10
DIGITAL
NN @

Symbolic Instruction Debugger
Productivity Tool
Reference Manual
for the CP/M-80™Family
of Operating Systems

Copyright © 1978 and 1981

Digital Research
P.O. Box 579
160 Central Avenue
Pacific Grove, CA 93950
(408) 649-3896
TWX 910 360-5001

All Rights Reserved

COPYRIGHT

Copyright © 1978 and 1981 by Digital Research. ALl
rights reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

This manual is, however, tutorial in nature. Thus,
the reader is granted permission to include the
example programs, either in whole or in part, in his
own progranms.

DISCLAIMER

Digital Research makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantability or fitness for any particular
purpose. Further, Digital Research reserves the
right to revise this publication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.
ASM, CP/M-80, DDT, MAC, and SID are trademarks of
Digital Research. Intel is a registered trademark
of Intel Corporation.

The Symbolic Instruction Debugger Productivity Tool
Reference Manual for the cpgm-go Family of Operating
Systems was prepared using the Digital Research TEX

Text Formatter and printed in the United States of
America.

* Fourth Printing: January 1982 *
POTR ORI St et S oo

Foreword

SID™, the CP/M® symbolic debugger, expands upon the features
of the CP/M standard debugger described in the CP/M Dynamic
Debugging Tool (DDT™) User's Guide and provides greatly enhanced
facilities for assembly level program checkout. Specifically, SID
includes real-time breakpoints, fully monitored execution, symbolic
disassembly, assembly, and memory display and fill functions.
Further, SID operates with "utilities" that can be dynamically
loaded with SID to provide traceback and histogram facilities.

Section 1 of this manual describes the command forms that
initiate SID and the command lines that direct the actions of the
SID program. Section 2 describes SID's ability to reference
absolute machine addresses through symbolic expressions. Section 3
describes the commands that direct the debugging process. The SID
utilities, described in Section 4, provide additional debugging
facilities. Section 5 contains several examples of SID debugging
sessions.

1.1

1.2

SID

Table of Contents

Operation Under CP/M

Starting SID . + + + « « « .+ .

SID

Command Input . . . « « .+ «

Symbolic Expressions

Literal Hexadecimal Numbers . .

Literal Decimal Numbers

Literal Character Values . . .

Symbolic References -

Qualified Symbols

Symbolic Operators

Sample Symbolic Expressions . .

Commands
The Assemble (A) Command . . .
The Call (C) Command

The
The
The
The
The
The
The
The
The
The

The

Display Memory (D) Command
Fill Memory (F) Command . .

Go (G) Command

Hexadecimal Value (H) Command

Input Line (I) Command . .
List Code (L) Command . . .
Move Memory (M) Command . .

pass Counter (P) Command .

Read Code/Symbols (R) Command

set Memory (S) Command . .

Trace Mode (T) Command . .

28
31

35

Table of Contents
(continued)

3.14 The Untrace Mode (U) Command . . .
3.15 The Examine CPU State (X) Command

4 SID Utilities
4.1 Utility Operation
4.2 The HIST Utility

4.3 The TRACE Utility

5 SID Sample Debugging Sessions

vi

39

Section 1
SID Operation Under CP/M

1.1 Starting SID
Type one of the following commands to start the SID program.

(a) SID

(b) SID x.y

(c) SID x.HEX
(d) SID x.UTL
(e) SID x.y u.v
(£) SID * u.v

In each case, SID loads into the Transient Program Area (TPA) and
relocates itself to the top of the TPA, overlaying the Console
Command Processor portion of CP/M. Figure 1-1 shows memory
organization before SID is loaded while Figure 1-2 shows the memory
configuration after SID is loaded and relocated. Due to the
relocation process, SID is independent of the exact memory size that
CP/M manages in a particular computer configuration.

(High Memory)
BDOS
ccp
TPA
{Low Memory) JMP BDOS

Figure 1-1. Memory Configuration Before SID Loads

All Information Presented Here is Proprietary to Digital Research

1

SID User”s Guide 1.1 Starting SID

BDOS

SID

JMP BDOS

TPA

JMP SID

Figure 1-2. Memory Configuration After SID Loads

After loading and relocating, SID alters the BDOS entry address
to reflect the reduced memory size, as shown in Figure 1-2, and
frees the lower portion of the TPA for use by the program under
test. Note that although SID occupies only 6K of upper memory when
operating, the self-relocation process necessitates a minimum 20K
CP/M system for initial setup, leaving about 10K for the test
program.

Command form (a) above loads and executes SID without loading a
test program into the TPA. Use this form to examine memory or write
and test simple programs using the built-in assembly features of
SID.

Form (b) above is similar to (a) except that the file given by
X.y is automatically loaded for subsequent test. Note that although
x.y is loaded into the TPA, it is not executed until SID passes
program control to the program under test using one of the following
commands: C (Call), G (Go), T (Trace), or U (Untrace). It is your
responsibility to ensure that there is enough space in the TPA to
hold the test program as well as the debugger. If the program X.y
does not exist on the diskette or cannot be loaded, SID issues the
standard "?" error response. If no load error occurs, SID responds
as follows:

NEXT PC END
nnnn pppp eeee

where nnnn, pppp, and eeee are hexadecimal values that indicate the
next free address following the loaded program, the initial value of
the program counter, and the logical end of the TPA, respectively.
Thus, nnnn is normally the beginning of the data area of the program
under test; pPPPP is the starting program counter (set to the
beginning of the TPA), and eeee is the last memory location
available to the test program, as shown in Figure 1-3. Although x.y
usually contains machine code, the operator can name an ASCII file,
in which case these program addresses are less meaningful.

All Information Presented Here is Proprietary to Digital Research

2

SID User's Guide 1.1 Starting SID

BDOS

SID
JMP BDOS

ecee: | (Free Space)

nnnn:

(Test
pPpPpPp: program)

JMP SID

Figure 1-3. Memory Configuration After Test Program Load

Command form (c) is similar to form (b) except that the test
program is assumed to be in Intel © "hex" format, as directly
produced by ASM™ or MAC™. In this case, the initial vaiue of the
program counter is obtained from the terminating record of the hex
file unless this value is zero, in which case the program counter is
set to the beginning of the TPA. As the ASM and MAC manuals
discuss, the program counter value can be given on the "END"
statement in the source program. Again, it is your responsibility
to ensure that the hex records do not overlay portions of the SID
debugger or CP/M Operating System. If the hex file does not exist
or if errors occur in the hex format, SID issues the "?" response.
Otherwise, the principle program locations shown in the previous
paragraph are listed at the console.

Use command form (d) when a SID utility function is to be
included. 1In this case, SID is first loaded and relocated as above.
The utility function is then loaded into the TPA. Utility functions
are also self-relocating and immediately move to the top of the TPA,
placing themselves directly below the SID program. The BDOS entry
address is changed to reflect the reduced TPA, as shown in Figure 1-
4. Generally, the utility program prints sign-on information and
may or may not prompt for input from the console. Exact details of
utility operation are given in Section 4, "SID Utilities.”

All Information Presented Here is Proprietary to Digital Research

3

SID User”s Guide 1.1 Starting SID

UTL
JMP BDOS

TPA

JMP UTL

Figure 1-4. Memory Configuration Following Utility Load

Command form (e) is similar to (c), except that the symbol
table given by u.v is loaded with the program x.y. Symbol
information is loaded from the current top of the TPA downward
toward the program under test, as shown in Figure 1-5.

BDOS

sSID

(UTL If
Present)

SYMBOLS

JMP BDOS

Free Space

Test Program

JMP SYMBOLS

Figure 1-5. Memory Configuration Following Symbol Load

The symbol table is in the format produced by the CP/M Macro
Assembler. In particular, the symbol table must be a sequence of
address and symbol name pairs, where the address consists of four
hexadecimal digits, separated by a space from the symbol that takes
on this address value. The symbol consists of up to 15 graphic
ASCII characters terminated by one or more tabs (1I) or a carriage-

All Information Presented Here is Proprietary to Digital Research

4

SID User”s Guide 1.1 starting SID

return line-feed sequence. Note that you can create or alter a
symbol table using the CP/M editor, as long as this format is
followed.

The response following program load is as shown in command form
(b) above, giving essential program locations. When SID begins
symbol load, it displays the following message:

SYMBOLS

This message indicates that any subsequent error is due to the
symbol load process. In particular, the "?" error following the
SYMBOLS response is due to a non-existent or incorrectly formatted
symbol file.

Command form (f) is similar to (e), except that no program is
loaded with the symbol file u.v.

Examples of typical commands that start the SID program are
shown below.

(a) SID

(b) SID DUMP.COM

(b) SID DUMP.ASM

(c) SID SAMPLE.HEX

(c) SID DUMP.HEX

(d) SID TRACE.UTL

(d) SID HIST.UTL

(e) SID DUMP.COM DUMP.SYM
(e) SID DUMP.HEX DUMP.SYM
(e) SID TEST.COM TEST.20T
(f) SID * DUMP.SYM

1.2 SID Command Input

Command input to SID consists of a series of "command lines"
that direct the actions of the SID program. These commands allow
display of memory and CPU registers, and direct the execution and
breakpoint operations during test program debugging.

When SID is ready to accept the next command, it displays a "4"
at the console. FEach command is based upon a single letter,
followed by optional parameters, and terminated by a carriage
return. Note that all standard line editing features of CP/M are
available, with a maximum of 64 command characters. The following
table lists the CP/M line editing functions.

All Information Presented Here is Proprietary to Digital Research

5

SID User's Guide 1.2 S5ID Command Input

Table 1-1. CP/M Line Editing Controls

Control Function
Character
1C CP/M system reboot, return to CCP
18 Physical end-of-line
TH Delete last character and backspace
cursor
P Print console output (on/off toggle)
TR Retype current input line
1s Stop/start console output
U Delete current input line
LR (Same as Tu)
rubout Delete and echo last character

The T character indicates that you must simultaneously hold down the
control key while depressing the particular function key. Note that
the TR, TU, and TX keys cause CP/M to type a "§" at the end of the
line to indicate that the line is being discarded.

Various SID commands produce long typeouts at the console (see
the "D" commend which displays memory, for example). In this case,
you can abort the typeout before it completes by typing any key at
the console (a "return" suffices).

The single letter commands that direct the actions of SID are

typed at the beginning of the command line. You can enter commands
in upper- or lower-case. Table 1-2 summarizes the valid commands.

All Information Presented Here is Proprietary to Digital Research

6

SID User”s Guide 1.2 SID Command Input

Table 1-2. Command Letters

Letter [Meaning

Assemble directly to memory

Call to memory location from SID
Display memory in hex and ASCIT
Fill memory with constant value
Go to test program for execution
Hexadecimal arithmetic

Input CCP command line

List 8080 mnemonic instructions
Move memory block

pass point set, reset, and display
Read test program and symbol table
Set memory to data values

Trace test program execution
Untrace (monitor) test program
Examine state of CPU registers

XCHOWUIOHIOMO Q>

Although the details of each of the commands are given in later
sections, nearly all of the commands accept parameters following the
letter that governs the command actions. The parameters can be
counters or memory addresses, and can appear in both literal and
symbolic form, but eventually reduce to values in the range 0-65535
(four hexadecimal digits).

As an example, the "display memory" command can take the
following form:

Dssss, eeee

where D is the command letter, and ssss and eeee are "command
parameters" that give the starting and ending addresses for the
display, respectively. In their simplest form, ssss and eeee can be
literal hexadecimal values, as shown below.

D100,300

These values instruct SID to print the hexadecimal and ASCII values
contained in memory locations 0100H through 0300H

Although you can usually refer to program listings to obtain
absolute machine addresses, SID supports more comprehensive
mechanisms for quick access to machine addresses through program
symbols. In particular, the command parameters can consist of
"symbolic expressions" which are described fully in the following
section,

ALl Information Presented Here is Proprietary to Digital Research

7

Section 2
SID Symbolic Expressions

An important facility of SID is the ability to reference
absolute machine addresses through symbolic expressions. Symbolic
expressions can involve names obtained from the program under test
that are included in the "SYM" file produced by the CP/M Macro
Assembler. Symbolic expressions can also consist of literal values
in hexadecimal, decimal, or ASCII character string form. These
values can then be combined with various operators to provide access
to subscripted and indirectly addressed data or program areas. This
section describes symbolic expressions so that you can incorporate
them as command parameters in the individual command forms that
follow this section.

2.1 Literal Hexadecimal Numbers

SID normally accepts and displays values in hexadecimal. The
valid hexadecimal digits consist of the decimal cngi:s 0 through 9
along with the hexadecimal digits A, B, D, £, and F,
corresponding to the decimal values 10 through 15, respectively.

A literal hexadecimal number in SID consists of one or more
contiguous hexadecimal digits. If you type four digits, then the
leftmost digit is most significant, while the rightmost digit is
least significant. If the number contains more than four digits,
the rightmost four are taken as significant, and the remaining
leftmost digits are discarded. The examples below show the
corresponding hexadecimal and decimal values for the given input
values.

INPUT VALUE HEXADEC IMAL DECIMAL
1 0001 1
100 0100 256
fffe FFFE 65534
10000 0000 0
38001 8001 32769

2.2 Literal Decimal Numbers

Although SID”s normal number base is hexadecimal, you can
override this base on input by preceding the number with a "#"
symbol, which indicates that the following number is in the decimal
base. In this case, the number that follows must consist of one or
more decimal digits (0 through 9) with the most significant digit on
the left and the least significant digit on the right. Decimal
values are padded or truncated accordlng to the rules of hexadecimal
numbers, as described above, by converting the decimal number to the
equivalent hexadecimal value.

All Information Presented Here is Proprietary to Digital Research

9

SID User”’s Guide 2.2 Literal Decimal Numbers

The input values shown to the left below produce the internal
hexadecimal values shown to the right below:

INPUT VALUE HEXADEC IMAL VALUE
49 0009
#10 000A
4256 0100
#65535 FFFF
#65545 0009

2.3 Literal Character Values

As an operator convenience, SID also accepts one or more
graphic ASCII characters enclosed in string apostrophes (”) as
literal values in expressions. Characters remain as typed within
the paired apostrophes (i.e., no case translation occurs) with the
leftmost character treated as the most significant, and the
rightmost character treated as least significant. Similar to
hexadecimal numbers, character strings of length one are padded on
the left with zero, while strings of length greater than two are
truncated to the rightmost two characters, discarding the leftmost
remaining characters.

Note that the enclosing apostrophes are not included in the
character string, nor are they included in the character count, with
one exception. To include the possibility of writing strings that
include apostrophes, a pair of contiguous apostrophes is reduced to
a single apostrophe and included in the string as a normal graphic
character,

The strings shown to the left below produce the hexadecimal
values shown to the right below. (For these examples, note that
upper-case ASCII alphabetics begin at the encoded hexadecimal value
41, lower-case alphabetics begin at 61, a space is hexadecimal 20,
and an apostrophe is encoded as hexadecimal 27).

INPUT STRING HEXADEC IMAL VALUE
“a” 0041
“aB” 4142
“ABC” 4243
“an” 6141
oo 0027
s 2727
S A 2041
‘A 4120

All Information Presented Here is Proprietary to Digital Research

10

SID User”s Guide 2.4 symbolic References

2.4 sSymbolic References

Given that a symbol table is present during a SID debugging
session, you can reference values associated with symbols through
the following three forms of a symbol reference:

(a) .s
(b) @s
(c) =s

where s represents a sequence of one to fifteen characters that
match a symbol in the table.

Form (a) produces the address value (i.e., the value associated
with the symbol in the table) corresponding to the symbol s. Form
(b) produces the 16-bit "word" value contained in the two memory
locations given by .s, while form (c) results in the 8-bit "byte"
value at .s in memory. Suppose, for example, that the input symbol
table contains two symbols, and appears as follows:

0100 GAMMA 0102 DELTA

Further, suppose that memory starting at 0100 contains the following
byte data values:

0100: 02
0101: 3E
0102: 4D
0103: 22

Based upon this symbol table and these memory values, the
symbol references shown to the left below produce the hexadecimal
values shown to the right below. Recall that 16-bit 8080 memory
values are stored with the least significant byte first, and thus
the word values at 0100 and 0102 are 3E02 and 224D, respectively.

SYMBOL REFERENCE HEXADECIMAL VALUE
. GAMMA 0100
.DELTA 0102
R@GAMMA 3E02
@DELTA 224D
=GAMMA 0002
=DELTA 004D

2.5 Qualified Symbols

Note that duplicate symbols can occur in the symbol table due
to separately assembled or compiled modules that independently use
the same name for differing subroutines or data areas. Further,
block structured languages, such as PL/M, allow nested name
definitions that are identical, but non-conflicting. Thus, SID
allows reference to "qualified symbols" that take the form:

All Information Presented Here is Proprietary to Digital Research

11

SID User’s Guide 2.5 Qualified symbols

s1/82/ . . . /sn

where S1 through Sn represent symbols that are present in the table
during a particular session.

SID always searches the symbol table from the first to last
symbol, in the order the symbols appear in the symbol file. For a
qualified symbol, SID begins by matching the first Sl symbol, then
scans for a match with symbol S§2, continuing until symbol Sn is
matched. If this search and match procedure is not successful, SID
prints the "?" response to the console. Suppose, for example, that
the symbol table appears as follows:

0100 A 0300 B 0200 A 3E00 C 20F0 A 0102 A

in the symbol file, with memory initialized as shown in the previous
section. The unqualified and qualified symbol references shown to
the left below produce the hexadecimal values shown to the right
below.

SYMBOL REFERENCE HEXADECIMAL VALUE
A 0100
ea 3E02
.A/A 0200
.C/A/A 0102
=C/A/A 004D
@B/A/A 20F0

2.6 Symbolic Operators

Literal numbers, strings, and symbol references can be combined
into symbolic expressions using unary and binary "+" and "-
operators. The entire sequence of numbers, symbols, and operators
must be written without embedded blanks. Further, the sequence is
evaluated from left to right, producing a four digit hexadecimal
value at each step in the evaluation. Overflow and underflow are
both ignored as the evaluation proceeds. The final value becomes
the command parameter, whose interpretation depends upon the
particular command letter that precedes it.

When placed between two operands, the "+" indicates addition of
the second operand to the previously accumulated value. The sum
becomes the new accumulated value to this point in the evaluation.
If the expression begins with a unary "+", then the immediately
preceding (completed) symbolic expression is taken as the initial
accumulated value (zero is assumed at SID startup). For example,
the command:

DFE00+#128 ,+5

contains the first expression "FE00+#128" which adds FE00 and

All Information Presented Here is Proprietary to Digital Research

12

SID User’s Guide 2.6 Symbolic Operators

(decimal) 128 to produce FE80 as the starting value for this display
command. The second expression "+5" begins with a unary "+" which
indicates that the previous expression value (FE80) is to be used as
the base for this symbolic expression, producing the value FE85 for
the end of the display operation. Thus, the command given above is
equivalent to:

DFE80,FE85

The "-" symbol causes SID to subtract the literal number or
symbol reference from the 16-bit value accumulated thus far in the
symbolic expression., TIf the expression begins with a minus sign,
then the initial accumulated value is taken as zero. That is,

-x is computed as 0-x

where x is any valid symbolic expression. For example, the
following command:

DFF00-200,-4512
is equivalent to the simple command:
DFD00 ,FE00

A special up-arrow operator, denoted by """, denotes the top-
of-stack in the program under test. In general, a sequence of n up-
arrow operators extracts the nth stacked item in the test program,
but does not change the test program stack content or stack pointer.
This particular operator is used most often in conjunction with the
G (Go) command to set a breakpoint at a return from a subroutine
during test, and is described fully under the G command.

2.7 sample Symbolic Expressions

The formulation of SID symbolic expressions is most often
closely related to the program structures in the program under test.
Suppose you want to debug a sorting program that contains the data
items listed below:

LIST: names the base of a table of byte values to
sort, assuming there are no more than 255
elements, denoted by LIST(0), LIST(L),
LIST (254) .

'

N: is a byte variable which gives the actual
number of items in LIST, where the value of N
is less than 256. The items to sort are stored
in LIST (0) through LIST(N-1).

All Information Presented Here is Proprietary to Digital Research

13

SID User's Guide 2.7 sample Symbolic Expressions

I: is the byte subscript which indicates the next
item to compare in the sorting process. That
is, LIST(I) is the next item to place in
sequence, where I is in the range 0 through N-
1.
Given these data areas, the command
D.LIST,+#254
displays the entire area reserved for sorting:
LIST(0), LIST(l), . . . , LIST(254)
The command
D.LIST,+=I
displays the LIST vector up to and including the next item to sort:
LIST(0), LIST(l), . . . , LIST(I)
The command
D.LIST+=I,+0
displays only LIST(I). Finally, the command
D.LIST,+=N-1
displays only the area of LIST that holds active items to sort:
LIST(0), LIST(l), . . . , LIST(N-1)
The exact manner in which SID uses symbolic expressions

depends upon the individual command that you issue. The following
section details these commands.

All Information Presented Here is Proprietary to Digital Research

14

Section 3
SID Commands

Enter SID commands at the console following the prompt.
The commands direct the debugging process by allowing alteration and
display of CPU registers and memory as well as the controlling
execution of the program under test.

The following sections describe the commands that SID accepts.

3.1 The Assemble (A) Command

The A command allows you to insert 8080 machine code and
operands into the current memory image using standard Intel
mnemonics, along with symbolic references to operands. The A
command takes the forms:

(a) As
(b) A
(c) -A

where s represents any valid symbolic expression. Form (a) begins
inline assembly at the address given by s, where each successive
address is displayed until you type a null line (i.e., a single
carriage return). Form (b) is equivalent to (a), except the
starting address for the assembly is taken from the last assembled,
listed, or traced address (see the "L", "T", and "U" commands). The
following command sequence, for example, assembles a short program
into the Transient Program Area (note that you must terminate each
command line with a carriage return):

A100 begin assembly at 0100
0100 MVI A,10 load A with hex 10
0102 DCR A decrement A register
0103 JNz 102 loop until zero

0106 RST 7 return to debugger
0107 single carriage return

As each successive address is prompted, you can either enter a
mnemonic instruction or return to SID command mode by entering a
single carriage return (a single "." is also accepted to terminate
inline assembly to be consistent with the "S" command).

Delimiter characters that are acceptable between mnemonic and
operand fields include space or tab sequences.

Invalid mnemonics or ill-formed operand fields produce "2"
errors. 1In this case, control returns back to command mode, where
you can proceed with another command line, or simply return to
assembly mode by typing a single "A", since the assumed starting

All Information Presented Here is Proprietary to Digital Research

15

SID User’s Guide 3.1 The Assemble (A) Command

address is automatically taken from the last assembled address.

The assembler/disassembler portion of SID is a separate module,
and can be removed to increase the available debugging space. Thus,
form (c) is entered to remove the module, returning approximately 1
1/2 K bytes. Since the entire SID debugger requires approximately 6
K bytes, this reduces SID requirements to about 4 1/2 K bytes. When
the assembler/disassembler module is removed in this manner, the A
and L commands are effectively removed. Further, the trace and
untrace functions display only the hexadecimal codes, and the
traceback utility displays only hexadecimal addresses. Any existing
symbol information is also discarded at this point, although such
information can be reloaded (see the "I" and "R" commands).

Examples of valid assemble commands are shown below:

Al00

A$100
A.CRLF+5
A@GAMMA +@X~=1
A+30

Given that the command Al00 has been entered, the following
interaction could take place between SID and the operator:

SID PROMPT OPERATOR INPUT
0100 MVI C,.A-.B
0102 LXI H,.SOURCE
0105 LXI D,+100
0108 MOV A,M
0109 INX H
010A STAX D
0108 INX D
010C DCR C
010D JNZ 108
0110 ("return" only)

A, B, and SOURCE are symbols that appear in the symbol table. In
this case, SID computes the address difference between A and B as
the operand for the MVI instruction, The LXI H operand becomes the
address of SOURCE, while the LXI D instruction receives the operand
value .SOURCE+100 because .SOURCE was the immediately preceeding
symbolic expression value. This particular program segment moves a
block of memory determined by the address values of the
corresponding symbols.

All Information Presented Here is Proprietary to Digital Research

16

SID User’s Guide 3.2 The Call (C) Command

3.2 The Call (C) Command

The C command performs a call to an absolute location in
memory, without disturbing the register state of the program under
test. The C Command takes the forms:

(a) Cs
(b) Cs,b
(c) Cs,b,d

Although the C command is designed for use with SID utilities, it
can call on test program subroutines to perform program
initialization, or to make CP/M BDOS calls that initialize various
system parameters before executing the test program.

Form (a) above performs a call on absolute location s, where s
is a symbolic expression. 1In this case, registers BC = 0000 and DE
= 0000 in the call. Normal exit from the subroutine is through
execution of a RET instruction that returns control to SID, followed
by the normal SID prompt.

Form (b) above is equivalent to (a), except that the BC
register pair is set to the value of expression b, while DE is set
to 0000.

Form (c) is similar to (b); the BC register pair is set to the
value b while the DE pair is set to the value of d. Several
examples of valid C commands are shown below. Refer also to the SID
utility discussion for examples of the C command in utility
initialization, data collection, and display functions.

€100

C#4096
C.DISPLAY
C@IMPVEC+=X
C.CRLF, 434
C.CRLF,@X, +=X

3.3 The Display Memory (D) Command

The D command displays selected segments of memory in both byte
(8-bit) and word (l6-bit) formats. The display appears in both
hexadecimal and ASCII form in the output. The D command takes the
following forms:

(a) Ds
(b) Ds,f
(c) D

(d) b, f
(e) DWs
() DWs,f
(g) DW
(h) DW,f

All Information Presented Here is Proprietary to Digital Research

17

SID User”s Guide 3.3 The Display Memory (D) Command

Forms (a) through (d) display memory in byte format, while
forms (e) through (h) display memory in word format. The byte
format display appears as:
aaaa bb bb bb . . . bbcc . . . cc

where aaaa is the base address of the display line and the sequence
of (up to) 16 bb pairs represents the hexadecimal values of thne data
stored starting at address aaaa. The sequence of c’s represent the
same data area displayed in ASCII format, where possible. A period
(.) is displayed as a place holder when the data item does not
correspond to a graphic character.

Byte mode displays are "normalized" to address boundaries that
are multiples of 16. That is, if the starting address aaaa is not a
multiple of 16, then the display line is printed to the next
boundary address that is a multiple of 16. Each display line that
follows contains 16 data elements until the last display line is
encountered.

Command forms (e) through (h) display in word mode which is
similar to the byte mode display described above, except that the
data elements are printed in a double byte format:

A3aa WWWW WWWW . . . WWWW CC . . . ©C

where aaaa is the starting address for the display line and the
sequence of (up to 8) wwww’s represent the data items that are
stored in memory beginning at aaaa. Similar to the byte mode
display, the sequence of c”s represent the decoded ASCII characters
starting at address aaaa. As in the byte mode display, a period is
displayed as a place holder when the character in that position is
non-graphic.

Contrary to the byte mode display, address normalization to
modulo 16 address boundaries does not occur in the word mode
display. Recall that 8080 double words are stored with the least
significant byte first, and thus the word mode display reverses each
byte pair so that the individual data items are displayed as four
digit hexadecimal numbers with the most significant digits in the
high-order positions.

Command form (a) displays memory in byte format starting at
location s for 1/2 of a standard CRT screen (12 lines). This form
of the command is useful when you want to view a segment of memory
beginning at a particular position with an indefinite ending
address.

Command form (b) is similar to (a), but specifies a particular
ending address. In this case, the start address is taken as s with
the display continuing through address f£. Recall that you can abort
excessively long typeouts by depressing any keyboard character, such
as a carriage return,

All Information Presented Here is Proprietary to Digital Research

18

SID User”’s Guide 3.3 The Display Memory (D) Command

Form (c) is similar to (a) and (b), except the starting address
for the display is taken from the last displayed address, or from
the value of the memory address registers (HL) in the case that no
previous display has occurred since the last breakpoint. It is
often convenient, for example, to use form (a) to display a segment
of memory, followed by a sequence of D commands of form (c) to
continue the display. Each D command displays another 1/2 screen of
memory.

Command form (d) is similar to (b) except the starting address
is taken automatically as described in form (c) above.

Assume, for example, that decimal values 1 through 255 are
stored in memory starting at hexadecimal address 0100. The command:

D100,12A
produces the expanded form of the display shown below:
0100 01 02 03 04 (etc.) OE OF 10 .. (etc.) ..

0110 11 12 13 14 (etc.) 1E 1F 20 (etc.) .
0120 21 22 23 24 (etc.) 29 2A 2B #5387 () ¥+

Command forms (e) through (h) parallel the byte display formats
given by (a) through (d), except that the display is given in word
format. Form (e) displays in word format from location s for 1/2
screen, while form (f) displays from location s through location f.
Form (g) displays from the last display location, or from HL if
there has been an immediately preceding breakpoint with no
intervening display. Form (h) is similar to (g), but displays
through location f. The command:

DW100,128

for example, produces the expanded form of the following output
lines:

0100 0201 0403 (etc.) OEOD 100F .. (etc.) ..
0110 1211 1413 (etc.) 1EID 201F .. (etc.) .
0120 2221 2423 (etc.) 2928 2B2A !"#$%s” ()*+
The following are examples of valid D commands:
DF3F
D#100, %200
D .GAMMA , . DELTA+#30

D .GAMMA
DW@ALPHA,+#100

All Information Presented Here is Proprietary to Digital Research

19

SID User”s Guide 3.4 The Fill Memory (F) Command

4 The Fill Memory (F) Command

The F command fills memory with a constant byte value, and
takes the form:

Fs,f,d

where s is the starting address for the fill; f is the ending
(inclusive) address for the fill, and d is the 8-bit data item to
store in locations s through f. It is your responsibility to not
£ill memory locations that are occupied by the resident portions of
CP/M, including areas reserved for SID. The following are examples
of valid F commands:

F100,3FF ,FF
F.GAMMA ,+#100 ,4 23
F@ALPHA,+=1 ,=X

3.5 The Go (G) Command

The G command passes program control to a program under test.
Execution proceeds in real time from the address specified by the G
command. That is, the G command releases processor control from SID
to the program under test. Execution does not return to SID until a
break or pass point is reached (see the "P" command for a discussion
of pass points). The operator can force a return to SID, however,
by interrupting the processor with a "restart 7" (RST 7) provided by
the program under test, or forced by external hardware such as front
panel control switches, if available.

The G command takes the following forms:

(a) G

(b) Gp

(c) G,a
(d) Gp,a
(e) G,a,b
(f) Gp,a,b
(9) -G

(h) -Gp
(1) -G,a
(j) -Gp,a

(1) -G,p,a,b

Forms (a) through (f) start test program execution with
symbolic features enabled, while forms (g) through (1) are identical
in function, but disable the symbolic features of SID. In
particular, form (a) starts test program execution from the program
counter (PC) given in the machine state of the program under test
(see the "X" command for machine state display). In this case, no
breakpoints are set in the test program. Form (b) is similar to

All Information Presented Here is Proprietary to Digital Research

20

SID User’s Guide 3.5 The Go (G) Command

(a), but initializes the test program”s PC to p before starting
execution. Again, no breakpoints are set in the test program.
similar to (a), form (c) starts execution from the current value of
PC but sets a breakpoint at location a. The test program receives
control and runs in real time until the address a is encountered.
Note that control returns to SID upon encountering a pass point or
RST 7, as described above.

Upon encountering the breakpoint address a, the break address
is printed at the console in the form:

*a .s

where s is the first symbol in the table that matches address a, if
it exists. Note that the temporary breakpoint at address a is
automatically cleared when SID returns to command mode (see the "P"
command for permanent breakpoints).

Form (d) combines the functions of (b) and (c): the test
program BC is set to the address p and a temporary breakpoint is set
at location a. As above, the breakpoint is cleared when control
returns to SID. It should be noted that an immediate breakpoint
always occurs if p = a. If this is not desired, however, you can
use the trace function to single step past the current address,
followed by a G command (see the "T" command for actions of the
trace facility).

Form (e) extends the breakpoint facility by allowing two
temporary break addresses at a and b. Program execution begins at
the current PC and continues until either address a or b is
encountered. Both temporary break addresses are cleared when SID
returns to command mode. Form (f) is similar to (e), except the
initial value of PC is set to location p before starting the test
program.

Note that the instruction at a breakpoint address is not
executed when you use the G command. Suppose, for example, that a
subroutine named TYPEOUT is located at address 0302 in a test
program, consisting of the machine code:

TYPEOUT:

0302 MOV E,A

0303 MVI C,2

0305 JMP 0005
Suppose further that you are testing a program that makes calls on
the TYPEOUT subroutine where a break address is to be set. Enter
the command:

G, .TYPEOUT

Test program execution proceeds from the current PC value and stops
when the TYPEOUT subroutine is reached, with the breakpoint message:

*0302 .TYPEOUT

All Information Presented Here is Proprietary to Digital Research

21

SID User”’s Guide 3.5 The Go (G) Command

indicating that control has returned from the test program to SID.
At this point, the program counter of the test program is at
location 0302 (i.e., .TYPEOUT), and the instruction at this location
has not yet been executed. You can execute through the TYPEOUT
subroutine using any of the commands G, T, or U. The following is a
useful command in this situation:

G,

This command continues execution from 0302, and sets a breakpoint at
the topmost stacked element (given by """). Since the topmost
stacked element must be the subroutine return address, this
particular G command executes the TYPEOUT subroutine, with a break
upon return to the instruction following the original call to
TYPEOUT.

Command forms (g) through (1) correspond directly to functions
(a) through (f), except that pass points are not displayed until the
corresponding pass counters reach 1 (see the "P" command for details
of intermediate pass point display).

Note that the essential difference between the G command and
the U (Untrace) command is that execution proceeds unmonitored in
real time with the G command, while each instruction is executed in
single-step mode with the U command. Fully monitored execution
under the U command has the advantage that you can regain control at
any point in the test program execution. However, execution time of
the test program is seriously degraded in Untrace mode since
automatic breakpoints are set and cleared following each
instruction.

The following are examples of valid G commands:

G100

G100,103

G.CRLF, .PRINT, #1024
G@IMPVEC+=I , .ENDC, .ERRC
G, .ERRSUB

G, .ERRSUB, +30
-G100,+10,+10

3.6 The Hexadecimal Value (H) Command

The H command performs hexadecimal computations including
number base conversion operations. The H command takes the
following forms:

(a) Ha,b
(b) Ha
(c) H

Form (a) computes the hexadecimal sum and difference using the two
operands, resulting in the display:

All Information Presented Here is Proprietary to Digital Research

22

SID User’s Guide 3.6 The Hexadecimal Value (H) Command

ssss dddd

where ssss is the sum a+b, and dddd is the difference a-b, ignoring
overflow and underflow conditions.

Form (b) performs number and character conversion, where a is a
symbolic expression. The display format in this case is:

hhhh #ddddd “c¢” .s

where hhhh is the four digit hexadecimal value of a; #ddddd is the
(up to) five digit decimal value of a; ¢ is the ASCII value of a
when a is graphic, and s is the first symbol in the table which
matches the value a, when such a symbol exists. Assume, for
example, that the symbol GAMMA is located at address 0100, as in
previous examples. The H commands shown to the left below result in
the displays shown to the right below:

COMMAND RESULTING DISPLAY
HO,1 0001 FFFF
H4l 0041 #65 “A°
H100 0100 4256 .GAMMA
H . GAMMA 0100 #256 .GAMMA
H=GAMMA 0001 #1
HE@GAMMA 0201 #513
HEF +=GAMMA 0100 £256 .GAMMA
‘A" 0041 #65 “A”
H”A”+=GAMMA 0042 #66 "B’

Command form (c) prints the complete list of symbols along with
their corresponding address values. The list is printed from the
first to last symbol loaded, and can be aborted during typeout by
depressing any keyboard character.

3.7 The Input Line (I) Command

When testing programs that run in the CP/M environment, it is
often useful to simulate the command line that the CCP normally
prepares upon program load. The I command takes the form:

Icceee ... ccc

where the sequence of c’s represent ASCII characters that normally
follow the test program name in the CCP command line. For example,
the CP/M "DUMP" program is normally started in CCP command mode by
typing:

DUMP X.COM

which causes the CCP to search for and load the DUMP.COM file, and

All Information Presented Here is proprietary to Digital Research

23

SID User’s Guide 3.7 The Input Line (I) Command

pass the filename "X.COM" as a parameter to the DUMP program. In
particular, the CCP initializes two default file control blocks,
along with a default command line that contains the characters
following the DUMP command.

To trace and debug a program such as DUMP, invoke the SID
program with the following command:

SID DUMP.COM

which loads the command file containing the DUMP machine code. If
the symbol table is available, the SID invocation is:

SID DUMP.COM DUMP.SYM

In either case, 5ID loads the DUMP program and prompts the console
for a command. To simulate the CCP“s command line preparation, type
the command:

IX.COoM

where the "I" denotes the Input command, which is followed by the
simulated command line., The operator can then commence the debug
tun with default areas properly setup.

The I command specifically initializes the default file control
block in low memory, labelled DFCBL, that is normally located at
005C. The file control block which is initialized by the I command
is complete in the sense that the program can simply address DFCBL
and perform and open, make, or delete operation without further
initialization. As a convenience, a second filename is initialized
at location DFCB2, which is at address DFCBL+0010 (hexadecimal).

It is your responsibility to move the second drive number,
filename, and filetype to another region of memory before performing
file operations at DFCBL since the lé-byte region at DFCB2 is
immediately overwritten by any file operation. Further, the default
buffer, labelled DBUFF, is initialized to contain the entire command
line with the first byte of the buffer containing the command line
length. Tn a standard CP/M system, the DBUFF area is assumed to
start at 0080 and end at 0OFF. Note, however, that the 1 command
restricts the simulated CCP command line to 63 characters since
SID"s line buffer is used in the simulation.

Given an I command of the form:
I dl:fl.tl da2:f£2.tl
where dl: and d2: are (optional) drive identifiers; fl and f2 are
(up to eight character) filenames, and tl and t2 are (up to three

character optional) filetypes, two default file control block names
are prepared in the form:

All Information Presented Here is Proprietary to Digital Research

24

SID User’s Guide 3.7 ‘The Input Line (I) Command

DFCB1: d1” £17 t1” 00 00 00 00
DFCB2: d2” f27 t2” 00 00 00 00
00 (current record field)

If dl: is empty in the original command line, then dl1” = 00 (which
automatically selects the default drive), otherwise if dl1 = A, B, C,
or D, then d1” = 01, 02, 03, or 04, respectively, which properly
initializes the file control block for automatic disk selection.
Field f1” is initialized to the ASCII filename given by fl, padded
to an eight character field with ASCII blanks. Similarly, t17 is
initialized to the ASCII filetype, padded with blanks in a field of
length three.

Lower-case alphabetlcs in fl and tl are translated to upper-
case in 17 and t1” respectively. Names that exceed their
respective length fields are truncated on the right. Finally, the
extent field is zeroed in preparation for a BDOS call to open or
make the file.

The second default file control block given by d2, £2, and t2
is prepared in a similar fashion and stored starting at location
006C. Note that the current record field at location 007C is also
initialized to 00. If any of the fields fl, tl, f2, and t2 are not
included in the command line, their corrésponding fields in the
default file control blocks are filled with blanks.

Ambiguous references that use the "*" or haracters are
processed in the same manner as in the CCP: the "*" symbol in a
name or type field causes the field to be right-filled with "2"
characters. The input lines shown below illustrate the default area
initialization which takes place for various unambiguous and
ambiguous filenames. The areas shown to the right give the
hexadecimal values which begin at the labelled addresses, where
ASCII values A, B, C, and D have the hexadecimal values 41, 42, 43,
and 44, respectively. Further, the special characters " "
", and 2" have the ASCII encoded values 3A, 28, 2A, and 3F, whilé
an ASCIT space has the hexadecimal value 20

COMMAND LINE DEFAULT DATA AREA INITIALIZATION

1 DFCB1: 00
20 20 20 20 20 20 20 20
20 20 20 00 00 00 00
DFCB2: 00
20 20 20 20 20 20 20 20
20 20 20 00 00 00 00

DBUFF: 00 00

All Information Presented Here is Proprietary to Digital

25

SID User’s Guide 3.7 The Input Line (I) Command

I1A.B DFCB1: 00
41 20 20 20 20 20 20 20
42 20 20 00 00 00 00
DFCB2: 00
20 20 20 20 20 20 20 20
20 20 20 00 00 00 00

DBUFF: 04 20 41 2E 42 00

IA:B.C b:d.e DFCBLl: 01
42 20 20 20 20 20 20 20

43 20 20 00 00 00 00
DFCB2: 02
44 20 20 20 20 20 20 20

45 20 20 00 00 00 00

DBUFF: 0B 41 3A 42 2E 43 20
42 3A 44 2E 45 00

I AA*.B?C D: DFCB1l: 00
41 41 3F 3F 3F 3F 3F 3F
42 3F 43 00 00 00 00
DFCB2: 04
20 20 20 20 20 20 20 20
20 20 20 00 00 00 00

DBUFF: 0B 20 41 41 2A 2E 42
3F 43 20 44 3A 00

Note that the I command is also used in conjunction with the R
command to read program files and symbol tables after SID
has initially loaded. Details of the use of I in
this situation are given with the R command that follows.

Additional valid I commands are given below:
I x.dat
Ix.inp y.out
Ia:x.inp biy.out $-p
ITEST.COM
I TEST.HEX TEST.SYM

All Information Presented Here is Proprietary to Digital Research

26

8ID User’s Guide 3.8 The List Code (L) Command

3.8 The List Code (L) Command

The L command disassembles machine code in the memory of the
machine, with symbolic labels and operands placed in the appropriate
fields, where possible. The L command takes the forms:

(a) Ls
(b) Ls,f
(c) L

(d) -Ls
(e) -Ls,£
(f) -L

Form (a) lists disassembled machine code starting at symbolic
location s for 1/2 CRT screen (12 lines). Form (b) specifies an
exact range for disassembly: s specifies the starting location, and
£ gives the final disassembly location. Form (c) is similar to (a),
but disassembles from the last listed, assembled (see the A
command), traced (see the T and U commands), or break address (see
the G and P commands). Since form (c) also lists 1/2 CRT screen, it
is often used following form (a) to continue the disassembly process
through another segment of the program. Forms (d) through (F)
parallel (a) through (c), but disable the symbolic features of SID.
In particular, the minus prefix prevents any symbol lookup
operations during the disassembly.

The L command output takes the following form:

EEEEN

S b
aaaa opcode operand .ttttt

where "sssss:" represent a symbol which labels the program location
given by the hexadecimal address aaaa, when the symbol exists. The
"opcode" field gives the 8080 mnemonic for the instruction at
Jocation aaaa, and the "operand” field, when present, gives the
hexadecimal values which follow the opcode in memory. The symbol
".ttttt" is printed when the instruction references a memory address
which matches a symbol in the table.

When the operation code at the list address is not a valid 8080
mnemonic, the output form is:

??= hh
where hh is the hexadecimal value of the invalid operation code.
several valid L commands are listed below.
100
L#1024,41034
L .CRLF

L@ICALL,+30
~L.PRBUFF+=1 ,+ A"

All Information Presented Here is Proprietary to Digital Research

27

SID User”s Guide 3.9 The Move Memory (M) Command

3.9 The Move Memory (M) Command

The M command allows you to move blocks of data values from one
area of memory to another. The M command takes the form:

Ms, b, d

where s is the start address of the move operation; h is the high
(last) address of the move, and d is the starting destination
address to receive the data. SID transfers one byte at a time from
the start address to the destination address. Each time a byte
value is moved, the start and destination addresses are incremented
by one. The move process terminates when the start address
increments past the final f address. The command:

M100,1FF,3000

for example, replicates the entire block of memory from 0100 through
OLFF at the destination area from 3000 through 30FF in memory. The
data block from 0100 through 01FF remains intact.

Note that data areas may overlap in the move process. The
comnand :

M100,1FF,101

shows an instance where the value at location 0100 is propagated
throughout the entire block from 0101 through 0200.

A number of valid M commands are listed below:

M-100,FFDO, 100
M.X,+=2,.Y

M.GAMMA ,+FF , . DELTA
M@BALPHA+=X,+#50 ,+100

3.10 The Pass Counter (P) Command
The P command allows you to set and clear "pass points" and

"pass counts" in the program under test. The P command takes the
following forms:

(a) Pp
(b) Pp,c
(c) P
(d) -Pp
(e) =P

A "pass point" is a program location to monitor during
execution of tne test program. Similar to a temporary breakpoint
(see the G command), a pass point causes SID to stop execution of
the test program each time an active pass point is reached. Unlike
a temporary breakpoint, a pass point is not automatically cleared
each time it is reached during execution. Further, unlike a

All Infcrmation Presented Here is Proprietary to Digital Research

28

SID User”s Guide 3.10 The Pass Counter (P) Command

temporary breakpoint, a pass point break occurs after the
instruction as the pass address is executed. In this way, you can
simply continue the execution of the test program under control of a
G command until the next pass point is executed, or until a
temporary breakpoint is reached.

Each pass point can have an optional "pass count" which
defaults to the value 1. The pass count enhances this facility by
allowing several passes through a pass point before the break
actually occurs. In particular, a pass count in the range 1-FF
(decimal 1 through 255) can be associated with a particular pass
point. Each time the instruction at a pass point is executed, its
corresponding pass count is decremented. The decrementing process
proceeds until the pass count reaches 1, at which time the break
address is printed and execution of the test program stops. When a
pass count reaches 1, the pass point becomes a permanent break
address which halts execution each time the instruction is executed.
Note that a pass count does not change once it has reached 1. Up to
eight distinct pass points can be actively set at any particular
time.

Form (a) sets a pass point at address p with a pass count of 1,
causing address p to become a permanent breakpoint. Form (b) is
similar, except that the pass count is initialized to c. Form (c)
displays these active pass points in the format:
cc pppp .sssss

where cc is the hexadecimal value Of the pass count that is
currently associated with the pass address pppp, and $ssss is a
symbol that matches the address pppp, if such a symbol exists.

Form (d) clears the pass point at address p, while form (e)
clears all active pass points. Note that the command:

Pp,0
is equivalent to form (d).

Each time a pass point is encountered, SID prints the pass
information in the format:

cc PASS pppp .585SS
where cc is the current pass count at pass point pppp (cc is

decremented when greater than l). As above, the symbol sssss
corresponding to address pppp is printed when possible.

The special command forms "-G" and to disable the
intermediate pass trace as the counters are decremented down to 1.
Suppose, for example, the TYPEOUT subroutine is a part of a program
under test, as shown in the G command above. Issue the command:

P.TYPEOUT,# 30

All Information Presented Here is Proprietary to Digital Research

29

SID User”s Guide 3.10 The Pass Counter (P) Command

This P command sets a pass point at the location labelled by
"TYPEOUT" which is assumed to exist in the symbol table. The pass
count is set to decimal 30, which allows the pass point to execute
30 times before a breakpoint is taken. Given that the pass point at
TYPEOUT is in effect, the command:

G

starts execution of the test program with no temporary breakpoint.
Each time the pass point is executed, the following pass trace is
executed.

1E PASS 0302 .TYPEOUT
(regyister trace)
1D PASS 0302 .TYPEOUT
(register trace)
1C PASS 0302 .TYPEOUT
(register trace)

01 PASS 0302 .TYPEOUT
(register trace)
*303

The "register trace" shows the state of the CPU registers before the
"MOV E,A" at TYPEOUT is executed (see the "X" command for register
display format). Note that the final breakpoint address is 0303,
which follows the "MOV" instruction at the pass address 0302.
Depress any keyboard character during the pass point trace, and SID
imnediately stops execution following the instruction at the pass
point address, If the command

-G

nad been issued, the intermediate pass traces do not appear at the
console. In this particular case, only the final trace:

01 PASS 0302 .TYPEOUT

(register trace)
*303

is printed. Although the intermediate pass traces are not
displayed, you can abort execution by depressing a keyboard
character. If an intermediate pass point is encountered with trace
disabled, SID aborts execution and returns control to the keyboard.

Temporary breakpoints can also be set while pass points are in
effect, That is, commands such as:
Ga,b
Ga,b,c
G,b
G,b,c

can be issued that intermix with the permanent breakpoints that are
set with the P command. Note, however, that permanent breakpoints

All Information Presented Here is Proprietary to Digital Research

30

SID User’s Guide 3.10 The Pass Counter (P) Command

override the temporary breakpoints that are given by b and c when
they occur at the same address. Further, T and U command can trace
sections of the test program while permanent breakpoints are in
effect. In this case, the pass counts decrement as described above,
with a break taken when the count reaches 1.

Valid P commands are shown below:

P100 ,FF

P .BDOS
P@ICALL+30,#20
-P.CRLF

3.11 The Read Code/Symbols (R) Command

The R command, in conjunction with the I command, reads program
segments, symbol tables, and utility functions into the Transient
Program Area. The R command takes the forms:

(a) R
(b) R4

The I command sets the filenames that will be involved in the read
operation. Form (a) reads the program and/or symbol table given by
the 1 command without applying an offset to the load addresses.
Form (b) adds the displacement value d to each program load address
and/or symbol table address. Note that this addition takes place
without overflow checks so that negative bias values can be applied.
As a simple case, the usual initiation of SID:

A>SID X.COM

can be replaced by the following sequence of commands:

SID Starts SID without a test program
IX.COM Initialize the input line
R Read the test program to memory

The response from SID in this case is exactly the same as the normal
initialization, with the "NEXT PC END" message as described in
section 1.

A program and symbol file can be read by preceding the R
command with an I command of the form:

I x.y uv

where x.y is the program to load, and u.v is the symbol table file.
Note that y is usually the type "COM"; x is usually the same as u,
and v is usually the type "SYi Thus, the following is a typical
command sequence of this form:

IDUMP.COM DUMP.SYM
R

All Information Presented Here is Proprietary to Digital Research

31

SID User’s Guide 3.11 The Read Code/Symbols (R) Command

This sequence reads the DUMP.COM program file into the Transient
Program Area and loads the symbol table with the information given
by DUMP.SYM. Programs with filetype "HEX" load into the locations
specified in the Intel formatted hexadecimal records, while programs
with filetype "UTL" are assumed to be SID utility functions that
load and relocate automatically. All other filetypes are assumed
absolute, and load starting at the base of the transient area.
Utility functions automatically remove any existing symbol
information when they relocate, but in all other cases the symbol
load operations are cumulative. In particular, the special input
form:

I* u.v
R

skips the program load since there is an asterisk in the program
name position, and loads only the symbol table file. Thus, a
sequence of commands of the above form can load the symbol tables
for selective portions of a large program that was initially
developed in small modules.

Suppose, for example, that a report generation program has been
developed using MAC, which consists of the following modules:

TOMOD .ASM 1/0 Module

SORT.ASM File Sorting Module
MERGE .ASM File Merge Module
FORMAT .ASM Report Format Module
MAIN .ASM Main Program Module
DATA .ASM Common Data Definitions

Suppose further that each module has been separately assembled using
MAC, resulting in several "HEX" and "SYM" files corresponding to the
individual program segments. The program segments have been brought
together using SID to form a memory image by typing the sequence of
commands:

SID Start the SID program
TIOMOD .HEX Initialize IOMOD

R Read 1/0 Module
ISORT.HEX Initialize SORT

R Read Sort Module
IMERGE .HEX Initialize MERGE

R Read Merge Module
1FORMAT .HEX Initialize FORMAT

R Read Format Module
IMAIN .HEX Initialize MAIN

R Read Main Module
IDATA .HEX Initialize DATA Area
R Read Initialized Data

Following this sequence, the Transient Program Area contains the
complete memory image of the report generation program. Suppose the
information printed following the last R command is:

All Information Presented Here is Proprietary to Digital Research

32

SID User’s Guide 3.11 The Read Code/Symbols (R) Command

NEXT PC END
1B3E 0100 8EOQO

which indicates that the high memory address is 1B3E. Using the H
command :

H1B

you f£ind that 1B (hexadecimal) pages is the same as 27 (decimal)
pages. At this point, return to CCP mode by typing either a
control-C (warm start), or "GO" command, which leaves the memory
image intact. Then issue the command:

SAVE 27 REPORT.COM

to create a memory image file on the diskette. Then re-enter SID
using the following command:

SID REPORT.COM

to load the entire module for testing. Individual portions of the
report generator can then be symbolically accessed by selectively
loading symbol tables from the original modules. For example, the
MAIN and SORT modules can be debugged by subsequently loading the
corresponding symbol information:

I* MAIN.SYM

R
I* SORT.SYM
R

which prepares the symbol information for subsequent debugging.
Individual segments of the report generator are then tested and
reassembled. If an error is found in the SORT module, for example,
the SORT.ASM file is edited to make necessary changes, and the
module is reassembled with MAC, resulting in new "HEX" and "SYM"
files for the SORT module only. Given that enough "expansion" area
has been provided following the SORT module, SID is reinitiated and
the SORT module is included:

SID REPORT.COM
ISORT.HEX SORT.SYM
R

which overlays the changed SORT module in the original report
generator memory image. You can then load additional symbol tables
by typing I and R commands such as:

I* MAIN.SYM

R
I* DATA.SYM
R
to access symbols in the SORT, MAIN, and DATA modules.

All Information Presented Here is Proprietary to Digital Research

33

SID User”s Guide 3.11 The Read Code/Symbols (R) Command

Note that several symbol table files can be concatenated using
the PIP program (see the "CP/M Features and Facilities" manual for
PIP operation) before SID is invoked. For example, the PIP command:

PIP NOBUGS.SYM=IOMOD.SYM,SORT.SYM,MERGE.SYM,FORMAT .SYM

creates a file called NOBUGS.SYM that holds the symbols for IOMOD,
SORT, MERGE, and FORMAT. The SID command:

SID REPORT.COM NOBUGS.SYM

loads the memory image for the report generator, along with the
symbol tables for these particular modules. Additional symbol files
can then be selectively loaded using I and R commands. The symbol
file for the entire memory image can then be constructed using the
PIP command:

PIP REPORT.SYM=NOBUGS.SYM,MAIN.SYM, DATA.SYM
which allows you to type:
SID REPORT.COM REPORT.SYM

to load the memory image for the report generator, along with the
entire symbol table. Recall, however, that the symbol table is
always searched in load-order, and thus symbol names which are the
same in two modules must be distinguished using qualified symbolic
names (see Section 1).

As mentioned above, form (b) allows a displacement value d to
be added to each program address and symbol value, The displacement
value has no effect, however, when the program is a SID utility
(filetype "UTL"). The commands:

IDUMP .HEX DUMP.SYM
R1000

for example, cause the DUMP program to be loaded 1000 (hexadecimal)
locations above its normal origin, with properly adjusted symbol
addresses. Note that the bias value can be any symbolic expression,
and thus the command:

R-200

first produces a (two’s complement) negative number which is added
to each address, Since overflow from a 16-bit counter is ignored,
this R command loads the program 200 (hexadecimal) locations below
the normal load address, with symbol addresses biased by this same
amount.,

Brror reporting during the R command is limited to the standard
response, which indicates that either the program or symbol file
does not exist, or the program or symbol file is improperly formed.
Similar to the SID startup messages, the response

All Information Presented Here is Proprietary to Digital Researc

34

SID User’s Guide 3.11 The Read Code/Symbols (R) Command

SYMBOLS

occurs following program load, and appears before the sympol load.
Thus, a error before the SYMBOLS response indicates that the
error occurred during the program load, while the "2" error after
the SYMBOLS message indicates that an error occurred during the
symbol file load operation. The exact position of a symbol file
error can be found by subsequently using the H command to view the
portion of the symbol table that was actually loaded.

3.12 The Set Memory (S) Command

The S command allows you to enter data into main memory. Tne
forms of the $ command are:

(a) Ss
(b) SWs

Form (a) allows data to be entered at location s in byte (8-bit) or
character string mode, while form (b) stores word (16-bit) mode data
items. In either case, the 5ID program prompts the console with
successive addresses, starting at location s, along with the data
item presently located at that address. As each line prompt occurs,
you can type a single carriage return or a symbolic expression
(followed by a carriage return), which is evaluated and becomes the
new data item at that location. If you type a single carriage
return, then the data element at that location remains unchanged.
The 5 command terminates whenever an invalid data item is detected,
or when you type a single "." followed by a carriage return. Form
(a) allows single byte data, and produces the standard "?" when a
double byte value is entered with a non-zero high-order byte. 1n
addition, form (a) also allows long ASCTI string data to be entered
in the format:

"cceee . . .cccce

where the sequence of c”s (terminated with a carriage return)
represents graphic ASCII characters to be entered at the prompted
location. No translation from lower- to upper-case takes place
during entry. Further, the next prompted address is automatically
set to the first unfilled location following the input string.

A valid input sequence following the command:
5100
is shown below, where the SID promot is given on the left, and the

operator’s input lines are shown to the right, where "cr" denotes
the carriage return key.

A1l Information Presented Here is Proprietary to Digital Research

35

SID User’s Guide 3.12 The Set Memory (S) Command

SID PROMPT OPERATOR INPUT
0100 cC3 34cr
0101 24 #254cr
0102 CF cr
0103 4B "ASCIIcr
0108 6E =X+5cr
0109 E2 “$’cr
010a D4 .cr

A valid double byte input sequence following the command:
SW. X+#30

is shown below:

SID PROMPT OPERATOR INPUT
2300 006D 44Fcr

2302 4F32 @GAMMACT
2304 33E2 cr

2306 FFll X+=I-420cr
2308 348F .cr

3.13 The Trace Mode (T) Command

The T command allows you to single or multiple step a test
program while viewing the CPU registers as they change. In
addition, you can use the T command with SID utilities to collect
test program data for later display (see the section entitled "SID
Utilities"). The forms of the T command are:

(a) Tn
(b) T
(¢) Tn,c
(d) T,c

(e) =T (with options a - d)

(f) TW (with options a - d)

(9) -TW (with options a- d)
Form (a) traces program execution from the current value of the
program counter PC (see the "X" command for PC value as well as the
format of the CPU state display). Form (b) is the trivial case of
(a) with an assumed single step count of n = 1. TIn either case, the
SID program displays the register state, along with the decoded
instruction (assuming "-A" is not in effect) before each instruction
is executed. For example, the command:

T4

traces four program steps, producing the format:

All Information Presented Here is Proprietary to Digital Research

36

SID User”s Guide 3.13 The Trace Mode (T) Command

(register state 1) opcode 1
label:
(register state 2) opcode 2
label:
(register state 3) opcode 3
label:

(register state 4) opcode 4 *bbbb

showing the register state before each corresponding operation code
is executed., Each operation code is written in the same format as
the L and X commands, with interspersed symbolic operands decoded
wherever possible. In addition, instructions that reference memory,
such as INR M, are listed with the memory operand in the form:

opcode M =hh

where "opcode" is the memory referencing instruction, and hh is the
hexadecimal value contained in the memory address given by the HL
register pair before the operation takes place. The interspersed
labels show program addresses when they occur in the flow of
execution. The final break address, denoted by "*bbbb" above, shows
the value of the program counter after opcode 4 is executed. You
can display the CPU state at this point by typing the single
character "X" command.

Forms (c) and (d) are used only with the SID utilities, and
automatically perform a CALL ¢ after each instruction executes. The
value of ¢ corresponds to a utility entry address for data
collection. The following sections detail these forms. Note,
however, that form (d) is equivalent to (c) with a single step count
of n = 1.

Forms given by (e) parallel (a) through (d), but the preceding
minus sign disables the symbolic features of SID. In particular,
neither the symbolic operands nor the symbolic labels are decoded in
the trace process. This option speeds up the operation of SID
slightly in trace mode when large symbol tables are present.

Forms given by (f) parallel (a) through (d), but perform a
"trace without call" function. It is often useful, for example, to
trace mainline program code, but not trace into the subroutines
which are called from the mainline execution. The TW command
performs this Function by running the test program in real time
whenever a subroutine is entered, returning to fully traced mode
Upon return to the current subroutine level. If a return operation
takes place at the current level (i.e., a RET is executed in fully
traced mode), then tracing continues at the encompassing subroutine
or mainline program level, For example, suppose the mainline and
subroutine structure shown below exists in a particular program:

All Information Presented Here is Proprietary to Digital Research

37

SID User”s Guide 3.13 The Trace Mode (T) Command

MAINLINE SUBROUTINE 1 SUBROUTINE 2 ... SUBROUTINE n
- Sl: MOV A,C S§2: MOV A,D Sn: MOV A,L
CALL S1 P e -
MOV B,C CALL 82 e L
MOV C,D MOv C,E CALL S3 ... MoV C,L
PR MOV D,E MOV D,H MOV D,L
JMP 0000 RET RET RET

Suppose further that the test program is stopped within subroutine
S1 before the call to subroutine S2. The command:

T#100

traces from Sl through S$2, $3, and so forth until level &n is
encountered. Although this form of the trace could be useful, it is
often more enlightening to trace only at a particular subroutine
level, and view the effects of the subroutine levels above Sl. In
this manner, an offending subroutine is often easily discovered
without tracing non-essential program flows. If you type the
following command while at subroutine level S1, all subsequent
levels from S2 and beyond are executed in real time as if a "G"
command had been performed at each CALL within S1.

TW#100

Upon executing the RET instruction within S1, tracing resumes at the
mainline level. Any subroutine calls following CALL S1 at the main
level are not subsequently traced.

Forms given by (g) parallel (a) through (d), but disable the
symbolic features of SID in the same manner as form (e).

Note that SID allows tracing up to Read Only Memory (ROM)
program code. At the point ROM is entered, SID stops the trace
operation, and runs the ROM code in real time. An automatic
breakpoint is set which intercepts program control when ROM code is
exited. The assumption, however, is that ROM code was entered via a
subroutine call (CALL or RST n), not via a PCHL or JMP instruction.
In any case, the return address following the ROM execution is taken
as the topmost address in the test program”s stack.

Note further that SID does not trace execution of calls through
the BDOS code, since these operations are often quite lengthy, and
can occassionally require real time operation to perform various
disk functions. Thus, entry to the BDOS is intercepted by SID, and
resumed following completion of the BDOS function.

Abort tracing at any time by depressing a keyboard character.
Do not use the RST instruction to terminate trace functions.

All Information Presented Here is Proprietary to Digital Research

38

SID User”’s Guide 3.13 The Trace Mode (T) Command

valid trace commands are shown below:

T100
T4#30,.COLLECT
-TW=I,3E03

3.14 The Untrace Mode (U) Command

The U command is similar to the T command given above, except
that the CPU register state is not displayed at each step. Instead,
the test program runs fully monitored so that program execution can
be aborted at any time, or for the collection of data for a SID
utility function. The forms of the U command parallel the T
command :

(a) Un

(b) U

(c) Un,c

(d) uU,c

(e) -U (with options a - d)

(£) UW (with options a - d)
(g) -UW (with options a - d)

Forms (a) through (d) perform the analogous functions of the "T"
command forms (a) through (d), without displaying the register state
at each step. Forms given by (e) differ from the T command;
however, instead of disabling the symbolic features, the following
command forms:

-Un
-u
-Un,c
-U,c

disable the intermediate pass point display (see the "P" command),
until the corresponding pass counts reach 1.

Forms given by (f) correspond to the "T" command exactly,
except that the trace display is disabled. In this case, the
current subroutine level is run fully monitored, but higher
subroutine levels run in real time.

Forms given by (g) are similar to (£), but disable the pass
point display, as described above.

You can abort execution in untrace mode by depressing any
keyboard character. The break address is displayed, and control
returns to SID command mode.
valid U commands are given below:

UFFFF

U#10000 , .COLLECT

UW=GAMMA , . COLLECT
All Information Presented Here is Proprietary to Digital Research

39

SID User’s Guide 3.15 The Examine CPU State (X) Command

3.15 The Examine CPU State (X) Command

The X command allows you to examine and alter the CPU state of
the program under test. The X command takes the following forms:

(a) X
(b) Xf
(c) Xr

Form (a) displays the entire CPU state in the format:
CZMEI A=aa B=bbbb D=dddd H=hhhh S=ssss P=pppp op sym

where C, 2, M, E, and I represent the true or false conditions of
the CPU carry, zero, minus, even parity, and interdigit carry,
respectively. If the position contains a "-" then the corresponding
flag is false, otherwise the flag letter is printed. The byte value
aa is the value of the A register, while the double byte values
bbbb, dddd, hhhh, ssss, and pppp, give the 16-bit values of tne BC,
DE, HL, Stack Pointer, and Program Counter, respectively. The field
marked "op" gives the decoded mnemonic instruction at location oppp,
unless "-A" is in effect, in which case the hexadecimal value of the
operation code is printed. The "sym" field contains a decoded
operand, when possible. Refer to the L command for the format of
the symbolic instruction decoding. The single letter "X" command
might result in a display of the form:

C-M-- A=03 B=34EF D=2000 H=334E S$=4323 P=0100 LDA 0223 .Q

which, for example, indicates that the carry and minus flags are
true, while the zero, even parity, and interdigit carry flags are
false. Further, the A register contains 03, while the B, C, D, E,
H, and L registers contain the hexadecimal values 34, EF, 20, 00,
33, and 4%, respectively., The value of the Stack Pointer is 4323,
and the Program Counter is at location 0100. The next instruction
to execute at location 0100 is an accumulator load (LDA) from
location 0233. Further, the first symbol in the table that matches
address 0233 is Q.

Form (b) allows you to change the state of the CPU flags. 1In
this case, £ must be one of the condition code letters: C, 7, M, E,
or I. The present state of the flag is displayed (either the flag
letter if true, or a "-" if false). You can either type a single
carriage return, which leaves the flag in its present state, or you
can type a 1 to set the flag true, or a 0 to reset the flag to
false. Given that the carry flag is true, for example, the command:
xc
produces the SID response:
c

followed by a space, indicating that the carry is currently set,
awaiting possible change. Enter a carriage return to leave the flag

All Information Presented Here is Proprietary to Digital Research

40

SID User’s Guide 3.15 The Examine CPU State (X) Command

set, or a 0 to reset the carry to false. Similarly, if the zero
flag is false, the command:

Xz

produces the SID response:

indicating that the zero flag is false. Enter a carriage return if
the state is to remain unchanged, or a 1 to set the zero flag to
true,

Form (c) allows alteration of the individual CPU registers,
where r is one of the register names A, B, D, H, §, or P. In this
case, the current content of the register is displayed, and the
console is prompted for input. If you type a single carriage
return, the data value remains unchanged. Otherwise, the symbolic
expression is evaluated and becomes the new value of the register.
Only byte values are acceptable when the "Xa" form is used, while
double byte values are accepted in the remaining forms. Note that
the BC, DE, and HL registers must be altered as a pair. The SID
interaction shown below is typical when the A register is altered:

XA

A=03 45 cr
where you type the "XA"; SID prints the "03" as the value of the A
register, and you type "45" as a replacement for A”s value. The
"cr" represents the carriage return key in this example and in the

examples that follow. The following interactions with SID provide
additional examples in the format described above:

XB

B=34EF cr (data remains unchanged)
XD

D=2000 2300 cr (D changes to 23)
XH

H=334E .GAMMA cr

XS
S$=4323 @STKPTR+#100 cr

All Information Presented Here is Proprietary to Digital Research

41

Section 4
SID Utilities

SID utilities are special programs that operate with SID to
provide additional debugging facilities. As described in Section 1,
you load a SID utility by typing:

SID x.UTL

where x is the name of a utility program, described in the following
sections. Upon initiation, the utility program loads, relocates,
and prompts the console for any necessary parameters. Then you
collect the necessary program test data (using the U or T command),
and display the information using a call to the utility display
subroutine. The mechanisms for system initialization, data
collection, and data display are given in detail below.

4.1 Utility Operation

A particular SID utility loads into memory in much the same
manner as a normal test program. The utilities, however,
automatically move themselves into high memory, occupying the region
directly below the SID program, as described in Section 1. The
utility load operation can be accomplished by simply typing the
utility name with the SID command as shown above. You can also load
a utility during the SID execution, as described in the I and R
commands. Recall, however, that all existing symbol information is
removed when the utility loads, and must be reinitialized if
required for the debugging run.

Normally, a SID utility has three primary entry points:
INITIAL for utility (re)initialization, COLLECT for data collection,
and DISPLAY for data display. After loading, the utility sets up
these symbols in the table, and types the entry point addresses in
the format:

JINITIAL iiid
.COLLECT = cccc
.DISPLAY = dddd

where iiii, cccc, and dddd are the hexadecimal addresses of the
three entry points. Note, however, that the three symbolic names
are equivalent to these three addresses.

Following initial sign on, the utility may prompt the console
for additional debugging parameters. After the interaction is
complete, you can use the I and R commands to load test programs and
symbol tables to proceed with the debug session.

All Information Presented Here is Proprietary to Digital Research

43

SID User’s Guide 4.1 Utility Operation

During the debug run, data collection takes place by running
the test program in monitored mode using the U or T commands.
Either of the following commands:

UFFFF , .COLLECT
UFFFF ,ccce

direct the SID program to run the test program from the current
Program Counter for a maximum of 65535 (FFFF hexadecimal) steps,
with a call to the data collection entry point of the utility
program. Each instruction breakpoint sends information to the
utility program, where it is tabulated for later display. Note that
in this particular case, you can stop the untrace mode by depressing
the return key before the sequence of 65535 steps is completed.

Following a series of data collection operations, enter either
of the following commands that call the utility DISPLAY entry point
to print the accumulated data:

C.DISPLAY
Cdddd
Then, resume the data collection process, as described above,

followed by additional display operations.

At any point, you can reinitialize the utility by typing either
of the following commands:

C.INITIAL
Ciiii
which causes reinitialization of the utility tables. The utility

then prompts for additional parameters to complete the
reinitialization process.

Note that loading and executing more than one utility function
during a debugging session can produce unpredictable results.

The remaining sections present the functions of the SID
utilities.
4.2 The HIST Utility

The HIST utility creates a histogram (bar graph) of the
relative frequency of execution in selected program segments of a
program under test, The HIST utility allows you to monitor "hot
spots" in the test program where the program is executing most
frequently.

After initial sign-on, as described in the previous section,
the HIST utility prompts the input console:

TYPE HISTOGRAM BOUNDS

All Information Presented Here is Proprietary to Digital Research

44

SID User”s Guide 4.2 The HIST Utility
You must respond with two symbolic expressions, separated by a
comma:

1111, hhhh
where 1111 is the lowest address to monitor, and hhhh is the highest
address. To collect histogram information, you must use one of the

following command forms:

Tn,c T,C TWn, c W, C -Tn,c =T,c =TWn,c ~TW,C
un,c U,c UWn,c UW,c ~-Un,c ~-U,c -UWn,c -UW,c

where c is either .COLLECT, or the address corresponding to the
COLLECT entry point. Although any of these commands may be used,
the form:

Un, .COLLECT
is nearly always used since the trace output is disabled, the test
program is fully monitored, and data collection takes place at each
program step.

Following a series of data collection operations, display the
histogram by typing:

C.DISPLAY or Cdddd

The histogram is then printed in the following format:

HISTOGRAM :
ADDR RELATIVE FREQUENCY, MAXIMUM VALUE = mmmm
aaaa P
bbbb [—
cece HRA KA KR
XXXX KRR AR R A
vYYy KRRk Rk R KKK KKK XK KRR KR KRR KR Kk
2222 KA RRk

where addresses aaaa through zzzz span the range from the low to
high address range given in the initialization of HIST. The maximum
value mumm is the largest number of instructions accumulated at any
of the displayed addresses, and the asterisks represent the bar
graph of relative instruction frequencies, scaled according to the
maximum value mmmm. The address range is automatically scaled over
64 different address slots (aaaa, bbbb, ... ,zzzz, above), with a
maximum of 64 asterisks in any particular bar of the graph.

Given the above display, the "hot spot" is around the address
range xxxx to zzzz. 1In this case, type either of the following
commands to reinitialize the HIST utility:

C.INITIAL
Ciiii

All Information Presented Here is Proprietary to Digital Research

45

SID User’s Guide 4.2 The HIST Utility

Then the HIST initialization prompt and response follow, as shown
below.

TYPE HISTOGRAM BOUNDS XXXX,22Z2
You can then rerun the test program using the command:
UFFFF , .COLLECT

After leaving enough time for the test program to reach "steady
state,” interrupt program execution by typing a return during the
monitored execution. The display function is then reinvoked to
expand the region between xxxx and zzzz, resulting in a more refined
view of the frequently executed region.

The L command can subsequently determine the exact instructions
that are most frequently executed., If possible, the sequence of
instructions can be somewhat improved, with an overall improvement
in program performance.

4.3 The TRACE Utility

The TRACE utility obtains a backtrace of the instructions that
led to a particular break address in a program under test. For
example, a program might have an error condition that arises from a
sequence of instructions that are difficult to find under normal
testing. In this case, TRACE can collect program addresses as the
test program executes, and display these addresses and instructions
in most recent to least recent order when you request. To invoke
SID with the TRACE utility, enter the following command:

SID TRACE.UTL

The utility responds as follows:

INITIAL = iiii
COLLECT = cccc
DISPLAY = dddd

In this case, the TRACE utility also prints the message:
READY FOR SYMBOLIC BACKTRACE

which indicates that the assembler/disassembler portion of SID is
present, and will disassemble instructions when the backtrace is
requested.

You can then proceed to load a test program with optional
symbol table. For example, you can load the DUMP program, by typing
the command:

IDUMP.COM DUMP.SYM
R

All Information Presented Here is Proprietary to Digital Research

46

SID User’s Guide 4.3 The TRACE Utility

The usual response:
"NEXT PC END"

indicates that the test program is loaded. At this point, the SID
debugger is executing in high memory, along with the TRACE utility
and the test program symbols. The test program is present in low
memory, ready for execution.

To obtain the simplest backtrace, type one of the U or T
command forms shown with the HIST utility. In particular, a U
command of the form:

U#500,.COLLECT

executes 500 (decimal) program steps, and then automatically stops
program execution. Type the following command to obtain a backtrace
to the stop address:

C.DISPLAY

This command causes TRACE to display the label, address, and
mnemonic information in the form:

label=-255:

addr-255 opcode-255 sym-255
label-254:

addr-254 opcode-254 sym-254
label-253:

addr-253 opcode-253 sym-253
label-000:
2ddr-000 opcode-000 sym-000

where label-255 down through label-000 represent the decoded
symbolic labels corresponding to addresses given by addr-255 down
through addr-000, when the symbolic labels exist. Opcode-255 down
through opcode-000 represent the mnemonic operation codes
corresponding to the backtraced addresses, and sym-255 down through
sym-000 denote the symbolic operands corresponding to the operation
codes, when the symbols exist. The operation codes are displayed in
the same format as the list command. Note that in this display, the
most recently executed instruction is at location addr-255, while
the least recently executed instruction is at location addr-000.
TRACE accounts for up to 256 instructions, which accumulate in T or
U mode. The accumulated instructions are not affected by the
DISPLAY function, but are cleared by the following call to
reinitialize:

C.INITIAL
Full benefit of the TRACE utility requires concurrent use of
TRACE with pass points (see the "P" command). In particular, pass
points are first set at program locations that are of interest in
the backtrace. The program is then run to an intermediate location
All Information Presented Here is Proprietary to Digital Research

47

SID User’s Guide 4.3 The TRACE Utility

where the test begins. At this intermediate test point, use the U
command to execute the test program in fully monitored mode, with
data collection at the COLLECT entry point of TRACE. Upon
encountering one of the pass points in U mode, program execution
breaks, and you regain control in SID command mode. The DISPLAY
function of TRACE is then invoked to obtain the required backtrace
information.

As an example of this process, suppose the DUMP program is in
memory with the TRACE utility, as shown above. Suppose further that
you want to view the actions of the DUMP program on the first call
to BDOS (i.e., the first call from DUMP to the CP/M Basic Disk
Operating System, through location 0005). Assuming the symbol table
is loaded, type the command:

P.BDOS

which sets a pass point at the BDOS entry, with corresponding pass
count = 1. Then execute DUMP in monitored mode, collecting data at
each instruction:

UFFFF, .COLLECT

The untrace count of FFFF (65535) instructions is, of course, too
many in this case, but the assumption is that the DUMP program stops
at the BDOS call before the instruction count is exceeded (if it
does not, depress any keyboard character to force a program break) .
In this case, the DUMP program executes only a few instructions
before the BDOS call, resulting in the break information:

01 PASS 0005 .BDOS

0!
-ZEI A=80 B=0014 D=005C H=0000 S=0249 P=0005 JMP CCDF
*CCDF

showing the pass count 1, pass address 0005, symbolic location BDOS,
register state, and break address. Since execution to this point
was monitored and data was collected, invoke the TRACE function:

C.DISPLAY

which results in the display:

0005 JMP CCDF
01CA CALL 0005
01C8 MVI C,0F
01C5 LXI D,005C .FCB
01C2 STA 007C .FCBCR

SETUP:
01Cl1 XRA A
010A CALL 01Cl .SETUP
0107 LXI SP,0257 .STKTOP
0104 SHLD 0215 .OLDSP
0103 DAD SP
0100 LXI H,0000

.BDOS

All Information Presented Here is Proprietary to Digital Research

48

SID User”s Guide 4.3 The TRACE Utility

Note that in this particular case, only 11 instructions were
executed before the BDOS call, and thus the full 256 instruction
capacity had not been exceeded. In fact, the backtrace shown above
gives the complete history of the DUMP execution, from the first
instruction at address 0100. You can then proceed to execute the
DUMP program further by simply typing:

UFFFF, .COLLECT

with a break at the following call on BDOS. Given that the program
execution is to stop on the 20th call on BDOS, type the pass
command :

P.BDOS 4 20
to set the pass count at 20 (decimal). Enter the command:

UFFFF , .COLLECT

if intermediate passes are to be traced. Alternatively, type the
command :

~UFFFF , .COLLECT

to disable intermediate traces. In either case, execution stops at
the 20th BDOS call, and you can enter the display command:

C.DISPLAY
to view the trace to this particular BDOS call.

Abort long typeouts by typing any keyboard character during the
display. The ctl-S key freezes the display during output. Finally,
recall that you can issue "C.DISPLAY" any number of times to
reproduce the backtrace since the command does not clear the TRACE
buffer.

You can also use the TRACE utility when the disassembler module
is not present. In this case, the instruction addresses are listed
in the trace, while the mnemonics are not included. For example,
the sequence of commands shown below loads the TRACE utility without
the disassembler module, followed by the DUMP program without its
symbol table:

SID Load the SID Program
-A Remove the Disassembler
ITRACE.UTL Ready the TRACE Utility
R Read the TRACE Utility
IDUMP .COM Load the DUMP Program

In this case, the TRACE utility prints the following sign-on
message:

" IN EFFECT, ADDRESS BACKTRACE

All Information Presented Here is Proprietary to Digital Research

49

SID User’s Guide 4.3 The TRACE Utility

The backtrace information is subsequently displayed in the format:

addr-255 addr-254 addr-253 , . . addr-248
addr-247 addr-246 addr-245 ., . , addr-240

20dr-007 addr-006 addr-005 . . . addr-000

All Information Presented Here is Proprietary to Digital Research

50

Section 5
SID Sample Debugging Sessions

This section contains several examples of SID debugging
sessions. The examples are based upon a "bubble sort™ of a byte
value list. The bubble sort program is first listed in its
undebugged form. A series of test, edit, and reassembly processes
are shown which result in a final debugged program. In each case,
the operator interaction with CP/M, ED, MAC, or SID is shown in
normal type, while comments on each of the processes are given
alongside in italics.

The dialogue that follows contains the following sequence of
operations:

(1) TYPE SORT.PRN Lists initial SORT program.
(2) TYPE SORT.SYM Shows the SORT symbol table.
(3) TYPE SORT.HEX Shows the SORT HEX file.

(4) SID SORT.HEX SORT.SYM 1st debugging session.

(5) ED SORT.ASM lst re-edit of SORT program.
(6) MAC SORT lst reassembly of SORT.

(7) TYPE SORT.SYM Shows new symbol table.

(8) SID SORT.HEX SORT.SYM 2nd debugging session.

(9) ED SORT.ASM 2nd re-edit of SORT program.
(10) MAC SORT 2nd reassembly of SORT.

(11) SID SORT.HEX SORT.SYM 3rd debugging session.

(12) ED SORT.ASM 3rd re-edit of SORT.

(13) MAC SORT 3rd reassembly of SORT.

(14) LOAD SORT Create a CoM file for SORT.
(15) SID SORT.COM SORT.SYM 4th debugging session.

(16) SID SORT.COM SORT.SYM Re-entry to SID for debugging.
(17) SID SORT.COM SORT.SYM Re-entry to SID for debugging.
(18) SID SORT.COM SORT.SYM Re-entry to SID for debugging.
(19) ED SORT.ASM 4th re-edit of SORT.

(20) MAC SORT 4th reassembly of SORT.

(21) SID SORT.HEX SORT.SYM 5th debugging session.

(22) ED SORT.ASM 5th re-edit of SORT.

(23) MAC SORT 5th reassembly of SORT.

(24) SID SORT.HEX SORT.SYM 6th debugging session.

(25) ED SORT.ASM 6th (last) re-edit of SORT.
(26) MAC SORT $+S 6th (last) reassembly.

Following the debugging sessions, the final corrected SORT program
is given in its debugged form.

All Information Presented Here is Proprietary to Digital Research

51

SID User’s Guide 5 SID Sample Debugging Sessions

Three separate debugging sessions are then shown that use the
HIST and TRACE utilities to monitor the execution of the tested SORT
program. The operations shown here include:

(27) SID HIST.UTL Load the HIST Utility.
(28) SID TRACE.UTL Load the TRACE Utility.
(29) sIp Load SID, TRACE follows.

As a final example, a simple program that calls the BDOS is
listed, followed by a single debugging session. This particular
example shows the actions of SID when subroutines are traced,
followed by calls on the CP/M BDOS. The operations in this case
are:

(30) TYPE IO.PRN List the IO program
(31) SID IO.HEX IO.SYM Enter SID for debugging

All Information Presented Here is Proprietary to Digital Research

52

SID User’s Guide 5 SID Sample Debugging Sessions

H SORT PROGRAM N CP/M ASSEMBLY LANGUAGE
ELEMENTS OF 'LIST* ARE PLACED I:
DESCENDING ORDER USING BUBBLE SORT

0100 ORG 100H ;BEGINNING OF

0000 = REBOOT EQU 0000 :CP/M RESOOT \.UCAHUN
0100 213801 SRT: X H,SW

0103 360 WIooMl o se L

0105 213901 I Ml GINGEX T SORT LIST
0108 3600 W1 MO 1= 0

COMPARE [WITH ARRAY SIZE
Cow: GHL AODRESS THDEX

0108 386201 SLENGTH OF VECTOR
0100 8 oo TCHECK FOR N=1
010€ C21901 NI CoNT 'cmmuz IF UNEQUAL

H EAD OF OME pass mwouen LIST
WITCHES?
i HR din s

out a1l
Sl 5

i B oF soar prociss, nEscor
0116 CI0000 STOP: JWP REBOOT RESTART CCP

$ CONTINUE THIS PASS
CONT:

: ADDRESSING 1, SO LOAD LIST{I)
0119 ¢ mv e AT TLOA) TO € RESISTER
GLIA 1600 W00 HIGH(D) =
alic 215301 LU ALLIST BASE OF L
OLIF 19 00 D 1AD0R LIST(1)
0120 7€ MOV AMLIST(I) IN A REGISTER
ol21 23] LAODR OF LIST{I+1)
i ap ILIST(D):LIST{i+1)
0123 DA3LOL X INCI SKIP IF PROPER ORDER
H CHECK FOR LIST(I) = LIST(1+])
0126 cA301 a INCD 3SKIP L7 EQUAL
H LTENS SRE 0T OF OROCR, SHITEH
0129 4€ oup LisT(1+1) 10 ¢
0124 77 [V .- LT T0
0128 28 oo 1AO0R LIST(1)
oizc 11 WU W e LEST() Tom
Q120 213801 LKL H,SH o (SWITCH COUNT 1S SW
130 34 L] B
INCI: §INCREMENT INOEX !
0131 21390 ur ok
0134 3 oo BICTRS!
0135 ¢30801 P COMP (TO COMPARE [WITH K-l
i DATA AREAS
038 Swio DS 1 iSWITCH SOWT
0139 i 05 1 N
013 05 2 16 Lvec s7ack
STACK:
0154 0503040808LIST: 08 5,3,4,10, 8,130,i0,4
0162 08 N 08 SiList jLenéT OF LisT
0:63 N

All Information Presented Here is Proprietary to Digital Research

53

SID User’s Guide 5 SID Sample Debugging Sessions

@ TYPE SORT.SYM
104 COMP. 0119 CONT 0139 131 18] A LiST
9162 & 0000 REB0OT 0100 SORT 0154 STAZK ERCE
0138 SW
TYPE SORT.HEX
1m100007x3301353'2.190135003Au2mv2199/
$10011000012138017€87C: 58011382

300005
+100120007€23BEDA3101CA2101: Ammmmmo
0401 3

o1 SAD008 00k EoRDAGRES

13000000000
SORT.HEX SORT.$1% Start SID with HEX and SYM files
s 1.4
END y
msJ o m) 5587 Next free address is 163, Program Counter is 100

and end of TPA is 5587

S5k 05 0) 0e 08 0a 82
0120 0a 04 Display initial tist of items to sort

#6,.ST0P Execute test program until "STOP" symbol address encountered

(0L STOP | Now at o STOP adress, examine data list.
i 0803 04 0R 08 82 ... Hasn't changed!
aiso:
where is the program counter?
méxs 100 reset PC back to beginning and try again with trace on:
s

01 3:
=01 3200 o 38 520100 P=01C5
=01 3=0000 0=0008 H=0139 5=0100 P=0108

A<01 820000 00008 H=0139 5:0100 <0104
<08 820000 0=0008 H=0139 $=0100
1 A=08 80000 D=0008 H=0139 §:0100 P=010€

: No, so_compare
; 4708 3:0000 0-0008 110139 $:0100 2:0L9 MOV €4 LSTIO, LISTie1)
G008 H=0139 $=0100 P=011A VI
0000 D=0008 H=0139 $=0100 P=01iC LXI N OhA LisT
D<0008 Hx01EA §+01C0 P=01iF 0AD
162 =01

00008 »=0120 MOV A,M N What's this?
00008 H=0162 $=0100 P=0121 INX K why did we
0=0008 H=0163 520100 ? cp MesB fetch N

=0008 H=0163 5=0100 Mo TE

020008 H=0163 $=0100 P=0131 LXI 40129 .t
Looks like we've discovered a bug! We have entered at "CONT"
with N in-the accumulator, rather than I, which is expected!

€0 SORT.ASM Back to the editor to make the changes
A Bring all the text into memory
"V Futer Verify mode for line rumbers, then find the place to change
10 *FAODRESS N
LsoLT
; ADDRESSING [, SO LOAD LIST(1) Delete the line
KT

MoV EA SLOW(T) TO € REGISTER
ST SLOAD 1 T A REGISTER Insert the
change

Terminate the editing session

All Information Presented Here is Proprietary to Digital Research

54

SID User”s Guide

o

SORT
Th/M MACRQ ASSEM 2.0
0186

001 USE FAITR
XD OF

@ TYPE SCRT.SYH
0108 CoNP
0165 ¥
0138 S4

5 SID Sample Debugging Sessions

Re-assemble the SORT program

Here's the symbol table.

0119 CONT 013¢ 1
000 REBCOT 3190 SORT

Let's try again, ioad the HEX and SYV ‘iles

Set a "pass point” at STOP to prevent reboot
Start {unmonitored) execution

01 PASS 0115 .STOP e made it to the STOP label, check valzes

e AZIC 8RO
#0000 .RES00T

Hel
0082 #130
#0.L1ST,+7
0150: 03 04 05
IISGR'

T s e
0166 010¢ 3337
It

08 0ro081 He0136 £6100 odhis oS00 Rescor

What's the value of the byte variable \?
1307 Very strange! How did that happen®
Oh well, let's look at the data values

10 38 04 08 oi'os They are almost sorted, lonks like we have
HEX

me trouble near he end of the vector,
tet's reload the machine code and iry
gain:

$20100 Program counter remains at 0100, what
o are the active pass ool
1 0116 ST0P The one at STOP remains set, let's also
w Sar monitor the SORT loop point, but not
break right away.
FF PASS 0100, SORT Here's the first time through

¢ 340008 00081 H-0138 $+0100 P-0100 L1 Lol 5w

01 PASS cnu .5T0P ¢ stopped immediate’: i€ oot look gooc:
2007

0000 .REBOOT
IVSGM‘ HEX

o
o166 0100 B

B ons 5100
FE 0100 SORT
40

2035 950008 0=0081 #0136

0 P=0116 MP 0000 RE!

know lh(re should have been sevaral (oops
trough the SORT lapel, since the daty

e Lots ty again — reload the code
Inotemat the reload (& necessary here. since
the data (s initialized n the code are

What active pass poins e
e e Peagarsing hack to the

original listing, it appears that the code
preceding the STOP label is incomplete:

rere snould e & conditonal amp. beck

the SORT label - maybe that's why the program
never makes it back.

All Information Presented Here is Proprietary to Digital Research

55

SID User”s Guide 5 SID Sample Debugging Sessions

@Ea SRT.ASM Oh well, back to the editor for
“hau quick fix. Append ol text (#4), a

“£STOP: Gnter Veriy mode (V). Then find STOP.
‘ot
JSTOP P RES0OTSRESTART ccp
up one tine ()
; END OF SORT PnDCESS REBOOT
i

and enter insert mod
s cont TGN Ror i
;ctl-Z, and "retum”

wait, T forgot the cii-Z. now 've got the £ command in
- my input buffer. Type the cti-Z, go back up one line,
€ delete the E, then end the edit

T

END OF SORT PROCESS, REBOOT
1 *E OK, we mcde the change, now re-assemble

AC SORT Invoke the macro assembler with SORT as input.
P/M MACRO ASSEM 2.0

0;

0014 USE FACTOR

ENO OF ASSEMBLY

@m SORT.HEX SORT.SYM Here we Go again, [sure Hope this s the
Sio v 1 tast time (but it probably isn't).
NEXT B END
0169 0100 5587
4P SORT, FF. Set a pass point at sort, with a high count.
s als0 set a pass point at STOP witn count 1, this
will stop the first tima through
FF 0100 .SRT i siop the o

01 0119 570
i Execute the test program

R Pass 0100 sotT First time through SORT label
----- 400 820000 010000, H+0000 $=0100, =010 Lx1 #,013¢
o1 pasS 0lig SO pped again! Arrggh!

=2-E+ A=00 Ba UDSA D=l 0007 N'QUE $=0100 P=0119 JMP 0000 .REBOOT
*0000 .REBOOT
Lets took at some values.
o
wns N=8, tooks better than dast time
0100 01 01 03 04 040507 0808......

These values look o bit
strange?! Try agai

"[XY 2CEND
0'59 UAM 5537
F Machine code reloaded, display initial values:
UXEQ 05 U] 04 0A 08 82 0A 04
Lo
s Lets take a laok at the process of switching
HE LA OUF T g data ttems - o cods appears doun Seiow
2}26 M‘ﬂv\f the "CONT" label, so we'll disassembie a
rtion of the program.
G138 U B0 rsPorvion of e program
0125 0AD
0126 MOV AM
0127 INX W

0128 CH ¥
0129 JC 0137 .INC
012C 22 0137 .INC!

O12F WOV M Here's where the switch occurs, fet's set o pass
ety point here and watch the data addresses

FE 0100 .SORT

01 0119 .sTOP

FF 012F

All Information Presented Here is Proprietary to Digital Research

56

SID User”s Guide

5 SID Sample Debugging Sessions

5 Hore's the first pass througn SORT
“JDSA D=l 4}007 rl OVJE $=010¢ P'Ol\}ﬁ X' ,4135 S

O e S BRE

=006A D= DDOG H=1 0'5; 5= OIOU J MoV C o

at 162, lonk: grmd

FE PASS Switching
Tan3% 3:0003 D=0001 42056250100 <,
£ P 55 0LF 164 is the next to e, o
A 320004 0=0003 H=0164 $:0100 P=01ZF OV

0.41ST

Nestoad

All Information

- 3:05 §-0004 D=0001 h=213€ 5=0100 P

oF 165 1s orodably the next one.
82 320008 0=0008 - 0156 30100 P-OLZF W04
what's wrong? This section’ of

s e 15 ark.

Clear ail the pass points, and reload
the machine code for another est.

H,0160 .LIST
[}

AN Here's the code where the element
switching ocours, let's watch the
ogram switcn the first element;
I

2137 .
0137 LINCT

OK, hero we are, ready to test and
puich, |f necesen
<01

o 017 LIt
uou o,uum. mln. 210137 LaNcl
0001 My T
2 35003 - +0000 oy
05 8+0003 0=000 13K o
05 2:0003 S:ai0 ihigs Mr, ¥, LIST
0% 320003 D=0000 9 3 H.OLIE S
§5 310003 00000 401 $-0100 P13 DR WOl .54

Well, that went nicely - elements switched, SW=i
05 0A 08 82 0A 24 .
The data tooks good At this paint.

Proceca o the INCI label

< Here we are, let's look at the data:

35 08 3A 08 82 0A 03 ...,

£5007 40 Looks Good, trace past the ‘abal and break

5 820003 D=0000 H=0L3E $:0100 P:0137 LXI H.OWIF .1
Go o the INCT label again.

Here we are (again), how's the datal

Loaks good, proceed past

And toop again . . .
Here we are ‘again), how's the cata’
Lonks sooa. this s getting morotonar, tet's
o for 1t! Stop at eitner SORT or STOP
Egd! Here we at the the STOP label. Why
ren't we making it bock to SOR
5193 06 04 05 07 8 €3

Tski Tok The data's messed up agoin

Presented Here is Proprietary to Digital Research

57

SID User’s Guide 5 SID Sample Debugging Sessions

SISORT HEX Let's reload and try again.
”

NEXT PCEND
0169 0100 5587
Gl]ﬁ IR M Here's where the switsh count is incremented

LXTH,O019F .1

:E,An Execute the program and break
¢ W+ 1

013

) LIST,"l Look at data values:

stéor 03

Use U to move past break address
-1 =05 B<0003 D=0000 H-013E 50100 P=0136 IR M=01 .SW

-01:7 el s actualy easier to uss the pass point feature
f we want to view the action of the INR M,
e since the ? command stops execution after the
pass point fs executed.
2455 9136
-1 #205 80004 D=0001 H=013E $=0100 P=0136 (MR #=02 .SW
a7 et SW = 2, iooks good.
ovsu X Data values look goo
Fets Shange 5 so7 Sater velue s0 the program
Giloa e doesn't loop so many times: 4 is a good rumber.
0133 0A . End input with "."
4 "GO" to pass point

?AS5 0136 Here we are, switch value is incremented:
-1 4=0A 8:0008 0=0003 H=013€ 5:0100 P=0136 IR M=03 .SK
s Inct Stopped at next instruction.

030405 08 ... Data vatues s0 far.

SW value at this point is 4.
et guateh ¢ run for o few steps:

4208 8=0008 0=0003 H=013€ $20100 P=0137 L. o Lt
3208 810008 0-0003 H-OLIF 3:0100 poo13n 1k

2208 80008 0-0003 H-0L3F 30100 P-0110 P 0i0K Cove

208 820008 D=0003 KAOLIF $-0100 P=010A LOA 0168 .
H=0L3F $=0100
2 H=0LIF 520100
He013F $:0100
2 HeO13E 520100
H=013€ 520100
S 020003 H=013€ $=0100 P=0:

06 1
oulc_.con
H,O1E Sk
AN SH

Iy
011 .CoNT

4204 820008 D=0003 H=013€ $=0100 7:011C LOA OL3F .1
Very interesting!

Wwe s be
Levs B BIRGK iR RAT R ‘W!F g "SORT.

22 *OLT verify mode, find "/)RA’ and make the chnng
2 GM A SEY FLAGS
2? - 'return” to move down one
CONT UHY"NE IF VOY EQUAL
21‘ 'SCUNY‘ZSM'”OU Subs itute SORT for CONT
N2 SORT JCONTINUE IF NOT EJUAL

“retun” to move down another line

return’ again.
€0 OF SORT PROCESS, RgscoT
End the edit

All Information Presented Here is Proprietary to Digital Research

58

SID User’s Guide 5

(B o
,

ACRD ASSEM 2.0

Call out MAC for another assembly.

014 CTeR
N0 9F Assmu

Just for a litde variation, well create a
FIRST A00RESS 0100 SORT.CON file for testing wider SID.
ADDRESS 0158
0047
TTEN 0L

510 SORT. S0 SORT. 14
s 14 Back to SID, using the COM and SYM files

o pass point at STOP to prevent raboot
40,0187 s the orignal dat
TR R
16 Unmon Go
Qo We diat gec ontrol dack, thare must
be an infinite loop - we can get control back by
3P M YERS 1.2 Forcing o front panel AST. 7 (iterrunt 7
or simply bail-out with a cold start.

13 SORT. COM SORT.STH
Lets start agein, but be a litie more selective

31
iy in setting breokpoin

EXT 7L END

180 010C 5587
#P.STOP Set a pass point at STOP, as before
4P SRTFE and one at SORT with a pass count of 255.
I3 O with pass trace disabled.

0L 7SS S0, Stooped with 155 pasees Gveueh SORT, < oo many!
- A=01 3=006A 0=00FF n=013E $=0100 P=01C0 LXT

3
T.eshel How's the data?

Hmimm... iooks like N was destroyed.
Qcoc REBOOT 40

=[
ncc.» REBOOT 40
oM Theres a good posslllity that we're running off

end of the LIST vector into the variable N,
63" %00t the. COMP. el and wateh the et test.

B2006A D=00FF H=0LIF $:0100 P<010A LDA 0168 N
0 8-006A 0=00FF H=013F 5=0100 P=0100 MP =00
£20064 0=00FF HeOLF 5-0100 P=010E NI OLLC .cONT
0 840064 D=0FF H=01JF $+0100 P=Olll LXI H,013¢ .
“30 80064 D-00FF H=013E $0100 P=0113 MOV ALM .SK
Hey, this isnt going to work! We'll be comparing
LIST(N-1) with LIST(N), but the last LIST element is

¢ LIST(N-1). Let's try o quick

All Information Presented Here is Proprietary to Digital Research

59

SID Sample Debugging Sessions

SID User”’s Guide

@sm SERT. 0N SORT. T
10 VeRs |

SYMBOLS
NEXT PC
0180 0100 3387
#L_comp

CoMP:
0104 L0A 0163 .
o cie

0101 ¥
G0E T 0liC con
11 UKEOH013E
9Lls MOV A,

0200 L0A N
0203 0OCR A
0204w
0205 Jnz .CONT
0208 oW 111
1205 55

P SO
mu e

0is 0s +
0169 00

FF PASS 020
£ a003 340000 0
A

FD PASS 0205
-1 &
FC PASS 0205

5 SID Sample Debugging Sessions

Let's re-enter SID with a clean memory
image, and look at the machine code
below the "COMP” iabel.

Hore's the reference 1o N - let's change tnis
N-1 with a "hot patch” in memory, to see

1 e, e ety 9o back 1o the

¢ original source program and make the

necessary ciianges. We'e nat using the area
of memary starting at 0200, so patch o jump
over the LDA instruction, and fix-up some
patch code.

Replace the LDA instruction which now Pus 1P 200

-1 accuriator (N beti

fimp o CONT \f contienrg, stnarvice
fump back to the next iniriciion in sequence
after the patc

Set s pae point (0 watch the INZ toke place
& aten any retms to tne CCF.

Set a pass point at the patch retum address.
Reduce the size of N for this o5t to 4.

Everyzh\ny is ready, let's go...

¢ pass through the pa
noa AeD13F Sa0100 Prods JMZ unc oo
that time,

T A03 840003 0=0000 n-unr ssmoo $=0205 JNZ 518 conr
Wen

. next

in
203 50004 D=0001 MDF S T

And so-forth:
;381 Re03 320004 010002 e onr $20100 p-0205 ML OL1c .CONT
be the end

FE_PASS 011

C e 2003 8e0008 020
F8 PASS 0205

£l 4=03 820004 D=0
FA PASS 0205
----1A=03 820004 D=0
F9 PASS 0205
FalgPe0n 8e0004 0o0
F8_PASS 0

of one cycle:
anz LeO013F 540300 pe01 T X1 0L W
Now back through the patch code:

002 H=0L3F $-0100 7+0305 i OLLC .coNT
000 H=013F S=0100 P=0205 JNZ OL1C .CONT

001 H=013F 520100 P=0205 JNZ OLLC .CONT

e s 80004 010062 H-OL3F <0100 £+0206 WZ OLIC .CONT

FE_PASS 011

LhE e 520006 020002 He013F 520100 PeOLLL LXI

witist LeoN-1

0166: 6304 05 oA .
-UFFF

A u %03 820004 D=0
804 44

el

0002 42

All Information Presented Here is Proprietary to Digital

H,013€ .5k

This 13 getting monontonous again,
push the "raturm Key 1o stop.theaction,
Data tooks good, run in monitored mode:

002 H=013€ $0100 9-um MOV AM
Push the "reasn” key to abort sarly.
Value of N s st 4 (that's nice’

Value of I'is currently 2. program
should have stopped, but didn't for some
reason.

60

Research

SID User”s Guide 5 SID Sample Debugging Sessions

$10 SORT.COM SIRT. 51
! Let's try anotner approach. Suppose we

nstsucs, 3 Tpelly friviad, paser, we'l set
usrm = a LIST(2) = 1

0160 I3 0

0151 03

0152 4.

.5700 Things are ready to go, run completely traced,

HTFFRE

3-0000
820000
320090 0-3000 4
320000 0=0000

20100 LXI %013 5K
Px0103 Wi M01 .SW
0 220105 X HIOLIF L1
P=0108 WIT .00 .1

820000 0=0000
80000 0=0000
820000 0=0000 =

P:0L0A LOA 0168
0D CYP M=) .
budioe e ouic four

820000 D=0000
$20000 b-0000
80000 0<0000

100 PeOLLC LA GLIF .1
0 peoll” oy ¢

ek
P=0129 937 et

itched:
820000 uaomm 3 Lo
820000 D=0000 i o0
343000 D-00G0 H-0L3F $-0100 P-0133 Bion o
820000 0:0000 HOL3F 5-0100 #2014 0158 .
2 820000 D=2000 P w01 1
$20000 D=0050 H-oL3F Su0150 pocioe allc conT
202 820000 00000 Ui L% 0 P=0L1C LA O13F .1
372000 0-0000 H-0L3F 50100 p0LiF A
54000 0-0004 10131 3-0100 100
W60 LIST

820000 0=0001 H:0}60 3:01C0 P=0125 DAD
8-0000 0=0001 H=0]61 $:0100 P=0126 MOV
820000 D=0001 H=015] 5:0100 P=0127 INX
320000 0+0001 H=0162 §:0100 P=0128 CMP M=OX

0 ot

9
€
0
820000 0=0001 H<G13F $:0100 P=0122 LI H
0
A,
H

g POL37 LXI H,OL3F .1
820000 0=0001 H=C13F P=OL3A IR o0l .1
840000 0=0001 H=013F $:0100 P=0L38 JMHP DLCA .COMP

820000 0=0001 H=013F §%0100 P=010A LDA 168 .

8:0000 0=0001 H<Q13F $:0100 P=010D (¥P M=02 .1

80000 0=0001 H=013F $-0100 P=0I0E JNZ OLLC .CONT

100 P=0ILL LXI H.0[3E .54
peolld Moy A
0 -0

Si00 skt

515000 D000t h-012E 520100 o0Lis n
oo "Sare duseened 50 aot set 30 07
340000 0x0001 H=013€ $-0100 P00 LXI W.OLJE .SW

All Information Presented Here is Proprietary to Digital Research

61

SID User’s Guide 5 SID Sample Debugging Sessions

ORTASH
SaRTEH20LT Back 1o the editor- change the
RT: XD A entry code to initichize S¥

[N FETE
*251120!70LT
1,0 3SW= 0
[FEE—
wiooan
STASE S s L FIRST TINE THY
100 E
¥ MACRD ASSEM 2.0
pitis Re-assemoe, again
J0LH USE FACTOR
F ASSEMBLY
/10 SORT.HEX SORT.SYM
VERS 1 We've fized the SW initiclization problem, wnich
smms should Ralt the program at the proper fime, St
e we may stil have

0 g7 LIST test (rememoer that
ere's the initial data:
'ﬂosczoaumsammms

GO, tnmonitored Lo the STOP (how's . for
St conf ider
e

LIS, mac it, here's the data
b 65 \1) 54 04 05 95 28 08 0A 06 73 38
270 ata is sorted in ascending order, but there's ton
-xsaa‘ ek much of it! We still have the problem that X i
altered during execution.

P60 Lot read and ke awe we fnow vt he
$ gr?blem 5=
P17 Bad point ot SORT, check N

0L P35S 0105 ST Here's the firt pass trough SOKT:
- 0008 ¥<0143 $=0100 7-3[05 LXI W0

s
'J‘ Bronk Gt 0108, check value of N:
Gg“" " OK initially, continue the execution with G
105 .SORT We have passed throush the data once
-~ 4«75 B002A D=GO74 4+0113 $=0100 P=0L0S XI H.0L42 S4

N nas bean altered, wnioi we oxpected, since we
are testing LIST(st LIST(N) and per
switeh i norderec

Lets eload and sespe in on the prodlem:
© the point where [Secomes

0105 ST Oopet T e initiat pass ot s mu e
4201 50024 0=0074 =0143 30100 2-2105 LX[H,0143 .34

Clear ail pass pounts

Now. try agaln:

Stopped at fist eniry fo
18, tonks good.

K vatue of N

Go 0 the CONT iabel. then 509 at ING

All Information Presented Here is Proprietary to Digital Research

62

SID User’s Guide

013C L INCI
=

0008 #8
#P.INCL6

o1 pass olsc

@m: SORT
p/M MACRO ASSEM 2.0
otaf

001K USE FACTOR
END OF ASSEMBLY

5 SID Sample Debugging Sessions

Back at INCI row. Check value of N

Remains at 8. If we keep (his up, well be typig

break adresses all day. W can run the next few passes

hrougn INCI automatically by setting @ pass count (use 5

in this case), then run with -G to disable intormediats
aces. We now stop 6 iterations later:

4 0=0006 H=0143 50100 P=013C LXI H,0143

Check N: remains at 8, then

check I to compare passes: 1<0,1,2,3,4,5.6 has been
executed. We are now about to set [= 7, but the test
at COMP is "JNZ" which allows execution one too many
times (which we already know about).

Back to the editor, change the end of LIST test
to compare I with N-i rather than N.

wa N SLENGTH OF VECTOR
“return® to go to next line
oM {CHECK FOR N=I
irsert the instruction before the "CMP" opcode.
IN A REGISTER

-
(m)r(THAT N s B 2 OR LARGER)

Now a little clean-up work - there is a typo in
a comment line at address 0124 in the listing:

MOV MAGNEW LISTAI*-C-DI{IZOLT

MOV MA GNEW LIST(I+1) TO M Looks better now.
We are not using the 8080 stack, so get rid of it.

05 32 +16 LEVEL STACK

Complete the edit.

Re-assemble the source program.

@sm SORT.HEX SORT.SYM
1D VERS 1.4 Back to SID - this should be the last time!

StvaLs
HEXT
o omo 5sar

004613553 00 0a 08 82 0a 08 o6 .
3

#6,5T¢

16,5707
*O11F .STOP

40.LIST,+oN
016: 03 04 04 US 08 0A 04 82 08
He

I
0008 48
#60

Initial data:

Ok, ok. Let's try it with an "address reference’ to
the label STOP:

That's batter, now look at the data;
hooray! It's finally sorted.

Is N ok Yes, it's st

Hold it! The data is in auendmg order, dut it is
aupposed to be in descending order! This will

be an easy fix.

All Information Presented Here is Proprietary to Diaital

63

Research

SID User”s Guide 5 SID Sample Debugging Sessions

@Eu SORT.ASM
1A

SORT PROGRAM IN CP/M ASSEMBLY LANGUAGE

ELEMENTS OF "LIST' ARE PLACED INTO

DESCENDING OROER USING BUBBLE SORT
'SD(S’ZASE'IUU
ASCCENDING ORDER USING BUSBLE SORT
-scc'zclzm
ASCENDING ORDER USING BUBBLE SORT
care of that provlem.

MAC SORT 5+

Th/M WACRO ASSEH 2.0

Re-assemble with the symbol table option.
Goth use FacToR
o o Rseevecy

is point, we have checked-out this particular SORT program using this

partiutar et of dota trems Ths soes not, of course, mean that the program is fully

debugged. There could be cases which are not tested properly since we have not

have 7o negative slfecs on the program. | The iitclzation of SW 1o the value |
before the label SORT, for example, does not affect the pragram, but is superfluous.
We now Rave a program which appedrs Lo, work, Sut must underdo furiher tnets befors

it is considered a production program.

All Information Presented Here is Proprietary to Digital Research

64

SID User’s Guide 5 SID Sample Debugging Sessions

SORT PROGRAN 1N CP/M ASSEHBLY LAIGUAGE
ELEMENTS OF ‘LIST' ARE PLACED (NTO
ASCENDING ORDER USIYG BUBBLE SORT

0100 ORG 100H ;BEGINNING OF T

0000 = REBOOT EQU Q00O /M 3E50OT Searion
0100 301 Wi Al

0102 324401 STA S iSK =) FIRST TIME TRRY
0105 mnm SORT: X H,SH

0108 3 Wm0

G108 pradon SIS

0100 3600 L]

COMPARE 1 WITH ARRAY 51T
fomps ML AODRESS INDEX |

010F 3Ad0! o LENGTH OF vECTOR
o112 30 N-1 REGISTER
: [NUTE rw Wt | st 2 m et
o113 8€ FOR
0L14 c22201 S o commus e
10 0F OHE PASS THROUGH LiST
0117 214201 HOSW SN0 SWITCHES?
0114 7€ oy h s
o118 87 WA A ISET FLAGS
011¢ C20501 NI SORT CONTINGE IF NOT EQUAL
H 0 0F SOR7 PROCESS, Acsodr
o11F c30000 $T0P: REBOOT RESTART CCP
H CONTINUE THIS PASS
Con:
0122 34501 WA 1 {LOAD 1 T0 A REGISTER
0125 5F WV £ ,LDHH] T0 £ REGISTER
0126 1600 WIo 0.0
0128 214601 LI HLIST snse of s
0128 19 00 D TADOR LIST(1)
o1zc 7€ foy hw s RESISTER
0120 23 N H SADDR OF LIST(I+.
012E] SLIST(1): e
012F 03001 X INCT (SKIP IF PROPER OROER
H CHECK R, LIST(L) w LIST(LoL)
0132 cA3001 INCLSKIP IF EQUAL
B LTENS ARE QUT OF ORDER, SulTOH
0135 4€ 8] LisT(1+1) T0 ¢
0136 77 o e e o
0137 28 ocx K SRDOR LIST(D)
o138 71 MOV MO INEWLISTLD TO M
0139 214401 LT MK SHITCH COUNT IS 5K
o3¢ RN FEIEE R

INCI: {INCREMENT INDEX I
0130 214501 O H

0140 34 [il
0141 C30FO1 M comp ;70 COMPARE [WITH N-1
DATA AREAS
0144 0s JSWITCH COUNT
0145 08 1 €;
0146 0503040A08LIST: 08 §,3,4,10, 8,120,104
014€ 08 Ne 08 $-LIST LENGTH OF LIST
oleF)
010F COMP 0122 CONT 0145 1 0130 IKCT 0146 LIST
OL4E N 0000 REBOOT 0105 SORT OLLF STOP 0144 sk

All Information Presented Here is Proprietary to Digital Research

65

SID User’s Guide

5 SID Sample Debugging Sessions

@310 HIST.UTL Stert SID with the HIST utitity
0 VERS 1.4
TYPE MISTOGRAH S0UNDS 100,200 Monitor 0100 trougn 020c.

2
DISPLAY

sz.a Entry point addresses in HIST.

4130” HEX 30” S Load the SORT program with symbuis.

smsm s

Program ioaded, now loading symbols.

¢
*m axoo B

Permanent break at STOP uddress.

:Pﬁam.. Execute to "steady state” concitions by

passing the SORT label three times tafare break.
S rovents.imtermediats pass traces.

01 PASS €100

e

02 820004 D=0006 H=013F $=0100 P=0i00 LXi W,013F

0103 We're now at the third pass through SORT.

4P S0RT Remove the pass point at SORT, 7un monitared

AUFFF,COLLECT {7, (s poins, o OFFF steos, ollct data
4202 80008 D=0006 w=013¢ 32010 20103 Wy1” ot

0127
C.DISPLAY
HIST0GRAM:
A00R
0100 4evr

a
D108 *xsesninensn

Stopped after OFFteps, display collectzd dota

RELATIVE FREQUENCY, LARGEST VALLE = 0309

T most frequently executad address

otec
2110

114 sxesens

S

DL2d somamraamireresssessrsssessensrnne

2128
alzc +
0130
013

0138 *eevvasrrcrmransnsnassnsirmeranes

013C ##arewsnsrn

0200 +

All Information

What's happening around the most frequently erecuted aciross?

1 8.8
SNE 0115 conT ThS i where the end of LIST tast tases place
UK M0LaF s 50 ¢ s reasumable that this sgment of crie wouid

ol A be executed heavily. We couid improve performance
. reducing the length of this segment. The vaiue

e 100 sorr of N-1 could, for example, be maintained in regisier

throughout the computations, while the vaiue of
P 0000 mm,l could be kept in register E, with 00 in D.

There is also heavy szecution around locatior 011C.

0P
LOA QL0 .1 This is where we go on each element comparison
MV EA whether we switch elements or not.

L K061 LIsT

0A0

MOV A

N

PN

3¢ 018 vl

J 0138 LINCT

Presented Here is Proprietary to Digital Research

66

SID User’s Guide 5 SID Sample Debugging Sessions

sw TRACE, UT! Load the TRACE utility with SID.
it 4

0 VERS L.
INITIAL = 5321
COLLECT = 5324 TRACE entry points.
DISPLAY = 5327
READY FOR STHBOLIC BACKTRACE Idicates ot sssmblediassentle s oresent
FISORT.HEX SORT. ady the SORT program and symbol table.
" oad program and symbols to memory.
SYHBOLS
NEXT BCEND
0600 0100 5287
570 Permanent break at the STOP label.
#2.CONT, 3 Pass through CONT three times before stopping.
JUFFFF. CougeT Untrace mode, print intermediate pass points.

0 820000 9=0000 1<0000 S+

03 PASS uun <CONT.
7 820000 D=0000 H=0140 $=0100 P=0110 LDA 0140 .1
o2 PRks oLl onT

£13:07 8-0003 00000 #0140 $:0100 70110 LOA 0140 .1
01 PASS 0110 .CON'

T a0 86004 0-co01 #0140 5:0100 POLID Dk 0140 1

d on the third pa:

4C.DISPLAY Dietay. ihe ‘bocktrace from CONT.
BACKTRACE :

00 P=0100 LXi #,013F .SW

3 Most recently executed instruction.
Clip oA 0140 .
aeF Mz ot towr
WP
006 ocr A

010 LOA 0169
e e ol Lo

0138 Lx1 H,0140 .1
7 IR M
0134 LXI H,013F .SW
0133 MOV M,C
0132 0CX H
MOV M.A

0 MOV G
o120 Jz 0i38 LInct
0124 JC 0138 LINCI
0129 M M
0128 INx
0127 MOV AM

6 Al

0123 M1 H,0161 LIST
0121 M1 2,00
0120 MOV E.A
LA 0140 .1
010F JNz 0110 .CONT
E ¥ M
0100 0GR A

covp: Least recently executed instruction
0104 LDA 0169 .N {aborted with

All Information Presented Here is Proprietary to Digital Research

67

SID User”s Guide

sm
10 VERS 1.4

-2
#TTRACE.UTL
INITIAL = 5921

FISORTHEX SORT.S)
#

bt urm coum

o1 7hgs 0130

"IN EFFECT, ADDRESS BACKTRACE
VM

8=0000 0=0000 H=0000 0100 P=0100 21 O13F

5 SID Sample Debugging Sessions

Start SID without loading any programs.

Remove ¢ cusembler/disassembler package.
Ready the TRACE uf
Read the TRACE Mckagt to memory.

TRACE entry point addresses.

No asxemblcr/d(mmmb(er bresent.
Ready the SOR'
Read to mmor-,»

Permanent break at STOP address,

pass point at CONT with pass count 3
monitored, collect data, no intermediate

pass {nformation.

51351 410750004 0:0001 0140 $+0100 =010 34 014D
012

[uxva
most

ird pass through CONT

recent addresses

3150 G16r 010 010D 0108 013¢ 0138 0138
0137 0134 0133 0132 0131 0130 0120 0124
0129 0128 0127 0126 0123 0121 0120 011D
010F 010€ 010D 010A 013C 0138 0138 0137
0134 0133 0132 0131 0130 012 012A 0129
0128 0127 0126 0123 0121 0120 0110 O10F
O10€ 0100 0104 0108 0105 0103 0100 least recent address.

SIMPLE BDOS OUTPUT PROGRAM

0100 R $BEGINNING OF
0000 = REBOOT EQU dooon iREBOOT ENTRY POINT
0005 = 00 EQU 000SH iBOOS ENTRY POINT
0002 = cowouT EQU 2 $CONSOLE QUTPUT #
0100 315401 WL SPSTACKILOCAL STACK
0103 €31501 OMP START [START EXECUTION
VRCHAR: MRITE CHMRACTER RON REGISTER A
0106 0£02 £,CONOUT; CONSOLE QUTRUT #
0108 5F . $ CHARACTER
0109 €30500 WP B00S RET Hcuo 505
WRHSG: URITE HESSAGE STARTING AT ML TIL 00
010¢ 7€ T CHARACTER
0100 87 ORA
ol0¢ €8 .munn IF S0
010F C0060L B wosn lOmieRMsE wire 17
0112 €30c01 OMP WRMSG iFOR ANOTHER CHARACTER
STRT: ;BEGIMNING OF MALN PROGRAN
0115 212401 oA SPART 1 OF MESSAGE
0118 €00C01 Gt IRITE
0118 212401 i n.munsc PART 2 OF MESSAGE
O11€ €00CO1 CALL WRM:
0121 zmm LXT H, WASHHSG IPART 3 OF MESSAGE
0124 €00COf CALL 56,
G139 E30000 swv‘ T $STOP THE PROGRAM
DATA AREAS
WALLANSG:
0124 5741ac4ca1 08 WALLA ¢
IASHMSG :
0130 57415348 8 WASH"
0134 05, 32 §16 LEVEL STACK
STACK:
0154
All Information Presented Here is Proprietary to Digital Research

68

SID User”s Guide 5 SID Sample Debugging Sessions

@sm 19.hex 10.51t
Load the test program using the HEX and SYM [lles.

Siheocs

NEXT P EN

0134 0100 5549

#6, WRNSG GO from 0100 to tne first call on WRMSG
*010C LWRMSG Now trace from the WRMSG subroutine:
#7100

A=00 820000 20000 H=0124 S=0152 P010C %OV AM .WALLAMSG
840000 D=0000 H=012A 5x0152 P=0100 ORA A
820000 0=0000 H=012A $=0152 P=0I0E RL
850000 020000 H=012A $=0152 P=O10F CALL 0106 .WRCHAR First
call to R
7 820000 D=0000 H=0124 $=0150 P=0106 MVI C€,02 with 57
870002 0=0000 H=012A $+0150 P=0108 MOV €.A
820002 0=0057 H=012A $=0150 P=0109 JP 0005 .800S
Call to BDOS
7 820002 0=0057 H=012A $=0150 P=0005 MP 55AA Function 4 2,
820002 020057 He012A 5=0150 P=55AA JMP SCAS Character "W"
80002 0=0057 HA012A 520150 P=5CA4 XTHL
80002 0=0057 H=0112 $=0150 P=5CAS SKLO 6052 (SID code to
820002 0=0057 H=0112 50150 P=5CA8 XTHL
3-0002 %0057 H=012A $:0150 P=5CAY JuP
0 820000 0=0200 H=7938 $:0152 P=0112 JMP

HAR
")

820000 0=0200 H=7938

52 P=010C MOV AM program, with

820000 0=0200 H=7938 50152 P=0100 ORA A another CALL.
80000 D*0200 He7938 $=0152 P=010€ RZ

100 80000 D-0200 H7938 S-0154 POLIS LXI H,017A - HALLAMSG

840000 D=0200 H=012A $:0154 P=OLLE CALL 010C .WRMSG

0 820000 0=0200 H=012A $=0152 P=0LOC MOV A,M .WALLAMSG
820000 0=0200 H=012A 20152 P=0100 ORA A
7 840000 0=0200 H=012A $=0152 P=010€ RZ
820000 D=0200 He012A 520152 P=01OF CALL 0106 .WRCHAR
80000 0=0200 H=012A $=0150 P=0106 MYI C,02
820002 0=0200 He012A 50150 P=0108 MOV E.A abort with "return”

GO, skip traces
Should be ALLA ..., what happened?

56
Trace without
820000 0=0200 M-793s 520152 P=010C MOV AM
820000 0=0200 H=7938 5:0152 P=0100 ORA A
5 &

B 2
B20000 0%0200 H27938 50154 P=0121 LXI ,0130 WASHMSG
820000 D:0200 #0130 S=01s4 Paglat CALL aloc SIRHSSH
ed WRMSG, printed another "We and stopped:
520000 0=0200 m7938 Se0154 pe0i2) e 0060 REB0DT
bort with "return’ so we can restart.
520000 00200 H7338 5+0154 P-0000 oMp 103

It appears that the WRMSG subroutine is not saving the HL
register patr, noc is HL bewng incremented on each 100p.

All Information Presented Here is Proprietary to Digital Research

69

SID User”s Guide 5 SID Sample Debugging Sessions

ALOF
010F JMP 200 IWelll put a "hot patch at the end of the WRVSG
oz subroutine to save the HL pair, call the WRCHAR

o subroutine, restore the HL pair, then increment HL.

0200 We're not using the region above 200, so place patch

0201 CkLL AREHN’(in this region.

0204

020!

0206 JMP HRMSG

46100, WRMSG OK, now restart the program and stop at the first call
to WRMSG.

.omc WRMSG Here we are. HL addresses the message to print, wmch

s the default display adﬁresx /auow.g a breakpoin
Soxs 57 41 ac ac 4120 waLiA= message
0130} 37 41 35 48 56 45 5255 20 20 2 34 24 1 00 02 WASHVERS 1.451

#7100
8201
820000
820000 #0124 $-0157 7-OL0E RZ is 57 = "W
$-0000 D-0000 mo‘zA $=0152 P=010F JWP 0200 ~ Now in patch
8-000 A §20152 P=0200 PUSH H area.
5-0000 0-0000 0124 Se0130 0301 CHARW = character

80000 0=0200 H=7938 $-0150 P=0204

820000 0=0200 H=0124 §=0152 P=0205 INK siove to next

00 80000 010200 H-0128 $-0152 p-0708 WP O10C s haractar
ping back.

-1-€- A=00 80000 D=0200 H=0128 S=0152 P=010C MOV A,M
-2-E- A=41 8=0000 020200 H=0128 $=0152 P=0100 ORA A
ATél :0000 -0200 H-0128 $0152 POLOE 7

7
1 820000 D=0200 H=0128 $=0152 P=010F JMP 0200
T R-al B-0000 0-0700 H-0178 50152 pe0200 Puoh § Here's the next
0=0200 H=0128 $=0150 P=0201 CALL 0106 .WRCHARA Character
-2-E- A=00 8=0000 D=0200 H=7938 S=0150 P=0204 POP H (="A")
-2-E- A=00 80000 0=0200 0128 §=0152 P=0205 INX H
~1-E- A=00 820000 0+0200 H<012C $=0152 P=0206 JMP 010C .WRMSG

8

WRMSG:
~Z-E- A*00 820000 D=0200 H=012C $:0152 P=010C MOV A,M

0 Abort with "return”
#P.5T0P o Jermanent break at STOP, then GO from
inning of
SALLA WASHIERS 1 dSIuALLA uAsnvtns muAsnvzns 1.051
PASS 0127 STOP Things took better, but 00" byte missing on messages.

%0 a0 00200 H=013¢ $=0154 P=0127 JMP 0000 .REBOOT
40000 ,REBOOT
f5 NG Place o 00 byte at the end o oo medsage.
0126 (leave this value, 41 = "A"
ol zu 0 (changed to 00 from blank)
b Cnsiians Place 00 byte at the end of the second message.
0134 56 0
0135 45 |

at STOP remains set, GO from the beginning.
VALURALLAWASH ook go0d, we mow have enough information to
01 PASS 0127 .ST0P o back and change the Source program using £D.
SLGE- 400 80000 00200 #0134 50154 P20127 P 0000 AESOOT
0000 REBOO
0

All Information Presented Here is Proprietary to Digital Research

70

Index

A H

address, 5

Hexadecimal value (H)
ambiguous references, 25

command, 22

Assenble (A) command, 15 HIST Utility, 44
assembler/disassembler histogram, 44
module, 16
I
B

INITIAL, 43

backtrace, 46, 47 Input Line (1) command, 23
binary delimiters, 12

bubble sort, 51 L

byte format, 18

L command, 46

L command output, 27

line editing controls, 6

Call (C) command, 17 List Code (L) command, 27
COLLECT, 43 literal character values, 10
COLLECT entry point, 48 literal decimal numbers, 9
command letters, 7 literal hexadecimal numbers, 9
command line, 5

command parameters, 7 M

commands, 5
CPU flags, 40

c

memory organization,
Move Memory (M) command, 28

D
9
data collection, 44
default file control block, operation code, 37
24, 25
DISPLAY, 43, 47, 48 P
Display Memory (D) command, 17
DUMP, 48 Pass Counter (P) command, 28
pass counts, 28,
E pass points, 28, 47, 48
PIP, 34
entry points, 43 program load, 35
error messages, 2, 5, 16, 34 program segments, 32
Examine CPU State (X)
command, 40 Q
F qualified symbols, 12

Fill Memory (F) command, 20
G

Go (G) command, 20

71

R

Read Code/Symbols (R)
command,

register trace, 30

reinitialization, 44

relocation, 1,

report generator, 33

ROM code, 38

S

search and match procedure, 12
Set Memory (S) Command, 35
symbol,

symbol file error, 35

symbol load, 5, 35

symbol table, 5

symbol table files, 34
symbolic expressions, 7, 9, 12
symbolic references, 11

T

Trace Mode (T) command, 16

trace process, 37

TRACE Utility, 46

trace without call
function, 37

L

unary delimiters, 12
Untrace Mode (U) command, 39
up-arrow operator, 1
utilities, 43

utility functions, 3, 32
utility load operation, 43

W

word format, 18

Reader Comment Form

We welcome your comments and suggestions. They help us provide you with better
product documentation

Date —____ Manual Title Edition

1. What sections of this manual are especially helpful?

2. What suggestions do you have for improving this manual? What information
is missing or incomplete? Where are examples needed?

3. Did you find errors in this manual? (Specify section and page number.)

COMMENTS AND SUGGESTIONS BECOME THE PROPERTY OF DIGITAL RESEARCH

NO POSTAGE
NECESSARY

F MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS / PERMITNO 182 / PACIFIC GROVE. CA

POSTAGE WILL BE PAID BY ADDRESSEE

10 DIGITAL RESEARCH"
P.O. Box 579
Pacific Grove, California
93950

Attn: Publication Production

	Front cover
	Title page
	i
	Copyright
	ii
	Foreword
	iii
	Table of Contents
	iv
	v
	vi
	Section 1
	SID Operation Under CP/M
	1
	2
	3
	4
	5
	6
	7
	8
	Section 2
	SID Symbolic Expressions
	9
	10
	11
	12
	13
	14
	Section 3
	SID Commands
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	Section 4
	SID Utilities
	43
	44
	45
	46
	47
	48
	49
	50
	Section 5
	SID Sample Debugging Sessions
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	Index
	71
	72
	73
	74
	Reader Comment Form
	
	Back cover

