
  

  

      

  

  

  

  

  

  

  

  

     



Symbolic Instruction Debugger 
Productivity Tool 

Reference Manual 

for the CP/M-80™Family 
of Operating Systems 

Copyright © 1978 and 1981 

Digital Research 
P.O. Box 579 

160 Central Avenue 
Pacific Grove, CA 93950 

(408) 649-3896 
TWX 910 360-5001 

All Rights Reserved



COPYRIGHT 

Copyright © 1978 and 1981 by Digital Research. All 
rights reserved. No part of this publication may be 
ceproduced, transmitted, transcribed, stored in a 
retrieval system, or translated into any language or 

computer language, in any form or by any means, 
electronic, mechanical, magnetic, optical, chemical, 
manual or otherwise, without the prior written 
permission of Digital Research, Post Office Box 579, 
Pacific Grove, California, 93950. 

This manual is, however, tutorial in nature. Thus, 
the reader is granted permission to include the 
example programs, either in whole or in part, in his 
own programs. 

DISCLAIMER 

Digital Research makes no representations or 
warranties with respect to the contents hereof and 
specifically disclaims any implied warranties of 
merchantability or fitness for any particular 
purpose. Further, Digital Research reserves the 
right to revise this publication and to make changes 
from time to time in the content hereof without 
obligation of Digital Research to notify any person 
of such revision or changes. 

TRADEMARKS 

CP/M is a registered trademark of Digital Research. 
ASM, CP/M-80, DDT, MAC, and SID are trademarks of 
Digital Research. Intel is a registered trademark 
of Intel Corporation. 

The Symbolic Instruction Debugger Productivity Tool 
Reference Manual for the CP/M-80 Family of Operating 
Systems was prepared using the Digital Research TEX 

Text Formatter and printed in the United States of 
America. 

  

  

REKKERRKEKKEKRKEEKERKEEKKKKKKRKEKKKK KKK KKK 

* Fourth Printing: January 1982 * 
REKEKKKEKEKKHEEKKKAKKKKKEKRKKEKKEKKEKKKK KK ERK



Foreword 

  SID™, the CP/M® symbolic debugger, pands upon the features 
of the CP/M standard debugger described in the CP/M Dynamic 
Debugging Tool (DDT™) User's Guide and provides greatly enhanced 
facilities for assembly level program checkout. Specifically, SID 
includes real-time breakpoints, fully monitored execution, symbolic 
disassembly, assembly, and memory display and fill functions. 
Further, SID operates with "utilities" that can be dynamically 
loaded with SID to provide traceback and histogram facilities. 

  

Section 1 of this manual describes the command forms that 
initiate SID and the command lines that direct the actions of the 
SID program. Section 2 describes SID's ability to reference 
absolute machine addresses through symbolic expressions. Section 3 
describes the commands that direct the debugging process. The SID 
utilities, described in Section 4, provide additional debugging 
facilities. Section 5 contains several examples of SID debugging 

sessions.





SID Operation Under CP/M 

sID 

Table of Contents 

Starting SID 

SID Command Input . 

Symbolic Expressions 

Literal Hexadecimal Numbers . 

Literal Decimal Numbers . 

Literal Character Values 

Symbolic References 

Qualified Symbols . 

Symbolic Operators 

Sample Symbolic Expressions 

Commands 

The 

The 

The 

The 

The 

The 

The 

The 

The 

The 

The 

The 

The 

Assemble (A) Command 

Call (C) Command 

Display Memory 

Fill Memory (F) 

Go (G) Command 

(D) Com 

Ccomman 

Hexadecimal Value (H) 

Input Line (I) Command 

mand 

a 

Command 

List Code (L) Command . 

Move Memory 

Pass Counter 

(M) Command 

Read Code/Symbols (R) 

Set Memory 

Trace Mode 

(S) 

(T) 

Command 

Command 

(P) Command 

Command 

10 

ll 

35 

36



5 

Table of Contents 

(continued) 

3.14 The Untrace Mode (U) Command . 

3.15 The Examine CPU State (X) Command 

SID Utilities 

4.1 Utility Operation. .......,. 

4.2 The HIST Utility .......2.2,4 

4.3 The TRACE Utility .....4.4.2. 

SID Sample Debugging Sessions .... 

vi 

39



Section 1 
SID Operation Under CP/M 

1.1 Starting SID 

Type one of the following commands to start the SID program. 

) SID 
) SID x.y 

SID x.HEX 

) SID x.UTL 
) SID x.y u 
) SID * u.v 

In each case, SID loads into the Transient Program Area (TPA) and 
relocates itself to the top of the TPA, overlaying the Console 
Command Processor portion of CP/M. Figure 1-1 shows memory 
organization before SID is loaded while Figure 1-2 shows the memory 
configuration after SID is loaded and relocated. Due to the 
relocation process, SID is independent of the exact memory size that 
CP/M manages in a particular computer configuration. 

  

  
  

  

(High Memorv) 
BDOS 

CCP 

TPA 

(Low Memory) JMP BDOS       
Figure 1-1. Memory Configuration Before SID Loads 

All Information Presented Here is Proprietary to Digital Research 

1



SID User’s Guide 1.1 Starting SID 

  

BDOS 

  
SID 

JMP BDOS   

TPA 

  
JMP SID       

Figure 1-2. Memory Configuration After SID Loads 

After loading and relocating, SID alters the BDOS entry address 
to reflect the reduced memory size, as shown in Figure 1-2, and 
frees the lower portion of the TPA for use by the program under 
test. Note that although SID occupies only 6K of upper memory when 
operating, the self-relocation process necessitates a minimum 20K 
CP/M system for initial setup, leaving about 10K for the test 
program, 

Command form (a) above loads and executes SID without loading a 
test program into the TPA. Use this form to examine memory or write 
and test simple programs using the built-in assembly features of 
SID. 

Form (b) above is similar to (a) except that the file given by 
x.y is automatically loaded for subsequent test. Note that although 
x.y is loaded into the TPA, it is not executed until SID passes 
Program control to the program under test using one of the following 
commands: C (Call), G (Go), T (Trace), or U (Untrace). It is your 
responsibility to ensure that there is enough space in the TPA to 
hold the test program as well as the debugger. If the program x.y 
does not exist on the diskette or cannot be loaded, SID issues the 
Standard "?" error response. If no load error occurs, SID responds 
as follows: 

NEXT PC END 

nnnn pppp eeee 

where nnnn, pppp, and eeee are hexadecimal values that indicate the 
next free address following the loaded program, the initial value of 
the program counter, and the logical end of the TPA, respectively. 
Thus, nnnn is normally the beginning of the data area of the program 
under test; pppp is the starting program counter (set to the 

beginning of the TPA), and eeee is the last memory location 
available to the test program, as shown in Figure 1-3. Although x.y 
usually contains machine code, the operator can name an ASCII file, 
in which case these program addresses are less meaningful. 

All Information Presented Here is Proprietary to Digital Research 

2



SID User's Guide 1.1 Starting SID 

  

BDOS 

  
SID 

JMP BDOS   
eeee: (Free Space) 

nann:   

(Test 

PPPP: program)     JMP SID     
Pigure 1-3. Memory Configuration After Test Program Load 

Command form (c) is similar to form (b) except that the test 
program is assumed to be in Intel © "hex" format, as directly 
produced by ASM™ or MAC™. In this case, the initial vaiue of the 
program counter is obtained from the terminating record of the hex 
file unless this value is zero, in which case the program counter is 
set to the beginning of the TPA. As the ASM and MAC manuals 
discuss, the program counter value can be given on the "END" 
statement in the source program. Again, it is your responsibility 
to ensure that the hex records do not overlay portions of the SID 
debugger or CP/M Operating System. If the hex file does not exist 
or if errors occur in the hex format, SID issues the "?" response. 
Otherwise, the principle program locations shown in the previous 
paragraph are listed at the console. 

Use command form (d) when a SID utility function is to be 
included. In this case, SID is first loaded and relocated as above. 
The utility function is then loaded into the TPA. Utility functions 
are also self-relocating and immediately move to the top of the TPA, 
placing themselves directly below the SID program. The BDOS entry 
address is changed to reflect the reduced TPA, as shown in Figure 1- 
4. Generally, the utility program prints sign-on information and 
May or may not prompt for input from the console. Exact details of 
utility operation are given in Section 4, "SID Utilities." 

All Information Presented Here is Proprietary to Digital Research 

3



SID User*s Guide 1.1 Starting SID 

  
  

  
UTL 

JMP BDOS   

TPA 

  

JMP UTL       
Figure 1-4, Memory Configuration Following Utility Load 

Command form (e) is similar to (c), except that the symbol 

table given by u.v is loaded with the program x.y. Symbol 
information is loaded from the current top of the TPA downward 
toward the program under test, as shown in Figure 1-5. 

  

BDOS 
  

SID 
  

(UTL If 
Present) 
  

SYMBOLS 

JMP BDOS 
  

Free Space 
  

Test Program 

  

JMP SYMBOLS       
Figure 1-5. Memory Configuration Following Symbol Load 

The symbol table is in the format produced by the CP/M Macro 
Assembler. In particular, the symbol table must be a sequence of 

address and symbol name pairs, where the address consists of four 
hexadecimal digits, separated by a space from the symbol that takes 
on this address value. The symbol consists of up to 15 graphic 
ASCII characters terminated by one or more tabs (71) or a carriage- 

All Information Presented Here is Proprietary to Digital Research 

4



SID User”s Guide 1.1 Starting SID 

return line-feed sequence, Note that you can create or alter a 
symbol table using tne CP/M editor, as long as this format is 
followed. 

The response following program load is as shown in command form 
(b) above, giving essential program locations. When SID begins 
symbol load, it displays the following message: 

SYMBOLS 

This message indicates that any subsequent error is due to the 
symbol load process. In particular, the "?" error following the 
SYMBOLS response is due to a non-existent or incorrectly formatted 
symbol file, 

Command form (f) is similar to (e), except that no program is 
loaded with the symbol file u.v. 

Examples of typical commands that start the SID program are 
shown below 

(b) SID DUMP.COM 
(b) SID DUMP.ASM 
(c) SID SAMPLE.HEX 
(c) SID DUMP .HEX 
(d) SID TRACE.UTL 
(d) SID HIST.UTL 
(e) SID DUMP.COM DUMP .SYM 
(e) SID DUMP.HEX DUMP.SYM 
(e) SID TEST.COM TEST .Z0T 
(f) SID * DUMP.SYM 

1.2 SID Command Input 

Command input to SID consists of a series of "command lines" 
that direct the actions of the SID program. These commands allow 
display of memory and CPU registers, and direct the execution and 
breakpoint operations during test program debugging. 

When SID is ready to accept the next command, it displays a "#" 
at the console. Each command is based upon a Single letter, 
followed by optional parameters, and terminated by a carriage 
return. Note that all standard line editing features of CP/M are 
available, with a maximum of 64 command characters. The following 
table lists the CP/M line editing functions. 

All Information Presented Here is Proprietary to Digital Research 

5



SID User's Guide 1.2 SID Command Input 

Table 1-1. CP/M Line Editing Controls 

  

  

Control Function 
Character 

Tc CP/M system reboot, return to CCP 

TE Physical end-of-line 

TH Delete last character and backspace 
cursor 

TP Print console output (on/off toggle) 

TR Retype current input line 

TS Stop/start console output 

Tu Delete current input line 

TX (Same as TY) 

rubout Delete and echo last character     
  

The T character indicates that you must simultaneously hold down the 
control key while depressing the particular function key. Note that 
the TR, TU, and TX keys cause CP/M to type a "#" at the end of the 
line to indicate that the line is being discarded. 

Various SID commands produce long typeouts at the console (see 
the "D" commend which displays memory, for example). In this case, 
you can abort the typeout before it completes by typing any key at 
the console (a "return" suffices). 

The single letter commands that direct the actions of SID are 
typed at the beginning of the command line. You can enter commands 
in upper-~ or lower-case, Table 1-2 summarizes the valid commands. 

All Information Presented Here is Proprietary to Digital Research 

6



SID User’s Guide 1.2 SID Command Input 

Table 1-2. Command Letters 

  

Letter | Meaning 
  

Assemble directly to memory 
Call to memory location from SID 
Display memory in hex and ASCII 
Fill memory with constant value 
Go to test program for execution 
Hexadecimal arithmetic 
Input CCP command line 
List 8080 mnemonic instructions 
Move memory block 
Pass point set, reset, and display 
Read test program and symbol table 
Set memory to data values 
Trace test program execution 
Untrace (monitor) test program 
Examine state of CPU registers M

A
H
A
D
V
E
M
H
R
M
O
A
D
O
Q
N
Y
S
 

    
  

Although the details of each of the commands are given in later 
sections, nearly all of the commands accept parameters following the 
letter that governs the command actions. The parameters can be 
counters or memory addresses, and can appear in both literal and 
symbolic form, but eventually reduce to values in the range 0-65535 
(four hexadecimal digits). 

As an example, the "display memory” command can take the 
following form: 

Dssss,eeee 

where D is the command letter, and ssss and eeee are “command 
parameters" that give the starting and ending addresses for the 
display, respectively. In their simplest form, ssss and eeee can be 
literal hexadecimal values, as shown below. 

D100 ,300 

These values instruct SID to print the hexadecimal and ASCII values 
contained in memory locations 0100H through 0300H 

Although you can usually refer to program listings to obtain 
absolute machine addresses, SID supports more comprehensive 
mechanisms for quick access to machine addresses through program 
symbols, In particular, the command parameters can consist of 
“symbolic expressions" which are described fully in the following 
section. 

All Information Presented Here is Proprietary to Digital Research 

7





Section 2 

SID Symbolic Expressions 

An important facility of SID is the ability to reference 
absolute machine addresses through symbolic expressions, Symbolic 
expressions can involve names obtained from the program under test 
that are included in the "SYM" file produced by the CP/M Macro 
Assembler. Symbolic expressions can also consist of literal values 
in hexadecimal, decimal, or ASCII character string form. These 
values can then be combined with various operators to provide access 
to subscripted and indirectly addressed data or program areas. This 
section describes symbolic expressions so that you can incorporate 
them as command parameters in the individual command forms that 
follow this section, 

2.1 Literal Hexadecimal Numbers 

SID normally accepts and displays values in hexadecimal. The 
valid hexadecimal digits consist of the decimal digits 0 through 9 
along with the hexadecimal digits A, B, D, E, and F, 
corresponding to the decimal values 10 through i, respectively. 

A literal hexadecimal number in SID consists of one or more 
contiguous hexadecimal digits. If you type four digits, then the 
leftmost digit is most significant, while the rightmost digit is 
least significant. If the number contains more than four digits, 
the rightmost four are taken as significant, and the remaining 
leftmost digits are discarded. The examples below show the 
corresponding hexadecimal and decimal values for the given input 
values. 

INPUT VALUE HEXADEC IMAL DEC IMAL 

1 0001 1 
100 0100 256 

fffe FFFE 65534 
10000 0000 0 
38001 8001 32769 

2.2 Literal Decimal Numbers 

Although SID*s normal number base is hexadecimal, you can 
override this base on input by preceding the number with a "#" 
symbol, which indicates that the following number is in the decimal 
base. In this case, the number that follows must consist of one or 
more decimal digits (0 through 9) with the most significant digit on 

the left and the least significant digit on the right. Decimal 
values are padded or truncated according to the rules of hexadecimal 
numbers, as described above, by converting the decimal number to the 

equivalent hexadecimal value. 

All Information Presented Here is Proprietary to Digital Research 

9



SID User’s Guide 2.2 Literal Decimal Numbers 

The input values shown to the left below produce the internal 
hexadecimal values shown to the right below: 

INPUT VALUE HEXADECIMAL VALUE 

#9 0009 
#10 OOO0A 

# 256 0100 
#65535 FFFF 
#65545 0009 

2.3 Literal Character values 

AS an operator convenience, SID also accepts one or more 

graphic ASCII characters enclosed in string apostrophes (*) as 
literal values in expressions. Characters remain as typed within 
the paired apostrophes (i.e., no case translation occurs) with the 
leftmost character treated as the most significant, and the 
rightmost character treated as least significant. Similar to 
hexadecimal numbers, character strings of length one are padded on 
the left with zero, while strings of length greater than two are 
truncated to the rightmost two characters, discarding the leftmost 
remaining characters, 

Note that the enclosing apostrophes are not included in the 
character string, nor are they included in the character count, with 
one exception. To include the possibility of writing strings that 
include apostrophes, a pair of contiguous apostrophes is reduced to 
a single apostrophe and included in the string as a normal graphic 
character, 

The strings shown to the left below produce the hexadecimal 
values shown to the right below. (For these examples, note that 
upper-case ASCII alphabetics begin at the encoded hexadecimal value 
41, lower-case alphabetics begin at 61, a space is hexadecimal 20, 

  and an apostrophe is ded as h decimal 27). 

INPUT STRING HEXADECIMAL VALUE 

*A* 0041 
“ AB* 4142 

ABC 4243 
* an’ 6141 
cere 0027 

cceeee 2727 
- Be 2041 
“A * 4120 

All Information Presented Here is Proprietary to Digital Research 

10



SID User’s Guide 2.4 Symbolic References 

2.4 Symbolic References 

Given that a symbol table is present during a SID debugging 
session, you can reference values associated with symbols through 
the following three forms of a symbol reference: 

(a) . 
(b) @ 
(c) = 

Ss 

Ss 

Ss 

where s represents a sequence of one to fifteen characters that 

match a symbol in the table. 

Form (a) produces the address value (i.e., the value associated 
with the symbol in the table) corresponding to the symbol s. Form 
(b) produces the 16-bit “word" value contained in the two memory 
locations given by .s, while form (c) results in the 8-bit "byte" 
value at .s in memory. Suppose, for example, that the input symbol 
table contains two symbols, and appears as follows: . 

0100 GAMMA 0102 DELTA 

Further, suppose that memory starting at 0100 contains the following 

byte data values: 

0100: 02 
0101: 35 
0102: 4D 
0103: 22 

Based upon this symbol table and these memory values, the 
symbol references shown to the left below produce the hexadecimal 
values shown to the right below. Recall that 16-bit 8080 memory 
values are stored with the least significant byte first, and thus 
the word values at 0100 and 0102 are 3E02 and 224D, respectively. 

SYMBOL REFERENCE HEXADECIMAL VALUE 

. GAMMA 0100 
. DELTA 0102 
@GAMMA 3E02 
@DELTA 224D 
=GAMMA 0002 
=DELTA 004D 

2.5 Qualified Symbols 

Note that duplicate symbols can occur in the symbol table due 
to separately assembled or compiled modules that independently use 

the same name for differing subroutines or data areas, Further, 

block structured languages, such as PL/M, allow nested name 

definitions that are identical, but non-conflicting. Thus, SID 

allows reference to “qualified symbols" that take the form: 

All Information Presented Here is Proprietary to Digital Research 

ll



SID User’s Guide 2.5 Qualified Symbols 

S1/S2/_. . . /Sn 

where Sl through Sn represent symbols that are present in the table 
during a particular session. 

SID always searches the symbol table from the first to last 
symbol, in the order the symbols appear in the symbol file. For a 
qualified symbol, SID begins by matching the first S1 symbol, then 
scans for a match with symbol $2, continuing until symbol Sn is 
matched. If this search and match procedure is not successful, SID 
prints the "?" response to the console. Suppose, for example, that 
the symbol table appears as follows: 

0100 A 0300 B 0200 A 3600 C 20FO A O102A 

in the symbol file, with memory initialized as shown in the previous 
section. The unqualified and qualified symbol references shown to 
the left below produce the hexadecimal values shown to the right 
below. 

SYMBOL REFERENCE HEXADECIMAL VALUE 

A 0100 
@A 3E02 

-A/A 0200 
-C/A/A 0102 
=C/A/A 004D 
@B/A/A 20F0 

2.6 Symbolic Operators 

Literal numbers, strings, and symbol references can be combined 
into symbolic expressions using unary and binary "+" and "-" 
operators, The entire sequence of numbers, symbols, and operators 
must be written without embedded blanks. Further, the sequence is 
evaluated from left to right, producing a four digit hexadecimal 
value at each step in the evaluation. Overflow and underflow are 
both ignored as the evaluation proceeds. The final value becomes 
the command parameter, whose interpretation depends upon the 
particular command letter that precedes it. 

When placed between two operands, the "+" indicates addition of 
the second operand to the previously accumulated value. The sum 
becomes the new accumulated value to this point in the evaluation. 
Tf the expression begins with a unary "+", then the immediately 
preceding (completed) symbolic expression is taken as the initial 
accumulated value (zero is assumed at SID startup). For example, 
the command: 

DFEQO+#128 ,+5 

contains the first expression "FEQ0+#128" which adds FEQQ and 

All Information Presented Here is Proprietary to Digital Research 

12



SID User’s Guide 2.6 Symbolic Operators 

(decimal) 128 to produce FE80 as the starting value for this display 
command, The second expression "+5" begins with a unary "+" which 
indicates that the previous expression value (FE80) is to be used as 
the base for this symbolic expression, producing the value FE85 for 
the end of the display operation. Thus, the command given above is 
equivalent to: 

DFE80 ,FE85 

The "~" symbol causes SID to subtract the Literal number or 
symbol reference from the 16-bit value accumulated thus far in the 
symbolic expression, If the expression begins with a minus sign, 
then the initial accumulated value is taken as zero, That is, 

-x is computed as O-x 

where x is any valid symbolic expression. For example, the 
following command: 

DFFOO- 200 ,-#512 

is equivalent to the simple command: 

DFDOO ,FEOO 

A special up-arrow operator, denoted by "°", denotes the top- 
of-stack in the program under test. In general, a sequence of n up- 
arrow operators extracts the nth stacked item in the test program, 

but does not change the test program stack content or stack pointer. 
This particular operator is used most often in conjunction with the 
G (Go) command to set a breakpoint at a return from a subroutine 
during test, and is described fully under the G command. 

2.7 Sample Symbolic Expressions 

The formulation of SID symbolic expressions is most often 
closely related to the program structures in the program under test. 
Suppose you want to debug a sorting program that contains the data 
items listed below: 

LIST: names the base of a table of byte values to 
sort, assuming there are no more than 255 
elements, denoted by LIST(0), LIST(1), ... , 
LIST (254). 

N: is a byte variable which gives the actual 
number of items in LIST, where the value of N 
is less than 256. The items to sort are stored 
in LIST (0) through LIST (N-1). 

All Information Presented Here is Proprietary to Digital Research 

13



SID User's Guide 2.7 Sample Symbolic Expressions 

T: is the byte subscript which indicates the next 
item to compare in the sorting process. That 
is, LIST(I) is the next item to place in 
sequence, where I is in the range 0 through N- 
1. 

Given these data areas, the command 

D.LIST,+#254 

displays the entire area reserved for sorting: 

LIST(O), LIST(1), . . . , LIST(254) 

The command 

D.LIST,+=1I 

displays the LIST vector up to and including the next item to sort: 

LIST(O), LIST(1), . .. , LIST(I) 

The command 

D.LIST+=1,+0 

displays only LIST(I). Finally, the command 

D.LIST,+=N-1 

displays only the area of LIST that holds active items to sort: 

LIST(O), LIST(1), . . . , LIST(N-1) 

The exact manner in which SID uses symbolic expressions 
depends upon the individual command that you issue. The following 
section details these commands. 

All Information Presented Here is Proprietary to Digital Research 

14



Section 3 

SID Commands 

Enter SID commands at the console following the "#" prompt. 
The commands direct the debugging process by allowing alteration and 
display of CPU registers and memory as well as the controlling 
execution of the program under test. 

The following sections describe the commands that SID accepts. 

3.1 The Assemble (A) Command 

The A command allows you to insert 8080 machine code and 
operands into the current memory image using standard Intel 
mnemonics, along with symbolic references to operands. The A 

command takes the forms: 

(a) As 
(b) A 
(c) -A 

where s represents any valid symbolic expression. Form (a) begins 

inline assembly at the address given by s, where each successive 
address is displayed until you type a null line (i.e., a single 
Carriage return). Form (b) is equivalent to (a), except the 
starting address for the assembly is taken from the last assembled, 
listed, or traced address (see the "L", "T", and "U" commands). The 
following command sequence, for example, assembles a short program 
into the Transient Program Area (note that you must terminate each 

command line with a carriage return): 

A100 begin assembly at 0100 
0100 MVI A,10 load A with hex 10 
0102 DCRA decrement A register 
0103 JNZ 102 loop until zero 
0106 RST 7 return to debugger 
0107 single carriage return 

As each successive address is prompted, you can either enter a 
mnemonic instruction or return to SID command mode by entering a 
single carriage return (a single "." is also accepted to terminate 
inline assembly to be consistent with the "S" command). 

Delimiter characters that are acceptable between mnemonic and 
operand fields include space or tab sequences, 

Invalid mnemonics or ill-formed operand fields produce "?" 
errocs. In this case, control returns back to command mode, where 
you can proceed with another command line, or simply return to 
assembly mode by typing a single "A", since the assumed starting 

All Information Presented Here is Proprietary to Digital Research 

15



SID User’s Guide 3.1 The Assemble (A) Command 

address is automatically taken from the last assembled address. 

The assembler/disassembler portion of SID is a separate module, 
and can be removed to increase the available debugging space, Thus, 
form (c) is entered to remove the module, returning approximately 1 
1/2 K bytes. Since the entire SID debugger requires approximately 6 
K bytes, this reduces SID requirements to about 4 1/2 K bytes. When 
the assembler/disassembler module is removed in this Manner, the A 
and L commands are effectively removed. Further, the trace and 

untrace functions display only the hexadecimal codes, and the 
traceback utility displays only hexadecimal addresses. Any existing 
symbol information is also discarded at this point, although such 
information can be reloaded (see the "I" and "R" commands) . 

Examples of valid assemble commands are shown below: 

A100 
A#100 
A.CRLF+5 
A@GAMMA+@X~-= 
A+30 

Given that the command A100 has been entered, the following 
interaction could take place between SID and the operator: 

SID PROMPT OPERATOR INPUT 

0100 MVI C,.A-.B 
0102 LXI H,.SOURCE 
0105 LXI D,+100 
0108 MOV A,M 
0109 INX H 
010A STAX D 
010B INX D 

010c DCR C 

010D JNZ 108 
0110 ("return" only) 

A, B, and SOURCE are symbols that appear in the symbol table. In 
this case, SID computes the address difference between A and B as 
the operand for the MVI instruction, The LXI H operand becomes the 
address of SOURCE, while the LXI D instruction receives the operand 
value .SOURCE+100 because .SOURCE was the immediately preceeding 
symbolic expression value. This particular program segment moves a 
block of memory determined by the address values of the 
corresponding symbols. 

Ail Information Presented Here is Proprietary to Digital Research 

16



SID User’s Guide 3.2 The Call (C) Command 

3.2 The Call (C) Command 

The C command performs a call to an absolute location in 
memory, without disturbing the register state of the program under 

test. The C Command takes the forms: 

(a) Cs 
(b) Cs,b 
(c) Cs,b,da 

Although the C command is designed for use with SID utilities, it 
can call on test program subroutines to perform program 
initialization, or to make CP/M BDOS calis that initialize various 
system parameters before executing the test program. 

Form (a) above performs a call on absolute location s, where s 
is a symbolic expression, In this case, registers BC = 0000 and DE 
= 0000 in the call. Normal exit from the subroutine is through 
execution of a RET instruction that returns control to SID, followed 

by the normal SID prompt. 

Form (b) above is equivalent to (a), except that the BC 
register pair is set to the value of expression b, while DE is set 

to 9000. 

Form (c) is similar to (b); the BC register pair is set to the 
value b while the DE pair is set to the value of d. Several 
examples of valid C commands are shown below. Refer also to the SID 
utility discussion for examples of the C command in utility 
initialization, data collection, and display functions. 

c100 
C#4096 
C.DISPLAY 
C@IMPVEC+=X 
C.CRLF , #34 
C.CRLF,@X,+=X 

3.3 The Display Memory (D) Command 

The D command displays selected segments of memory in both byte 

(8-bit) and word (16-bit) formats. The display appears in both 

hexadecimal and ASCII form in the output. The D command takes the 

following forms: 

(a) Ds 

(b) Ds,f 
(c) D 
(da) D,f 

(e) DWs 

(f) DWs,f 
( DW 

(h) DW,f 

All Information Presented Here is Proprietary to Digital Research 

17



SID User’s Guide 3.3 The Display Memory (D) Command 

Forms (a) through (d) display memory in byte format, while 
forms (e) through (h) display memory in word format. The byte 
format display appears as: 

aaaa bb bb bb... bb cc... ce 

where aaaa is the base address of the display line and the sequence 
of (up to) 16 bb pairs represents the hexadecimal values of the data 
stored starting at address aaaa, The sequence of c’s represent the 
same data area displayed in ASCII format, where possible. A period 
{.) is displayed as a place holder when the data item does not 
correspond to a graphic character, 

Byte mode displays are "normalized" to address boundaries that 
are multiples of 16. That is, if the starting address aaaa is not a 
multiple of 16, then the display line is printed to the next 
boundary address that is a multiple of 16. Each display line that 
Follows contains 16 data elements until the last display line is 
encountered. 

Command forms (e) through (h) display in word mode which is 
Similar to the byte mode display described above, except that the 
data elements are printed in a double byte format: 

aaaa wwww wwww . . . WWWW cc... c¢ 

where aaaa is the starting address for the display line and the 
sequence of (up to 8) wwww°s represent the data items that are 
stored in memory beginning at aaaa. Similar to the byte mode 
display, the sequence of c’s represent the decoded ASCII characters 
starting at address aaaa. As in the byte mode display, a period is 
displayed as a place holder when the character in that position is 
non-graphic. 

Contrary to the byte mode display, address normalization to 
modulo 16 address boundaries does not occur in the word mode 
display. Recall that 8080 double words are stored with the least 
significant byte first, and thus the word mode display reverses each 
byte pair so that the individual data items are displayed as four 
digit hexadecimal numbers with the most significant digits in the 
high-order positions, 

Command form (a) displays memory in byte format starting at 
location s for 1/2 of a standard CRT screen {12 lines). This form 
of the command is useful when you want to view a segment of memory 
beginning at a particular position with an indefinite ending 
address, 

Command form (b) is similar to (a), but specifies a particular 
ending address. In this case, the start address is taken as s with 
the display continuing through address £. Recall that you can abort 
excessively long typeouts by depressing any keyboard character, such 
as a carriage return, 

All Information Presented Here is Proprietary to Digital Research 

18



SID User’s Guide 3.3 The Display Memory (D) Command 

Form (c) is similar to (a) and (b), except the starting address 
for the display is taken from the last displayed address, or from 
the value of the memory address registers (HL) in the case that no 
previous display has occurred since the last breakpoint. It is 
often convenient, for example, to use form (a) to display a segment 
of memory, followed by a sequence of D commands of form (c) to 
continue the display. Each D command displays another 1/2 screen of 

memory. 

Command form (d) is similar to (b) except the starting address 

is taken automatically as described in form (c) above. 

Assume, for example, that decimal values 1 through 255 are 
stored in memory starting at hexadecimal address 0100. The command: 

D100,12A 

produces the expanded form of the display shown below: 

0100 O01 02 03 04 (etc.) OF OF 10 .. (etc.) 
0110 11 12 13 14 (etc.) IE IF 20 .. (etc.) . 
0120 21 22 23 24 (etc.) 29 2A 2B !"#S%&~()*+ 

Command forms (e) through (h) parallel the byte display formats 
given by (a) through (d), except that the display is given in word 
format. Form (e) displays in word format from location s for 1/2 
screen, while form (f) displays from location s through location f. 
Form (g) displays from the last display location, or from HL if 
there has been an immediately preceding breakpoint with no 
intervening display. Form (h) is similar to (g), but displays 

through location f. The command: 

DW100 ,128 

for example, produces the expanded form of the following output 

lines: 

0100 0201 0403 (etc.) OEFOD 100F .. (etc.) 
0110 1211 1413 (ete.) 1B1D 201F .. (etc.) . 
0120 2221 2423 (etc.) 2928 2B2A !"#S%5~()*+ 

The following are examples of valid D commands: 

DF3F 
D#100 ,# 200 
D .GAMMA, .DELTA+# 30 

. GAMMA 
DW@ALPHA,+#100 

All Information Presented Here is Proprietary to Digital Research 

19



SID User’”s Guide 3.4 The Fill Memory (F) Command 

3.4 The Fill Memory (F) Command 

The F command fills memory with a constant byte value, and 
takes the form: 

Fs,f,d 

where s is the starting address for the fill; f£ is the ending 
(inclusive) address for the fill, and d is the 8-bit data item to 
store in locations s through f. It is your responsibility to not 
fill memory locations that are occupied by the resident portions of 
CP/M, including areas reserved for SID. The following are examples 
of valid F commands: 

F100 ,3FF,FF 
F .GAMMA ,+#100 ,# 23 
F@ALPHA,+=I ,=X 

3.5 The Go (G) Command 

The G command passes program control to a program under test. 
Execution proceeds in real time from the address specified by the G 
command. That is, the G command releases processor control from SID 
to the program under test. Execution does not return to SID until a 
break or pass point is reached (see the "P" command for a discussion 
of pass points). The operator can force a return to SID, however, 
by interrupting the processor with a "restart 7" (RST 7) provided by 
the program under test, or forced by external hardware such as front 
panel control switches, if available. 

The G command takes the following forms: 

(a) G 
(b) Gp 
(c) G,a 
(ad) Gp,a 
(e) G,a,b 
(£) Gp,a,b 
(9) -G 
(h) -Gp 
(1) -G,a 
(j}) -Gp,a 

Forms (a) through (f) start test program execution with 
symbolic features enabled, while forms (g) through (1) are identical 
in function, but disable the symbolic features of SID. In 
particular, form (a) starts test program execution from the program 
counter (PC) given in the machine state of the program under test 

(see the "X" command for machine state display). In this case, no 
breakpoints are set in the test program. Form (b) is similar to 

All Information Presented Here is Proprietary to Digital Research 

20



SID User’s Guide 3.5 The Go (G) Command 

(a), but initializes the test program’s PC to p before starting 
execution. Again, no breakpoints are set in the test program. 
Similar to (a), form (c) starts execution from the current value of 
PC but sets a breakpoint at location a. The test program receives 
control and runs in real time until the address a is encountered. 
Note that control returns to SID upon encountering a pass point or 

RST 7, as described above. 

Upon encountering the breakpoint address a, the break address 

is printed at the console in the form: 

ka .s 

where s is the first symbol in the table that matches address a, if 
it exists. Note that the temporary breakpoint at address a is 
automatically cleared when SID returns to command mode (see the "P" 
command for permanent breakpoints). 

Form (d) combines the functions of (b) and (c): the test 
program PC is set to the address p and a temporary breakpoint is set 
at location a. As above, the breakpoint is cleared when control 
returns to SID. It should be noted that an immediate breakpoint 
always occurs if p = a. If this is not desired, however, you can 
use the trace function to single step past the current address, 
followed by a G command (see the "T" command for actions of the 

trace facility). 

Form (e) extends the breakpoint facility by allowing two 
temporary break addresses at a and b. Program execution begins at 
the current PC and continues until either address a or b is 
encountered. Both temporary break addresses are cleared when SID 
returns to command mode. Form (f) is similar to (e), except the 
initial value of PC is set to location p before starting the test 

program. 

Note that the instruction at a breakpoint address is not 
executed when you use the G command. Suppose, for example, that a 
subroutine named TYPEOUT is located at address 0302 in a test 
program, consisting of the machine code: 

TYPEOUT: 

0302 MOV E,A 
0303 MVI C,2 
0305 JMP 0005 

Suppose further that you are testing a program that makes calls on 
the TYPEOUT subroutine where a break address is to be set. Enter 

the command: 

G,.TYPEOUT 

Test program execution proceeds from the current PC value and stops 
when the TYPEOUT subroutine is reached, with the breakpoint message: 

*0302 .TYPEOUT 

All Information Presented Here is Proprietary to Digital Research 

21



SID User’s Guide 3.5 The Go (G) Command 

indicating that control has returned from the test program to SID. 
At this point, the program counter of the test program is at 
location 0302 (i.e., .TYPEOUT), and the instruction at this location 
has not yet been executed. You can execute through the TYPEOUT 
Subroutine using any of the commands G, T, or U. The following is a 
useful command in this situation: 

G,* 

This command continues execution from 0302, and sets a breakpoint at 
the topmost stacked element (given by "*"). Since the topmost 
Stacked element must be the subroutine return address, this 
particular G command executes the TYPEOUT Subroutine, with a break 
upon return to the instruction following the original call to 
TYPEOUT. 

Command forms (g) through (1) correspond directly to functions 
(a) through (f), except that pass points are not displayed until the 
corresponding pass counters reach 1 (see the "P" command for details 
of intermediate pass point display). 

Note that the essential difference between the G command and 
the U (Untrace) command is that execution proceeds unmonitored in 
real time with the G command, while each instruction is executed in 
single-step mode with the U command. Fully monitored execution 
under the U command has the advantage that you can regain control at 
any point in the test program execution. However, execution time of 
the test program is seriously degraded in Untrace mode since 
automatic breakpoints are set and cleared following each 
instruction, 

The following are examples of valid G commands: 

G100 
G100,103 
G.CRLF, .PRINT,#1024 
G@JMPVEC+=I1,.ENDC, .ERRC 
G, .ERRSUB 
G, .ERRSUB,+30 
-G100,+10 ,+10 

3.6 The Hexadecimal Value (H) Command 

The H command performs hexadecimal computations including 
number base conversion operations, The H command takes the 
following forms: 

(a) Ha,b 
(b) Ha 

(c) H 

Form (a) computes the hexadecimal sum and difference using the two 
operands, resulting in the display: 

All Information Presented Here is Proprietary to Digital Research 

22



SID User’s Guide 3.6 The Hexadecimal Value (H) Command 

ssss  dddd 

where ssss is the sum atb, and dddd is the difference a-b, ignoring 

overflow and underflow conditions. 

Form (b) performs number and character conversion, where aisa 
symbolic expression. The display format in this case is: 

hhhh #ddddd *c* .s 

where hhhh is the four digit hexadecimal value of a; #ddddd is the 

(up to) five digit decimal value of a; c is the ASCII value of a 

when a is graphic, and s is the first symbol in the table which 

matches the value a, when such a symbol exists. Assume, for 

example, that the symbol GAMMA is located at address 0100, as in 

previous examples. The H commands shown to the left below result in 

the displays shown to the right below: 

COMMAND RESULTING DISPLAY 

HO,1L 0001 FFFF 
H41 0041 #65 “A* 
H100 0100 #256 .GAMMA 
H.GAMMA 0100 #256 .GAMMA 
H=GAMMA ooOl #1 
H@GAMMA 0201 #513 
HFF+=GAMMA 0100 #256 .GAMMA 
a 0041 #65 “A” 

H* A*+=GAMMA 0042 #66 “B” 

Command form (c) prints the complete list of symbols along with 

their corresponding address values. The list is printed from the 

first to last symbol loaded, and can be aborted during typeout by 

depressing any keyboard character. 

3.7. The Input Line (I) Command 

When testing programs that run in the CP/M environment, it is 

often useful to simulate the command line that the CCP normally 

prepares upon program load. The I command takes the form: 

Icccce ... ccc 

where the sequence of c’s represent ASCII characters that normally 

follow the test program name in the CCP command line. For example, 

the CP/M “DUMP" program is normally started in CCP command mode by 

typing: 

DUMP X.COM 

which causes the CCP to search for and load the DUMP.COM file, and 

All Information Presented Here is Proprietary to Digital Research 

23



SID User’s Guide 3.7 The Input Line (I) Command 

pass the filename "X.COM" as a parameter to the DUMP program. In 
particular, the CCP initializes two default file control blocks, 

along with a default command line that contains the characters 
following the DUMP command. 

To trace and debug a program such as DUMP, invoke the SID 
program with the following command: 

SID DUMP .COM 

which loads the command file containing the DUMP machine code. If 
the symbol table is available, the SID invocation is: 

SID DUMP.COM DUMP.SYM 

In either case, SID loads the DUMP program and prompts the console 
for a command. To simulate the CCP’s command line preparation, type 
the command: 

IX .COM 

where the "I" denotes the Input command, which is followed by the 
Simulated command line. The operator can then commence the debug 
run with default areas properly setup. 

The I command specifically initializes the default file control 
block in low memory, labelled DFCBl, that is normally located at 
005C. The file control block which is initialized by the I command 
1s complete in the sense that the program can simply address DFCB1 
and perform and open, make, or delete operation without further 
initialization. As a convenience, a second filename is initialized 
at location DFCB2, which is at address DFCB1+0010 (hexadecimal). 

It is your responsibility to move the second drive number, 
filename, and filetype to another region of memory before performing 
file operations at DFCBl since the l16-byte region at DFCB2 is 
immediately overwritten by any file operation. Further, the default 
buffer, labelled DBUFF, is initialized to contain the entire command 
line with the first byte of the buffer containing the command line 
length. In a standard CP/M system, the DBUFF area is assumed to 
Start at 0080 and end at OOFF. Note, however, that the I command 
restricts the simulated CCP command line to 63 characters since 
SID’s line buffer is used in the simulation. 

Given an I command of the form: 

I dl:fl.tl d2:£2.t1 

where dl: and d2: are (optional) drive identifiers; £1 and f2 are 

(up to eight character) filenames, and tl and t2 are (up to three 
character optional) filetypes, two default file control block names 
are prepared in the form: 

All Information Presented Here is Proprietary to Digital Research 

24



SID User’s Guide 3.7 The Input Line (1) Command 

DFCBl: dl* f£1* t1* 00 00 00 00 
DFCB2: d2* £27 t2* 00 CO 00 00 

00 (current record field) 

If dl: is empty in the original command line, then dl~* = 00 (which 
automatically selects the default drive), otherwise if di =A, B,C, 
or D, then dadl*~ = O01, 02, 03, or 04, respectively, which properly 
initializes the file control block for automatic disk selection. 
Field f£1°* is initialized to the ASCII filename given by fl, padded 
to an eight character field with ASCII blanks. Similarly, t1* is 
initialized to the ASCII filetype, padded with blanks in a field of 
length three. 

Lower-case alphabetics in f1 and tl are translated to upper- 
case in fl* and ti’, respectively. Names that exceed their 
respective length fields are truncated on the right. Finally, the 
extent field is zeroed in preparation for a BDOS call to open or 
make the file. 

The second default file control block given by d2, £2, and t2 
is prepared in a similar fashion and stored starting at location 
006C. Note that the current record field at location 007C is also 
initialized to 00. If any of the fields fl, tl, £2, and t2 are not 
included in the command line, their corresponding fields in the 
default file control blocks are filled with blanks. 

Ambiguous references that use the "*" or "?" characters are 
processed in the same manner as in the CCP: the "*" symbol ina 
name or type field causes the field to be right-filled with "?" 
characters. The input lines shown below illustrate the default area 
initialization which takes place for various unambiguous and 
ambiguous filenames. The areas shown to the right give the 
hexadecimal values which begin at the labelled addresses, where 
ASCII values A, B, C, and D have the hexadecimal values 41, 42, 43, 

and 44, respectively. Further, the special characters ":", ".", 
"x" and "?" have the ASCII encoded values 3A, 2E, 2A, and 3F, while 
an ASCII space has the hexadecimal value 20: 

COMMAND LINE DEFAULT DATA AREA INITIALIZATION 

I DFCB1: 00 
20 20 20 20 20 20 20 20 
20 20 20 00 00 00 00 

DFCB2: 00 
20 20 20 20 20 20 20 20 
20 20 20 00 00 00 00 

DBUFF: 00 OO 

All Information Presented Here is Proprietary to Digital Research 

25



SID User’s Guide 3.7 The Input Line (1) Command 

I A.B DFCB1: 00 
41 20 20 20 20 20 20 20 
42 20 20 00 00 00 00 

DFCB2: 00 
20 20 20 20 20 20 20 20 
20 20 20 00 00 00 00 

DBUFF: 04 20 41 2E 42 00 

IA:B.C b:d.e DFCB1: Ol 
42 20 20 20 20 20 20 20 
43 20 20 00 00 00 00 

DFCB2: 02 
44 20 20 20 20 20 20 20 
45 20 20 00 00 00 00 

DBUFF: OB 41 3A 42 2E 43 20 
42 3A 44 2E 45 00 

I AA*.B?C D: DFCB1: 00 
41 41 3F 3F 3F 3F 3F 3F 
42 3F 43 00 00 00 00 

DFCB2: 04 
20 20 20 20 20 20 20 20 
20 20 20 00 00 00 00 

DBUFF: OB 20 41 41 2A 2E 42 
3F 43 20 44 3A 00 

Note that the I command is also used in conjunction with the R 
command to read program files and symbol tables after SID 
has initially loaded. Details of the use of I in 
this situation are given with the R command that follows. 

Additional valid I commands are given below: 

I x.dat 
Ix.inp y.out 
Ia:xX.inp b:y.out $-p 
ITEST .COM 

I TEST.HEX TEST.SYM 

All Information Presented Here is Proprietary to Digital Research 

26



SID User’s Guide 3.8 The List Code (L) Command 

3.8 The List Code (L) Command 

The L command disassembles machine code in the memory of the 
machine, with symbolic labels and operands placed in the appropriate 
fields, where possible. The L command takes the forms: 

(a) Ls 

(b) Ls,f 

(c) L 
(d) -Ls 

(e) -Ls,f 

(£)  -L 

Form (a) lists disassembled machine code starting at symbolic 
location s for 1/2 CRT screen (12 lines). Form (b) specifies an 
exact range for disassembly: s specifies the starting location, and 
f gives the final disassembly location. Form (c) is similar to (a), 
but disassembles from the last listed, assembled (see the A 
command), traced (see the T and U commands), or break address (see 

the G and P commands). Since form (c) also lists 1/2 CRT screen, it 
is often used following form (a) to continue the disassembly process 
through another segment of the program. Forms (d) through (£) 
parallel (a) through (c), but disable the symbolic features of SID. 
In particular, the minus prefix prevents any symbol lookup 
operations during the disassembly. 

The L command output takes the following form: 

SSSSS: 
aaaa opcode operand .ttttt 

where "sssss:" represent a symbol which labels the program location 
given by the hexadecimal address aaaa, when the symbol exists. The 
"opcode" field gives the 8080 mnemonic for the instruction at 
location aaaa, and the "operand" field, when present, gives the 
hexadecimal values which follow the opcode in memory. The symbol 
" ttttt" is printed when the instruction references a memory address 

which matches a symbol in the table. 

When the operation code at the list address is not a valid 8080 

mnemonic, the output form is: 

??= hh 

where hh is the hexadecimal value of the invalid operation code. 

Several valid L commands are listed below. 

L100 
pH 02a #1034 
L.CR 

raICALL ,+30 
~L.PRBUFFt=I ,+°A~ 

All Information Presented Here is Proprietary to Digital Research 

27



SID User”s Guide 3.9 The Move Memory (M) Command 

3.9 The Move Memory (M) Command 

The M command allows you to move blocks of data values from one 
area of memory to another. The M command takes the form: 

Ms,h,d 

where s is the start address of the move operation; h is the high 
(last) address of the move, and d is the starting destination 
address to receive the data. SID transfers one byte at a time from 
the start address to the destination address. Each time a byte 
value is moved, the start and destination addresses are incremented 
by one, The move process terminates when the start address 
increments past the final f address. The command: 

Mi00,1FF ,3000 

for example, replicates the entire block of memory from 0100 through 
OlFF at the destination area from 3000 through 30FF in memory. The 
data block from 0100 through O1FF remains intact. 

Note that data areas may overlap in the move process. The 
command: 

M100,1FF,101 

Shows an instance where the value at location 0100 is propagated 
throughout the entire block from 0101 through 0200. 

A number of valid M commands are listed below: 

M-100 ,FFDO,100 

M.X,+=Z,.Y 
M.GAMMA ,+FF,.DELTA 

M@ALPHA+=X,+#50,+100 

3.10 The Pass Counter (P) Command 

The P command allows you to set and clear "pass points" and 
"pass counts” in the program under test. The P command takes the 
following forms: 

Pp 
Pp,c 

P 

a 
b 
c 
a 
e -P 

"pass point" is a program location to monitor during 
execution of tne test program. Similar to a temporary breakpoint 
(see the G command), 4 pass point causes SID to stop execution of 
the test program each time an active pass point is reached. Unlike 
a temporary breakpoint, a pass point is not automatically cleared 
each time it is reached during execution. Further, unlike a 

All Infcrmation Presented Here is Proprietary to Digital Researcn 

28



SID User’s Guide 3.10 The Pass Counter (P) Command 

temporary breakpoint, a pass point poreak occurs after the 
instruction as the pass address is executed. In this way, you can 
simply continue the execution of the test program under control of a 
G command until the next pass point is executed, or until a 

temporary breakpoint is reached. 

Each pass point can have an optional "pass count" which 
defaults to the value 1. The pass count enhances this facility by 
allowing several passes through a pass point before the break 
actually occurs. In particular, a pass count in the range 1-FF 
(decimal 1 through 255) can be associated with a particular pass 
point. Each time the instruction at a pass point is executed, its 
corresponding pass count is decremented. The decrementing process 
proceeds until the pass count reaches l, at which time the break 

address is printed and execution of the test program stops. When a 
pass count reaches 1, the pass point becomes a permanent break 
address which halts execution each time the instruction is executed. 
Note that a pass count does not change once it has reached 1. Up to 
eight distinct pass points can be actively set at any particular 

time. 

Form (a) sets a pass point at address p with a pass count of l, 
causing address p to become a permanent breakpoint. Form (b) is 
similar, except that the pass count is initialized to c. Form (c) 
displays these active pass points in the format: 

cc pppp .sssss 

where cc is the hexadecimal value of the pass count that is 
currently associated with the pass address pppp, and sssss 1s a 
symbol that matches the address pppp, if such a symbol exists. 

Form (da) clears the pass point at address p, while form (e) 
clears all active pass points. Note that the command: 

Pp,0 

is equivalent to form (d). 

Each time a pass point is encountered, SID prints the pass 

information in the format: 

cc PASS pppp .sssss 

where cc is the current pass count at pass point pppp (cc is 

decremented when greater than 1). As above, the symbol sssss 

corresponding to address pppp is printed when possible. 

The special command forms "-G" and "-U" to disable the 

intermediate pass trace as the counters are decremented down to l. 

Suppose, for example, the TYPEOUT subroutine is a part of a program 

under test, aS shown in the G command above. Issue the command: 

P.TYPEOUT ,# 30 

All Information Presented Here is Proprietary to Digital Research 

29



SID User’s Guide 3.10 The Pass Counter (P) Command 

This P command sets a pass point at the location labelled by 
"TYPEOUT" which is assumed to exist in the symbol table. The pass 
count is set to decimal 30, which allows the pass point to execute 
30 times before a breakpoint is taken. Given that the pass point at 
TYPEOUT is in effect, the command: 

G 

Starts execution of the test program with no temporary breakpoint. 
Each time the pass point is executed, the following pass trace is 
executed. 

lE PASS 0302 .TYPEOUT 
(register trace) 
1D PASS 0302 .TYPEOUT 
(register trace) 
1C PASS 0302 .TYPEOUT 

(register trace) 

01 PASS 0302 .TYPEOUT 

(register trace) 
* 303 

The "register trace" shows the state of the CPU registers before the 
"MOV E,A" at TYPEOUT is executed (see the "X" command for register 
display format). Note that the final breakpoint address is 0303, 
which follows the "MOV" instruction at the pass address 0302. 
Depress any keyboard character during the pass point trace, and SID 
immediately stops execution following the instruction at the pass 
point address. If the command 

-G 

had been issued, the intermediate pass traces do not appear at the 
console. In this particular case, only the final trace: 

Ol PASS 0302 .TYPEOUT 
(register trace) 

* 303 

1S printed, Although the intermediate pass traces are not 
displayed, you can abort execution by depressing a keyboard 
character. If an intermediate pass point is encountered with trace 
disabled, SID aborts execution and returns control to the keyboard. 

Temporary breakpoints can also be set while pass points are in 
effect. That is, commands such as: 

Ga,b 

Ga,b,c 

G,b 

G,b,c 

can be issued that intermix with the permanent breakpoints that are 
set with the P command. Note, however, that permanent breakpoints 

All Information Presented Here is Proprietary to Digital Research 

30



SID User*s Guide 3.10 The Pass Counter (P) Command 

override the temporary breakpoints that are given by b and c when 
they occur at the same address, Further, T and U command can trace 
sections of the test program while permanent breakpoints are in 
effect, In this case, the pass counts decrement as described above, 

with a break taken when the count reaches 1. 

valid P commands are shown below: 

P100 ,FF 
P .BDOS 
P@ICALL+30 ,# 20 
-P.CRLF 

3.11 The Read Code/Symbols (R) Command 

The Rcommand, in conjunction with the I command, reads program 
segments, symbol tables, and utility functions into the Transient 
Program Area. The R command takes the forms: 

(a) R 

(b) Rd 

The I command sets the filenames that will be involved in the read 

operation. Form (a) reads the program and/or symbol table given by 

the I command without applying an offset to the load addresses. 
Form (b) adds the displacement value d to each program load address 
and/or symbol table address. Note that this addition takes place 
without overflow checks so that negative bias values can be applied. 
As a simple case, the usual initiation of SID: 

A>SID X.COM 

can be replaced by the following sequence of commands: 

SID Starts SID without a test program 

IX.COM Initialize the input line 
R Read the test program to memory 

The response from SID in this case is exactly the same as the normal 

initialization, with the "NEXT PC END" message as described in 

Section 1. 

A program and symbol file can be read by preceding the R 

command with an I command of the form: 

I x.y u.v 

where x.y is the program to load, and u.v is the symbol table file. 

Note that y is usually the type "COM"; x is usually the same as i, 

and vy is usually the type "SYM". Thus, the following is a typical 

command sequence of this form: 

IDUMP.COM DUMP .SYM 
R 

All Information Presented Here is Proprietary to Digital Research 

31



SID User’s Guide 3.11 The Read Code/Symbols (R) Command 

This sequence reads the DUMP.COM program file into the Transient 
Program Area and loads the symbol table with the information given 
by DUMP.SYM. Programs with filetype "HEX" load into the locations 
specified in the Intel formatted hexadecimal records, while programs 
with filetype "UTL" are assumed to be SID utility functions that 
load and relocate automatically. All other filetypes are assumed 
absolute, and load starting at the base of the transient area. 
Utility functions automatically remove any existing symbol 
information when they relocate, but in all other cases the symbol 
load operations are cumulative. In particular, the special input 
form: 

I* u.v 

skips the program load since there is an asterisk in the program 
name position, and loads only the symbol table file. Thus, a 
sequence of commands of the above form can load the symbol tables 
for selective portions of a large program that was initially 
developed in small modules. 

Suppose, for example, that a report generation program has been 
developed using MAC, which consists of the following modules: 

TOMOD .ASM I/O Module 
SORT.ASM File Sorting Module 
MERGE .ASM File Merge Module 
FORMAT ..ASM Report Format Module 
MAIN .ASM Main Program Module 
DATA .ASM Common Data Definitions 

Suppose further that each module has been separately assembled using 
MAC, resulting in several "HEX" and "SYM" files corresponding to the 
individual program segments. The program segments have been brought 
together using SID to form a memory image by typing the sequence of 
commands: 

SID Start the SID program 

TIOMOD .HEX Initialize IOMOD 

R Read I/O Module 
ISORT.HEX Initialize SORT 

R Read Sort Module 
IMERGE .HEX Initialize MERGE 
R Read Merge Module 
I FORMAT .HEX Initialize FORMAT 

R Read Format Module 
IMAIN .HEX Initialize MAIN 

R Read Main Module 
IDATA .HEX Initialize DATA Area 
R Read Initialized Data 

Following this sequence, the Transient Program Area contains the 

complete memory image of the report generation program. Suppose the 
information printed following the last R command is: 

All Information Presented Here is Proprietary to Digital Research 

32



SID User’s Guide 3.11 The Read Code/Symbols (R) Command 

NEXT PC END 
1B3E 0100 8E00 

which indicates that the high memory address is 1B3E. Using the H 

command: 

H1B 

you find that 1B (hexadecimal) pages is the same as 27 (decimal) 
pages. At this point, return to CCP mode by typing either a 
control-C (warm start), or "GO" command, which leaves the memory 
image intact. Then issue the command: 

SAVE 27 REPORT.COM 

to create a memory image file on the diskette. Then re-enter SID 

using the following command: 

SID REPORT.COM 

to load the entire module for testing. Individual portions of the 
report generator can then be symbolically accessed by selectively 
loading symbol tables from the original modules. For example, the 
MAIN and SORT modules can be debugged by subsequently loading the 

corresponding symbol information: 

I* MAIN.SYM 
R 
I* SORT.SYM 
R 

which prepares the symbol information for subsequent debugging. 
Individual segments of the report generator are then tested and 
reassembled. If an error is found in the SORT module, for example, 
the SQRT.ASM file is edited to make necessary changes, and the 
module is reassembled with MAC, resulting in new "HEX" and "SYM" 
files for the SORT module only. Given that enough "expansion" area 
has been provided following the SORT module, SID is reinitiated and 

the SORT module is included: 

SID REPORT.COM 
ISORT.HEX SORT.SYM 
R 

which overlays the changed SORT module in the original report 

generator memory image. You can then load additional symbol tables 

by typing I and R commands such as: 

I* MAIN.SYM 

R 

I* DATA.SYM 
R 

to access symbols in the SORT, MAIN, and DATA modules, 

All Information Presented Here is Proprietary to Digital Research 

33



SID User“s Guide 3.11 The Read Code/Symbols (R) Command 

Note that several symbol table files can be concatenated using 
the PIP program (see the "CP/M Features and Facilities" manual for 
PIP operation) before SID is invoked. For example, the PIP command: 

PIP NOBUGS .SYM=IOMOD.SYM,SORT.SYM,MERGE.SYM, FORMAT.SYM 

Creates a file called NOBUGS.SYM that holds the symbols for IOMOD, 
SORT, MERGE, and FORMAT. The SID command: 

SID REPORT.COM NOBUGS.SYM 

loads the memory image for the report generator, along with the 
symbol tables for these particular modules. Additional symbol files 

can then be selectively loaded using I and R commands. The symbol. 
file for the entire memory image can then be constructed using the 
PIP command: 

PIP REPORT .SYM=NOBUGS .SYM, MAIN.SYM, DATA.SYM 

which allows you to type: 

SID REPORT.COM REPORT.SYM 

to load the memory image for the report generator, along with the 
entire symbol table, Recall, however, that the symbol table is 
always searched in load-order, and thus symbol names which are the 
same in two modules must be distinguished using qualified symbolic 
names (see Section 1). 

As mentioned above, form (b) allows a displacement value d to 
be added to each program address and symbol value. The aisplacement 
value has no effect, however, when the program is a SID utility 
(filetype "UTL"). The commands: 

IDUMP.HEX DUMP.SYM 
R1000 

for example, cause the DUMP program to be loaded 1000 (hexadecimal) 

locations above its normal origin, with properly adjusted symbol 
addresses, Note that the bias value can be any symbolic expression, 
and thus the command: 

R- 200 

first produces a (two’s complement) negative number which is added 
to each address. Since overflow from a 16-bit counter is ignored, 

this R command loads the program 200 (hexadecimal) locations below 
the normal load address, with symbol addresses biased by this same 
amount. 

Error reporting during the R command is limited to the standard 
"2?" response, which indicates that either the program or symbol file 
does not exist, or the program or symbol file is improperly formed, 
Similar to the SID startup messages, the response 

All Information Presented Here is Proprietary to Digital Research 

34



SID User’s Guide 3.11 The Read Code/Symbols (R) Command 

SYMBOLS 

occurs following program load, and appears before the symbol load. 

Thus, a "?" error before the SYMBOLS response indicates that the 

error occurred during the program load, while the "2" error after 

the SYMBOLS message indicates that an error occurred during the 

symbol file load operation. The exact position of a symbol file 

error can be found by subsequently using the H command to view the 

portion of the symbol table that was actually loaded. 

3.12 The Set Memory (S) Command 

The S command allows you to enter data into main memory. The 

forms of the S command are: 

(a) SS 

(b) SWs 

Form (a) allows data to be entered at location s in byte (8-bit) or 

Character string mode, while form (b) stores word (16-bit) mode data 

items. In either case, the SID program prompts the console with 

successive addresses, starting at location s, along with the data 

item presently located at that address. As each line prompt occurs, 

you can type a single carriage return or a symbolic expression 

(followed by a carciage return), which is evaluated and becomes the 

new data item at that location. If you type a single carriage 

return, then the data element at that location remains unchanged. 

The § command terminates whenever an invalid data item is detected, 

or when you type a single "." followed by a carriage return. Form 

(a) allows single byte data, and produces the standard "?" when a 

double byte value is entered with a non-zero high-order byte. In 

addition, form (a) also allows long ASCII string data to be entered 

in the format: 

"ceccce . . .ccccc 

where the sequence of c’s (terminated with a carriage return) 

represents graphic ASCII characters to be entered at the prompted 

Location. No translation from lower- to upper-case takes place 

during entry. Further, the next prompted address is automatically 

set to the first unfilled location following the input string. 

A valid input sequence following the command: 

$100 

is shown below, where the SID prompt is given on the left, and the 

operator’s input lines are shown to the right, where "cr" denotes 

the carriage return key. 

All Information Presented Here is Proprietary to Digitai Research 

35



SID User“*s Guide 3.12 The Set Memory (S) Command 

SID PROMPT OPERATOR INPUT 

0100 c3 34cr 
0101 24 #254cr 
0102 CF cr 
0103 4B "ASCIIcr 
0108 65 =X+5cer 
0109 £2 “cr 
010A D4 .Cr 

A valid double byte input sequence following the command: 

SW. X+# 30 

is shown below: 

SID PROMPT OPERATOR INPUT 

2300 006D 44Fcr 
2302 4F32 @GAMMAcr 
2304 3382 er 
2306 FFI1 -X+=1-#20cr 
2308 348F .CLr 

3.13 The Trace Mode (T) Command 

The T command allows you to single or multiple step a test 
program while viewing the Cpu registers as they change. In 
addition, you can use the T command with SID utilities to collect 
test program data for later display (see the section entitled "SID 
Utilities"), The forms of the T command are: 

(a) Tn 

(b) T 
c) Tn,c 

(d) T,c 
(e) -T (with options a - d) 
(f) TW (with options a - qd) 
(g) -TW (with options a- 4) 

Form (a) traces program execution from the current value of the 
program counter PC (see the "X" command for PC value as well as the 
format of the CPU state display). Form (b) is the trivial case of 
(a) with an assumed single step count of n= 1. In either case, the 
SID program displays the register state, along with the decoded 
instruction (assuming "-A" is not in effect) before each instruction 
is executed. For example, the command: 

T4 

traces four program steps, producing the format: 

All Information Presented Here is Proprietary to Digital Research 

36



SID User’s Guide 3.13 The Trace Mode (T) Command 

(register state 1) opcode 1 
label: 
(register state 2) opcode 2 

label: 
(register state 3) opcode 3 
label: 
(register state 4) opcode 4 *bbbb 

showing the register state before each corresponding operation code 
is executed. Each operation code is written in the same format as 
the L and X commands, with interspersed symbolic operands decoded 
wherever possible. In addition, instructions that reference memory, 
such as INR M, are listed with the memory operand in the form: 

opcode M =hh 

where "opcode" is the memory referencing instruction, and hh is the 
hexadecimal value contained in the memory address given by the HL 
register pair before the operation takes place, The interspersed 
labels show program addresses when they occur in the flow of 
execution, The final break address, denoted by "*bbbb” above, shows 
the value of the program counter after opcode 4 is executed. You 
can display the CPU state at this point by typing the single 

character "X" command. 

Forms (c) and (d) are used only with the SID utilities, and 

automatically perform a CALL c after each instruction executes. The 

value of c corresponds to a utility entry address for data 
collection. The following sections detail these forms. Note, 

however, that form (d) is equivalent to (c) with a single step count 

of n=l. 

Forms given by (e) parallel (a) through (da), but the preceding 
minus sign disables the symbolic features of SID. In particular, 

neither the symbolic operands nor the symbolic labels are decoded in 

the trace process. This option speeds up the operation of SID 

slightly in trace mode when large symbol tables are present. 

Forms given by (f) parallel (a) through (d), but perform a 

"trace without call" function. It is often useful, for example, to 

trace mainline program code, but not trace into the subroutines 

which are called from the mainline execution. The TW command 

performs this function by running the test program in real time 

whenever a subroutine is entered, returning to fully traced mode 

upon return to the current subroutine level. If a return operation 

takes place at the current level (i.e., a RET is executed in fully 

traced mode), then tracing continues at the encompassing subroutine 

or mainline program level. For example, suppose the mainline and 

subroutine structure shown below exists in a particular program: 

All Information Presented Here is Proprietary to Digital Research 

37



SID Users Guide 3.13 The Trace Mode (T) Command 

MAINLINE SUBROUTINE 1 SUBROUTINE 2 ... SUBROUTINE n 

se Sl: MOV A,C S2: MOV A,D Sn: MOV A,L 
CALL $1 rr oa oe 
MOV B,C CALL S2 eo ee soe 
MOV C,D MOV C,E CALL $3... MOV C,L 
s 8 MOV D,E MOV D,H MOV D,L 

JMP 0000 RET RET RET 

Suppose further that the test program is stopped within subroutine 
Sl before the call to subroutine $2. The command: 

T#100 

traces from Sl through $2, $3, and so forth until level f€n is 
encountered. Although this form of the trace could be useful, it is 
often more enlightening to trace only at a particular subroutine 
level, and view the effects of the subroutine levels above Sl. In 
this manner, an offending subroutine is often easily discovered 
without tracing non-essential program flows. If you type the 
following command while at subroutine level Sl, all subsequent 
levels from $2 and beyond are executed in real time as if a "“G" 
command had been performed at each CALL within Sl. 

TW#100 

Upon executing the RET instruction within Sl, tracing resumes at the 
mainline level. Any subroutine calls following CALL Sl at the main 
level are not subsequently traced, 

Forms given by (g) parallel (a) through (da), but disable the 
symbolic features of SID in the same manner as form (e). 

Note that SID allows tracing up to Read Only Memory (ROM) 
program code. At the point ROM is entered, SID stops the trace 
Operation, and runs the ROM code in real time. An automatic 
breakpoint is set which intercepts program control when ROM code is 
exited. The assumption, however, is that ROM code was entered viaa 
Subroutine call (CALL or RSTn), not via a PCHL or JMP instruction. 
In any case, the return address following the ROM execution is taken 
as the topmost address in the test program’s stack. 

Note further that SID does not trace execution of calls through 
the BDOS code, since these operations are often quite lengthy, and 
can occassionally require real time operation to perform various 
disk functions, Thus, entry to the BDOS is intercepted by SID, and 
resumed following completion of the BDOS function. 

Abort tracing at any time by depressing a keyboard character. 

Do not use the RST instruction to terminate trace functions. 

All Information Presented Here is Proprietary to Digital Research 

38



SID User’s Guide 3.13 The Trace Mode (T) Command 

Valid trace commands are shown below: 

T100 
T#30,.COLLECT 
-TW=I ,3E03 

3.14 The Untrace Mode (U) Command 

The U command is similar to the T command given above, except 
that the CPU register state is not displayed at each step. Instead, 
the test program runs fully monitored so that program execution can 
be aborted at any time, or for the collection of data for a SID 
utility function. The forms of the U command parallel the T 

command: 

(a) Un 

(b) U 
(c) Un,c 

(d) U,c 
(e) -U (with options a - d) 
(f) UW (with options a - 4d) 
(g)  -UW (with options a - d) 

Forms (a) through (d) perform the analogous functions of the "T" 
command forms (a) through (d), without displaying the register state 
at each step. Forms given by (e) differ from the T command; 
however, instead of disabling the symbolic features, the following 

command forms: 

disable the intermediate pass point display (see the "P" command) , 

until the corresponding pass counts reach l. 

Forms given by (f) correspond to the "mt command exactly, 

except that the trace display is disabled. In this case, the 

Current subroutine level is run fully monitored, but higher 

subroutine levels run in real time, 

Forms given by (g) are similar to (f), but disable the pass 

point display, as described above. 

You can abort execution in untrace mode by depressing any 
keyboard character. The break address is displayed, and control 

returns to SID command mode. 

valid U commands are given below: 

UFFFF 
U#10000 ,.COLLECT 
UW=GAMMA, .COLLECT 

All Information Presented Here is Proprietary to Digital Research 

39



SID User’s Guide 3.15 The Examine CPU State (X) Command 

3.15 The Examine CPU State (X) Command 

The X command allows you to examine and alter the CPU state of 
the program under test. The X command takes the following forms: 

(a) x 

(b) Xf 
(c) Xr 

Form (a) displays the entire CPU state in the format: 

CZMEI A=aa B=bbbb D=dddd H=hhhh S=ssss P=pppp op sym 

where C, Z, M, E, and I represent the true or false conditions of 

the CPU carry, zero, minus, even parity, and interdigit carry, 
respectively. If the position contains a "-" then the corresponding 
flag is false, otherwise the flag letter is printed. The byte value 
aa is the value of the A register, while the double byte values 
bbbb, dddd, hhhh, ssss, and ppop, give the 16-bit values of the BC, 
DE, HL, Stack Pointer, and Program Counter, respectively. The field 
marked "op" gives the decoded mnemonic instruction at location oppp, 
unless "-A" is in effect, in which case the hexadecimal value of the 
Operation code is printed. The "sym" field contains a decoded 
operand, when possible. Refer to the L command for the format of 
the symbolic instruction decoding. The single letter "X" command 
might result in a display of the form: 

C-M-~ A=03 B=34EF D=2000 H=334E $=4323 P=0100 LDA 0223 .9 

which, for example, indicates that the carry and minus flags are 
true, while the zero, even parity, and interdigit carry flags are 
false. Further, the A register contains 03, while the B, C, D, £, 
H, and L registers contain the hexadecimal values 34, EF, 20, 00, 
33, and 4E, respectively. The value of the Stack Pointer is 4323, 
and the Program Counter is at location 0100. The next instruction 
to execute at location 0100 is an accumulator load (LDA) from 
location 0233. Further, the first symbol in the table that matches 
address 0233 is Q. 

Form (b) allows you to change the state of the CPU flags. In 
this case, f must be one of the condition code letters: Cc, 2, M, E, 
or I. The present state of the flag is displayed (either the flag 
letter if true, or a "-" if false). You can either type a single 
carriage return, which leaves the flag in its present state, or you 
can type al to set the flag true, or a0 to reset the flag to 
False. Given that the carry flag is true, for example, the command: 

XC 

produces the SIN response: 

Cc 

followed by a space, indicating that the carry is currently set, 
awaiting possible change. Enter a carriage return to leave the flag 

All Information Presented Here is Proprietary to Digital Research 

40



SID User’s Guide 3.15 The Examine CPU State (X) Command 

set, or a0 to reset the carry to false. Similarly, if the zero 

flag is false, the command: 

XZ 

produces the SID response: 

indicating that the zero flag is false. Enter a carriage return if 
the state is to remain unchanged, or al to set the zero flag to 

true, 

Form (c) allows alteration of the individual CPU registers, 
where r is one of the register names A, B, D, H, 5, or P. In this 
case, the current content of the register is displayed, and the 
console is prompted for input. If you type a single carriage 
return, the data value remains unchanged. Otherwise, the symbolic 
expression is evaluated and becomes the new value of the register. 

Only byte values are acceptable when the "XA" form is used, while 

double byte values are accepted in the remaining forms. Note that 

the BC, DE, and HL registers must be altered as a pair. The SID 

interaction shown below is typical when the A register is altered: 

XA 
A=03 45 cr 

where you type the "XA"; SID prints the "03" as the value of the A 
register, and you type "45" as a replacement for A“s value. The 

"or" represents the carriage return key in this example and in the 

examples that follow. The following interactions with SID provide 
additional examples in the format described above: 

XB 

B=34EP cr (data remains unchanged) 

XD 

D=2000 2300 cr (D changes to 23) 

XH 
H=334E .GAMMA cr 

XS 
$=4323 Q@STKPTR+#100 cr 

All Information Presented Here is Proprietary to Digital Research 

41





Section 4 

SID Utilities 

SID utilities are special programs that operate with SID to 
provide additional debugging facilities. As described in Section1l, 

you load a SID utility by typing: 

SID x.UTL 

where x is the name of a utility program, described in the following 
sections. Upon initiation, the utility program loads, relocates, 
and prompts the console for any necessary parameters. Then you 
collect the necessary program test data (using the U or T command), 
and display the information using a call to the utility display 
subroutine. The mechanisms for system initialization, data 

collection, and data display are given in detail below. 

4.1 Utility Operation 

A particular SID utility loads into memory in much the same 
Manner as a normal test program. The utilities, however, 

automatically move themselves into high memory, occupying the region 
directly below the SID program, as described in Section 1. The 
utility load operation can be accomplished by simply typing the 
utility name with the SID command as shown above. You can also load 
a utility during the SID execution, as described in the I and R 
commands. Recall, however, that all existing symbol information is 
removed when the utility loads, and must be reinitialized if 
required for the debugging run. 

Normally, a SID utility has three primary entry points: 
INITIAL for utility (re) initialization, COLLECT for data collection, 
and DISPLAY for data display. After loading, the utility sets up 
these symbols in the table, and types the entry point addresses in 
the format: 

-INITIAL = iiii 

~COLLECT = ccce 

»DISPLAY = dddd 

where iiii, cccc, and dddd are the hexadecimal addresses of the 
three entry points. Note, however, that the three symbolic names 
are equivalent to these three addresses. 

Following initial sign on, the utility may prompt the console 
for additional debugging parameters. After the interaction is 
complete, you can use the I and R commands to load test programs and 

symbol tables to proceed with the debug session. 

All Information Presented Here is Proprietary to Digital Research 

43



SID User’s Guide 4.1 Utility Operation 

During the debug run, data collection takes place by running 
the test program in monitored mode using the U or T commands. 
Either of the following commands: 

UFFFF,.COLLECT 
UFFFF ,cccc 

direct the SID program to run the test program from the current 
Program Counter for a maximum of 65535 (FFFF hexadecimal) steps, 
with a call to the data collection entry point of the utility 
program, Each instruction breakpoint sends information to the 
utility program, where it is tabulated for later display. Note that 
in this particular case, you can stop the untrace mode by depressing 
the return key before the sequence of 65535 steps is completed. 

Following a series of data collection operations, enter either 
of the following commands that call the utility DISPLAY entry point 
to print the accumulated data: 

C.DISPLAY 
Cdddd 

Then, resume the data collection process, as described above, 
followed by additional display operations. 

At any point, you can reinitialize the utility by typing either 
of the following commands: 

C.INITIAL 

Ciiii 

which causes reinitialization of the utility tables. The utility 
then prompts for additional parameters to complete the 
reinitialization process, 

Note that loading and executing more than one utility function 
during a debugging session can produce unpredictable results. 

The remaining sections present the functions of the SID 
utilities. 

4.2 The HIST Utility 

The HIST utility creates a histogram (bar graph) of the 
relative frequency of execution in selected program segments of a 
program under test. The HIST utility allows you to monitor "hot 
spots" in the test program where the program is executing most 
frequently. 

After initial sign-on, as described in the previous section, 

the HIST utility prompts the input console: 

TYPE HISTOGRAM BOUNDS 

All Information Presented Here is Proprietary to Digital Research 

44



SID User*s Guide 4.2 The HIST Utility 

You must respond with two symbolic expressions, separated by a 
comma: 

1111,hhhh 

where llll is the lowest address to monitor, and hhhh is the highest 
address. To collect histogram information, you must use one of the 
following command forms: 

T,C TWn,c TW,Cc -Tn,c -T,C -TWn,c -TW,Cc 

Un,c U,c UWn,c UW,Cc -Un,c -U,c -UWn,c -UW,c 

where c is either .COLLECT, or the address corresponding to the 
COLLECT entry point. Although any of these commands may be used, 
the form: 

Un, «COLLECT 

is nearly always used since the trace output is disabled, the test 
program is fully monitored, and data collection takes place at each 
program step. 

Following a series of data collection operations, display the 
histogram by typing: 

C.DISPLAY or Cdddd 

The histogram is then printed in the following format: 

HISTOGRAM: 
ADDR RELATIVE FREQUENCY, MAXIMUM VALUE = mmmm 
aaaa KKKKK 
bbbb KR RK RRR 
cece KEKKKRKEKK 

XXX KEKKKK KK KK 
YYYY KOR ROKR RR ROKR KR RR KK IKK RRR RRR IK ARR RK KKK KE KK 

ZZZZ KKK KEK 

where addresses aaaa through zzZzZ Span the range from the low to 
high address range given in the initialization of HIST. The maximum 
value mmmm is the largest number of instructions accumulated at any 
of the displayed addresses, and the asterisks represent the bar 
graph of relative instruction frequencies, scaled according to the 
Maximum value mmmm. The address range is automatically scaled over 
64 different address slots (aaaa, bbbb, ... ,2222, above), with a 
maximum of 64 asterisks in any particular bar of the graph. 

Given the above display, the "hot spot" is around the address 
range Xxxx tO 2222. In this case, type either of the following 
commands to reinitialize the HIST utility: 

C.INITIAL 
Ciiii 

All Information Presented Here is Proprietary to Digital Research 

45



SID User’s Guide 4.2 The HIST Utility 

Then the HIST initialization prompt and response follow, as shown 
below. 

TYPE HISTOGRAM BOUNDS xxxx, z2Zz 

You can then rerun the test program using the command: 

UFFFF,.COLLECT 

After leaving enough time for the test program to reach "steady 
state," interrupt program execution by typing a return during the 
monitored execution, The display function is then reinvoked to 
expand the region between xxxx and z2zz, resulting in a more refined 
view of the frequently executed region. 

The L command can subsequently determine the exact instructions 
that are most frequently executed. If possible, the sequence of 
instructions can be somewhat improved, with an overall improvement 
in program performance. 

4.3 The TRACE Utility 

The TRACE utility obtains a backtrace of the instructions that 
led to a particular break address in a program under test. For 
example, a program might have an error condition that arises froma 
sequence of instructions that are difficult to find under normal 
testing. In this case, TRACE can collect program addresses as the 
test program executes, and display these addresses and instructions 
in most recent to least recent order when you request. To invoke 
SID with the TRACE utility, enter the following command: 

STD TRACE.UTL 

The utility responds as follows: 

INITIAL = iiii 

COLLECT = cccec 
DISPLAY = dddd 

In this case, the TRACE utility also prints the message: 

READY FOR SYMBOLIC BACKTRACE 

which indicates that the assembler/disassembler portion of SID is 
present, and will disassemble instructions when the backtrace is 
requested, 

You can then proceed to load a test program with optional 
symbol table. For example, you can load the DUMP program, by typing 
the command: 

IDUMP.COM DUMP .SYM 
R 

All Information Presented Here is Proprietary to Digital Research 

46



SID User*s Guide 4.3 The TRACE Utility 

The usual response: 

“NEXT PC END” 

indicates that the test program is loaded. At this point, the SID 
debugger is executing in high memory, along with the TRACE utility 
and the test program symbols. The test program is present in low 

memory, ready for execution. 

To obtain the simplest backtrace, type one of the U or T 

command forms shown with the HIST utility. In particular, a U 

command of the form: 

U#500,.COLLECT 

executes 500 (decimal) program steps, and then automatically stops 

program execution. Type the following command to obtain a backtrace 

to the stop address: 

C.DISPLAY 

This command causes TRACE to display the label, address, and 

Mnemonic information in the form: 

label-255: 
addr-255 opcode-255 sym-255 

label-254: 
addr-254 opcode-254 sym-254 

label-253: 
addr-253 opcode-253 sym-253 

label-000: ca 
addr-000 opcode-000 sym-000 

where label-255 down through label-000 represent the decoded 

symbolic labels corresponding to addresses given by addr-255 down 

through addr-000, when the symbolic labels exist. Opcode-255 down 

through opcode-000 represent the mnemonic operation codes 

corresponding to the backtraced addresses, and sym-255 down through 

sym-000 denote the symbolic operands corresponding to the operation 

codes, when the symbols exist. The operation codes are displayed in 

the same format as the list command. Note that in this display, the 

most recently executed instruction is at location addr-255, while 

the least recently executed instruction is at location addr-o00. 

TRACE accounts for up to 256 instructions, which accumulate in T or 

U mode. The accumulated instructions are not affected by the 

DISPLAY function, but are cleared by the following call to 

reinitialize: 

C.INITIAL 

Full benefit of the TRACE utility requires concurrent use of 

TRACE with pass points (see the "P" command). In particular, pass 

points are first set at program locations that are of interest in 

the backtrace. The program is then run to an intermediate location 

All Information Presented Here is Proprietary to Digital Research 

47



SID User’s Guide 4.3 The TRACE Utility 

where the test begins. At this intermediate test point, use the U 
command to execute the test program in fully monitored mode, with 
data collection at the COLLECT entry point of TRACE. Upon 
encountering one of the pass points in U mode, program execution 
breaks, and you regain control in SID command mode. The DISPLAY 
function of TRACE is then invoked to obtain the required backtrace 
information, 

As an example of this process, suppose the DUMP program is in 
memory with the TRACE utility, as shown above. Suppose further that 
you want to view the actions of the DUMP program on the first call 
to BDOS (i.e., the first call from DUMP to the CP/M Basic Disk 
Operating System, through location 0005). Assuming the symbol table 
is loaded, type the command: 

P.BDOS 

which sets a pass point at the BDOS entry, with corresponding pass 
count = 1. Then execute DUMP in monitored mode, collecting data at 
each instruction: 

UFFFF,.COLLECT 

The untrace count of FFFF (65535) instructions is, of course, too 
Many in this case, but the assumption is that the DUMP program stops 
at the BDOS call before the instruction count is exceeded (if it 
does not, depress any keyboard character to force a program break). 
In this case, the DUMP program executes only a few instructions 
before the BDOS call, resulting in the break information: 

01 PASS 0005 .BDOS 
~ZEI A=80 B=0014 D=005C H=0000 S=0249 P=0005 JMP CCDF 
*CCDF 

showing the pass count 1, pass address 0005, symbolic location BDOS, 
register state, and break address. Since execution to this point 
was monitored and data was collected, invoke the TRACE function: 

C.DISPLAY 

which results in the display: 

BDOS: 
0005 JMP CCDF 
O01iCA CALL 0005 .BDOS 
01¢c8 MVI C,OF 
01C5 LXI D,005C .FCB 
01C2 STA 007C .FCBCR 

SETUP: 

O1Cl XRA A 
O10A CALL O1Cl .SETUP 
0107 LXI SP,0257 .STKTOP 
0104 SHLD 0215 .OLDSP 
0103 DAD SP 

0100 LXI H,0000 

All Information Presented Here is Proprietary to Digital Research 

48



SID User*s Guide 4.3 The TRACE Utility 

Note that in this particular case, only 11 instructions were 
executed before the BDOS call, and thus the full 256 instruction 
capacity had not been exceeded. In fact, the backtrace shown above 
gives the complete history of the DUMP execution, from the first 
instruction at address 0100. You can then proceed to execute the 

DUMP program further by simply typing: 

UFFFF ,.COLLECT 

with a break at the following call on BDOS. Given that the program 
execution is to stop on the 20th call on BDOS, type the pass 

command: 

P.BDOS ,# 20 

to set the pass count at 20 (decimal). Enter the command: 

UFFFF ,.COLLECT 

if intermediate passes are to be traced. Alternatively, type the 

command: 

-UFFFF,.COLLECT 

to disable intermediate traces. In either case, execution stops at 
the 20th BDOS call, and you can enter the display command: 

C.DISPLAY 

to view the trace to this particular BDOS call. 

Abort long typeouts by typing any keyboard character during the 
display. The ctl-S key Freezes the display during output. Finally, 
recall that you can issue "C.DISPLAY" any number of times to 
reproduce the backtrace since the command does not clear the TRACE 

buffer. 

You can also use the TRACE utility when the disassembler module 
is not present. In this case, the instruction addresses are listed 
in the trace, while the mnemonics are not included. For example, 
the sequence of commands shown below loads the TRACE utility without 
the disassembler module, followed by the DUMP program without its 

symbol table: 

SID Load the SID Program 
-A Remove the Disassembler 
ITRACE.UTL Ready the TRACE Utility 
R Read the TRACE Utility 

IDUMP .COM Load the DUMP Program 

In this case, the TRACE utility prints the following sign-on 

message: 

"-A" IN EFFECT, ADDRESS BACKTRACE 

All Information Presented Here is Proprietary to Digital Research 

49



SID User’s Guide 4.3 The TRACE Utility 

The backtrace information is subsequently displayed in the format: 

addr~255 addr-254 addr-253 addr-248 
addr-247 addr-246 addr-245 addr-240 

addr-007 addr-006 addr-005 addr-000 

All Information Presented Here is Proprietary to Digital Research 

50



Section 5 

SID Sample Debugging Sessions 

This section contains several examples of SID debugging 
sessions. The examples are based upon a "bubble sort" of a byte 
value list. The bubble sort program is first listed in its 
undebugged form. A series of test, edit, and reassembly processes 
are shown which result in a final debugged program. In each case, 
the operator interaction with CP/M, ED, MAC, or SID is shown in 
normal type, while comments on each of the processes are given 

alongside in italics. 

The dialogue that follows contains the following sequence of 

operations: 

(1) TYPE SORT.PRN Lists initial SORT program. 
(2) TYPE SORT.SYM Shows the SORT symbol table. 
(3) TYPE SORT.HEX Shows the SORT HEX file. 

(4) SID SORT.HEX SORT.SYM Ist debugging session. 
(5) ED SORT.ASM lst re-edit of SORT program. 
(6) MAC SORT lst reassembly of SORT. 
(7) TYPE SORT.SYM Shows new symbol table. 
(8) SID SORT.HEX SORT.SYM 2nd debugging session. 
(9) ED SORT.ASM 2nd re-edit of SORT program, 

(10) MAC SORT 2nd reassembly of SORT. 
(LL) SID SORT.HEX SORT.SYM 3rd debugging session. 
(12) ED SORT.ASM 3rd re-edit of SORT. 

(13) MAC SORT 3rd reassembly of SORT. 
(14) LOAD SORT Create a COM file for SORT. 
(15) SID SORT.COM SORT.SYM 4th debugging session. 
(16) SID SORT.COM SORT.SYM Re-entry to SID for debugging. 
(17) SID SORT.COM SORT.SYM Re-entry to SID for debugging. 
(18) SID SORT.COM SORT.SYM Re-entry to SID for debugging. 
(19) ED SORT.ASM 4th re-edit of SORT. 
(20) MAC SORT 4th reassembly of SORT. 
(21) SID SORT.HEX SORT.SYM 5th debugging session. 

(22) ED SORT.ASM 5th re-edit of SORT. 

(23) MAC SORT 5th reassembly of SORT. 
(24) SID SORT.HEX SORT.SYM 6th debugging session, 

(25) ED SORT.ASM 6th (last) re-edit of SORT. 
(26) MAC SORT $+S 6th (last) reassembly. 

Following the debugging sessions, the final corrected SORT program 

is given in its debugged form, 

All Information Presented Here is Proprietary to Digital Research 

51



SID User“s Guide 5 SID Sample Debugging Sessions 

Three separate debugging sessions are then shown that use the 
HIST and TRACE utilities to monitor the execution of the tested SORT 
program, The operations shown here include: 

(27) SID HIST.UTL Load the HIST Utility. 

(28) SID TRACE.UTL Load the TRACE Utility. 

(29) SID Load SID, TRACE follows. 

As a final example, a simple program that calls the BDOS is 
listed, followed by a single debugging session. This particular 
example shows the actions of SID when subroutines are traced, 
followed by calls on the CP/M BDOS. The operations in this case 
are: 

(30) TYPE IO.PRN List the IO program 
(31) SID IO.HEX IO.SYM Enter SID for debugging 

All Information Presented Here is Proprietary to Digital Research 

52



SID User*s Guide 5 SID Sample Debugging Sessions 

(1) ree SORT. PRN 
; SORT PROGRAM IN CP/M ASSEMBLY LANGUAGE 
3 ELEMENTS OF 'LIST' ARE PLACED INTO 
: DESCENDING ORDER USING BUBBLE SORT 

0100 ORG 100H ;BEGINNING OF TPA 
0000 = REBOOT EQU QOOOH =; CP/M REBOOT LOCATION 

0100 213801 SORT: LX! 4, SW 
0103 3601 MV Ml ;SW = 1 
0105 213901 LXT H,I ; INDEX TO SORT LIST 
0108 3600 MYT M,0 ;1 20 

3 COMPARE I WITH ARRAY SIZE 
COMP : 3HL ADORESS INDEX 

O10A 3A6201 LOA ;LENGTH OF VECTOR 
0100 BE CMP ‘ ;CHECK FOR N=I 
O10E C21901 JNZ CONT ;CONTINUE IF UNEQUAL 

; ENO OF ONE PASS ie LIST 
0111 213801 LXI H, SW O SWITCHES? 
0114 Wor a FILL A WITH SW 
0115 a 3SET FLAGS 

; END OF sont PROCESS, REBOOT 
0116 c30000 STOP: JUMP REBOOT SRESTART CCP 

; CONTINUE THIS PASS 
CONT: 
; ROORESSING I, SO LOAD LIST(I) 

0119 SF MOV E,A ;LOW(I} TO E REGISTER 
Q11A 1600 MVI 0,0 sHIGH(I) = 0 
Q11C 215A01 LXT H,LISF ;BASE OF LIST 
OllF 19 OAD 0 ;ABOR LIST(T) 
0120 7E MOV A.M sLIST(L) IN A REGISTER 
0121 23 INX H sADOR OF LIST(I+1) 
0122 BE CMP M LIST(L):LEST(I+1) 
0123 DA3101 Jc INCI SKIP IF PROPER ORDER 

; CHECK FOR LIST(I}) = LIST(I+1) 
0126 CA3i21 Jz INCI sSKIP LF EQUAL 

; ims ARE ma OF ORDER SWITCH 
0129 4E ciM D LIST(I+1) Toc 
Q12A 77 MY MA ‘NEW LIST*I1+1}) TO M 
012B 28 OCcx H ;ADDR LIST(1) 
o12c 71 MOV M,C ;NEW LIST(1} TO M 

0120 213891 LXI H, SW ;SWITCH COUNT IS SW 
0130 34 INR ;SWoz SWot 1 

INCI: ; INCREMENT INDEX 1 
0131 213903 LXT H,t 
0134 34 INR M sf2eh*1 
0135 C30A01 JMP COMP ;TO COMPARE { WITH N-1 

; DATA AREAS 
0138 SW: os 1 ;SWITCH COUNT 
0139 I: oS 1 ; INDEX 
013A DS 22 316 LEVEL STACK 

STACK: 

015A O503040A08LIST: 08 5,3,4,10, 8,130,10,4 
0162 08 Ns 28 $-LIST ;LENGTH OF LIST 

N 

All Information Presented Here is Proprietary to Digital Research 

53



SID User’s Guide 5 SID Sample Debugging Sessions 

Q@) rn Men at SYM 
OLL9 CONT 0139 1 D131 INCI SiSA LIST 

0162 me GO00 RE300T 0100 SORT O15A STAC Gil6 STOP 
0138 SW 

TYPE SORT.HEX 
:1001000021380136012139013 5 199     
epi 20007Eo3 Pong EotcAayoLaey 600215A011982 
th 000 BE 1014€772871213801A0 
"9801 30003421390134030A01 36 
199025A000503040A08820A0408E6 

  

: 0000000000 

SID SORT. ne SORT .SYM Start SID with HEX and SYM files 
SID VERS 2 
SYMBOLS 
NEXT PC END . ; . 
0163 0100 55B7 Next free address is 163, Program Counter is 100 

#0 LIST, +=N-1 and end of TPA is 55B7 
O15A: 05 03 04 0A 08 82 ...... 
0160: OA 04 Display initial list of items to sort 

#G,.STOP Execute test program until "STOP" symbol address encountered 

*O116 .STOP Now at the STOP address, examine data list: 
ae LIST, +=N-1 

a a0 05 } 04 OA 08 82 ...... Hasn't changed! 

. where is the program counter 
Peon 100 reset PC back to beginning and try again with trace on: t 

----- &=01 B=0000 D=0008 H=0138 S=0100 P=0100 LXI H,0138 .SW . 
wo--- A=01 8=0000 D=0008 H=0133 $=0100 P=0103 MVI M,O1 . SW sWel 
waaee A=01 3=0000 D=0008 H=0138 S=0100 P=O01C5 LXI H,0139 .! i=0 
iit A201 B=0000 0=0008 H=0139 S=0100 P=0108 MVI M00 .! 

COMP : 
cece A201 820000 0=0008 H=0139 S=0100 P=O10A LDA 0162 .N N=I? 
worse A=08 8=0000 0=0008 H=0139 $=0100 P=010D CMP M=00 
----1 A=08 B=0000 D=0008 H=0139 $=0100 P=Ol0E JN2Z 0119 .CONT 

CONT No, s@ compare 
~---! Az08 830000 0=0008 H=0139 $=0100 P=0119 MOV E,A LIST), LISTC+1) 
----1 A=08 8=CO00 D=G008 H=0139 S=0100 P=O11A MVI 0,00 
----] A=08 B=0000 0=0008 H=0139 S=0100 P=O01iC LX] H,O1SA .LIST 
----1 A=08 B=0000 D=0008 H=015A S=0100 P=O11F DAD 0D hee 
----1 A=08 8=0000 D=0008 H=0162 $=0100 P=0120 MOV A.M .N What's this? 
----I A=08 820000 D=0008 H=0162 S=0100 P=0121 INX H why did we 
-~--I A=08 8=0000 D=0008 H=0163 S=0100 P=0122 CMP M=58 yetch N? 
C-M-I A=08 B=0000 D=0008 H=0163 $=O0100 P=0123 JC 131 . INCI 

INCT: 
C-M-{ A=08 B=0000 0*0008 H=0163 $=0100 P=0131 LXI H,0129 .1 

*0134 Looks like we've discovered a bug! We have entered at "CONT" 
#60 with N’in-the accumulator, rather than I, which is expected! 

() ED SORT.ASM Back to the editor to make the changes 

#A Bring all the text into memory 
*Y Enter Vere mode for line numbers, then find the place to change 

1: *FADDRESSING 
2 *0L 28 

28: ; ADDRESSING [, SO LOAD LIST(1)  Detete the line 
28: *KT 
28; MOV EA sLOW(I) TO £ REGISTER 
28: *! 
28: LDA I ;LOAD I TO A REGISTER Insert the 
29: ctl-Z change 

29: *€ Terminate the editing session 

All Information Presented Here is Proprietary to Digital Research 

54



SID User*s Guide 5 SID Sample Debugging Sessions 

MAC SORT 
CP/M MACRO ASSEM 2.0 
0166 Re-assemble the SORT ra 
OO1H USE FACTOR program 
END OF ASSEMBLY 

  

J! . @) TYPE sceT 51M Here's the symbol table: 

OL0A Q119 CONT 013C 1 S124 INCI 
0165 . 9000 REBCOT 9190 SORT 9150 STACK 

0138 Sw 

SID SORT.HEX SORT.SYM 
SID VERS 1.4 ve oy . ~ a 

. Let's try again, load the HEX and SYM {es 
SYMBOLS 
NEXT °C END 
0166 0100 53387 
#P.STOP Set a “pass point” at STOP to prevent reboot 

Start (unmonitored) execution 

Ol PASS (O86 STOP We made it to the STOP label, check values 
soeee A=72 2=0008 0=0081 H=0138 $=0100 P=0116 MP 9000 -REBOCT 

*00CO .RESOOT 
#HEN what's the value of the byte variable N° 
0082 #130 130? Very strange! How did that Rappen? 

LIST, +7 Oh well, let's look at the data value 

say. 33 “ ° 04 08 They are almost sorted, looks like we have 
#s0Rt HEX some trouble near the end of the vector, 

let's reload the machine code and try 
text again: 
N t a 

gies o16¢ 5587 

* p10 Program counter remains at 0100, what 
ap are the active pass points? 

O1 0116 .STOP The one at STOP remains set, let's also 
ee SORT, FF monitor the SORT loop point, but not 

break right away. 

FF PASS ioe . SORT Here's the first time through SORT 
ao--- =7C 80008 D=0081 H=0138 S=0100 P=0100 LX? H,0138 SW 

O1 PASS “ails .$T0 It stopped immediately! ie doesn't look good: 

ceeee 279 8= 3008 D=0081 H=0138 $=0100 P=0116 JMP 0000 .REEQOT 

*0000 ‘REBOOT We know there should have been several loops 
#ISORT, HEX through the SORT label, since the data is 

R unordered. Let's in -- reload the cod 
NEXT PC END (note that the reload is necessary here. since 
0166 0100 55B7 the data is initialized in the code area). 

#P 
O01 0116 .STOP What active pass points exist? 
FE 9100 .SORT Wait a minute ~~ referring back to the 
#60 riginal listing, it appears that the code 

2 in label is incompie e: 

there should be a conditional jump back to 
the SORT label - maybe that's why the program 
never makes it back 

All Information Presented Here is Proprietary to Digital Research 

55



SID User’s Guide 5 SID Sample Debugging Sessions 

(eo SORT. ASM Oh well, back to the editor for a 
HAY quick fix. Append all text (#A), and 

Ll: *FSTOP: enter Verify mode (V). Then find STOP. 
24: *0LT 
24: ae oMP REBOOT. ;RESTART CCP 
24: up one line (-) 

23: END OF SORT mocess, REBOOT 
23: *1 and enter insert mo 
23 JNZ CONT 9 CONTINUE IF NOP SgUAL 
24: 3 ctl-Z, and "return" 
25: 

wait, i rhe 

  

*- omy buffer. 
E delete t the E, 

*KT 
25: END OF 
25: *E OK, we made the 

  

MAC SORT 
CP/M MACRO ASSEM 2.0 

OO1K USE FACTOR 
END OF ASSEMBLY 

On SORT.HEX SORT. SYM 
14 ae VERS 

YMBOLS 
NEXT Pc END 
0169 0100 5587 
#P. SORT FF 

fal 
u P STOP 

#P 
FF 0100 .SORT 
Ol 0119 .STOP 

FF PASS ane SORT 

Ol PASS oti . STOP 
=00 820000 D= 0000, He meee S= 0100 ims BR UXI 

the cil-Z, now [ve got the E command in 
Type the ctl-Z, go back up one line, 

then end the edit 

SORT PROCESS, REBOOT 

change, now re-assemble 

Invoke the macro assembier with SORT as input. 

Here we go a ain, { sure Rope this is the 
last time (but t). it probably isn’ 

Set a pass point at sort, with a high count. 

I 
4s also set a pass point at STOP with count 

will stop the first time through 
this 

Execute the test program 

First time through SORT label: 

¢ H,Q13E SW 
d again! 

Z-£- A=00 B=006A D= oor H= SIE S= 3100 a oni JMP 0000 .REBOOT 
+0000 -REBOOT 

HEN 
0008 #8 
#0.LIST,+=N 
0160: 01 01 03 04 04 05 
#1SORT.HEX 
#R 
NEXT PC END 
0169 3200 78? 

Li 
0160: ‘a ns 04 OA 08 82 

wl 

o
m
 

O
o
,
F
 

oO
 

00, LLIS 
Q 

FE 0100 .SORT 
01 Q119 .STOP 
FF O12F 

All Information Presented 

Let's look at some values: 

N=8, looks better than last time 

07 08 08 These values look a bit 
strange?! Try again: 

Machine code reloaded, display initial values: 

OA 04 

a
 

T" label, so we'll disassemble a 
program. portion of the p 

Here's where the switch occurs, let's set a pass 
point here and watch the data addresses: 

Here is Proprietary to Digital Research 

56



SID User’s Guide 5 SID Sample Debugging Sessions 

#6 

FE Pass 2100 .SERT Here's the first pass en SORT 

B=006A D= 9007. He =O13E qa 70100 P=0100 | H,OL3E .SW 
t address 161, {hoks’ OR?    

A=95 B=006A D= 2000 H= 18! i” ~2100 P=Q12F MOV CM 
FE PASS OilF Switching at 162, looks good. 
----] A295 320003 D=0001 H=0162 $=0100 P=012F MOV CM 

FO PASS 012 164 is the next to switch, looks good. 
----] &=0 A 3=0004 D= 0003 ue 0164 $=0100 P=O12F MCV Cc 

is probably the next one. 
8=9008 D= 0005, a G166 $=0100 P=O12F MOV C, 

*O136 So what's wrong? ots section of 
code seems to work 

  

#-P . Clear al! the pass points, and reload 
per AEX the machine code for another test. 
# 

' Po. END 
0169 0100 3587 
L.CONT+ 
0121 NOP 
0122 LXi H,O160 .LIST 
0125 
0126 MOY A.M Here's the code where the element 
ae a H switching occurs, let's watch 

1 cMP OM rogram switch the first clement: 
0129 <¢ 0137 ancl r i 
o12c oZ 0137 .INC 

   
   

: here we are, ready to test and 

  

    

  

p=0129 JC 9137 . INCE 
H=0162 0 P2012¢ 32 9137 J INCI 

20000 H:016" PsO12F MOV C,M 
0000 H=20161 $-0300 P=0130 MOY M.A 

H=0161 50100 P0131 5cX 
P=G132 MCY M,C .LTST 
P=0133 LX] H,GL2E SW 
P=0136 INR M=Ol .SW 

Well, that went nicely - elements switched, SW=1 
#0,UIST ? 
0160: 02 5 0S GA 08 82 OA 04.1.6... 

The data looks good at this point. 

Proceed to the INCI label 

*OL37 ae t Here we are, let's look at the data: 

#D.ul 
0160: a3 “os 04 JA 08 82 OA OS LL... 

ahel 
ooca .2E5C0T #0 Looks good, trace past the ‘abet and break 

aT 
weee- ASJ5 B20003 020000 H=O13E S=O100 P=O137 LXT H,OL3F .! 

xOL3A 
7G,.1NC Go to the INCI label again. 

Here we are (again), how's the data? 

   

     

Looks good, proceed past INC: 

205 3=0004 O0=0051 n=0L3€ S=0100 P=OLI7 LKT H,OLgF oT 

And ieop again... 

  

Here we are ‘again), how's the data’ 

Locks good, thts is getting monotono.s, let's 
go for it! Stop at ettner SORT or STOP 

f Egad! Here we at the the STOP cael. Why 
wtel aren't we making it back to SOR 

D192 93 04 04 oe a us 0): 
Tsk! Tsk! The data's messed up again. 

All Information Presented Here is Proprietary to Digital Research 

57



SID User’s Guide 

#TSORT HEX 
#R 
NEXT PC END 
0169 0100 5587 
#1136, +3 

4,013 

creel A= OS B=0003 
"0137 INCI 

136 

OL PASS 9136 
----[ A=05 B=0004 

*0137 .iNCI 
FD LIST +21 
0180: 93 04 .. 

és 08 4 
69 

ol 
0169 OA. 
#6 

OL PASS 0136 
B=0008 

i 

  

B=0008 
8=0008 
B=0008 

8=0008 

B=0008 

B=0008 

I 
05 08 .... 

5 SID Sample Debugging Sessions 

Let's reload and try again. 

Here's where the switch count is incremented 

F I 

Execute po program and break 
at SW = 

Look at data values: 

U to move past break address 

“0000 H=O13E S=0100 P=0136 INR M=01 .SW 
2 ass point feature 

w the action of the INR M, 
command stops execution after the 

pass point Is execute 

D=0001 H=013E S=0100 P=0136 INR M=02 .SW 
= 2, looks good 

Data values look good, 
Let's change N to a smalier value so the program 
doesn't loop so many times: 4 is a good number. 
End input with "," 
"GO" to pass point 

we are, switch value is incremented: 
a ‘0003 H= O13E $=0100 P=0136 INR M=03 
topped at next instruction. 

SW 

Data values so far. 

SW value at this point is d. 
Let's watch it run for a fe DS: 
D=0003 H=O013€ $=0100 P=0137 LXI 
D=0003 H=013F S=0100 P=013A INR 
0=0003 H=013F S=0100 P=0138 JMP 

=
 

H,O13F 1 
M=03 LT 
O1OA . 

D=0003 H=013F 
H=O13F 
H=013F 
H=013F 
H=013E 
H=O1L3E 
H=OL3E 

$=0100 
$=0100 
S$=0100 ?=0i 
$=0100 P=O0111 LXI 
S=0100 P=0114 MOV 
$=0100 P=0115 ORA 
$=0100 i6 UN 

0168 .! P=O10A LDA N 
a te al 

Cc 
i “Oe. Ss 

0=0003 duc CONT 0 

D=0003 H=013E S=0100 P=Oilc LDA O13F .1 

# Very interesting! 

Let's ge BIR IS 

(12)¢5 SORT. ASM 

then, than "SORT." on 
"GRIT Bere 

This is a simple change: FEAVEORA append ail text, enter line 
22. *OLT verify mode, find "ORA”“ and make the change: 

22: A ;SET FLAGS 

22: * 'return’ to move down one 
23: SNZ CONT ; CONTINUE 50 sor EQUAL 
23: *SCONT!ZSORT!ZOLT Substitute $ T for CONT 
23: INZ SORT ; CONTINUE 1 ‘ot EQUAL 
23: * "return" to move down another line 
24: 

24: "return" again. 
25 ; END OF SORT PROCESS, REBCOT 

25: * End the edit 

All Information Presented Here is Proprietary to Digital 

58 

Research



SID User*s Guide 

om 
UP /M vac 0 ASSEM 2.0 
0169 
OOLH USE FACTOR 
END OF ASSEMBLY 

(14). SORT 

FIRST AQORESS 0100 
LAST ADDRESS 0158 
BYTES READ 0047 
RECORDS vRiTTEN OL 

(15), 10 SORT. co SORT. SYM 
1.4 TD VERS 

Set 

  

53K 2PM VERS 1.3 

5 SID Sample Debugging Sessions 

Call out MAC fur another assembly. 

Just for a little variation, we'll create a 
SORT.COM file for testing under SID. 

Back to SID, using the COM and SYM files 

a pass Doint at ae ta prevent reboot 
Here's the orginal dat 

4 0A 08 32 OA 04 

Unmonitored GO 
Oops! We didn't get control back, 
be an infinite loop - 

there mus 

an get control ack by 
reing a front “panel RST 7 {imermt 7), 

or simpiy bail-out with a cold star 

Sid srr sm SORT .SYM 
$19 VERS Let's 

NEXT PC 
0180 0100 5587 
#P STOP 
#P SORT, FF 
#-G 

Ol PASS 0160 
- A=01 

  

Hmmm... 
000 -REBOOT #0 
#H=] 
0000 .REBOOT #9 

Stopped with 255 
B=006A O=O0FF H=01: tee s 

tart again, but be a little more selective 
in setting breakpoints. 

Set a pass point at STOP, as before 
and one at 

O with pass trace disable 
SORT with a pass count of 255. 

5 Passe through SORT - tog many! 
O100 Ped10 Lx H,olge 

How's the data? 

looks like N was destroyed. 

#6, . COMP tnere’s a good possibility that we're running off 
e end of 

stop at the COMP label and watch the end test. “OLGA COMP ters 

  
All Information Presented Here is Proprietary to Digital 

=90 
00 B=006A O=00F F 
00 B=006A D=O0FF 

rey. this isn't ae to 
LIST(N-1) with LIST(N), but the last LIST element is 
at LIST(N-1). 

the LIST vector into the variable N 

H=O13F S=0100 P=O10A LDA 0168 .N 
H=013F S=0100 P=0100 CMP M=00 .1 
H=O13F $=0100 P=O10E JNZ OLIC .CONT 
H=O013F $=0100 P=O111 LXI eet .SW 
H=013E $=0100 P=0114 MOV 

work! We'll be comparing 

Let's try a quick 

Research 

59



SID User’s Guide 

Mera sor ocRT. con SORT .5 
D VERS 1 

5 SID Sample Debugging Sessions 

Let's re-enter SID with a clean memory 
SYMBOLS mage, and look at the machine code 
NEXT PC EN below the "COMP" label. 
0180 0100 5587 
#L.COMP 
COMP : 

O1OA LOA 88 iN Here's the reference to N - let's change this 
010. CHP M -1 with a "hot patch" in mem to see 
Q10E NZ Olic con’ if it works, then we'll go back to the 
OL11 LX H,O13E . Sw q 
Q114 MO¥V A.M 

#A 
OLOA IMP 200 
0100 
#4200 
0200 LOA .N 
0203 ne ‘ 
0204 
Sou i cont 
0 fp ytt 

8=0004 

the pa 
1903 8=0000 D= 0000. a oe ow are i 0208, i Fite 

0 Wen 

A instruction, and fix-up some 
patch code 

Replace the LDA instruction which now has JMP 200 
N-I in accumulator (N better be 2 or larger!) 
and compare with memory (HL addresses 1), 
famp to CONT if continuing, otherwise 
Jump back to pre next instruction in sequence 
after the patch 

Set a pass point to watch the JNZ take piace 
and ¢atch any returns to the CCP. 
pet @ pass point at the patch return address. 
Reduce the stze of N for this test to 4. 

bveryehing is ready, let's go... 

¢ pass through 
oN 

t time, second pas: 
8=0003 D= 0000 = Dik 3.0100 P=0205 UNZ ore “cont 

5 T again, next pass: 
D=' 0001 hs OL e 0100 P=0205 JNZ ‘LIC - CONT 

‘a-for 
820004 0= oto, fe O13 "Se 20100 P=0205 JNZ O11C .CONT 

l be the end of one cycle: 

8=0004 o-oo te ad : 0100 r pat a 
back through cnde: 

B=0004 0= ooo?” H=O13F os 0100 Ps “0008 ONL O11C .CONT 

H,OL3E . SW 

----1 A=03 B=0004 0=0000 H=013F S=0100 P=0205 JNZ O11C .CONT   -- B=0004 020001 H=013F S=0100 P=0205 JNZ O11C .CONT 
FR PA As 
-Z-E] A=03 B=0004 

FE PASS Q111 
-Z-E1 A=03 B=0004 

*O114 

920002 H=013F S$=0100 P=0205 JNZ OLIC .CONT 

0=0002 H=013F $=0100 P=0111 LXI 

This ts getting monontonous again, 
_ push ¢ the "return" key to stop the action. 
“Data looks good, run in monitored mode: 

H,O13E . SW 

#0.L IST, +=N-1 
0160: 03 04 05 OA . 

-UF FFF 
-Z-EI A203 8=0004 0=0002 H=013E S= 0100 prone MOV A.M 

*O13B ush the "retum to abort early. 
#HEN Value oF N is still “ that's nice!) 
0004 #4 Value Its currently 2. This program 
#H=1 should ‘have stopped, but didn’t for some 
0002 #2 reason. 

All Information Presented Here is Proprietary to Digital Research 

60



SID User“s Guide 5 SID Sample Debugging Sessions 

(18) 5:5 SORT.COM SORT, SYM 

SID VERS 1.4 Let's try another approach. Suppose we 
SYMBOLS gpnstguek 2 really foiiat, pase:, we'll set 
NEXT PC END cya 
0:80 o1c0 3887 LIST(O) = 0. LIST(1) = 1 

3=0C00 D=G0C9 H=0C00 S=C100 P=0100 LXi H,O13E .SW 
B=0000 D=0090 H=013£ S=0100 P=0103 MV! M,Q1 .Si 
$*0000 D=9000 H=O12E S=010U P=0105 LXT H,OLIF 1 
8=0000 D=0000 H=O13F S=0100 P=0108 “Vi §M,00 UI 

  

vesee A200 B=Q000 D=0000 H=013F S=0100 P=O0L0A LOA 0168 A 
A=02 B=0000 0=0000 H=O013F S=0100 P=010D CMP M=20 
A=02 B=0000 D=0000 H=013F S=0100 P=O10E SNZ OLIC ‘tons 

A202 B=0000 D=COCO H=013F S=0100 P=O11C LDA C13F .I 
A=00 3=0000 0=0000 H=O13F $=0100 P=O11F MOV E,A 
A=00 8=0000 D=0000 H=013F S$=0100 P=0120 M¥i 9,90 
4200 8=0000 D=0000 H=013F S=0100 P=0122 LX! H,0160 .LIST 

} A=00 B20000 0=0000 H=0160 $=0100 P=0125 DAD 9 
A=00 8=0000 D=0000 H=0160 $=0100 P=0126 MOV A.M .LIST 

t A=00 8=0000 D=0000 H=0160 S=0100 P=0127 INX H 
i A=00 B=0000 0=0000 H=0161 $=#0100 P=0128 CMP M=O1 

A=90 B8=0000 Aa p08 a ro xe $=0100 P=0129 SC 9137 . INCI 

A=C0 B= 000° ne ‘0000 fh ot 61 $=0100 P=0137 UX1 4,O13F 
A=00 B=0000 D=0000 H=013F $=0100 P=C13A INR M=00 .1 
A=90 8=0000 D=OCOO H=O13F 5=0100 P=0138 GMP O10A COMP 

4=00 8=0000 0=0000 H=013F S=0! 
A=C2 B8=0000 D=0000 H=013F S=01 - 
A202 820000 D=00CO0 H=OL3F $=0100 P=OQ10E JNZ O1IC . 

8=0000 0=0000 H=013F S$=0100 P=Ol1¢ LDA 013F 1 
B=0000 0=0000 H=O013F $=0100 P=O1iF MO¥ £,A 

1 B=0000 0=0001 H=012F S=0100 P=0120 MY 
8=0000 0=0001 H=O013F S=Q100 P=0122 LXI H 

Ol D=0001 H=0160 S=01CO P=0125 DAD 9 
0000 D=0001 H=0162 S=0100 P=0126 MOY A 
0000 D=0001 H=0161 S=0100 P=O0127 INX H 
0000 M 
0000 fs) 

  

0=0001 H=0162 $0100 P=0128 CMP 
O= 0001 ia 0162 = 0100 P=0129 JC 

INCI: Not $ hed (again)! 
C-M-- A=01 8-000 001 0162 $e 5100 P=0137 LXI K,OL3F LI 
C-M-- A=Q1 B=0000 D=0001 H=013F S=0100 P=013A INR M=Q1 
C---- A=Q1 8=0000 D=0001 H=013F $=0100 P=0138 JMP J10A “COMP 

' ‘ ' ‘ 

P
r
P
P
r
P
r
P
P
e
r
 

p
y
 

n
H
 

N
o
 

H
e
 

n
M
 

COMP : 
C---- A=0i 8=0000 0=0001 K=013F S=0100 P=O10A LDA 2168 .N 
C--+- A=O2 820000 D=0001 H=Q13F S=0100 P=Q10D CMP M=O02 1 
-Z-E1 A202 B=0000 020001 H=013F S=0100 P=O10E JNZ OL1C .CONT 
Z-E4 &=02 8=0000 D=0001 H=013F S=0100 P=O11i LX! H,OLIE .SW 
Z-E1 A=02 8=0000 0=0001 H=013E S=O100 P=0114 MOV A,M .SW 
Z-& =01 8=0000 D=0001 H=013E $=0100 P=01:5 ORA A 

201 3=0000 0=0001 H= “O13E $=0100 P= “OL 16 SNZ 9100 .SORT 
No !ttems were switche SW not set to 0! 

  

w---- AS01 3=0000 D=000i H=O013£ $=0100 P=0100 LXT H,OI3E .SW 

All Information Presented Here is Proprietary to Digital Research 

61



SID User’s Guide 5 SID Sample Debugging Sessions 

   
Eo S 

FAAYESO ar ah Back to the editor- change the 
3: SOR LX! H, SW entry code to initialize SW 

8: *- 

Pw 
3: Mit 3SWo= lL 
9: *2S1!12Z0!70L7 
9: Mi 4,0 3S = 0 
9: 
3: SORT LAT H, SW 
a. 

3: MVI AL 

7 STA S ;SW = 2 FIRST TIME THRY 
10: 
10: *E 

(20) ux SORT 
P/M MACRO ASSEM 2.0 

16 Re-assemple, again 
30:4 USE FACTOR 
ENO OF ASSEMBLY 

e arr nex SORT. SYM 

- e've fixed the SW initialization problem, which 
eyBoLS shouid ralt the program at the proper time, dust 

NEXT ?C END we may still have a probierm with the end of 
O16¢ 2280 ad hoe test (remember that "hot patch’ 
O.LUST re's the initial data 

165: 05 03 04 0A 8 32 OA 04 08 ... Lo... 
#6, STOP 

Go, unnonttored to the STOP (how's that for 
*)LLE 2570P confidence? ). 
#0.01 +=N We mac. “t, 3053 the data: 

3165: 33 08 04 05 98 98 OA DA OB 78 82 ........... 
9270: 25 Da ate is sorted in ® escen ding order, but there's too 
#1SORT HEX ch of it! We still have the problem that N is 
can altered during execution. 
NEAT PC END . : 
OL6= 0100 5587 Let's reload and make sure we know what the 

FP SORT SPE RS point at SORT, check N 
26 

Ol PASS 3105 .SORT Here's the first pass through SORT: 
-Z2-E- A=01 820004 9=000A 4=0143 $=9100 7-3105 oe H,O163 SW 
J1d 
aoe Break at 0108, check value of N: 
TA 

Qe 
aa 8 OK initially, continue the execution with G. 

OL PASS G1O5 .SORT We have passed through the data once: 
eoeee A=75 B=002A O=007A H=20143 $=O0100 ?=0105 XI H,9142 .SwW 

mo N tas been altered, which we expected, since w 

are testing LIST(N-1) against LIST(N) and per! 
a switch if unordered. 

  

Fo END 
0 5587 Let's reload and scape in on the Broplem: 

I St c! the point where { becomes I + 

05 .SORT Oops! The initial pass comt is still set. 
1 BeQO2A D=007A H=0143 S=G100 9=9195 LX H,O0143 15H 

Clear ail pass points, 

  

Now. try again: 

Stopped at first entry to INCI. check va'ue of N: 
N is still 8, looks good. 

Go to the CONT (abel. then stoo at INCI. 

  

All Information Presented Here is Proprietary to Digital Research 

62



SID User’s Guide 5 SID Sample Debugging Sessions 

*O13C J INCI Back at INCI now. Check value of N 

#H= 
0008 #8 Remains at 8 If we keep this up, we'll be typing 
#PINCI,6 break addresses all day. We can run the next few passes 
#-G through INCI automaticaly by setting a pass count (use 6 

n this case), then run with -G to disable intermediate 

O01 PASS 013C aces. We now stop 6 iterations later: 

oe A=82 B=0004 0006 H=0143 S=0100 P=013C LXI H,0144 
* 

#H=EN Check N: remains at 8, then 
0008 #8 check I to compare passes: [=0,1,2,3,4,5,6 has been 
#H=1 executed. We are now about to set 1 = 7, but the test 

0006 #6 at COMP is "JNZ" which allows execution one too many 
times (which we already know about) 

(22) ED SORT.ASM 

*HAY 
Back to the editor, change the end a LIST test 

1: *FLDA to compare I with N-i rather than 

17: *OLT 
V7: LDA N sLENGTH OF VECTOR 
17: * "return" to go to next line 
18: CMP M ;CHECK FOR NI 

le: *! insert the instruction before the "CMP" opcode. 

18: OCR ;N-1L IN A REGISTER 
3 (NOTE THAT N MUST BE 2 OR LARGER) 

20: etl-Z 
20: *F*T Now a little clean-up work - there is a typo in 

49; *0T a commen " line at address 012A in the listing: 

49: MOV MA NEW LIST#I*=C-O1{ !ZOLT 

49: MOV MA NEW LIST(I+L) TO M Looks better now. 

a, anes We are not using the 8080 stack, so get rid of it. 

: 32 316 LEVEL STACK 

64: *2KT 
64: ; 
64: *E Complete the edit. 

(2) nc SORT 
P/M MACRO ASSEM 2.0 

O14F 
OO1H USE FACTOR 
END OF ASSEMBLY 

Or SORT.HEX SORT.SYM 
I 4 

Re-assemble the source program. 

oO te. l. Back to SID - this should be the last time! 

NEXT PC ENO 
O14F Stove aa 
#0.L Initial data: 

Lae. ‘s ms 04 OA 08 82 0A 04 08 ......... 
#6,ST 

2 + Oo Let's try it with an "address reference” to 

#G, STOP the label STOP: 

*O11F aoe That's better, now look at the data: 
#0.LIST,+ hooray! It's finally sorted. 

0146: 03 04 04 05 08 0A OA 82 08 

0008 #8 Ts N ok? Yes, it's stil 
#60 Hold it! The data is in ascen ending order, but it is 

supposed to be in descending order! This will 
be an easy fix 

All Information Presented Here is Proprietary to Diqital Research 

63



SID User’s Guide 5 SID Sample Debugging Sessions 

(25)eo SORT.ASM 
4h 

*T 
; SORT PROGRAM IN CP/M ASSEMBLY LANGUAGE 
* 

; ELEMENTS OF “LIST! ARE PLACED INTO 

DESCENDING ORDER USING BUB3LE SORT 
“DES! 2ASC!ZOLT 

POCCENDING ORDER USING BUBBLE SORT 
*SCC1ZC!ZOL 

ASCENDING ORDER USING Bale SORT 
are x€ of that problem. 

(268 nc SORT S+#5 
CP/M MACRO ASSEM 2.0 

4 Re-assemble with the symbol table option. 
OO1H USE FACTOR 
END OF ASSEMBLY 

At this point, we have checked-out this particular SORT program using this 
particular set of data items. This does not, of course, mean that the program is fully 

co d There id ich are not tested properly since we t 
included all boundary conditions (the data items 00 and FF, for example, should be 
in clude Further, there ar gram segments whic de incorrect, but which 

no negative effects on the program. The initialization of SW to the value ! 
before the label SORT, for example, does not affect the program, bet is superfluous. 

a program which appears to work, but must undergo further tests before 
it. is considered @ production progra 

All Information Presented Here is Proprietary to Digital Research 

64



SID User*s Guide 5 SID Sample Debugging Sessions 

SORT PROGRAM IN CP/M ASSEMBLY LANGUAGE 
ELEMENTS OF ‘LIST! ARE PLACED INTO 
ASCENDING ORDER USING BuaBiE SORT 

, 

> 

ry 

’ 

0100 ORG 1O0H ;BEGINNING OF TPA 
0000 = REBOOT EQU OOOOH =; CP/M REBCOT .OCATICN 

0100 3 MVI A,l 
0102 32440 ST. S ;SWo= Ll FIRST TIME THRU 
0105 714a0l SORT LXI H,SW 
0 00 M,0 
O1OA 214501 LX Hy INDEX TO SORT LIST 
0100 3600 MVI M,o 

: COMPARE I WITH ARRAY SIZ 
COMP: ML ADORESS INDEX 1 

OlOF 3A4E01 toa ; LENGTH f VECTOR 
0112 30 DCR N-1 IN A REGISTER 

; {ngTe ri N wut" ae 2 aR LARGER ) 
0113 BE HECK FOR N 
0114 ¢22201 ONE CONT CONTINUE IF ~INEQUAL 

; END OF ONE PASS ie LIST 
0117 214401 UXT H, SW NO SWITCHES? 
O11A 7€ MOV ALM FILL i i TH SW 
0118 87 ORA ,SET FLAGS 
Olle ¢20501 JNZ SORT ;CONTINUE IF NOT EQUAL 

: END OF SORT PROCESS, REBOOT 
QllF c30000 «STOP: «= OMP-—='s=CséREBOOT =; RESTART CCP 

CONTINUE THIS PASS 

CONT 
0122 pAae0l LOA I ;LOAD [ TO A REGISTER 
0125 5 MOV E,A ;LOW( 1} TO E& REGISTER 
0126 160 10 MVI 0,0 ;HIGH(1}) = 0 
0128 2460 LXT H,LIST ;BASE OF LIST 
0128 1 OAD 0) ;ADDR LIST(1) 
012c re MOV AM sLIST Gh IN A REGISTER 
0120 23 TNX H sADOR OF LIST(I+1) 
O12E 8€ CMP M ;LIST(T):LIST(1+1) 
012F DA3001 Je INCI ;SKIP IF PROPER ORDER 

; CHECK FOR LIST(I) © LIST(I+l) 
0132 CA3001 JZ INCI ;SKIP IF EQUAL 

3 ITEMS ARE OUT OF ORDER, SWITC 
0135 4€ MOY c,M OLD LIST(1+1} Ta ¢ 
0136 77 MOV MA NEW ere TO M 
0137 28 ocx H ;ADOR LIST(1) 
0138 71 MOV M,C NEW UIST) TO M 

0139 214401 LXT H, SW ;SWITCH COUNT IS SW 
O13C 34 INR M ;SWos SW 

INCT: sINCREMENT INDEX I 
0130 214501 LXI HI 
0140 34 INR M sl2tel 
0141 C30FO1 JMP COMP ;TOQ COMPARE I WITH N-1 

; DATA AREAS 
0144 SW: 0S 1 ;SWITCH COUNT 
Q14s I: 0S 1 ; INDE 

0146 OSO03040A08L IST: 0B 5,3,4,10, 8,130.10, 
O14E 08 Nz 08 $-LIST ;LENGTH OF LIST 
O14F END 

Q10F COMP 0122 CONT 0145 I 0130 INCI 0146 LIST 
O14E N 0000 REBOOT 0105 SORT Ol1F STOP 9144 Sw 

All Information Presented Here is Proprietary to Digital Research 

65



SID User“*s Guide 5 SID Sample Debugging Sessions 

@)s:» HIST.UTL Start SiD with the HIST utility 
ID VERS 1.4 

TYPE HI STOGRAM SOUNDS 100,200 Monitor 0100 through 0200. 
-INITIAL # 5221 

COLLECT = 5224 Entry point addresses in HIST. 
-OISPLAY = 5227 
PISORT HEX SORT .SYM Load the SORT program with symbuis. R 
SYMBOLS Program loaded, now loading symbols. 
NEXT PC END : 
0600 9100 5137 
4P STOP Permanent break at STOP address. 
fF SORTS Execute to "steady state” conditions by 

“oO passing the SORT label three times before break, 
"~G" prevents intermediate pass traces. 

O1 PASS C100 

oH--- A=02 B=0004 0=0006 H=013F $=0100 P=0100 a H,O13F 
*0103 - We’ re now at the third pass through SORT #-P SORT emove the pass coins at SORT, run monitored #UF FF, COLLE cT rom this point for OF FF pteps, collect data. 
wee e- A=02 8=0004 020006 H=013F $=0100 P=O103' MVE M01 

2 
Stopped after OFF Fsteps, display collected data: 

ADOR RE LATIVE FREQUENCY, LARGEST VALLE = 0309 
xe 

  
  

3 
most frequently executed address: 

OLLSA texans 

o21c FOO INDO IR 

  

  

  

  

013¢ SO at tk eR 

0200 * 
What's happening around the most frequently executed accress? 

I B,BE30 
OlOF NZ O11D .coNT This is where the end of LIST test takes plac 
O1l12 LX! H,O13F .Sw 50 ff is reasonable that this segment of code would 
0115 MOV AM be executed heavily. We could improve berformance 

ORA A reduci me ) 
OIL? INZ 0100 .Sory Of N-1 could, for example, be maintained in register 

STOP: c ti i iue of 
OQlIA GMP 0000 .REBOGT! could be kept in register E, with 00 in D 

lic ¥ There is also heavy execution around location ¢11C 
O1lC NOP 

T: 

011d LDA 0140 I This is where we go on each element comparison 
Q120 MOV E,A whether we switch elements or no 
121 MVI 0,00 

0123) LXT H,O161 LIST 
0126 GAD oO 
3127 MOY A.M 

128° INX H 
i239. CMP OM 

5 
9) 
O24 JC 0138 . INCI 

Z 9138 .INCI 

All Information Presented Here is Proprietary to Digital Research 

66



SID User’s Guide 5 SID Sample Debugging Sessions 

(8) sr TRACE .UTL Load the TRACE utility with SID. 

I RS D VERS 1.4 
INITIAL = 5321 ; 
COLLECT = 5324 TRACE entry points. 

DISPLAY = 5327 
REAOY FOR OLS BACKTRACE Indicates that tenet gpnbel table is present. 
#ISORT.HEX SORT eady the SORT progra mbol table. 

R ead program and cmbol Ss oO memory. 

SYMBOLS 
XT PC END 

9600 703° 5287 
Permanent break at the STOP label. 

cont 3 Pass through CONT three times before stopping. 
FUFFFF, jcouLecT Untrace mode, print intermediate pass pot 

o---- 0 B= p00 0=0000 H=0000 $=0100 P=0100 LXI H,O13F 
03 Pass wiih CON 
----1 A=07 B= 5000 D=0000 H=0140 $=0100 P=0110 LDA 0140 .I 

02 Ps “ato CON 
A=07 B= 6003 0=0000 H=0140 S=0100 ?=0110 LDA 9140 1 

ol Pas 0110 .CON 
- A=07 8=0004 D=C001 Holo $=0100 P=0110 bas 0140 JI 

10120, topped on the third 
#C DISPLAY Diplay the backtrace trom CONT. 

BACKTRACE: 
CONT: Most recently executed instruction. 

A 0140 .1 
Q1OF JNZ 0119 .CONT 

PoM 
0100 DCR A 

O10A LDA 0169 .N 
013¢ JMP O10A .COMP 

d 4 

0138 LXI H,0140 .1 
2 OM 

0134 LXI H,O13F .SW 
v 

p
o
e
t
s
 

w
w
 

E
P
 

wo
 

for
d 

=
 oO
 

m
M
m
O
o
O
r
O
U
,
r
r
E
O
O
O
Z
T
=
s
 a
 

      

2
 

fo
) 

P
2
Q
A
E
D
D
C
O
0
C
D
G
C
G
O
C
D
0
0
0
 

“
 

- 
fo
e)
 

oO
 

=
 

Se
 

  0140 1 
OF JNZ OLID .CONT 

M 
0100 DCR A 

COMP : Least recently executed instruction. 
G10A LOA 0169 .N {aborted with "return") 

#60 

All Information Presented Here is Proprietary to Digital Research 

67



SID User’s Guide 5 SIO Sample Debugging Sessions 

@®sro Start SID without i ID VERS 1.4 without loading any programs, 

1 Remove yasse bler/di. b #ITRACE.UTL Ready t o TRA op aise isassem ler package. 

' Read re TRACE i t INITIAL = 5921 pac age o memory. 

COLLECT = 5924 TRACE int ad DISPLAY = . 32 entry point addresses. 

"AA" FFECT, SORES BACKTRACE vy, b : . vison”. wey SORT.S Ready the sone rerfansassembler present. 

Read to memo 
SYMBOLS % 
NEXT PC END 
0600 0100 5887 

Permanent creak at STOP address, 
#P “CONT T,3 Ss Poin t CONT with pass count 3 
#- UFFFF jfouLecr Run nite red, collect data, no intermediate 

ae 0 B=0000 D=0000 H=0000 520100 P20100 21 O13F pass information. 
01 PASS wih 
---€1 A=07 B20004 0=0001 H= 0120" op 0100 P2011D 3A 0140 

ped on third pass through CONT 
#C.DISPL 
BAI KIRAGE most recent addresses 
0110 O1OF O10E 010D 010A 013C 0138 0138 
0137 0134 0133 0132 0131 0130 0120 012A 
0129 0128 0127 0126 0123 0121 0120 0110 

0 
0134 0133 0132 0131 0130 0120 012A 0129 
0128 0127 0126 0123 0121 0120 0110 010F 
OLOE 0100 010A 0108 0105 0103 0100 least recent address. 
#60 

(30) V¢ 10. PRN 

; SIMPLE Bons OUTPUT PROGRAM 
0100 ORG 00H ;SEGINNING OF TPA 
0000 = REBOOT EQU 0004 ;REBOOT ENTRY POINT 
0005 = BOOS EQU 0005H :BDOS ENTRY POINT 
0002 = CONOUT EQU 2 ;CONSOLE OUTPUT # 

0100 315401 LXI SP, STACK: LOCAL STACK 
0103 €31501 OMP STAR START EXECUTION 

WRCHAR : jaRITE CHARACTER FROM REGISTER A 
0106 0£02 MVI C,CONOUT; caneace OUTPUT # 
0108 SF v CTER TO E 
0109 €30500 JMP BOOS ner THROUGH BOOS 

WRMSG: =, WRITE MESSAGE STAR Ne AT HL ‘TIL 00 
O10€ 7E MOV T CHARACTER 
0100 87 a Na 
O1OE C8 iRETU URN IF SO 
O10F CD0601 AALL WRCHAR = ;OTHERWISE WRITE IT 
0112 ¢30C01 JMP WRMSG SFOR ANOTHER CHARACTER 

START: ;BEGINNING OF MAIN PROGRAM 
0115 212A01 ux I H,WALLAMSG vet 1 OF MESSAGE 
0118 CDOCO1 CALL WRMSG WRITE 
O11B8 212A01 LXE H,WALLAMSG ‘PART 2 OF MESSAGE 
OLIE cp0CcO1 CALL WRMSG SAR ITE IT 
0122 213001 LXT H,WASHMSG ;PART 3 OF MESSAGE 
0124 CDOCcO1 CALL WRMSG 
0127 €30000 STOP: Jmp REBOOT ;STOP THE PROGRAM 

DATA AREAS 
WALLAMSG: 

012A 57414C4C41 08 ‘WALLA ' 
WASHMSG : 

0130 57415348 08 ‘WASH ' 
0134 os 32 316 LEVEL STACK 

STACK 
0154 

All Information Presented Here is Proprietary to Digital Research 

68



SID User“s Guide 5 SID Sample Debugging Sessions 

sto so IQ. ne 10.SYM 
ID VERS Load the test program using the HEX and SYM files. 

SYMBOLS 
NEXT PC ENO 
0134 0100 S5A9 
#G, .WRMSG GO from 0100 to the first call on WRMSG 

*010C .WRMSG Now trace from the WRMSG subroutine: 
#7100 
were A200 B=0000 020000 H=012A S=0152 P=010C MOV A,M .WALLAMSG 
weeee Az57 8=0000 00000 H=012A S=0152 P=010D ORA A 
eeen- A257 B=0000 D=0000 H2012A S=0152 P=OGi0E RZ 
anne A*57 820000 020000 H=012A S$=0152 P=O10F CALL 0106 “WRCHAR Fir. 
CHAR : all to WRCHAR 

wocee A257 8=0000 D=0000 H=012A $=0150 P=0106 MVI C,02 with 57 (="w") 
eases As57 820002 D=0000 H=012A 5=0150 P=0108 MOV E,A 
oo A=S7 8=0002 0=0057 H=012A S=0150 P=0109 JMP 0005 .BD0S 

B00S: Call to Boos 
aeeee A=57 B=0002 0=0057 H=012A S=0150 P=0005 JMP 55AA Function 
oe A257 820002 020057 H=012A 5=0150 P=55AA JMP SCA4 Character” vg 
seen A=57 8=0002 050057 H=012A S=0150 P=5CA4 XTHL 
teens A=57 B=0002 00057 H=0112 $=0150 P=5CA5 SHLD 6052 (SID code to 
eeeee A=57 B20002 D=0057 H=0112 S$=Q150 P=5CA8 XTHL intercept call) 
oreee A=57 B=0002 0=0057 H=012A S=0150 P=5CA9 JMP 6E06W = first character 
-Z- E- A200 820000 0#0200 H=793B $=0152 P=0112 JMP O10C .WRMSG now we're 

WR, C: our 
-Z- E- A=00 830000 D=0200 H=7938 S=0152 P=010C MOV A,M program, with 
~2Z-E- A*00 B=0000 020200 H=7938 $=0152 P=010D ORA A another CAL 
~2-E- A#00 B=0000 D#0200 H=793B8 S=0152 P=O10E R 
-Z-E- A200 B=0000 D=0200 H=793B $=0154 P=O11B LXI H,012A-.WALLAMSG 
-2-E- A=00 820000 D=0200 H=012A $20154 P=Q11E CALL Q10C .WRMSG 

WRMSG: 
-Z-E- A200 B=0000 D=0200 H=012A $=0152 P=010C MOV A,M .WALLAMSG 
-Z-E- A=57? 8=0000 0=0200 H=012A $20152 P=0100 ORA A 
veers A=57 80000 D=0200 H=012A 5 RZ 
woe-- A=57 820000 D=0200 H=012A $=0152 P=010F CALL 0106 .WRCHAR 

HAR: 

2
 

=
 

my
 it oO
 

nm
 

72
 a QO
 

i
 

weoe- “as57 B=0000 020200 H=012A $=0150 P=0106 MVI C 
~e-+- A=57 B=0002 D=0200 H=012A $#0150 P=0108 MOV E abort with "return" 

*0109 
#G,.WRMSG CO, skip traces 

Should be ALLA ..., what happened? 

*010C .WRMSG 
#TW100 Trace without call 
-2-£- A=00 B=0000 00200 H=7938 $=0152 P=Q10C MOV A,M 
-Z~-£- A=00 B=0000 D=0200 H=7938 S=0152 P=O0100 ORA A 
-Z-E- ar OO B=0000 D=0200 H=793B $=0152 P=Q10E RZ 
~Z-E~ A=00 B=0000 D=0200 K=7938 S=0154 P=0121 LXI H,O0130 .WASHMSG 
-Z-E- A=00 8=0000 020200 H= 0130 nat P=0124 CALL Q1OC .WRMSGW 

STOP: MSG, printed another "W" and stopped! 
-2- e- Ae 00 8=0000 0=0200 He7938 Ss “ols P=0127 JMP 0000 .REBOOT 

REBO! bort with “return so we can restart. 
-Z- e “as 00 B=0000 0=0200 H=7938 $=0154 P=0000 JMP 7A03 
7A03 a7 

it appears that the WRMSC subroutine is not saving the HL 
register pair, noc is HL being incremented on each loop 

All Information Presented Here is Proprietary to Digital Research 

69



SID User“’s Guide 5 SID Sample Debugging Sessions 

#Al0F 
O10F JMP 200 We'll put a "hot patch” at the end of the WRMSG 
o112 Subroutine to save the HL pair, call the WRCHAR 

subr #A200 outine, restore the HL pair, then increment HL. 
0200 PUSH H We're not using the region above 200, so place patch 
0201 oy -ARCHAR in this regio 

0204 POP 
9205 IN 
0206 JMP "VRNSG 

#6100, .WRMSG Ok, now restart the program and stop at the first call 
WRMSG, 

head .WRMSG Here we are. HL addresses the message to print, which 
S the default display address s[otowing a breakpoin 

12h: 57 41 4¢ 4c ‘al 20 WALLA = message to 

0130: 57 41 53 48 56 45 52 53 20 31 2E 34 24 I OO 02 WASKVERS 1.481. 

#TW100 Trace without calls: shows only the activity in ese 
stern A=0! OO +0000 H=012A $=0152 P=O10C MOV A\M .WALLAMSG 
were Aa5 000 D=0000 H#*012A S=01 OD ORA A first character 

1000 D=C000 H=012A $=0152 is 57 = OE 
OF JMP 0200 Now in patch 
00 PUSH H area. 

zene- Ol CALL 0106 .WRCHARW = character 
04 POP H 

S INX H Move to next 

Z 000 D=C200 H=012B S=0152 06 JMP O10C .WRMSG Character 
ARMSG: Looping back. 

fn
 
M
e
s
o
s
M
e
M
o
o
M
o
c
M
o
r
—
a
c
w
 0]
 

w
a
n
k
 

a
t
 

h
o
w
 

3
 

3
 

Oo
 Z oO
 

fa
y 

Q
 

Q
 

oQ
 

x
 t Qa
 

ren
t 

no
 

>
 a oO
 

ra
 

wn
 

nN
 

o
a
n
w
a
d
k
e
a
a
 

O
O
d
d
D
O
o
O
0
0
 

‘ m
R
 

fi me
n 

‘ 
P
P
P
,
 8 oS
 

Qo
 il Qa
 

So
 

3S
 

° uy 3 = nm
 

> u = w o 
V
u
v
D
V
 

U
U
 

      
-Z-E- A=00 8=0000 D=0200 H=0128 $=0152 P=010C MOV A\M 
-Z-E- A=41 8=0000 920200 H=0128 S=0152 P=010D ORA A 
---E- A=41 8=0000 0=0200 H=012B $=0152 P=0 RZ 
~--E- A=41 B=0000 0=0200 H=012B S=0152 P=O10F JMP oz00 
~--E- A=41 B=0000 D=0200 H=012B S=0152 P=0200 PUSH H Here's the next 
-~-E€- A=41 8=0000 0=0200 H=012B S=0150 P=0201 CALL 0106 .WRCHARA Character 
-Z-E- A=00 B=0000 D=0200 H=7938 $=0150 P=0204 POP H (YA) 
-Z-E- A=00 B=0000 0=0200 H=012B S=0152 P=0205 INX H 
nae A=00 8=0000 020200 H=012C $=0152 P=0206 UMP O10C .WRMSG 

WRMSG: 

-2-€- A=00 820000 D=0200 H=012C S=0152 P=010C MOV A\M 
*010D Abort with "return" 
#P STOP Set a permanent break at STOP, then GO from 

the beginning of the program: 

WALLA WASHVERS 1.4S1WALLA WASHVERS 1.4$1WASHVERS 1.4$1 
OL PASS 0127 .STOP Things look better, but "00" byte missing on messages. 
-Z~E- A200 B=0000 D=0200 H=O13E S$=0154 P=0127 JMP 0000 .REBOOT 

*0000 .REBOOT 
aera Place a 00 byte at the end of peer message. 
O12E (leave this “value, 41 = "A" in WALLA 
bib z 0 (changed to 00 from blank) 

is WAsHsGe4 Place 00 byte at the end of the second message. 
0134 $60 
0135 45. 
#6100 eak at STOP remains set, GO from the beginning. 
WALLAWALLAWASH tooks good, we naw have enough rior meron to 
01 ess 0127 .STOP go back and wchange the source program using ED. 

Z-E- A= a oa 0000 D=0200 H=0134 $=0154 P=0127 JMP “0600 »REBOOT 
+0000 -REBO 
#60 

All Information Presented Here is Proprietary to Digital Research 

70



Index 

A H 

address, 5 Hexadecimal Value (H) 
ambiguous references, 25 command, 22 

Assenble (A) command, 15 HIST Utility, 44 
assembler/disassembler histogram, 44 

module, 16 

I 

B 

INITIAL, 43 
backtrace, 46, 47 Input Line (1) command, 23 

binary delimiters, 12 
bubble sort, 51 L 
byte format, 18 

L command, 46 
L command output, 27 
line editing controls, 6 

Call (C) command, 17 List Code (L) command, 27 
COLLECT, 43 literal character values, 10 
COLLECT entry point, 48 literal decimal numbers, 9 
command letters, 7 literal hexadecimal numbers, 9 
command line, 5 
command parameters, 7 M 
commands, 5 
CPU flags, 40 

c 

Memory organization, 1 
Move Memory (M) command, 28 

D 

10) 

data collection, 44 
default file control block, operation code, 37 

24, 25 
DISPLAY, 43, 47, 48 P 
Display Memory (D) command, 17 
DUMP, 48 Pass Counter (P) command, 28 

pass counts, 28, 29 

E pass points, 28, 47, 48 
PIP, 34 

entry points, 43 program load, 35 

error messages, 2, 5, 16, 34 program segments, 32 
Examine CPU State (X) 

command, 40 Q 

F qualified symbols, 12 

Fill Memory (F) command, 20 

G 

Go (G) command, 20 

71



R 

Read Code/Symbols (R) 
command, 3 

register trace, 30 
reinitialization, 44 
relocation, 1, 2 
report generator, 33 
ROM code, 

S 

search and match procedure, 12 
Set Memory (S) Command, 35 
symbol, 
symbol file error, 35 
symbol load, 5, 35 
symbol table, 5 
symbol table files, 34 
symbolic expressions, 7, 9, 12 
symbolic references, 11 

T 

Trace Mode (T) command, 26 
trace process, 37 
TRACE Utility, 46 
trace without call 

function, 37 

U 

unary delimiters, 12 
Untrace Mode (U) command, 39 
up-arrow operator, 1 
utilities, 43 
utility functions, 3, 32 
utility load operation, 43 

WwW 

word format, 18







  

Reader Comment Form 

We welcome your comments and suggestions. They help us provide you with better 
product documentation. 

Date sd Manual Title Edition   

1. What sections of this manual are especially helpful? 

  

  

  

  

2. What suggestions do you have for improving this manual? What information 
is missing or incomplete? Where are examples needed? 

  

  

  

  

3. Did you find errors in this manual? (Specify section and page number.) 

  

  

  

  

COMMENTS AND SUGGESTIONS BECOME THE PROPERTY OF DIGITAL RESEARCH.



N
O
 
P
O
S
T
A
G
E
 

N
E
C
E
S
S
A
R
Y
 

IF 
M
A
I
L
E
D
 

IN 
T
H
E
 

B
U
S
I
N
E
S
S
 

R
E
P
L
Y
 

M
A
I
L
 

F
I
R
S
T
 

C
L
A
S
S
 

/ 
P
E
R
M
I
T
N
O
.
1
8
2
 

/ 
P
A
C
I
F
I
C
 

G
R
O
V
E
,
 

CA 

 
 

P
O
S
T
A
G
E
 

W
I
L
L
 

B
E
 

P
A
I
D
 

B
Y
 
A
D
D
R
E
S
S
E
E
 

00] 
DIGITAL 

R
E
S
E
A
R
C
H
”
 

P.O. 
Box 

579 

Pacific 
G
r
o
v
e
,
 

California 

9
3
9
5
0
 

Cc 
Zz 
a 
™m 

0 
n 
4 
> 
4 
Mm 
72) 

Attn: 
P
u
b
l
i
c
a
t
i
o
n
 
P
r
o
d
u
c
t
i
o
n
 

 



  

  

  

  

  

  

  

     


	Front cover
	Title page
	i
	Copyright
	ii
	Foreword
	iii
	Table of Contents
	iv
	v
	vi
	Section 1
	SID Operation Under CP/M
	1
	2
	3
	4
	5
	6
	7
	8
	Section 2
	SID Symbolic Expressions
	9
	10
	11
	12
	13
	14
	Section 3
	SID Commands
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	Section 4
	SID Utilities
	43
	44
	45
	46
	47
	48
	49
	50
	Section 5
	SID Sample Debugging Sessions
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	Index
	71
	72
	73
	74
	Reader Comment Form
	
	Back cover

