node issues a packet

containing a 4-byte header and from 4 to 508 bytes of information

through its PNC. The packet circulates around the ring at a speed of 1

Mbyte/second, traveling through all intervening PNCs until it reaches

the destination node. There the destination PNC receives the packet

and sets a flag in the packet to acknowledge the receipt. The packet

travels around the rest of the ring to the source, which:

e@ Removes the packet from the ring

e Passes on the token

e Checks the acknowledgement flag

e Interrupts the host node and returns the transmit status

RINGNET offers several advantages to the user. Fach PNC acts as a data

repeater for packets between other ring nodes. When the PNC in Node B

(see Figure 7-3) repeats data from Node A to Node C (i.e., Node B is

neither the transmitter nor the receiver) no software intervention is

necessary; the operation is handled completely in hardware,

transparent to Node B and to Node B's users. When Node B is

transmitting or receiving data, the PNC handles the ring protocols in

firmware (except for error-caused retransmissions) .

Another advantage is the PNC's use of DMA 1/o to transfer up to 2

Kbytes of data per block. Only one interrupt per data block is needed

to indicate the node's success or failure to receive or transmit a

packet.

RINGNET serves all nodes in the ring equally, so that one system cannot

monopolize the network. It automatically checks all packets for

integrity, requiring no user intervention or separate acknowledgement

messages. In addition, RINGNET offers the user the ability to expand

into larger networks without suffering any degradation of performance.

If any number of the nodes in a ring network are powered down or

broken, the rest of the nodes are still able to send data around the

ring. The junction box ina disconnected node allows messages to pass

through without interruption to the next node in the ring, as long as

the distance between adjacent connected nodes does not exceed 750 feet.

First Edition 7-6

NODE A

CABLE

PRIMENET

NODE C

CABLE

\
\
\
\
\

»\
/ \

/ \
/ \| JUNCTION }

/ 4 BOX W,’ \

/ CPU ‘

PRIMENET
NODE MAIN
CONTROLLER MEMORY

NODE B

RINGNET Configuration
Figure 7-3

Point-to-Point Networks

Nodes in point-to-point networks commumicate via dial-up or leased
telephone transmission lines. Each node can contain up to two
multi-line data link controllers (MDLCs); each MDLC can Support two or
four lines at standard modem speeds. Information travels from the
processor of one node, through the MDLC and a modem, across the
transmission lines to the modem and MDLC of another node.

First Edition

DOC6904-191

For leased-line communications, the MDLC supports bisynchronous and

X.25 high-level data link control (HDLC) protocols. It also supports

HDX, a modified HDLC protocol, to allow half duplex communications

across dial-up lines. ‘These protocols, and multiline support, allow

the MDLC to be used simultaneously by several processes, both PRIMENET-

and non-PRIMENET-related. Like the PNC, the MDLC uses DMA I/O to

transfer data to and from main memory, and issues an interrupt to the

host node only after an entire packet of data has been received or

transmitted, It handles all error checking and frame formation in

firmware.

Public Data Networks

The 50 Series systems can subscribe to all public data networks (PDNs)

that support the CCITT X.25 protocol standard. Supported PDNs include

TELENET and TYMNET in the United States, DATAPAC in Canada, IPSS in

Great Britain, TRANSPAC in France, and EURONET in Europe. All of these

networks transfer and process information in packets, charging the user

according to the amount of information sent rather than to the time of

connection. This can provide service at substantial savings over

networks requiring dedicated transmission lines or dial up circuits.

The user with a Prime 50 Series system linked in a PDN has access to

all other members of the PDN. This means that any Prime terminal user

can access all other member systems, both Prime and non—-Prime, and that

all PDN terminal users can access the 50 Series system.

PRIMENET INTERNALS

PRIMENET's internal elements of interest to the user include:

@ Network process extension (NPX)

@ PRIMENET subroutines (IPCF)

@ Loopback facility

@ Port mechanism

e Virtual circuits

@ Network configuration facility (NETCFG)

Network Process Extension

All file accesses to remote PRIMENET-linked systems go through the

network process extension (NPX) mechanism. MIDASPLUS and the

electronic mail feature of Prime's Office Automation also use NPX to

First Edition 7-8

PRIMENET

perform remote functions. This mechanism allows local processes to
make procedure calls (see Chapter 8) to any remote system. The calls
are made transparent to the user.

To make the calls, NPX has an associated set of server, or slave,
processes on each node. These processes lie dormant, using no system
resources, until a remote call is received. When a user or system
process (the master) makes a remote call, one of the slaves on the
remote system is activated. The slave receives the procedure name and
any arguments, builds an entry name and argument list referencing the
called procedure, and makes the call. When the remote procedure
completes, it transfers any return arguments to the slave, which in
turn transfers them to the master process.

A slave process remains dedicated to the master that activated it until
it is released. A master process, however, can have Many Slave
processes serving it on many remote systems.

What determines the access rights of a slave on a remote system?
Depending on how stringent the security requirements are, the slave is
given access rights in one of two ways. It can take on the master's
login identity; this means that the slave is given whatever access
rights the master has without any further validation. For the second
method, the master sets up an appropriate slave identity before making
the remote call. When a call is made in this case, the slave identity
is subject to full validation,

PRIMENET Subroutines

The set of PRIMENET subroutines are called the interprocess
communication facility (IPCF). These subroutines allow a user process
to set up communication links with other processes (target processes)
within the network. Through these links the user process can exchange
data with any of its target processes. The user process executes the
appropriate subroutines to initiate commmications with a target
process, to transmit or receive data, to wait for a reply, and so on.
In addition, NPX uses these subroutines to make its remote calls.

Procedures written in any high-level language can call any of the
PRIMENET subroutines. This is especially useful when the user is
developing distributed applications programs.

Loopback Facility

To help develop, test, and debug an application that uses the IPCF
subroutines, PRIMENET supports a loopback facility. It allows the user
to run and check the application's calls to remote processes on the
local system alone. The user sets up both source and destination
processes on the local system; when the source makes the call, the
facility loops it back to the local system rather than allowing it to

7-9 First Edition

DOC6904-191

go over the network, This allows the application's use of the network

to be fully tested and any errors corrected before installation and

preserves the integrity of network resources.

Ports

When one process communicates with a remote system, the process must

have some way of identifying the node and the destination process. A

standard X.25 node address can identify the correct node, but not which

of 128 possible processes is the destination. To accomplish process

identification, each node has a list of ports that act as subaddresses

within the node.

Each 50 Series system supports 256 ports. Ports 1-99 are reserved for

the user making calls through the IPCF subroutines; ports 100-255, for

system use. (See Figure 7-4.) A process that expects a call assigns

itself an appropriate port number and waits for the call. The process

making the call must specify this port number for the call to be made.

Processes that do not specify a port number make their calls to the

default port, the remote login port (Port 0).

Virtual Circuits

When one process specifies the node and port of another process,

PRIMENET establishes a bidirectional link between the two through a

virtual circuit. This is a logical path or channel that traverses the

network from one process to another via

_

several physical,

point-to-point links.

Fach virtual circuit has an identifying number to distinguish it from

all others. Up to 63 virtual circuits can be supported per system.

Network Configuration Facility

The 50 Series provides an interactive user facility that guides the

user through the process of network configuration. It is invoked by

specifying the PRIMOS NETCFG command. This command asks the user a

series of simple questions to determine what the network configuration

should be. No complex network generation is needed, since NETCFG

handles all aspects based on the user's responses to its questions.

First Edition 7-10

O
a

\

INCOMING
REQUESTS
FOR CALLS

\
~

V
Y

0
4
o
m
Z
z
#
m
e
s
e
s
-
D

PRIMENET

REMOTE
LOGINTE LOGIN0 RESERVED FOR REMOTE PORTO

5 PROCESS A PROCESS B

: XN?

11 PROCESS C

; USER
. PORTS
oo 1-99

58 PROCESS D PROCESS E PROCESS F

ee Nea

124

os SYSTEM
254 RESERVED FOR SYSTEM USE PORTS

e 6 100-250

255

50 Series Port Mechanism
Figure 7-4

7-11 First Edition

DOC6904-191

USER FACILITIES

PRIMENET provides the user with many facilities for referencing remote

information. The IPCF subroutines were described in the previous

section. In addition to these, PRIMENET offers:

@ Remote login

e Remote file access

e NETLINK

e File transfer service (FTS)

Remote Login

The standard command that enables the user to log onto the local system

is:

LOGIN user-id

By adding the option —-ON <remote_system_name> to the LOGIN command, the

user can log onto any remote system that is linked via PRIMENET to the

local system. The remote system may be connected to the local one via

any of the three types of links supported by PRIMENET. Once remote

login is established, tasks are specified as if the user were logged

onto the system locally.

Remote File Access

PRIMENET also provides immediate access to any remote file within the

network, even if the user does not know the file's location. This

means that the user does not have to learn any new commands to specify

a remote file, since PRIMENET works with the file system to access the

file in a transparent fashion. In fact, the user may not even know

that the file is not contained within the local system. In addition,

programs accessing remote information do not have to be changed or

recompiled if the remote information is moved.

NETLINK

The NETLINK software allows a terminal user to communicate over any

X.25 network to which the local system is linked, This software does

this by emulating a PDN packet assembler/disassembler (PAD). It

converts the asynchronous terminal output into X.25-formatted packets

of information that can be transmitted over the network.

First Edition 7-12

PRIMENET

For the user with a PDN link, NETLINK allows access to any system in
the network, both Prime and non-Prime. The user does not have to log
out of the local system to invoke NETLINK; in fact, NETLINK supports
simultaneous links with up to six remote systems and allows the user to
move between them and the local system at will. This capability puts
the wide variety of PDN facilities within quick reach of any Prime user
in the network,

File Transfer Service

To complement the capabilities of PRIMENET, the 50 Series systems
support the file transfer service (FTS) subsystem. With FITS, the user
can transfer files between the local system and any PRIMENET-linked
remote system. The two systems involved in the transfer can be either
Prime or non-Prime systems, but both must support the X.25 protocol and
the same file transfer protocols that FITS uses.

FTS provides facilities for users, operators, and administrators. The
user can set up, monitor, and control file transfers between Prime
systems, FIS operators take care of day-to-day control and monitoring
of FTS internals, such as the file transfer manager and queues of user
file transfer requests. A system administrator can tailor FTS to the
particular local system. Users can send or fetch any file (given the
proper access rights) in the system; if a node is currently
disconnected, FTS will automatically retry a transfer later. In
addition, FITS can notify both the source and the destination users via
the PRIMOS MESSAGE command whenever a transfer takes place.

SUMMARY

Prime's network and communication capabilities make it easy for the
user to access information on several systems, both those made by Prime
and those made by many other manufacturers. PRIMENET operates
transparently to the user, which means that accesses from one system to
remote resources are identical to those made to local resources. Since
local and remote accesses are handled identically, the networking
software is more efficient, which in turn increases performance.

In addition, Prime's network facilities handle many of the transmission
tasks internally. These features mean that the communication portions
of many application programs are easy to write, since they need not
worry about the exact format of the links between systems. The next
Chapter, Procedure Management, discusses more of the ways the 50 Series
enhances the program environment.

7-13 First Edition

Procedure

Management

The two previous chapters, The File System and PRIMENET, showed how the
50 Series systems could provide the user with a rich variety of
Services on both local and remote systems, To access these resources,
the user invokes the procedure call mechanism. This mechanism acts as
a universal method of control transfer for all parts of a 50 Series
system,

A procedure call is an orderly transfer of control. In its simplest
form one procedure invokes, or calls, a second; the second executes,
then control is transferred back to the first. In more complex
Situations, the procedure call allows the user to invoke part of
PRIMOS, reentrant or recursive procedures, or library subroutines.

This chapter describes many aspects of the procedure call mechanism:

@ How standard procedure calls occur

@ How procedure calls to PRIMOS services in Ring 0 (direct
entrance calls) occur

@ How the condition mechanism handles errors

8-1 First Edition

DOC6904-191

PROCEDURE, LINKAGE, AND STACK AREAS

To run a program, the system requires:

e@ The main procedure and any subprocedures (pure procedure code)

e Static information, such as linkage information and common areas

@ Dynamic information needed upon execution, such as arguments

from one procedure to another or dynamic data.

To simplify and control access to this information, separate areas in

virtual memory are designated for each type of information. A

dedicated, user-accessible base register is assigned to each area so

that references can be made relative to the area itself. The procedure

area contains the main procedure and any subprocedures that are to be

executed; PB is the dedicated procedure base register. Static linkage

data, such as local variables, is contained in the linkage area and is

accessible via LB, the linkage base register. The stack area provides

dynamic storage and uses SB, the stack base register, Each area may be

in a separate segnent with its own access protection.

The procedure call mechanism must coordinate the transfer of control

from one procedure to another. This means that it must control and

monitor the changes that occur in the procedure, linkage, and stack

areas and registers for both procedures. The next section describes

the three elements of the procedure call mechanism that make this

possible.

ELEMENTS OF THE PROCEDURE CALL

To perform the control transfer from one procedure to another requires:

e Astack

@ An entry control block

@ The procedure call instructions: PCL and PRIN

The stack area described above contains the stack. The entry control

block resides in the linkage area. The PCL instruction is contained in

the main procedure in the procedure area; the PRIN instruction, in the

subprocedure(s) in the procedure area.

The Stack

When one procedure calls another, the procedure call must save the

current state of the caller before transferring control to the callee.

This is because the callee's execution may change the contents of some

of the system registers; when control transfers back to the caller,

First Edition 8-2

PROCEDURE MANAGEMENT

Main procedure A

As frame

in user’s stack B's ECB

/ A B's address

Return
address NX Subprocedure Ba

 \

Stack Area IN Link Area

PRTN

Procedure Area

Procedure Environment
Figure 8-1

the registers may not contain what the caller expects. The procedure
uses a stack to save the state for each calling procedure, as well as

any dynamic variables each may use.

A stack is one or more segnents in the user's address space. The first
segment is called the stack root and uniquely identifies the stack.
Any other segnents in the stack are called stack extension segments.
The number of extension segnents is limited only by the space available
in the user's address space.

8-3 First Edition

DOC6904-191

The system supports several stacks at once. It supports stacks for its
own uSe as well as those for each user logged onto the system. The
user, however, can access only one stack at a time via SB (usually only
the current user stack).

Each time one procedure calls another, a block of information about the
caller is stored onto the stack. The block of information, called a
stack frame, describes the state of the caller in effect when it made
the calI. It also contains indirect pointers to whatever arguments the
Callee expects, and a return address. The return address allows
control to return directly to the caller, rather than requiring a
reference to the caller's stack frame first.

Entry Control Block

The entry control block in the linkage area defines a called procedure.
It contains information such as how many arguments the called procedure
expects, the starting address of the called procedure, the number of
the stack root segment, the expected size of the stack frame, and so
on. When one procedure calls another, it references the called
procedure's entry control block, rather than the procedure itself, so
that the procedure call mechanism has access to the called procedure's
identifying linkage information.

The Procedure Call Instructions

To make a procedure call, a calling procedure executes a PCL. This
instruction handles all tasks that must be done before control can
transfer to the callee. These tasks include using SB to set up a stack
frame, and keeping track of the stack information needed by both
procedures. PCL also ensures that the called procedure can reference
any parameters from the caller that it might need. In the procedure
area, PCL is followed by a series of argument templates if the callee
expects arguments. These templates are used to form indirect pointers
that are passed to the callee so that it can reference the parameters.
During its execution PCL calculates the indirect pointers and passes
them to the callee,

The templates allow the user to specify different indirect pointers
within the same PCL instruction. For example, suppose a PCL
instruction is followed by an argument template that specifies a
particular base register. Also suppose that the contents of that base
register change prior to each execution of the PCL. This means that
PCL calculates a different indirect pointer each time it executes.
With this technique, the user can call procedures recursively without
any extra programming or special procedures.

First Edition 8-4

PROCEDURE MANAGEMENT

Once PCL completes execution, control transfers to the callee and it
executes. When it is time to transfer control back to the caller, the
procedure return instruction, PRIN, executes. This instruction removes
the stack frame PCL created in the stack area, restores the caller's
system state via the linkage information contained in the entry control
block, and transfers control in a smooth and consistent manner back to
the caller in the procedure area,

PCL and PRIN are implemented in firmware to speed up argument
transfers, stack operations, and the control transfers. The 750 and
850 also incorporate hardware support.

MAKING A STANDARD PROCEDURE CALL

When PCL executes, it:

1. Verifies the caller's right to access the callee's entry
control block

2. Creates a new stack frame for the callee

3. Saves the caller's state, and then loads the callee'’s state

4. Calculates and stores indirect pointers for the callee's use

Figure 8-2 summarizes this sequence of events.

1. Verifying Access Rights

When PCL begins execution, it must make sure the caller has
the proper access rights to reference the called
procedure's entry control block. It does this in the same
way any memory reference is checked, (See the section,
"Protection Rings", in Chapter 4, Memory Management, and
"Making a Direct Entrance Call", below.) If the access is
not allowed, PCL causes an access fault and does not
continue. If the access is allowed, PCL continues.

2. Allocating a Stack Frame

PCL references the callee's entry control block to
determine which segnent contains the stack root. After
identifying the stack root, PCL checks it to see if there
are enough free locations to contain the new frame. If
there are, the new frame begins at the first free location.
If there are not, PCL extends the stack, if possible, and
begins the new frame in the stack extension segment. If
there is no room in the extension segnent for the frame, a
stack overflow occurs.

8-5 First Edition

DOCc6904-191

 Accessviolation Valid

access?

YES

Room

in stack for Stack overflow

frame?

Allocate new

stack frame

Savecaller's state

and load
callee’s state

 any
Callee executes

Transfer control
.

arguments
.

to Danster?
to callee PRTNtransfers

,
control to caller

Calculate and
store indirect

pointers

Actions of PCL and PRIN
Figure 8-2

First Edition 8-6

PROCEDURE MANAGEMENT

3. Saving the Caller's State and Loading the Callee's State

PCL stores the caller's state into the new stack frame. Once
this is done, it loads the callee's state (contained in the
callee's entry control block) into the system registers,

4. Calculating Indirect Pointers

If the called procedure expects Parameters, the indirect
pointers to the parameters are calculated now. PCL uses the
argument templates that follow it in the calling procedure to
create the pointers. After they are calculated, these pointers
are stored in the caller's stack frame.

5. The PRIN Instruction

Once all indirect pointers are calculated and stored, control
transfers to the called procedure. When it completes, PRIN
ensures that the control transfer back to the calling procedure
is smooth. This instruction deallocates the caller's stack
frame, then restores the state of the caller. Once the state
is restored, the caller resumes execution at the instruction
that follows the calling PCL and its argument templates, if
any.

DIRECT ENTRANCE CALLS

The procedure call actions described above take place whenever both
caller and callee are within the same ring of protection. When Ring 3
procedures want to call Ring 0 procedures, however, the actions taken
Change. (Ring 0 calling Ring 3 should never occur, so this case is not
considered here.) Granting user procedures access to Ring 0 procedures
must be closely monitored to guard against any abuse of privileges.
Accesses of this type are called direct entrance calls.

The Gate Access Segment

All user accessible Ring 0 procedures must be set apart from those that
are not user accessible. To accomplish this, the entry control blocks
of all Ring 0 user accessible procedures are contained in a gate access
Somer. Users can make direct entrance calls only to those Ring 0
procedures whose entry control blocks are present in the gate access
segment and to no others,

8-7 First Edition

DOC6904-191

When a user procedure specifies a procedure call to a Ring 0 procedure,

the procedure call must specify an entry control block in the gate

access segnent. If the Ring 0 procedure's block is not in the gate

access segnent, the call cannot be made. If the Ring 0 procedure's

block is contained in the gate access segnent, the call proceeds as

described in the previous section.

Making a Direct Entrance Call

When one procedure calls another whose entry control block is located

in the gate access segnent, how does the system link the two? The 50

Series systems use dynamic linking to accomplish this. One of the

indirect pointers formed by the calling procedure's PCL points to the

name of the gate access procedure. When this PCL is executed for the

first time a pointer fault occurs, because the system knows only the

callee's name, not the location of its entry control block. Control

transfers to the PRIMOS pointer fault handler, which examines the name

of the callee.

If the callee's name is not that of a valid gate access procedure, no

access occurs. If it is, the fault handler locates the entry control

block of that procedure, and replaces the PCL's indirect pointer to the

callee's name with a pointer to the callee's entry control block.

Control transfers back to the PCL, which re-executes. This time, the

PCL instruction executes correctly and control transfers from caller to

callee.

The pointer fault happens only the first time the gate access procedure

is called in a procedure; the system automatically saves the address

of that procedure's entry control block for use on any subsequent

calls.

Dynamic linking offers several advantages to the user. It allows the

contents of the gate access segnent to be rearranged without requiring

any changes to user procedures. It aiso allows new procedures to be

added to the system easily, as well as allowing old ones to be removed.

All calls to shared library routines are also made dynamically.

CONDITION MECHANISM

The condition mechanism is used to handle errors, conditions, and

exceptions. Each time ome of these unexpected events occurs, the

condition mechanism is automatically invoked as if it were

=

an

unscheduled procedure call. This invocation suspends the currently

executing procedure and transfers control to a condition handler.

First Edition 8-8

PROCEDURE MANAGEMENT

This feature of the 50 Series provides orderly and consistent error
handling without terminating procedure execution whenever possible, It
is invoked whenever:

@e Software cannot handle a condition, such as an illegal address

@ A hardware or arithmetic exception occurs

@ A user procedure calls SIGNLS, the PRIMOS condition signalling
routine

@ An external interrupt occurs, such as a user-generated break
command

When any of these situations arises, the condition mechanism identifies
the condition type, then transfers control toa condition handler,These handlers are called on-units.

On-Units

The basic element of the condition mechanism is the on-unit. Each
on-unit is a procedure that can handle one or more specific conditions,
Typical actions of an on—unit can include:

@ Servicing a condition and returning control to the executing
procedure

@ Interrupting procedure execution and returning control to PRIMOS

@ Altering the normal flow of procedure execution

@ Performing some task, such as opening or closing a file

@ Signaling another condition

@ Running diagnostic routines

@ Printing messages at the user terminal

An on-unit generally contains a series of procedure calls to one ormore of the condition mechanism subroutines. Some of these subroutinescan clear conditions, then restart or end procedure execution. Otherscan signal the occurence of a condition, scan for more on-units, create
or revert an on-unit, transfer control from one part of the user'sprocedure to another, and perform other similar tasks.

8-9 First Edition

poc6904-191

Using On-Units

The user can define on-units in any CPL, FORTRAN 77, PL/1-G, PASCAL, or

PMA procedure. These user-defined on-units can be tailored to handle a

condition in whatever fashion the user wants. The system default

on-unit, ANYS, is also available to the user; ANYS intercepts any

condition that may arise.

Once a user defines an on-unit, it remains in effect until the user

procedure ends, the user defines a new on-unit for the same condition,

or the user reverts the on-unit.

SUMMARY

The 50 Series system provides a_ standard method of invoking one

procedure from another. Through this method, the procedure call, the

system supports calls to any procedure within the system or network,

and provides condition handling and access validation for every call.

The system also provides the user a command environment with many

built-in security and checking features. Additionally, this

environment can be completely customized to meet the user's needs and

applications. These topics are covered in the next chapter, The

Command Environment.

First Edition 8-10

The Command

Environment

The 50 Series systems present a standard command environment suitableto a number of widespread applications. This environment, however, canbe tailored in many ways to meet differing individual needs. The usercan, for example, opt to use the standard environment enhanced with afew personal commands, or can choose to implement a completemenu-driven interface that governs all user actions. Aspectrum ofoptions between these two applications can also be implemented.

This chapter discusses the user command environment from severalangles:

@ How the system initializes it

@ How the site initializes it

@ How the user initializes it

@ Other ways the user can use and customize it

@ How to clean up and exit it at logout

SYSTEM INITIALIZATION TASKS

System initialization tasks are performed each time the user logs ontothe system. These tasks center around identifying the login system andthe user, and assigning access rights.

9-1 First Edition

DOC6904-191

Identifying the Login System

When the user types the login command, the login system is identified

either by explicit specification or by physical connection. In the

case of the command

LOGIN user-id [password]

the login system is not explicitly named and the system physically

connected to the user's terminal is assumed to be the login system.

The user can explicitly specify the login system with the login

command's —ON node option, such as:

LOGIN STEPHEN -ON SYSGB

This is a remote login, discussed in Chapter 7, PRIMENET.

Identifying the User

Once the system identifies the login system, it checks to see if the

user name is valid for that system. User profiles provide this

validation.

Chapter 6 mentioned user profiles and how they work with the 50 Series

access control lists to ensure protection of system and user

information. Among other things, a user profile may include:

e A user-id

e A user login password

e A project-id

The user-id uniquely identifies the user to the system. Associated

with it is a password to ensure that access to information is

restricted to the appropriate user or users. The password is encrypted

into the validation files which the system uses to govern accesses, and

cannot be decoded from its encrypted form. The password can be changed

by the appropriate user as desired.

A project identifies a group of users. It provides similar file system

access rights and validation for each member of the project. It can

also be used for accounting purposes.

Assigning Access Rights

After the system identifies the user, jit must assign access rights to

the user. The user's profile specifies access rights; in addition,

the system uses ACL groups to further determine the user's access

rights.

First Edition 9-2

THE COMMAND ENVIRONMENT

As described in Chapter 6, access control lists Specify the user'srights to access information, An ACL group is a general label that
identifies a group of users. The names of these groups begin with a
period (.) to distinguish them from user-ids, but otherwise use the
Same structure as the user-ids, Examples of ACL group names are
eADMIN, .TOOLS, «ACCOUNTING, and .DEPT4042.

An ACL group identifies a set of users and a Single set of attributes
to be used for all those users. This set of attributes is specified in
just one access pair, rather than one pair per user, thus simplifying
the validation and checking procedures needed with each reference to
the file system. This means that users with different needs can be
granted different levels of access. ACL groups can be associated with
projects, and adding users to or removing users from the system is
easily done according to the user's membership in these projects.

ACL groups can be associated with a project-id Specified in the user
profiles to set up levels of access Privilege. For example, an
architectural firm could set up an ACL group to allow architects access
to the building plans, but deny access to the financial records. In
addition, the level of access privileges can be changed as time passes
to meet changing demands. By adding, Geleting, or changing the ACL
groups, as many hierarchical levels of access can be created as the
user wants,

SITE-SPECIFIC TASKS

After identification and validation are completed, any system may
Specify an optional set of site-specific tasks. These tasks May be as
simple as displaying system notices or reminders, or may be much more
complex. For example, a site may choose to invoke additional
Validation tasks to insulate the System from potential security
breaches. Accounting functions to monitor system usage might also be
invoked, or menu-driven user interfaces for data base management. The
user's needs and applications will determine whether a set of
site-specific tasks are needed, and what form they should take,
Chapter 11, Software Products, describes the products that can aid the
user in developing site-specific tasks,

INITIAL ATTACH POINT

Once the system has identified the login system, the user, and theuser's access rights, and has performed any optional site-specifictasks, it must determine where to initially attach the user. In otherwords, what part of the file system is the user to see upon login? Theuser profile described above specifies the initial attach point. Thesystem checks the user's right to access the UFD at the initial attachpoint, and if access is allowed, attaches the user. If access is not
allowed, or if the system does not recognize the UFD name, the user isnot attached,

9-3 First Edition

DOCc6904-191

USER TASKS

Now that the system has processed, validated, and set up the initial

command environment, the user can specify a number of optional user

tasks in a command file. For example, the user can:

e Invoke a command, login, or CPL file

e Activate an abbreviation file

e@ Change the prompt characters

@ Change the terminal characteristics

This is not an exhaustive list of tasks the user can specify, but lists

only some of the more commonly performed ones. System application and

user needs will determine additional ones.

Command, Login, and CPL Files

The most common way for the user to specify a group of initialization

tasks is with a login file. This file can be a command input file, a

cp. file, or a runfile. Any of these specifies a series of tasks to be

performed when the file is executed. Some typical tasks might be to

print a message or reminder, set a clock, open a command output file to

keep a record of the user terminal session, or invoke one of the 50

Series software products described in Chapter ll.

Login files can invoke other runfile, command or CPL files. They can

also specify any of the other tasks described in this section. Login

files and procedures are discussed in more detail in the System

Administrator's Guide.

Abbreviation Files

PRIMOS and the 50 Series systems allow the user to define and use

abbreviations for standard commands, command sequences, Or command

arguments. These abbreviations are contained in an abbreviation file

that the system references each time the user specifies a command, To

use the abbreviation file the user can place an activation command in

the login file:

ABBREV pathname

where pathname identifies the name and location of the abbreviation

file. The user can deactivate and reactivate the abbreviation file at

any time with the -OFF and -ON options to the ABBREV command.

First Edition 9-4

THE COMMAND ENVIRONMENT

Using the abbreviation file has several advantages. By designating an
abbreviation for a long, commonly used command, the user can savetyping. It also allows the user to tailor the command environment by
designating more familiar command names, for example. Abbreviations
can also represent an argument in a command. The examples of typicalabbreviations shown below demonstrate these advantages.

EMACS emacs %1% -terminal_type pt45 -ulib wrap.em
CLEAN Close -all; delseg all; rls -all
REMIND Slist my_ufd>Sreminder
AR accounts_receivable_data_base

The word EMACS in the first sample abbreviation designates the name of
the abbreviation. The rest of the line Specifies the command and
arguments that EMACS abbreviates. Note that the Single word EMACS
invokes the EMACS screen editor for a user working on a Pf45 terminal,
and specifies the library WRAP.EM to be used during editing. All the
user needs to type is the abbreviation name and the name of the file to
be edited. (See Chapter 11, Software Products, for a description of
the EMACS screen editor.)

The second sample abbreviates three commands; it closes any open
files, releases any segments, and empties the user stack. The third
sample prints the contents of a user reminder file, If the fourth
abbreviation, AR, were used in the ATTACH command,

ATTACH AR

the command would expand to

ATTACH ACCOUNTS_RECEIVABLE_DATA_BASE

This allows the user to establish Simple personal commands withouteliminating the descriptive advantages of the the longer directory
name, ACCOUNTS_RECEIVABLE_DATABASE,

Prompt Characters

The standard brief prompts PRIMDS uses are OK, and ER!. The user canchange these to other values with the PRIMDS RDY command. Options tothe RDY command allow the user to change either prompt to some othervalue, to suppress all prompts, or to display CPU and I/O informationalong with the prompt. For example, to change the OK, prompt to SystemA obeys!, the command is:

RDY —READY_BRIEF "System A obeys !'

The RDY command can be useful to the user with access to severalsystems, By changing the prompts on each system to a different value,as in the example shown, it is easy to remember on which system theuser is currently working.

9-5 First Edition

DOC6904-191

Terminal Characteristics

The user can specify terminal characteristics other than the default

values with the PRIMOS command TERM. Such characteristics are the

choice of erase and kill characters, enabling or disabling of break

characters, and terminal display modes. For example, the user can

designate the asterisk (*) as the erase character with the command:

TERM —ERASE *

USING THE COMMAND ENVIRONMENT

After logging in and customizing the command environment as desired,

the user can begin working. Several features of the command

environment, such as the abbreviation file, that can simplify the

user's contact with the system, have already been discussed. The

command environment offers many additional features that enhance system

use. Some of the more commonly used features are:

e Status checks

e Wildcards and treewalking

e Name generation

@® Iteration

@ PRIMOS commands

e User application programs

The user's needs and application will indicate other features that are

of particular use.

Status Checks

The STATUS command specified in a user's command file automatically

checks status of the system users, networks, units, and disks. For

example, to check the status of the other users on the system, the

command is:

STATUS USERS

First Edition 9-6

THE COMMAND ENVIRONMENT

and the system would respond by displaying something similar to:

User No Line Devices

SYSTEM l asr <SYSTMA> AL057
ANNABEL 3 1 <SYSTMA> (TO OPERA)
BIZET 6 4 <CARMEN>
MARCUS 13 13 <CARMEN> <SYSTMA>
MATT 16 16 <CARMEN>
NETMAN 76 nsp <SYSTMA>
BATCH_SERVICE 92 phant <SYSTMA> (2)

This lists the other user processes currently active on the system, the

process numbers, the terminal lines through which they are connected to
PRIMOS, and the disk partitions they are currently accessing. See
FDR3108-190, the PRIMOS Commands Reference Guide, for a complete
explanation of this command and its output.

Wildcards and Treewalking

In the cases where a user wants to specify more than one file at a
time, such as in a list or search command, a convenient way to do so is
with wildcards. A wildcard replaces an explicit part of a filename.
The symbol + designates a wildcard to replace a single character in a
filename; the symbol @, a single component. The symbol *~ implies
negation of an entire string. To specify a wildcard to replace one or
more components, use @@.

When the file system encounters a wildcard, it performs the specified
command on all files that match the wildcard. A match occurs if a
filename and the wildcard have the same number of components, and if
both contain the same literal characters in the same relative
positions.

For example, suppose the current directory contains the six files:

TEST1 TEST4 SYMBOLTABLE TEST4.RUNOFF ALPHA BETA

Suppose the user specifies @A in a command. The system would perform
the desired command on files ALPHA and BETA. The wildcard TEST+ would
match TEST1 and TEST4. The wildcard TEST@@ would match TEST1, TEST4,
and TEST4.RUNOFF, since TEST@@ specifies all file names that have one
or more components separated by periods (.) and begin with the letters
TEST. Finally, the wildcard “TEST@@ would match SYMBOLTABLE, ALPHA,
and BETA, since they are the only file names that do not begin with the
letters TEST.

9-7 First Edition

DOCc6904-191

The user can insert wildcards into pathnames to search several

subdirectories in one operation. For example, if a user command

specifies the pathname <CARMENDTESTS>@@>FIGURES, the file system would

seach each subUFD of the UFD TESTS for all files named FIGURES and

perform the command on each file. This capability is called

treewalking.

Both wildcards and treewalking have two main advantages to the user.

They allow the user to perform more work with a single command. They

also reduce typing and make the system easier to use, since the user

needs to type only the minimum number of identifying characters to
specify a pathname or file name.

Generated Names

Selected commands allow the user to generate names implicitly. The
generated names are based upon the value of the first argument to the
command. The symbols =, ==, +, and ~ appear in the second or greater
numbered argument to indicate the format of the generated name.

A single equal sign (=) represents one component; two (==), any number

of components. The symbol (+) indicates that one component should be

added to the generated name, while the symbol (~) indicates that one

component should be deleted.

For example, the command:

MRGF ALLEN>SAMPLE.ALPHA ALLEN>=.BETA ALLEN>=.GAMMA

expands to:

MRGF ALLEN>SAMPLE.ALPHA ALLEN>SAMPLE. BETA ALLEN>SAMPLE. GAMMA

and the command:

CNAME test.sample.1 =.°=.=

expands to:

CNAME test.sample.1 test.1

Like wildcards and iteration, name generation eliminates the need for

typing. The user has to type a common component or file name only once

in a command.

First Edition 9-8

THE COMMAND ENVIRONMENT

Iteration

Many tasks can be simplified by using iteration. A set of values is
enclosed in parentheses and inserted in a regular command. The system
executes the command once for each value within the parentheses. In
other words, a command containing an iteration set of four values is
equivalent to four separate commands. For example, the command

DELETE (TEST PROGRAM MYFILE)

is equivalent to the three commands

DELETE TEST
DELETE PROGRAM
DELETE MYFILE

and the command

CNAME (TEST PROGRAM MYFILE) =.SAMPLE

expands to the three commands

CNAME TEST TEST. SAMPLE
CNAME PROGRAM PROGRAM. SAMPLE
CNAME MYFILE MYFILE, SAMPLE

Multiple iteration sets can be inserted into some commands, such as

CNAME (TEST PROGRAM MYFILE) (ALPHA BETA GAMMA) .SAMPLE

expands to the three commands

CNAME ‘TEST ALPHA. SAMPLE
CNAME PROGRAM BETA.SAMPLE
CNAME MYFILE GAMMA. SAMPLE

This feature can be applied in any situation where the user must issue
a number of redundant commands that differ only in the arguments
specified.

PRIMOS Commands

This chapter has already mentioned some PRIMOS commands, such as RDY,
CNAME, and STATUS. The user can specify a number of other commands,
both internal and external, in a command file. Internal commands, such
as the three mentioned in this paragraph, are executed in the address
Space that PRIMOS occupies. The majority of external commands are used
to invoke programming and debugging facilities and execute in the
user's address space, At Rev 19.0 and later versions of PRIM,
however, there are some external commands which do not execute in the
user's address space.

9-9 First Edition

DOC6904-191

Tables 9-1 lists the internal PRIMDS commands.
external commands that execute in the user's address space,

9-3 lists other commands,

Table 9-2 lists those
and Table

which do not overwrite the user's address
see the

space. For more detailed information on all PRIMOS commands,
PRIMOS Commands Reference Guide.

Table 9-1
Internal PRIMOS Commands

* ABBREV ADDISK ADD_REMOTE_ID

AMLC ASROWD ASSIGN ATTACH

BINARY CHANGE_PASSWORD CHAP CLOSE
CNAME COMINPUT COMOUTPUT CPL
CREATE DATE DEFINE_GVAR DELAY
DELSEG DISKS DMSTK DROPDIR
EDIT_ACCESS ELIGTS INPUT LISTING
LIST_ACCESS LIST_GROUP LIST_PRIORITY_ACCESS

LISTQUOTA LIST_REMOTE_ID LOGIN LOGOUT
LOOK MAXSCH MAXUSR MESSAGE
NET OPEN OPRPRI ORIGIN
PASSWD PHANTOM PM PRERR
RDY REMOTE REMOVE_PRIORITY_ACCESS
REN REPLY RESUME RLS
SAVE SETIME SETMOD SET_ACCESS
SET_PRIORITY_ACCESS SET_QUOTA SHARE
SHUTDN START STARTUP STATUS
TIME UNASSIGN USAGE USERS

USRASR

First Edition 9-10

THE COMMAND ENVIRONMENT

Table 9-2
External PRIMOS Commands

AVAIL BASIC BASICV BASINP BATCH BATGEN
BATGEN CMD CLUP CMPF COBOL CONCAT
COPY_DISK CPMPC CRMPC CSUBS DBACP DBASIC
DBG DBUIL DPTCFG DPTX ED EDB
EDIT_PROFILE F77 FAP FOL FOML
FILMEM FILVER FIX_DISK FSUBS FIGEN FIN
FTOP FIR HDXSTAT HPSD JOB KBUILD
KIDDEL LABEL LATE LOAD LOGPRT MAGNET
MAGRST MAGSAV MAKE MCLUP MDI; MRGF
NCOBOL NETCFG NETPRT NSED NUMBER OWLDSC
PL1IG PMA POWER PRMPC PROP PRSER
PRTDSC PSD PSD20 REMAKE RJOP RJQ
RPG RUNOFF SCHDEC SCHED SCHEMA SEG
SIZE SLIST SORT SPOOL SPSS TAP
TCF TERM TRAMLC UPCASE VPSD VPSD16
$$

Table 9-3
Other PRIMOS Commands

COPY DELETE HELP LD PROTECT
REVERT_PASSWORD RWLOCK SET_DELETE

User Application Programs

In addition to the PRIMOS commands listed above, the user may choose to
invoke an applications program via a command file. This is a
convenient way to invoke a simple user clock program, for example, or a
comprehensive menu-type user interface.

The command file can invoke any of the software products described in
Chapter 11 to provide data base management, CAD/CAM capabilities, or
network access, to list some examples. The command file can also
invoke one of the languages Supported on the 50 Series, or a
development tool such as a loader, spooler, or editor. See Chapter 11
for a description of these and the Many other software products
Supported on the 50 Series systems.

A CPL file can also be used to initiate an update mechanism, for
example, ensuring that any change the user makes is propagated
throughout all relevant channels (database, logbook, error fix file,
and CAD data). ‘The user's needs and Scope of use will determine many
additional ways these structures can be used,

9-11 First Edition

DOC6904-191

&args treename
como —ntty
&if [exists %treename$] &then &do

&data ed product>installation_log
bottom
insert [date -full] Installing [pathname %treename%].

file
&end

&if [exists product>source>[entryname ttreename%]] &then &do
copy product>source>[entryname ttreename$]

product>arc>[entryname $treename%] . [date -ftag] -dtm

&data ed product>installation_log
bottom
insert [date -full] Archived [entryname ttreename%]

file
&end

&end

copy $treename% product>source>[entryname %treenames] —dtm —nq

&data ed product>installation_log
bottom
insert [date -full] Installed new [entryname %treename$]

file
&end

como —tty
type Installation of [pathname %treename%] completed.

&end
&else &do

como —tty
type Cannot find [pathname ttreename%] .
&return 1
&end

Sample CPL Program
Figure 9-1

Figure 9-1 shows a simple CPL program to install a new source file, and

monitor the installation. The program archives the previous version of

the source file if necessary, copies the new file, maintains a log of

these activities, and notifies the user whether the file is

successfully installed or does not exist.

LOGGING OUT

When work on the system is complete, the user logs out. As upon login,

user, Site, and system tasks can occur, The user may choose to invoke

some application, such as printing a message, and these tasks are

performed first. Upon their completion, any site-specific tasks are

performed. These, like the user tasks, are optional. Upon their

completion, the system closes any files the user may have left open and

releases control of any system resources the user held. It then

removes the user process from the system.

First Edition 9-12

THE COMMAND ENVIRONMENT

SUMMARY

This chapter has briefly described the 50 Series command environmentand how it can be customized to suit the user's needs and applications.
The next chapter describes integrity features of the 50 Series systems
and how they provide the user with a stable and secure system
environment.

9-13 First Edition

Integrity

The preceding chapters discussed major functional aspects of the 50
Series architecture and how they allow a system to be tailored to fit a
variety of applications. The last aspect to be discussed ties together
several points made in these sections. This aspect, integrity,
represents the features of the 50 Series that help to maintain the
proper operation of the system. Integrity encompasses both software
and hardware elements.

SOFTWARE INTEGRITY ASSURANCES

Some of these integrity assurances have been mentioned in earlier
chapters. The major elements are:

@ Embedded operating system

@ Access control lists

@ User profiles

@ Error logging mechanisms

@ FIX_DISK

10-1 First Edition

DOC6904-191

Embedded Operating System

As described in Chapter 4, Prime's software implementation of virtual

addressing allows each user an address space of 512 megabytes. 256

Mbytes of this address space is reserved for user programs and data.

The other half of the user address space contains PRIMOS and shared

subsystems. In other words, each user working on the system shares a

single copy of PRIMOS and shared subsystems, embedded in the user

virtual address space.

There are several advantages to this embedded operating system. It

provides reduced system overhead, since there is no need to make calls

outside the user's address space when PRIMOS must perform some task on

behalf of the user. Sharing subsystems is easy as well, since each

user has access to the single copy of each shared subsystem. This

embedded operating system also maintains separate copies of the private

sections in each user address space, so there is no chance of ome user

accidentally destroying the contents of another's private space.

For security purposes, the operating system includes hardware to

validate the access rights of all memory references. The gate accesses

described in Chapter 8 also allow the user to access the operating

system directly, in a controlled and secure fashion.

Access Control Lists

Prime provides access control list protection for the user who desires

passive, secure, automatic file protection. This protection can be

applied to any file or directory in the system. For more information

about ACLs, see Chapter 6, File Management, and Chapter 9, The Command

Environment.

User Profiles

User profiles are lists of information with which PRIMDS identifies the

user logging into the system. This information includes details about

the forms of protection to which the user is subject, what parts of the

data base the user can legally access, and other such specifics.

PRIMOS uses the user profiles in tandem with the access control lists

to guard against invalid accesses to protected parts of the file

system. See Chapters 6 and 9 for more information.

Event Logging Mechanisms

The 50 Series systems have an event logging mechanism to record the

occurrence of events such as disk errors, cold and warm starts, machine

checks, and single and double bit memory data errors. There is also a

network event logging mechanism that records network events. ‘These

First Edition 10-2

INTEGRITY

mechanisms store a record about each event in internal buffers; PRIMOS
dumps the contents of these buffers to disk files or the system
terminal. When the mechanisms are invoked, they automatically format
the contents of these files and show when each event occurred.

FIX DISK

FIX_DISK is a file system consistency check program. It checks that
the disk record headers and the UFD containing the header both reflect
the same state of the file system. When it encounters an
inconsistency, it displays a message and tries to resolve the problem.
FIX_DISK can fix many of the errors it encounters, such as mismatched
pointers and inconsistent quota information, without user intervention.

HARDWARE INTEGRITY ASSURANCES

Prime 50 series computers have several built-in hardware features that
ensure integrity. The major hardware assurances are:

e Rings

e Interrupts

@e Faults

@ Checks

e Traps

e A diagnostic status word (DSW)

@ Error checking and correction for all disk records

@ Parity checking of the cache, all registers, and all busses

@ Microverification capability

@ The virtual control panel (WP)

10-3 First Edition

DOCc6904-191

Rings

ACLS are not the only means of data protection available on Prime 50
Series systems. ACLs can provide protection for information located on
disk, but they do not provide for permanent protection of programs and
information vital to the system, such as PRIMOS itself. Three hardware
implemented rings and the level of privileges associated with them
provide security for crucial information in virtual memory. Chapter 4,
Memory Management, describes rings and how they govern memory

references.

Interrupts

Peripheral devices cause an interrupt to signal their need for system
service, as described in Chapter 5, Input/Output Management. Once the
interrupt is acknowledged, control transfers to phantom interrupt code
for simple handling. If more complex service is necessary, a device
interrupt manager is called to complete service. See Chapter 5 for

more details.

Faults

A fault is a break in software execution that occurs synchronous to
system operation. Examples of faults are page faults, where a
reference is made to a page not currently loaded in physical memory,
and stack overflow or underflow.

When a fault occurs, an unscheduled procedure call is made to the
appropriate PRIMOS fault handler. This handler may set system
registers to indicate the type of fault that occurred, and performs the
actions necessary to clear the fault condition. In the case of user
applications the handler may invoke the condition mechanism so that
user-defined actions can be performed. Once the fault is cleared, the
fault handler transfers control back to the instruction that was

executing when the fault occurred.

Checks

When an uncorrectable system hardware problem arises, a check occurs,
Problems of this sort are usually serious enough to halt all system
operations.

Four types of checks can occur. When AC power fails, the power supply
initiates a power fail check. This check indicates that 20
milliseconds of DC power remain before all power is gone. The memory
error checking logic issues a memory parityerror check when it detects
a memory parity error or an uncorrectable memory error. The CPU issues
a machine check when it detects an internal parity error. Finally, the

First Edition 10-4

INTEGRITY

memory control unit initiates a missing memory module check when the
system tries to access nonexistent physical memory.

When a check occurs, the system references one of the four check
vectors. The check vector points to the firmware—implemented check
handling routine. Information about the check is stored in the
diagnostic status word (described below).

Traps

Traps are breaks in firmware execution and may take one of two general
forms. The first form is fully processed by the firmware and is
followed by a return to normal execution. Examples of this formare
write address trap and DMQ. The second form generates a fault or check
and does not return. Examples of this form of trap are access
violation, and internal parity error.

All traps are serviced, as are all other exception conditions, on a
priority basis. They are not visible to the user.

Diagnostic Status Word

The diagnostic status word contains 96 bits (250-II and 550-II) or 128
bits (750 and 850) of information about the state of the system at the
time of a check. This information identifies the type of check, where
it occurred during execution, and what part of the system (byte,
module, etc.) was affected,

Error Checking and Correcting (ECC) Code

Error correcting codes on each word of physical memory note when single
and double bit errors occur. Single bit errors are automatically
Corrected in memory with no break in execution. Double bit errors are
reported.

Parity Checking

To ensure data integrity, hardware checks the parity of data traveling
over internal or external busses, between main memory and the
Processor, and between register set locations, as well as checking all
cache data. If a parity error is found, a machine check occurs.

10-5 First Edition

DOCc6904-191

Microverification Capability

All Prime 50 Series computers have microverification programs as a

standard feature. These microprograms execute each time the system is

brought up from a cold start, testing almost all parts of the system

(except for clocks). Any failures are reported to the operator for

further actions.

Virtual Control Panel (VCP)

The VCP, on all 50 series systems except the 2250, allows the user to

perform typical supervisor terminal operations, such as bringing up the

system and sending messages. It also allows control panel operations

such as initiating diagnostics, bootstrapping PRIMOS, master clears,

and system halts. The VCP also allows system diagnosis or control to

be performed from a remote location.

The diagnostic processor on the 2250 performs all the functions of the

vcP. Further, it provides an automatic boot for PRIMOS, and also

allows use of the supervisor terminal as a user terminal.

SUMMARY

The 50 Series has several software and hardware integrity features

built in to eliminate system downtime to every extent possible. These

features enhance the already efficient functions of the architecture by

offering contingencies for all possible exception conditions. The

result is greater reliability for the system as a whole, and orderly

processing in the event an exception does occur.

First Edition 10-6

Software Products

Prime's software products are divided into eight groups:

e Languages

e Language support facilities

@ Development tools

@ Data management systems

e@ Computer aided design/computer aided manufacturing (CAD/CAM)

@ Communication services

@ Backup facilities

e Office automation

LANGUAGES

Prime supports many industry-standard programming languages on its 50
Series systems to offer the user the ability to tailor applications
closely to specific needs. Most of them support the debugging and
monitor functions of the source level debugger (see Language Support
Utilities and Development Tools, below). All of them support the
standard Prime procedure call (see Chapter 8) when making references
from one procedure to another. This control transfer standard means

11-1 First Edition

DOC6904-191

that the user can easily combine procedures written in different
languages.

Prime's interlanguage interface further enhances the user's ability to
tailor applications programs to specific needs. With this interface,
the user can call procedures written in one language from those written
in another. This feature means one basic routine can be used in many
different situations without communications problems. This interface
also allows the user to produce procedures in the language most
appropriate to the application, since complex interfaces between
mixed-language procedures are unnecessary.

FORTRAN 77

FORTRAN 77 (F77) is supported on all Prime 50 Series systems. It is an
extended implementation of an ANSI standard, ANSI X.39-1978. F77 uses
a three pass compiler to perform a high degree of optimization. It
also supports many mainframe extensions such as local and block code
optimization to produce efficient object programs, embedded comments,
32-character names, IBM-compatible direct access and namelist I/O,
extended range DO loops, the character datatype, IF-THEN-ELSE blocks,
and enhancements to I/O operations. The user can access DBMS,
MIDASPLUS, and FORMS from F77. F77 is fully supported by D&G and
EMACS.

BASIC/VM

Prime's BASIC/VM (BASICV) is a multiple-user implementation of the
BASIC language. It is supported on all 50 Series systems and allows
the user to perform character string and matrix operations, structured
programming, and output formatting. In addition, the user can choose
one of three modes of execution supported by BASICV: conversational,
for terminal operations; batch mode, for previously prepared programs;
or immediate, for calculator-type use. BASICV has its own debugger for
error detection and can be used in conjunction with MIDASPLUS,
described below.

Pascal

The Pascal language implemented by Prime is based on the preliminary
standard issued jointly by the IEEE and ANSI. It uses a multipass
compiler to generate highly optimized object files. Like all other
languages supported on the 50 Series, Pascal supports Prime's standard
procedure call conventions to provide access to files regardless of the
format type of both data and calling program. [BG supports Pascal, as
described in the Language Support section of this chapter.

First Edition 11-2

SOFIWARE PRODUCTS

PL/I Subset G

Prime's PL/I-G (PLIG) is a structured language appropriate for general
purpose, modular programming. It fully implements the ANSI Standard
X3.74-1980 for PL/I-G. In addition, PLIG supports Prime's subroutine
calling conventions, and its object and data files are compatible with
those of other languages. It directly supports FORMS and MIDAS , two of
Prime's data management packages (see sections later in this chapter).
DBG also supports PLIG (see the Language Support section in this
chapter) to provide efficient error tracing and correction.

GL
Prime's COBOL, CBL, is an interactive, business-oriented language based
on the 1974 ANSI COBOL standard. The user writing CBL programs can
Choose between two data management systems, MIDAS and DBMS, to control
the information the CBL programs manipulate (see the Data Management
Section in this chapter for more information about MIDAS and DBMS) .
The user can also combine CBL with FORMS, Prime's forms management
product, to create and use screen formats. CBL supports decimal
arithmetic and character operations in addition to Prime's standard
procedure call conventions. It is fully supported by DBG and EMACS.

VRPG

This business-oriented language is compatible with IBM System/3 Model
10 RPG II. Initially designed to produce reports, VRPEG allows the user
to use RPG applications written for other systems ona 50 Series
system. It can use the MIDASPLUS data management package to manipulate
files, and is supported by EMACS and DBG. With VRPG the user can
invoke the FORMS forms management system to design and create business
forms and charts.

CPL
Prime's command procedure language is called CPL. This powerful
programming tool embodies many high level language features such as
branching, argument transfer, and global variables, and also supports
the condition mechanism (see Chapter 8) to provide orderly error
handling. It allows the user to store sequences of PRIMOS commands and
CPL statements in a command procedure file (see Chapter 9) to be
executed whenever the name of the file is specified.

CPL can be used to simplify complex command strings, to reduce typing,
or to write applications programs from simple login procedures to
complex menu-driven user interfaces. CPL is also useful for unattended
control of processes, compilation tasks, and standard procedures that
are frequently performed.

11-3 First Edition

DOC6904-191

Prime Macro Assembler Assembly Language

Prime's PMA assembly language is of interest to assembly language

programmers and to Prime systems internals specialists. It provides

over 600 different instructions applicable to almost any circumstance.

Supported by DBG, SEG, and many other Prime system utilities, it allows

the user to develop a wide range of assembly language applications that

can be easily integrated with the rest of the system. PMA routines can

also be effectively combined with those written in high level languages

to enhance the overall performance of large applications.

LANGUAGE SUPPORT UTILITIES AND DEVELOPMENT TOOLS

To complement the array of languages supported on the 50 Series

systems, Prime supplies several utilities to assist program

development. In addition, many development tools are available to aid

the design and programming processes, report writing, documentation,

and training. A group of output facilities is also available.

Source Level Debugger (DBG)

The source level debugger is a language-independent programming tool

for use with high-level languages. It allows the user to interactively

control and monitor F77, PL1G, Pascal, CBL, and VRPG programs at the

source code level. The debugger is designed for all levels of user

expertise, and no knowledge of assembly language is necessary to

control debugger actions.

A conversational user interface is easy to use and does not detract

from the debugger's speed of execution. Since the debugger is language

independent, it provides the user with a consistent set of commands and

procedures to use. Features include the ability to trace variables as

well as examine, execute, monitor, and test source code interactively.

SEG

SHG is a linkage editor that allows the user to take full advantange of

the 50 Series systems' virtual memory capabilities. It converts the

user's object file into a segnented runfile that can be up to 32 Mbytes

in size. It can also load a single or multiple programs, optimize the

user's program in some areas, load shared procedures, and perform

dynamic linking.

First Edition 11-4

SOFTWARE PRODUCTS

HELP Facility

Prime's software products are equipped with a HELP facility to aid the
user, When the user types HELP, the system displays a list of
available commands and their arguments. AA further request for help
with a particular command produces more detailed information, such as
command actions, optional parameters, and so on. This facility can be
tailored to offer information about any topics the user chooses.

EMACS

EMACS is a interactive screen editor. It is programmable, allowing the
user to set up and define personal commands. Also provided is a HELP
facility to help the user identify typing mistakes, available commands,
and specifics of command use. With EMACS the user can enter text and
modify it, move blocks from one part of the text to another, save the
text, delete text, and perform many other tasks. A status line
continuously displays the status of the editor and reports on the
actions being performed. In addition, three programming modes
automatically aid the user in formatting programs written in F77, CBL,
and REG.

ED

ED is a line-by-line text editor that is most useful for entering and
modifying line-oriented items such as programs. The user has. the
choice of displaying input one line at a time or several at once. It
also allows the user to move information between files; add, change,
and delete information; and perform many other tasks.

RUNOFF

RUNOFF is Prime's text formatting program. While creating or editing a
file with one of Prime's text editors, the user inserts runoff commands
into the file that specify how the text is to be processed. When the
user invokes RUNOFF to process the file, it automatically formats the
file based on the inserted commands. Commands are available to specify
tab stops, page size, headers, footers, revision bars, degree of
indentation, and decimalized headings, among others.

SPOOL

The user invokes SPOOL to produce a printed copy of a file. This
utility automatically queues the user's file on one of the system spool
queues to await printing. If the printer on the user's local system is
very busy, SPOOL checks for an available printer with less activity to

11-5 First Edition

DOC6904-191

evenly distribute the load. In addition, several options allow the

user to check the status of spool queues, delete a file from a queue,

print multiple copies of a file, and queue files for printing at a

later time.

BATCH

The BATCH facility allows the user to submit programs for execution

when it is most appropriate for the system to do so. The facility isa

series of batch queues, each of which may represent a different set of

parameters, such as CPU time or process priority. When the system is

very busy, almost no jobs waiting on the batch queues are run; when

the system is otherwise idle (at night, for example), batch jobs can be

executed.

This allows the user to submit time- and resource-consuming jobs for

execution when the system does not have to service many other

processes. The BATCH facility also allows the user to monitor a job

from a terminal, cancel jobs, change a job's parameters while in the

queue, and list available batch queues and their characteristics.

DATA MANAGEMENT PACKAGES

The 50 Series supports several different data management packages so

that the user can pick the one that best suits the application. For

those frequently generating and using business forms, the FORMS package

is available. Creating and managing data bases is accomplished with

the Data Base Management System, DBMS. The PRIME/POWERPLUS package

provides report generation, information gathering, and query

capabilities. The user who needs keyed-index file capability can

achieve this with MIDASPLUS, the Multiple Indexed Data Access System.

To accompany the line of Information systems, Prime offers Information

software.

FORMS

The forms management system, FORMS, provides both the end user and the

programmer with an easy-to-use facility for generating and using

business forms. The system handles input and output internally, so

programmers can quickly create portable applications using FORTRAN,

CBL, VREG, and PMA programs. ‘The FORMS Editor, FED, provides the user

with an interactive, screen-oriented interface for easy form creation.

The FORMS Definition Language, FDL, allows the user to create a file

that describes the format of a form. The FORMS Administrative

Processor, FAP, aids the user in maintaining a catalog of forms for

future use.

First Edition 11-6

SOFIWARE PRODUCTS

DBMS

Prime's data base management system is called DBMS. It is a
Sophisticated implementation of the OODASYL data base standard and
allows the user to create, modify, and maintain data for a wide variety
of applications. Some additional key features of DBMS include a
transaction~based, interactive user interface; data independence; and
minimum data redundancy.

With the DBMS data definition language (DIL) , the user can create
structures called schemas and subschemas within the DBMS data base for
FORTRAN or CBL (Prime's OQOBOL). ‘These structures allow the user to
organize the DBMS information in a variety of wayS. Once a schema or
subschema has been created, the user can use the data Manipulation
language (DML) to access the information.

To protect the user's data, DBMS contains extensive validation and
recovery features, These include validation of DML commands before the
data base is altered, and commands that can in many cases restore
schemas and subschemas when a transaction is interrupted. In addition,
when a faulty transaction occurs, the data base can be restored to its
state before that transaction (rolled back).

DBMS/QUERY

Prime's DBMS/QUERY is a query language and report writer for use with
DBMS data bases. With a simple set of commands, the user can direct
QUERY to search for information according to a variety of criteria and
present it in a suitable fashion. No knowledge of DBMS or programming
is needed to use QUERY,

PRIME/POWERPLUS

PRIME/POWERPLUS is a data management system designed to aid the
decision-making process. It allows the user to make ad hoc queries or
reports, Collect data into various forms, and process the data. Rather
than a device for creating and maintaining a data management structure,
PRIME/POWERPLUS is a tool to help the user collect and analyze data,

Parts of the PRIME/POWERPLUS system include a data dictionary for
defining, processing, and linking data; a query processor for
specifying search criteria; and an interactive report generator that
allows the user to set up individualized formats. PRIME/POWERPLUS can
also perform simple file maintenance, text processing, and system
administration. In addition, a comprehensive help facility is
available to the user, as are built-in security procedures for data
protection.

11-7 First Edition

DOCc6904-191

MIDASPLUS

MIDASPLUS, Prime's multiple index data access system, offers the user

an interactive means to create and maintain keyed-index files. Through

MIDASPLUS, the user can create and use MIDASPLUS files, check file

status, add data to and delete data from MIDASPLUS files, and index

information with up to 18 keys. Application programs written in

FORTRAN, CBL, PL/I-G, Pascal, BASIC/VM, VRPG, and PMA can access files

created with MIDASPLUS. Other features of MIDASPLUS are:

@ Multiuser support

@ Network support

@ PRIME/POWERPLUS support

e@e Dynamic file allocation

@ Dynamic maintenance of index structures

e Interactive environment

Prime INFORMATION Software

The INFORMATION software provides user-oriented data management for the

line of INFORMATION systems (see the section, "CPUs", in Chapter 12).

The software consists of a data base management system, INFO/DMS, that

supports a variable-length, hierarchical file system similar to that

supported by PRIMOS. Complementing INFO/DMS are four modules:

@ INFORM

e@ INFO/BASIC

e EDITOR

@ PERFORM

INFORM is used to search the INFORMATION file system for data and to

format the retrieved data. Its English-based interface allows easy

file access and simplifies report generation. This module includes the

ENTRO processor, a structured update facility that creates and modifies

System files according to user command.

A structured procedural language, INFO/BASIC, combines features of

COBOL, Pascal, PL/1 and BASIC to aid the user with business programming

tasks, such as inventory control and sales analysis, as well as with

arithmetic or computational tasks. INFO/BASIC is based on the standard

Dartmouth BASIC language.

First Edition 11-8

SOFTWARE PRODUCTS

For modifying and maintenance tasks, EDITOR is a powerful tool that
comes with its own HELP facility. This line-oriented text editor
allows the user to create and modify files containing text, data, or
programs. It also can be used to create EDITOR command files that
function in the same fashion as CPL and command files (see Chapter 9).

A multi-user command and control facility, PERFORM is based on the
PRIMOS operating system and has a simple user interface. It accepts
the user's command and directs it to the INFORMATION Processor that can
perform the specified command.

CAD/CAM - MEDUSA

MEDUSA is a_ sophisticated CAD/CAM package available for all 50 Series
systems, It has been tailored for multiuser, interactive environments.
Features of MEDUSA include many state-of-the-art capabilities that can
Speed product development in many fields. With MEDUSA's abilities the
user can draft civil and mechanical engineering diagrams; produce
electrical schematics, floor plans, and flow diagrams; and model two-
and three-dimensional solids,

The user has the choice of two versions of MEDUSA. ‘The two-dimensional
(2-D) version is primarily a schematic and drafting system with
powerful ANSI, ISO, and BS dimensioning abilities. It also features a
versatile annotation/editing function for record keeping, and a macro
facility. Extensive symbol libraries make this version of MEDUSA
applicable to many different tasks. There is also a choice of output
devices (drum, flatbed, or electrostatic plotters).

With the 2-D version of MEDUSA, the user has available for use:

e@ Automatic cross hatching

@ A macro language

@ Multiple type fonts

@ Any number of views of one drawing

@ Semi-automatic dimensioning to any accuracy

@ Mirror capability

@ Line and geometric array capability

@ Parametric macro definition of objects

@ Conic curves

@ Automatic filleting

@ Curve fitting by quadratic splines or by least squares

11-9 First Edition

pOc6904-191

The 2-D version also has documentation capabilities that the user can

invoke to generate reports, parts lists, schedules, bills of material,

or other necessary documents.

The second version of MEDUSA is three dimensional (3-D). This version

allows the user to design a complex three-dimensional device and

produce an engineering drawing of it. Standard features of this

version are:

e A simple and easy-to-use 2-D drawing convention through which

the user creates 3-D models

e A simple language

@ Ability to generate arbitrary, orthogonal, oblique, axonometric,

and perspective projections

e@ Hidden lines in dashed, visible, or invisible formats

e Automatic construction of 3-D objects (the 3-D modeller scans

2-D drawings)

e A 3-D viewer that can section any solid

e An interface to GNC for numerical control of machine tools

MEDUSA is a CAD product designed to streamline the drafting and product

development process in fields ranging from mechanical engineering to

architecture. It provides a user interface that is both easy to use

and powerful in its degree of widespread application. It integrates

input from many users into one data base to provide information that is

always up to date. In addition, MEDUSA's modular design makes it

useful for both beginning and sophisticated users.

COMMUNICATION PACKAGES

Prime's communication packages are summarized below. Refer to

Chapter 7 for more details about PRIMENET, NETLINK, and FIS.

PRIMENET

PRIMENET supports communications between linked systems in a fashion

transparent to the user. This transparency eliminates the need to

learn new commands, details about the link between systems, or details

about the physical location of information. Instead, PRIMENET makes

referencing remote information identical to referencing local

information.

First Edition 11-10

SOFTWARE PRODUCTS

In addition to its transparency and ease of use, PRIMENET software
meets the CCITT xX.25 standard for packet Switching networks. This
feature is advantageous in situations requiring domestic and
international networks, since PRIMENET'’s X.25 Support allows it to
communicate with any other system that also Supports X.25. Two other
types of networks, ring and point-to-point synchronous, are also
Supported; the combination of the three types gives the user several
options that can be exercised according to needs and applications.

NETLINK

When logged onto a system connected in any PRIMENET~supported network,
the user can invoke NETLINK to remotely log onto any other system in
the network. Rather than accessing a remote resource, performing a
task, and then returning information to the user, NETLINK allows the
user to actively work on the remote system as a local user would. Once
logged onto the remote system, the user can invoke NETLINK to log onto
another remote system, and so on. See Chapter 7, PRIMENET, for more
information about NETLINK.

File Transfer Service

To complement the capabilities of PRIMENET, the 50 Series systems
Support the file transfer service (FTS) subsystem. This facility
transfers files between the local system and any PRIMENET-linked remote
system. See Chapter 7, PRIMENET, for more information about FITS.

DPTX

The distributed processing terminal executive (DPTX) software allows
the 50 Series to exchange information with the IBM 3270 family of block
mode CRT devices and controllers. With this mainframe compatibility,
the 50 Series meets the needs of the user who has already invested in
large amounts of IBM equipment.

DPTX supports three types of communication with the IBM 3270 equipment:

@ 3270 data stream compatibility (DPTX/DSC)

@ 3270 terminal support facility (DPTX/TSF)

@ 3270 transparent connect facility (DPTX/TICF)

11-11 First Edition

DOCc6904-191

DPTX/DSC allows the 50 Series to interact with an IBM mainframe that

supports 3270 devices. DPTX/DSC emulates the actions of a 3270 device

so the mainframe sees the Prime system as a CRI device rather than

another complete system. Through this type of communication users can

interact with programs on the IBM mainframe as if they were directly

connected to it.

DPTX uses DPTX/TSF to control a network of 3270 devices. This means

that users active on 3270 devices can interact with PRIMOS and

applications that run under PRIMDS.

DPTX/TCF makes the 50 Series act as a transparent link between an IBM

mainframe and a 3270 device connected to the Prime system. Those using

the 3270 device are able to interact with programs on the mainframe as

if they were directly connected to it.

DPTX provides the means for a 50 Series system to communicate with IBM

equipment. It also allows the IBM system to delegate some of its

processing tasks to the 50 Series. In addition, supporting and

emulating IBM devices gives the 50 Series the opportunity to extend its

accessing power to a vast number of systems, IBM systems, however, are

not the only systems with which the 50 Series can communicate. The

next section describes Prime's RJE facility, which supports

communications with the equipment of several other manufacturers.

Remote Job Entry

Prime's remote job entry facility allows the 50 Series to interface

with systems made by a number of other companies. Users can produce

jobs on a Prime machine, then use RJE to submit it to another system

for execution.

The facility consists of several emulators that allow a Prime system to

be connected to a host computer via telephone lines or some other means

of communication. ‘These emulators make the Prime system appear to bea

RJE terminal of the type normally supported by the host.

Through RJE, a 50 Series system is compatible with a variety of popular

mainframe systems. This is especially an advantage to the mainframe

user, because it protects previous hardware investments, and preserves

mainframe commmications protocols. RJE also allows a 50 Series system

to serve aS an offload system, which frees the mainframe for other

tasks.

The RJE terminals that the Prime system can emulate are:

e IBM 2780, 3780, and HASP

@ Honeywell GRIS

e Univac 1004

First Edition 11-12

SOFTWARE PRODUCTS

e Cc 200UT

@e ICL 7020 and XBM

These emulators allow a user to submit remote jobs from any terminal in
the Prime system, They also allow the user to submit a remote job to
more than one remote system at the same time,

Each emulator has three parts. The send facility translates and
formats the file into the form expected by the host computer and places
it in a queue for transmission to the host. After the user submits a
file via a send facility command, the symbiont removes the file from
the transmission queue and sends it to or receives it from the host.
The workstation allows the transmission, code conversion, and reception
of files between the Prime and the host systems.

BACKUP UTILITIES

There are a variety of backup utilities available to the user. MAGNET
transfers information from one tape to another. MAGSAV, MAGRST,
PHYSAV, and PHYRST perform disk-to-tape or tape-to-disk transfers.
COPY_DISK is available for disk-to-disk transfers,

MAGNET

MAGNET transfers file contents in a standard format between tape and
disk, or between two tapes. It is also useful for translation of
EBCDIC-formatted data into BCD- or ASCII-formatted data during the data
transfer, making it useful for transferring file contents between a
Prime and a non-Prime system.

MAGSAV and MAGRST

Like MAGNET, MAGSAV and MAGRST allow the user to back up and archive
information. These two utilities, however, transfer file data as well
as the logical file system structure that governs them between tape and
disk. Both of the utilities move SAM and DAM files, segnent
directories, UFDs, ACLS, quotas, and partitions so that the file
structure on source and destination devices is identical. MAGSAV saves
the contents of a disk on tape. MAGRST loads the contents of a tape
onto a disk.

11-13 First Edition

DOC6904-191

PHYSAV and PHYRST

To create a disk image backup on magnetic tape, the user specifies

PHYSAV. PHYRST will copy the contents of the tape back into the disk
partition. The smallest unit of information the user can save or
restore with these two utilities is one partition.

COPY_DISK

To copy the contents of one disk onto another, the user specifies the
COPY_DISK utility. This utility copies the disk contents and
optionally verifies them to ensure physical correctness. The copying
process for a full 300 MB disk takes approximately one hour. This
utility is particularly useful on a large system, since it takes less

time than any of the disk-to-tape backup routines.

OFFICE AUTOMATION

The Prime Office Automation package integrates word processing,
management communications, advanced text processing, and data

processing for use with all 50 Series systems. It is designed to

improve productivity in the workplace and to speed the transfer of
information for managerial, professional, and administrative personnel.

Office Automation is implemented in software modules that run under

Prime's operating system, PRIMOS. These modules are:

e Word processing

@ Management communications and support

e Advanced text management

Word Processing

With Office Automation's word processing, one or more users can easily
work with documents of any size. This module includes a screen editor,
a menu-driven user interface, and several powerful text editing
capabilities. Some of these capabilities are:

e Editing

@ Filing and retrieval

@ Abbreviation storage in a boilerplate library

First Edition 11-14

SOFIWARE PRODUCTS

e List processing

@ Word processing/data processing conversion

Management Communications and Support

This module of Office Automation consists of three parts. Electronic
mail helps the user create and distribute documents. It also provides
filing, annotation, and acknowledgement features so the user can act
upon mail as is appropriate. Correspondence management further aids in
managing the flow of information between users with a filing
capability, retrieval service, and report generator. Management
support keeps users abreast of appointments, pending deadlines, and
other activities. Additional support features include an electronic
intray, a two-month calendar, a scheduler for noting appointments, and
a prompter that keeps track of pending affairs,

Advanced Text Management

Advanced Text Management provides the user. with spelling and
Single-word translation dictionaries in several languages. It also
performs automatic hyphenation. This module is most useful for
proofreading and translation tasks.

In summary, the Office Automation system fulfills a multitude of office
functions in an efficient and easily understood fashion.

SUMMARY

This chapter has given a thumbnail sketch of the software products
available for the 50 Series systems. Products exist for users in
almost any field of application. In addition to Prime's own products,
many other packages tailored specifically for individual fields, such
as banking, finance, and administration, are available. For more
details about these and Prime's own software products, see your sales
representative.

11-15 First Edition

Hardware Products

Hardware products are divided into six groups:

@ Central processing units (CPUs)

@ Memory expansion units

@e Terminals

@ Magnetic tapes

@ Disks

@ Unit record devices

The CPU is the heart of the 50 Series systems, Prime offers a group ofdirect~sale CPUs of varying capabilities and power to address the needsof end-users in many fields and applications. Figure 12-1 contraststhe relative performances of the 50 Series systems in a multi-user,Computational environment.

12-1 First Edition

DOC6904-191

44

3 -

2 - 2.00

1.35

1.00
1 - 0.8

2250 250-II 550-II 750 850

Relative Performance of 50 Series Systems
Figure 12-1

Prime 2250

The 2250, a compact entry-level system designed to fit easily into any

office environment, is an economical high-performance system which is

jdeal for distributed processing network nodes or compact, multiuser

system applications. Standard components of the 2250 include:

32-bit 2250 CPU

512 Kbytes of error correcting memory (expandable to 4 Mbyte)

One 68-Megabyte disk and one cartridge tape unit, with a

multifunctional disk/tape controller

A commmications controller with 8 asynchronous and 1

synchronous communications lines

A diagnostic processor that also acts aS a supervisor terminal

interface

Easy-to-use operator interface that allows one-step system

initialization

Firmware floating point instructions

The PRIMOS operating system

First Edition 12-2

HARDWARE PRODUCTS

The 2250 is contained in a 30-inch cabinet that includes Space for two68- or 158-Megabyte non-removable disks and two 1/4-inch cartridgetapes, and an eight-board chassis. Five of the chassis slots are
reserved for the CPU and other System components; the remaining threeare available to support additional memory boards or any standard
peripheral subsystem such as the PRIMENET node controller, a printer,
or a disk.

Table 12-1 lists some of the additional hardware features of the 2250.For a complete list of the software products supported by the 2250,refer to Chapter 11. Your Prime sales representative can provide more
detailed information.

Prime 250-II

The 250-II is a high performance, low cost system that supports up to32 users in a distributed processing network environment. This CPUalso provides a complete system useful in a number of multiuser
applications. Standard components of the 250-II system include:

@ 32-bit 250-II CPU

@ 512 Kbytes of error correcting memory (expandable to 2 Mbyte)

@ 8- or 16~line asynchronous terminal controller

@ Virtual control panel for local/remote accesses and CPU control

@ Supervisor terminal

e@ Firmware floating point instructions

@ The PRIMOS operating system

The 250-II is contained in a standard ten-board chassis. Seven of theChassis slots are reserved for the CPU and other system components;
the remaining three are available to Support additional memory boardsOr any standard peripheral subsystem such as the PRIMENET node
controller, a printer, or a disk.

Table 12-1 lists some of the additional hardware features of the250-II. For a complete list of the software products supported by the250-II, see Chapter 11. Your Prime sales representative can providemore detailed information,

12-3 First Edition

pOCc6904-191

Prime 550-II

The 550-II is a high performance system that supports up to 128

interactive processes, 64 of which my be user terminals, in a

scientific, commercial, or Office Automation environment. This CPU is

also suitable for use in distributed processing or networking

applications. Standard components of the 550-II system include:

@ 32-bit 550-II CPU

e 512 Kbytes of error correcting memory (expandable to 4 Mbytes)

e 16-line asynchronous terminal controller

e Virtual control panel for local/remote accesses and CPU. control

e Supervisor terminal

e Hardware floating point, decimal, and character instructions

e The PRIMS operating system

The 550-II is contained in a standard 27-board chassis. Fourteen of

the chassis slots are reserved for the CPU and other system components;

the remaining thirteen are available to support additional memory

boards or any standard peripheral subsystem such as the PRIMENET node

controller, a printer, or a disk.

Table 12-1 lists some of the additional hardware features of the

550-II. For a complete list of the software products supported by the

550-II, see Chapter 11, and contact your sales representative.

Prime 750

The 750 is a high performance system that supports up to 128

simultaneously active processes, of which up to 96 may be user

terminals. It provides speed, low overhead, and great flexibility in

scientific, commercial, interactive, and/or timesharing environments.

Standard features of the 750 system include:

@ 32-bit 750 CPU

@ 1 Mbyte of error correcting memory (expandable to 8 Mbytes)

e Instruction preprocessor unit

e® Burst mode I/O with a bandwidth of 8 Mbytes per second

e 64-bit interleaved memory data transfers

e Hardware floating point, decimal, and character instructions

First Edition 12-4

HARDWARE PRODUCTS

e@ 16-line asynchronous terminal controller

@ Virtual control panel for local/remote accesses and CPU control

@ Supervisor terminal

@ The PRIMOS operating system

The 750 is contained in a standard 38-board chassis. Nine of the slots
are reserved for memory, 10 for the CPU, and 19 to support up to 13 I/O
controllers. Slots not occupied by the basic system boards are
available to support additional features,

Table 12-1 lists some of the additional hardware features of the 750.
For a complete list of the software products supported by the 750, see
Chapter ll, and contact your sales representative.

Prime 850

The 850 embodies a multistream architecture that can support up to 128
active user processes, Its integrated hardware, software, and firmware
features make it an excellent choice for scientific, commercial,
interactive, and/or timesharing applications. Standard features of the
850 system include:

@ Two 32-bit instruction stream units

@ One stream synchronization unit

@ 2 Mbytes of error correcting memory (expandable to 8 Mbytes)

@ Two instruction preprocessor units

@ Burst mode I/O with a bandwidth of 8 Mbytes per second

@ 64-bit interleaved memory data transfers

@ Hardware floating point, decimal, and character instructions

@ 16-line asynchronous terminal controller

@ Virtual control panel for remote diagnostics

e@ Supervisor terminal

@ The PRIMOS operating system

The 850 is contained in a standard 54-board chassis. 19 of the slots
are reserved for the instruction stream units; 16 are reserved for the
stream synchronization unit and memory; and the remaining 19 are
reserved to support up to 13 I/O controllers,

12-5 First Edition

DOC6904-191

Table 12-1 lists some of the additional hardware features of the 850.
For a is ct 10.0.6)For a complete list of the software products supported by the 850, see
Chapter 11, and contact your sales representative.

Table 12-1
Summary of 50 Series Characteristics

Feature 2250 250-II 550-II 750 850

32-bit architecture yes yes yes yes yes

Simultaneous active 64 128 128 128 128
processes

Direct connect 32 32 64 96 128
terminal users

Virtual address 512 Mb 512 Mb 512 Mb 512 Mb 512 Mb
space per system

Maximum physical 4 Mb 2 Mb 4 Mb 8 Mb 8 Mb
memory size

Size of cache 2 Kb 2 Kb 8 Kb 16 Kb 32 Kb

Average cache hit 85% 85% 90% 95% 95%
rate

I/O bandwidth 2.5 2.5 2.5 8.0 8.0
(Mb/sec)

Input I/O transfer 2.5 2.5 2.5 8.0 8.0
rate (Mb/sec)

Output I/O transfer 2.5 2.5 2.5 5.0 5.0
rate (Mb/sec)

Burst mode I/O no no no yes yes

Hardware integer yes yes yes yes yes
arithmetic

Character and firmware firmware hardware hardware hardware
decimal ops.

Floating point firmware firmware hardware hardware hardware
arithmetic

Instruction no no no yes yes

preprocessor

Microprocessor yes yes yes yes yes
control unit with
process exchange

Parity checking yes yes yes yes yes
First Edition 12-6

HARDWARE PRODUCTS

Prime INFORMATION Systems

As an option for the systems house customer, Prime offers the
INFORMATION line of CPUs. These CPUs are designed to support the
INFORMATION operating system and the INFORMATION software (see Chapter
11).

The 1450-21 is identical to the 50 Series 250-II, except that it
Supports an 8-Kbyte cache and a microsecond timer. It also includes
microcode assist capabilities for the INFORMATION software.

The I250-II, 1750, and I850 are identical to the 50 Series 250-II, 750,
and 850 CPUs, respectively.

MEMORY EXPANSION UNITS

There are two memory expansion packages available for the members of
the 50 Series family. These packages are available in 512-Kbyte and
l-Mbyte sizes and can be used on any 50 Series system to extend memory
capacity to the maximum allowed per system.

TERMINALS

Several terminals are available to address the user's need for
interactive capabilities. Both the PT25 and pst 100 termimls are
designed to function as a system console or as a user terminal. Four
other terminals are provided to address the needs of users in many
fields, including the office environment and graphics applications.
For information about a hardcopy device suitable for use as a system
console, refer to the 3115 Low Speed Serial Matrix Printer in the
section, Unit Record Devices, below.

PT25 Character Mode Terminal

The PI25 is a general purpose, character mode terminal suitable for any
interactive application, It displays characters in 24 lines of 80
Characters each, with an additional line at the bottom of the screen
that displays status, self-test, and control information. The attached
keyboard has a main typewriter-like keypad, as well as a 14-key numeric
pad, eight user-defined function keys, and five cursor control keys.
The keyboard also allows users to specify a full set of visual screen
attributes (reverse video; blink; underscore; and full half, or zero
intensity) .

This terminal is compatible with EIA RS232C (CCITT V.24), and
interfaces with Prime's AMLC or ICS] at speeds between 100 and 9600
bits per second. It also offers the users a choice of even, odd, mark,
or space parity. PRIMOS supports the Pf25 in full duplex mode.

12-7 First Edition

DOCc6904-191

PT45 Block Mode Terminal

This microprocessor-controlled terminal addresses the needs of all

applications requiring block mode, character mode, and alphanumeric

operations. The screen format is 24 lines by 80 characters, plus an

additional status line at the bottom of the screen. The keyboard is

detached for user comfort.

In addition to the PT25 features described above, the PT45 also

contains two-page display memory with scrolling and paging controls.

It, too, is equipped with a bi-directional, serial auxiliary port that

is compatible with the EIA RS232C standard. This terminal interfaces

with Prime's AMLC or ICSl at speeds between 110 to 19200 bits per

second. PRIMOS fully supports the Pr45 as a_ character mode terminal

for all alphanumeric, buffered mode, and block mode operations. FORMS,

DPTX, and Office Automation software also support this terminal.

PT65 Intelligent Terminal

The PI65, like the Pr45, is microprocessor controlled. It is designed

for use with Prime's Office Automation software, where it is used as

the administrative workstation. It is equipped with such editing and

programming capabilities as 32 Kbytes of program or display memory,

many Prime-defined function keys, and built-in word processing

functions. The screen format of the P65 is larger than that of the

PT25 and PT45 for easier viewing. This terminal is also available with

a Selectric-style keyboard.

Like other Prime terminals, the PI65 supports a standard asynchronous

interface that allows the terminal to communicate at speeds between 300

and 9600 bits per second. The communication is by EIA RS232C.

PST 100 Block Mode Terminal

This microprocessor-controlled terminal, the first made by Prime,

addresses the needs of all applications requiring block mode, character

mode, and alphanumeric operations. The screen format is 24 lines by 80

characters, plus an additional status line at the bottom of the screen.

The ergonomic features include a detachable keyboard and a display

screen that swivels to the left and right and tilts up and down. The

keyboard module has a typewriter keypad, a numeric keypad, and a row of

function keys.

Built-in terminal menus let users change terminal characteristics. For

example, the terminal can be put in reverse video or the form of the

cursor can be changed.

First Edition 12-8

HARDWARE PRODUCIS

The PST 100 has a two-page display memory with smooth and jump
Scrolling controls. It uses a bi-directional, serial auxiliary port
that is compatible with the EIA RS232C standard. The terminal connects
to an AMLC or ICS] line at speeds ranging from 50 to 19200 bits per
second. PRIMOS fully supports the PST 100 as a character mode terminal
for all alphanumeric, buffered mode, and block mode operations. FORMS,
FED, and Office Automation software also support this terminal.

PW93 and PW95 Graphics Workstations

The Prime graphics workstations are hardware products designed for use
with MEDUSA. Both systems are made up of a 19-inch diagonal display, a
joystick, a data tablet, a Pf25 terminal, and a graphic controller.
PW93 includes a monochromatic display; PW95, an eight-color display
with over 4,000 colors from which to choose. The graphics display,
with raster scan technology and resolution of 1280 x 1024, is coupled
with high speed hardware for efficient, versatile use.

Either workstation is connected to the host system via two serial
ports. This means that workstations can be located some distance from
the host without difficulty. In addition, much of the processing power
is built into the workstations so that the time spent requesting
service from the host is kept to a minimum.

Some of the features built into the workstations are conics, graphic
primitives, selective erase and update, selectable cursor types, and
variable line types. The PW95 also has local pan and zoan
capabilities.

MAGNETIC TAPES

The user wanting magnetic tape capability has four drives from which to
choose. These drives offer a choice of speeds and storage capacity.

4550 GCR Tape Drive

This 9-track tape drive is supported on all members of the 50 Series
family. It records either 1600 (phase encoded) or 6250 (group code
recording) bits of encoded information per inch of tape at a speed of
75 inches per second. The high speed and the density of information
represents significant saving of resources for the user who must
Manipulate large volumes of information. In addition, this drive
supports burst mode I/O to further speed up transfers on the 750 and
850 systems.

Features include automatic thread and load, high speed rewind, high
reliability, and the ability to select the density of information
either manually or by program. Built-in integrity monitors

12-9 First Edition

DOC6904-191

automatically correct single and double track errors, and internal
exercizers can quickly identify problems if and when they occur.
Finally, since the drive is supported on all 50 Series systems, it can
easily work with an upgraded system in the future should the user's
needs grow in that direction.

Up to eight 4550 tape subsystems can be supported on one system (four
per controller). This total is subject to system configuration rules.

4522 Tape Drive

This 9-track tape drive records information at a speed of 75 inches per
second. Users can select data density of either 800 (NRZI) or 1600
(PE) bits of encoded data. These industry standard formats allow the
4522 tape to be highly applicable to Prime systems that exchange data
other non-Prime systems. The choice of data density also represents a
significant saving of resources for the user who must manipulate large
volumes of information. In addition, this drive supports burst mode
I/O to further speed up transfers on the 750 and 850 systems.

4520 Tape Drive

The 9-track 4520 drive embodies all of the same features of the 4522
except that it operates at 45 inches per second. This makes the 4520 a
good choice for the user who performs small numbers of tape operations.
Note that the user can mix both 4520 and 4522 tape drives on the same
controller for a total of eight drives.

Cartridge Tape Drive

The 4580/4651 Cartridge Tape Drive provides up to 15 Megabytes
formatted capacity per cartridge. This 4-track drive records
information at a speed of 30 inches per second, using a data density of
6400 bpi. Cartridge tapes provide economical backup, program load, and
software distribution facilities, offer high reliability and data
integrity, and are available on all Prime systems.

One Cartridge Tape Drive is included with each 2250 system, anda
second drive (Model 4651) can be added. On other 50 series systems,
4580 Cartridge Tape Drives are supported, so users can transfer tapes
between the 2250 and these systems.

First Edition 12-10

HARDWARE PRODUCTS

DISKS
Prime offers three types of disk drives:

@ Storage module disks (SMDs)

@ Cartridge module disks (CMDs)

@ Fixed media disks (FMDs)

All Prime systems support up to eight of these devices, four perController. Any combination of disks can be used, except that the675Mb FMD cannot be configured with any CMDs. The Prime 2250 supportsall three types of disk, and also Supports 68Mb and 158Mb FMDs,
described below.

The user can thus to choose the Storage combination that best suits anapplication. Nearly all the disks can be moved to a new Prime 50Series system without difficulty if the user decides to upgrade thecomputer facility.

Table 12-2 summarizes information about the three types of disks.

Storage Module Disks

For the user who prefers removable disk storage, Prime offers twoStorage module disks, Available in 80 and 300 Mbyte capacities,storage module disks allow the user to change disk packs at will.Backing up data is a simple matter of Copying data from one disk packto another, then removing one pack to storage. These disks are alsomultipurpose to make them useful for many applications.

Table 12-2
Summary of Disk Characteristics

Disk Storage Module Cartridge Module Fixed Media
|___—Characteristic

80Mb 300Mb 32Mb 64Mb 96Mb

=

160Mb 675Mb

Mbytes/Disk 77.0 292.7 30.8 61.6 92.4 154 630Bytes/Sector 2080 2080 2080 2080 2080 2080 2080Sectors/Track 9 9 9 9 9 9 9Track/Drive 4115 15637 1646 3292 4938 8210 33640Cylin./Drive 823 823 823 823 823 821 841Av. Latency (Ms) 8.3 8.3 8.3 8.3 8.3 8.3 8.3Min. Seek (Ms) 6 6 6 6 6 7 10Av. Seek (Ms) 30 30 30 30 30 30 25Max. Seek (Ms) 55 55 55 55 55 55 50Transfer Rate (Mb) 1.2 1.2 1.2 1.2 1.2 1.2 1.2

12-11 First Edition

DOC6904-191

Cartridge Module Disks

Prime's three cartridge disks combine fixed and removable storage in a

family of three moderate capacity units. The 32 Mbyte disk has 16

Mbytes of fixed storage; the 64 Mbyte disk, 48 Mbytes; and the 96

Mbyte disk, 80 Mbytes. All three have 16 Mbytes of removable storage

and use error correcting data encoding.

The user who can benefit most from using this type of disk typically

needs only moderate amounts of storage. Systems that have only a

limited amount of physical space in which to put equipment can also

benefit from including these disks, since all three are rack mountable.

Fixed Media Disks

The two fixed media disks are the most cost effective, reliable storage

units available from Prime. The larger 4490 is a free standing unit

offering 675 Mbytes of storage. The 4480 has 160 Mbytes of storage and

mounts either in a standard Prime peripheral cabinet (550-II, 750, and

850) or in a central system cabinet (250-II). Both embody

state-of-the-art sealed Winchester technology.

Fixed Media Disks on the 2250

The 2250 supports both 68- and 158-Megabyte Fixed Media Disks. One

68-Megabyte disk and drive is included with each of these systems, and

two can be mounted in the system cabinet. Table 12-3 summarizes the

characteristics of both these FMDs.

Table 12-3

Characteristics of Fixed Disks on the 2250

Disk Fixed Media
Characteristic 68Mb 158Mb

Mbytes/Disk 63.0 146.9
Bytes/Sector 2080 2080
Sectors/Track 9 9
Track/Drive 3363 7847
Cylin./Drive 1121 1121
Av. Latency (Ms) 9.7 9.7
Min. Seek (Ms) 8 8
Av. Seek (Ms) 45 40
Max. Seek (Ms) 85 75
Transfer Rate (Mb) 1.04 1.04

First Edition 12-12

HARDWARE PRODUCTS

UNIT REQGORD DEVICES

Prime's offerings in the unit record device field are varied, giving
the user a choice of products. The general types of devices are:

@ Chain driven line printer

@ Matrix line printer/plotter

e Band printer

e Matrix character printer

e Card reader

3166 and 3167 Chain Driven Line Printers

For the user requiring a heavy duty printer, Prime offers a chain
driven line printer available in two speeds. The 3166 prints 1000
lines per minute; the 3167, 750 lines per minute. The 3167 uses a
printing set of 96 characters to provide upper and lower case
alphabetic, numeric, and punctuation characters. The 1000 lpm printer
has a printing set of 64 characters.

Matrix Line Printer/Plotters

The matrix printer/plotter is available in two models: the 3126 uses a
serial asynchronous interface, while the 3174 uses a jparallel
interface. Both print upper and lower case characters, as well as
underlines, at a rate of 300 lines per minute. Both models can print
up to five copies plus original at once, accepting a variety of
standard forms and labels up to 16 inches wide. To generate graphs,
maps, bar codes, curves, and block’ characters, the matrix
printer/plotter can operate in plot mode. Astatic eliminator, paper
guide, and paper basket are standard features. Users can also include
special character sets or international AC power configuration as
options to this type of printer.

This type of printer is suitable for the user with low or medium
printing requirements, It is compatible with all members of the 50
Series family, so it can move to a new system if the user desires to
upgrade a facility.

3323, 3327, 3333, and 3337 Band Printers

Prime's band printer is available in four models. The 3323 isa
pedestal model printer and prints 300 lines per minute using a standard
set of 64 ASCII characters. The 3333 cabinet printer also uses a set

12-13 First Edition

DOC6904~-191

of 64 ASCII characters and prints 600 lines per minute. Both the 3327
and the 3337 use a set of 96 ASCII characters; the former is a
pedestal model and prints 200 lines per minute, while the latter isa
cabinet model printing 450 lines per minute.

3350 and 335] Serial Matrix Printers

The 3350 serial character printer is for users with light duty printing
needs. Three types of these devices are offered:

e A160 character per second, keyboard send/receive (KSR) device

e A 30 character per second, keyboard send/receive (KSR) device

@e A 160 character per second, receive only (RO) device

The KSR devices are primarily for use as hard copy terminals. Users
can use the RO device with the SPOOL program as an output device.
Either type of device is an excellent choice for use in a transaction
based environment, since either can easily print a variety of business
forms and labels.

Additional features of the serial character printers include a standard
upper/lower case ASCII character set, 42 programmable functions, a
Character buffer, and bi-directional printing. Built in self-test
routines and heavy duty construction ensure reliable operation.

3115 Low Speed Serial Matrix Printer

This printer is for use as a supervisor terminal or hard copy device.
It is supported on all 50 Series systems and acts as a send/receive
(KSR) unit. All features are totally programmable and can be
controlled by application or system software. It prints at a
bidirectional, nominal rate of 30 characters per second, with bursts of
60 characters per second to catch up when the buffer is full. It is
easily maintained due to its self-test feature, and to its heavy duty
construction.

3175 Letter-Quality Printer

This printer is a serial impact printer for letter-quality business
applications. It is compatible with all 50 Series systems equipped
with an AMLC or ISCl controller. It prints up to 55 characters per
second and can handle a number of standard business forms. The printer
uses interchangeable print thimbles, and has the capability to print
many international print characters.

First Edition 12-14

HARDWARE PRODUCTS

3159 Card Reader

For the user with moderate duty card reading requirements, Prime offers
the 3159 card reader. This device has a 550-standard-size-card hopper
capacity and reads 300 cards per minute. Its heavy duty construction
and tabletop size make it suitable for a variety of applications.
Other features, such as a vacuum system to reduce dust, data
resynchronizing logic, and a straight-through card track keep the
reader trouble free,

SUMMARY

This chapter has summarized the 50 Series hardware products. The wide
variety of components provide the user with many options and allow user
applications to be addressed in several fashions. For more details
about Prime's hardware products, contact your Prime sales
representative.

12-15 First Edition

INDEX

+ 9-7 r 9-8

2-D version of MEDUSA
11-10

11-9 ’

2250
12-11

1-1, 10-6, 12-2, 12-10,

250-II 1-1, 12-3, 12-12

3-D version of MEDUSA 11-10

3115 low speed serial matrix
printer 12-14

3126 and 3174 matrix line
printer/plotter 12-13

3159 card reader 12-15

3166 and 3167 chain driven lire
printers 12-13

3175 letter-—quality printer
12-14

32 Mbyte disk

32-bit architecture 1-2

12-12

X-1

Index

32-bit registers 2-4

3270 data stream compatibility
(DPTX/DSC) 11-11

3270 support 11-12

3270 terminal support facility
(DPTX/TCF) 11-11

3270 transparent connect
facility (DPTX/TCF)

3323, 3327, 3333, and 3337 band
printers 12-4, 12-13

11-11

3350 and 3351 serial matrix
printers 12-14

4480 fixed media disk 12-12

4490 fixed media disk 12-12

4520 tape drive 12-10

4522 tape drive 12-10

4550 GCR tape drive 12-9

First Edition

DOCc6904-191

4550 tape subsystems 12-10

4580/4651 cartridge tape drive
12-10

50 series 1-1, 1-4, 4-5, 6-2,
7-11, 10-3, 12-8

550-II 1-1, 12-4, 12-12

550-II CPU 12-4

64 Mbyte disk 12-12

68- and 158-Megabyte fixed media
disks 12-12

750 1-1, 12-4, 12-12

750 CPU 12-4

850 1-1, 12-5, 12-12

850 scheduler 3-9

9-track tape drive 12-9, 12-10

96 Mbyte disk 12-12

= 9-8

= 9-8

@ 9-7

@@ 9-7

ABBREV command 9-4

Abort flags 3-2

Access categories 6-2, 6-3,
6-6, 6-8

Access control list 6-5, 6-6,
9-3 ’ 10-1 v 10-2

Access rights
7-9, 9-1, 10-2

6-5, 6-6, 6-9,

Access rights of a slave process

7-9

First Edition X-2

Access time 2-3, 4-8

Access violation 4-11, 10-5

Accessing files and directories

6-4

Accessing remote information

7-12

Acknowledgement flag 7-6

ACLS 6-6, 9-2, 9-3, 10-2,

10-4, 11-13

Address translation 4-7, 4-ll

AMLC 12-7, 12-8, 12-9

ANSI standard 11-2, 11-3

Architecture:
50 series

PRIMENET

1-2
7-2

Argument templates 8-4, 8-7

Argument transfer 8-5, 11-3

Arithmetic logic unit (ALU) 2-4

Arrays 4-4

Assembly language applications
11-4

Asynchronous terminal output

7-12

Asynchronous terminals 5-2

Attaching to a directory 6-4,
9-3

Backstop process 3-6, 3-7

Backup utilities 11-13

Badspot handling 6-4

Band printer 12-13

Base register 8-2, 8-4

BASIC 11-2

Basic V, modes of execution
11-2

BATCH facility 11-6

BCD- or ASCII-formatted data
11-13

Bipolar cache memory 1-3

Bisynchronous 7-8

Bootstrapping PRIMOS 10-6

Break Characters 9-6

Buffers 4-7, 5-4, 5-5

12-5, 12-9, 12-10, 12-16

Cache 2-1, 2-3, 2-6, 4-2, 4-3,

4-6, 4-7, 5-5, 10-5, 12-16

CAD/CAM 11-9, 11-10

Callee 8-2, 8-4, 8-5, 8-7, 8-8

Caller 8-2, 8-3, 8-4, 8-5,

8-7, 8-8

Card reader 12-13

Cartridge module disks (CMDs)
12-11, 12-12

Cartridge tape drive 12-10

CBL 11-3, 11-4, 11-6

CCITT X.25 1-3, 7-8, 11-11

coc) «11-13

Central processing unit (CPU)
2-1, 12-1

CHAP 3-6, 3-7

INDEX

Checks, system 10-2 to 10-5

CNAME command 9-8, 9-9

COBOL 11-3

CODASYL data base standard 11-7

Cold start 10-2, 10-6

Command environment 9-1

Command file 9-11

Command output file 9-4

Command procedure language (CPL)
8-10, 9-11, 9-12, 11-3

Computer aided design/computer
aided manufacturing (CAD/CAM)

Condition mechanism 8-1, 8-8,
8-9, 10-4, 11-3

Control pulse 5-2

Control store 2-1, 2-3

Control transfers 5-4, 8-1,
8-2, 8-5, 8-7, 8-8, 10-4, 11-1

Controllers 5-4, 5-5, 7-2

COPY_DISK command 11-13, 11-14

CPL 8-10, 9-11, 9-12, 11-3

CPL program, sample 9-12

CPU 2-1 to 2-8, 12-1, 12-3,

12-7

Current attach point 6-4

Current ring number 4-11

Current time slice 3-9

Current user stack 8-4

First Edition

DOCc6904-191

Dartmouth BASIC 11-8

Data base management system
(DBMS) 11-6, 11-7

Data definition language (DDL)

11-7

Data dictionary 11-7

Data integrity 10-5

Data manipulation language (DML)

11-7

DATAPAC 1-3, 7-8

DBMS) =«:11-6, 11-7

DBMS/QUERY 11-7

Default priority levels 3-6

Default protection 6-7

DELETE command 9-9

Descriptor table address
registers (DTARS) 4-8

Device interrrupt manager 5-l,
5-4, 10-4

Diagnostic processor 10-6,
12-2

Diagnostic status word (DSW)
10-3, 10-5

Dial-up lines 7-7, 7-8

DIMs 5-4, 5-5

Direct access method (DAM) 6-2,
6-3, 11-13

Direct memory access (DMA) 2-4,
5-2

Direct memory channel (DMC) 5-2

First Edition X-4

Direct memory I/O (DMx) 5-1

Direct memory queue (DMQ) 5-2

Direct memory transfer (DMT)
5-2

Directories 6-1 to 6-3

Disk-to-disk transfers 11-13

Disk-to-tape transfer 11-13

Disk:
2250 12-12
address 4-15
as hardware product

12-11, 12-12
as physical memory 4-2, 4-4
characteristics 12-18
controllers 5-4, 5-5
drives 12-11
errors 10-2

T/O 5-4
quotas 6-3
status 9-6
summary 12-18

12-1,

Dispatcher 3-2, 3-3, 3-5

Distributed processing 12-2 to
12-4

Distributed processing terminal
executive (DPTX) 1-3, 11-11,
11-12

DMA 2-4, 5-2

DMA I/O 7-6, 7-8

DMC 5-2

DMQ 5-2, 10-5

IMT 5-2

DMx I/O 5-2

DMx transfer rates 5-2

DPTX 1-3, 11-11, 11-12

DPTX/DSC 11-12

DPTX/TICF 11-12

DPTX/TSF 11-12

DIAR 4-8, 4-11

Dual-stream architecture
2-7

2-6,

Dual-stream CPU, 850 2-1

Dynamic data 98-2

Dynamic linking

Dynamic variables 8-3

8-8, 11-4

EBCDIC-formatted data 11-13

ED command 11-5

Editing a file 11-5

EDITOR in INFORMATION 11-8,
11-9

EIA RS232C 12-7, 12-8, 12-9

Electronic mail 7-9, 11-15

Eligibility time slices 3-9

EMACS 9-5, 11-5

ENTRO 11-8

Entry control blocks
8-5, 8-7, 8-8

Equal sign (=) 9-8

ER! 9-5

8-2, 8-4 v

Error checking 4-3, 7-8

Error checking and correcting
(ECC) code 10-5

Error checking and correction
for disk records 10-3

X-5

INDEX

Error handling 8-9

Error logging mechanisms 10-1

EURONET 1-3, 7-8

External interrupt 8-9

External PRIMOS commands 9-9
to 9-11

F77 11-4

FAP 11-6

Fault condition 10-3 to 10-5

Fault handler 2-4, 8-8, 10-4

FDL 11-6

FED 11-6

File access rights 6-5, 6-9

File integrity and management
6-1 to 6-9

File security 6-5

File transfer service (FIS)
7-12, 7-13, 11-11

File types 6-2

Files 6-1, 6-2

Firmware floating point 12-2,
12-3

Fixed media disks (FMDs) 12-11,
12-12, 12-18

FIX_DISK command 10-1, 10-3

Floating point operations 2-4

FORMS administrative processor
(FAP) 11-6

Forms management system (FORMS)
11-6

First Edition

DOC6904-191

FORTRAN (FIN) 11-6

FORTRAN 77 (F77) 8-10, 11-2

FTS 1-11, 7-12, 7-13

Gate access procedure 8-7, 8-8

Global variables 11-3

Hardware integrity

10-6
10-3 to

Hardware page map (HMAP) 4-8,

4-11, 4-12, 4-14, 4-15

Hardware products
12-1 to 12-18

1-2, 1-3,

HDX 7-8

HELP facility 11-5, 11-7, 11-9

HMAP table 4-12

HMAPs 4-8, 4-11, 4-12, 4-14,
4-15

Host 11-12

Host node 7-6, 7-8.

I/O:
bandwidth 12-16
buffers 4-14
burst mode 5-1
bus 5-5
direct memory 5-l
operations 5-1] to 5-4
programmed 5-1
service 5-l, 5-2, 5-4

I250-II 12-7

1450-II 12-7

1750 3812-7

1850 =:12-7

IBM-compatible direct access I/O

11-2

First Edition X-6

IBM:
2780, 3780, and HASP 11-12
3270 81-3, Li-li
devices 11-12

System/3 Model 10 RPG II 11-3

ICL 7020 and XBM_~=_11-13

ICSl 12-7, 12-8, 12-9

Identifying the user 9-2

Indirect pointers 8-4, 8-5,
8-7, 8-8

INFO/BASIC 11-8

INFO/DMS 11-8

INFORMATION 11-8, 12-7

Input/output (See 1/0)

Instruction preprocessor units

2-1, 2-5, 12-4, 12-16

Instruction stream units (ISU)

2-6

Integrity of software and
hardware 10-1

Interlanguage interface 11-2

Interleaved MOS memory 1-2,

1-3

Internal PRIMOS commands 9-9,

9-10

International print characters

12-14

Interprocess communication
facility (IPCF) 7-9

IsO OSI 7-2

ISU 2-8, 3-9

Iteration 9-6, 9-9

Kill characters 9-6

Language support utilities 1]-4

Languages 11-1 to 11-4

Leased lines 7-7, 7-8

Library subroutines 8-1

Linkage base (IB) register 8-2

Linked lists 3-3, 3-5

Linked systems 7-1

LMAPS 4-12, 4-14, 4-15

Local partitions 6-4

Local ring network 1-3

Locks :
Check lock 2-8
mutual exclusion lock 2-8
process exchange lock 2-8
queue lock 1-8

Logging out

Logical address map

9-12

4-12

LOGIN command

Login system

Loopback facility

7-12, 9-2

9-1 to 9-4, 11-3

7-8, 7-9

LRU algorithm 4-14

MAGNET 11-13

Magnetic tape 11-14, 12-1,
12-9, 12-10

MAGRST 11-13

MAGSAV 11-13

X-7

INDEX

Main memory 4-2, 4-3, 5-1

Mapping tables 4-14

Master file directory (MFD) 6-4

Matrix operations 1]-2

MEDUSA:
2-D 11-9, 11-10
3-D 11-10
with PW93 and PW95-~ 11-10

Memory bus 4-3

Memory control unit 10-5

Memory expansion units 12-1,
12-7

Memory management 4-1

Memory map (MMAP) 4-12, 4-14,
4-15

MESSAGE command 7-13

MFDS 6-4

Microverification capability
10-3, 10-6

MIDASPLUS 6-2, 6-3, 7-8,
11-6, 11-8

MMAPS 4-12, 4-14, 4-15

Modems 7-7

MOS) 4-3

MRGF 9-8

Multi-line data link controllers
(MDLC) 7-2, 7-7

Multipass compiler 11-2

First Edition

DOC6904-191

Multiple indexed data access
System (MIDAS PLUS) 6-2, 6-3,

7-8, 11-6, 11-8

Multistream architecture 12-5

Name generation 9-6, 9-8

Named semaphores 3-11

Namelist I/O 11-2

NETCFG command 7-10

NETLINK 7-12

Network configuration facility

(NETCFG) 7-8, 7-10

Network event logging 10-2

Network integrity 7-6, 7-10

Network process extension (NPX)

7-8, 7-9

Networks 1-3, 7-1, 7-4 to 7-6,

7-8, 9-6, 11-2, 11-11, 12-4

Networks, public data:
DATAPAC 1-3, 7-8

EURONET 1-3, 7-8
IPSS 1-3, 7-8
TELENET 1-3, 7-8
TRANS PAC 7-8
TYMNET 7-8

Networks:
local ring 1-3

PRIMENET 1-3, 7-l, 7-2, 7-4,

7-8 v 7-10 v 7-12 ’ 7-13 r 11-10 r

1li-1l
public data 1-3, 7-2, 7-4,

7-8
RINGNET 7-4, 7-6
telecommunication 1-3

Node 7-4, 7-6, 7-7, 7-10

NRZI 12-10

First Edition X-8

-OFF options 9-4

Office automation
12-8

ll-1, 11-14,

OK, 9-5

-ON node 9-2

-ON options 9-4

On-units 8-9, 8-10

Operating system (See PRIMDS)

Packet switching networks
11-11

7-2 v

Page fault handler

4-14, 10-4
4-7, 4-12,

Paging 4-3, 4-7, 4-8, 4-11,
4-12, 4-15

Parity checking
12-16

10-3 t 10-5 v

Parity error 10-4, 10-5

Partitions
11-14

6-1, 6-4, 11-13,

PASCAL 8-10

Pascal 11-2, 11-4

Passwords 6-5, 6-9, 9-2

Pathname 6-5, 9-8

PQL 8-2, 8-4, 8-5, 8-7, 8-8

PDN packet
assembler/disassembler (PAD)

7-12

PERFORM 11-8, 11-9

Periods (.) 9-7

Phantom interrupt code
10-4

5-4,

PHYRST 11-13, 11-14

PHYSAV 11-13, 11-14

Physical memory 4-1, 5-1

Physical page 4-7, 4-12, 4-14

Physical page address 4-1]

PL/I subset G (PL/1-G) 8-10,
11-3, 11-4

PLIG 11-4

PMA 8-10, 11-4, 11-6

PNC 7-8

Pointers 3-2, 3-3, 6-3

Ports 7-10

PPA register 3-3

PPB register 3-3, 3-9

Prepaging 4-14

Prime 2250 1-1, 10-6, 12-2,
12-10, 12-11

Prime 250-II 1-1, 12-3, 12-12

Prime 550-II 1-1, 12-4, 12-12

Prime 750 1-1, 12-4, 12-12

Prime 850 1-1, 12-5, 12-12

PRIME/POWERPLUS

PRIMENET 1-3, 7-1 to 7-4, 7-8,

7-10, 7-12, 7-13, 11-10, 11-11

11-6 to 11-8

PRIMENET architecture
7-4

7-2 to

PRIMENET node controller (PNC)
7-2, 7-6, 12-3, 12-4

PRIMENET subroutines (IPCF)
7-8, 7-9

X-9

INDEX

PRIMENET'sS X.25 support 7-2

PRIMDS 1-2, 4-1

PRIMOS commands 9-6, 9-9,
9-10, 9-11

Printers 12-4 to 12-14

Procedure base (PB) register
8-2

Procedure call 7-9, 8-1, 8-2,
8-4, 8-8, 11-1, 11-2, 11-3

Procedure call mechanism 8-2

Procedure return instruction
8-5

Process control blocks
3-3, 3-5, 3-7

3-2,

Process exchange mechanism 2-8,
3-1, 3-2, 3-3, 3-5, 3-7, 5-4

Process management 3-1 to 3-ll

Processor execution unit 2-1,
2-4, 2-5

Program counter 2-4, 4-1]

Programmed I/O (PIO) 5-1

Project-id 9-2, 9-3

Prompt characters 9-4, 9-5

Protection rings 4-5

PRIN 8-1, 8-2, 8-5, 8-7

PST100 block mode terminal
to 12-9

12-7

PT25 character mode terminal
12~7

PT45 block mode terminal 12-8

PT65 intelligent terminal 12-8

First Edition

DOC6904-191

Public data networks (PDN) 1-3,

7-2, 7-4, 7-8

Pw93 and PW95 graphics
workstations 12-9

Quanta 3-9

QUERY 11-7

Query capabilities 11-6, 11-7

Queue 5-2

Quota directory 6-3

Quotas 6-3, 11-13

RDY command 9-5

Ready list
3-7

3-2, 3-3, 3-5, 3-6,

Receive only (RO) device 12-14

Record allocation 6-4

Recursive procedures 8-l

Reentrant procedures 8-l

Register file 2-4, 4-8

Register set locations 10-5

Registers 3-2, 3-3

Relative performance of 50
series systems 12-2

Remote file access 7-12

Remote job entry (RJE) 1-3,
11-12, 11-13

Remote login 7-10, 7-12, 9-2

Remote partitions 6-4

Remote system
li-11, 11-13

7-10, 7-12,

First Edition X-10

Ring protocols 7-6

RINGNET 7-4, 7-6

Rings 4-5, 4-6, 7-2, 8-1, 8-7,

8-8, 10-3, 10-4

Root 6-4

RUNOFF 11-5

SAM files 6-2, 6-3, 11-13

SB 8-4

Scheduler 3-6, 3-7, 3-8, 11-15

Screen editor:
EMACS 11-14

SDTs 4-8, 4-11, 4-15

Sectors 12-12, 12-18

SEG 11-4

Segnent descriptor table (SDI)

4-8

Segnent directories
11-13

6-2, 6-3,

Segmentation table lookaside
buffer (STLB) 2-3, 4-6

Segnents 4-4

Semaphores 3-3, 3-5, 3-7, 3-ll

Send facility 11-13

Send/receive (KSR) 12-14

Sequential access method (SAM)
6-2, 6-3, 11-13

Server process 7-9

Shared subsystems 4-4, 10-2

SIGNLS 8-9

Single and double bit errors
10-2, 10-5

Single and double track errors
12-10

Single-stream architecture 2-1

Single-stream CPU 2-1

Slave process 7-9

Software products
11-15

1-3, 11-1 to

Source level debugger (DBG)
11-4

SPOOL 11-5, 12-14

SSU 2-8, 3-9

Stack base (SB) register 8-2

Stack frame 8-4, 8-5, 8-7

Stacks 8-2 to 8-4

Stale cache entry 2-6

Status line 11-5

Status of spool queues 11-6

STATUS USERS command 9-6

STLB 4-6, 4-7, 4-8

Storage module 12-18

Storage module disks (SMDs)
12-11

Stream synchronization unit
(SSU) 2-6, 12-5

Subdirectories 6-3

SubUFDs 6-3, 6-6

Supervisor terminal
12-3, 12-14

12-2 v

X-11

-Treewalking

INDEX

Symbiont 11-13

Symbol (+)

Symbol (-)

Symbol libraries

9-8

9-8

11-9

System administrator 6-8, 6-9

System console 12-7

System registers 2-4, 5-2,
8-2, 8-7

Tape drives 12-9 to 12-10

Tape-to-disk transfers 1]-13

TELENET 1-3, 7-8

Terminal characteristics 9-4,
9-6

Text processing 11-7, 11-14

Time slices 3-8

Timers 3-2, 3-l1l

Transfer rates 5-2, 12-12,
12-18

Translation tasks 11-15

Transmission code conversion
11-13

TRANSFAC 7-8

Traps 10-5

Tree structure 6-3

9-8

Two (=) 9-8

TYMNET 7-8

UFDs 6-3, 9-3, 11-13

First Edition

DOC6904-191

Unit record devices 12-1, X.28 7-4

12-13
X.29 7-4

Univac 1004 11-12
X.3 7-4

User application programs 9-6,
9-11 * 9-7, 9-8

User file directory (UFD) 6-3,
9-3, 11-13

User processes 9-7

10-2

User's access rights 9-2, 9-3

User-id 9-2

VCP 10-3, 10-6, 12-3 to 12-5

Virtual address 4-4, 4-6, 4-7,
4-8, 4-11, 4-12, 12-16

Virtual circuits 7-8, 7-10

Virtual control panel (VCP)
10-3, 10-6, 12-3, 12-4, 12-5

Virtual memory 1-2, 2-3, 4-1,
4-4, 8-2

VREG 11-3, 11-4, 11-6

WAIT 3-5

WAIT and NOTIFY instructions
3-2

Wait lists 3-2, 3-3, 3-5, 3-6

Warm start 10-2

Wildcards and treewalking 9-6
to 9-8

Word processing 11-14, 11-15

X.25 protocol 7-2, 7-4, 7-8,
7-10, 7-12, 7-13, 11-11

First Edition X-12

READER RESPONSE FORM

DOC6904-191 Prime 50 Series Technical Summary

Your feedback will help us continue to improve the quality, accuracy,
and organization of our user publications.

1. How do you rate the document for overall usefulness?

—__excellent __very good _good —__fair poor

2. Please rate the document in the following areas:

Readability: __hard to understand __average __very clear

Technical level: __too simple

_

about right too technical

Technical accuracy: __poor __average __very good

Examples: __too many

_

about right

_

too few

Illustrations: ___too many about right too few

3. What features did you find most useful?

4, What faults or errors gave you problems?

Would you like to be on a mailing list for Prime's current
documentation catalog and ordering information? ___yes ___no

Name : Position:

Company :

Address:

Zip:

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

PRIME
Attention: Technical Publications

Bidg 10B
Prime Park, Natick, Ma. 01760 t

I

	000
	001
	002
	003
	005
	006
	007
	008
	009
	01-01
	01-02
	01-03
	01-04
	010
	011
	012
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	05-01
	05-02
	05-03
	05-04
	05-05
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	X-00
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08
	X-09
	X-10
	X-11
	X-12
	replyA
	replyB

