

 a0

DIGITAL
RESEARCH”

Tt

DIGITAL
RESEARCH”

Programmer's Utilities Guide
For the

CP/M® Family of

Operating Systems

COPYRIGHT

Copyright © 1982 by Digital Research. All rights reserved. No part of this publica-
tion may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the

prior written permission of Digital Research, Post Office Box 579, Pacific Grove,
California, 93950.

This manual is, however, tutorial in nature. Thus, the reader is granted permission

to include the example programs, either in whole or in part, in his own programs.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness
for any particular purpose. Further, Digital Research reserves the right to revise this
publication and to make changes from time to time in the content hereof without
obligation of Digital Research to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research. ASM, DDT, LIB-80, LINK-80,

MAC, MP/M II, PL/-80, RMAC, and SID are trademarks of Digital Research. XREF

is a utility of Digital Research. Intel is a registered trademark of Intel Corporation.
Microsoft is a registered trademark of Microsoft Corporation. Z80 is a registered
trademark of Zilog, Inc.

The Programmer's Utilities Guide for the CP/M Family of Operating Systems was
prepared using the Digital Research TEX Text Formatter and printed in the United
States of America.

First Edition: September 1982

Foreword

This manual describes several utility programs that aid the programmer and system
designer in the software development process. Collectively, these utilities allow you
to assemble 8080 assembly language modules, link them together to form an execut-
able program, and generate a cross-reference listing of the variables used in a pro-
gram. With these utilities, you can also create and manage your own libraries of
object modules, as well as create large programs by breaking them into separate
overlays.

The Programmer’s Utilities Guide assumes you are familiar with the CP/M® or
MP/M II™ Operating System environment. It also assumes you are familiar with the
basic elements of assembly language programming as described in the 8080 Assembly
Language Programming Manual, published by Intel®,

MAC™, the CP/M macro assembler, translates 8080 assembly language statements
and produces a hex format object file suitable for processing in the CP/M environ-
ment. MAC is upward compatible with the standard CP/M nonmacro assembler,
ASM™. (See the CP/M documentation published by Digital Research.)

MAC facilities include assembly of Intel 8080 microcomputer mnemonics, along with
assembly-time expressions, conditional assembly, page formatting features, and a pow-
erful macro processor compatible with the standard Intel definition. MAC also accepts
most programs prepared for the Processor Technology Software #1 assembler, requiring
only minor modifications. This revision is not compatible with previous versions.

MAC is supplied on a standard disk, along with a number of library files. MAC
requires about 12K of machine code and table space, along with an additional 2.5K
of V/O buffer space. Because the BDOS portion of CP/M is coresident with MAC, the
minimum usable memory size for MAC is about 20K. Any additional memory adds
to the available Symbol Table area, allowing larger programs to be assembled.

Sections 1 through 5 describe the simple assembler facilities of MAC: 8080 mne-
monic forms, expressions, and conditional assembly. These facilities are similar to
those of the CP/M assembler (ASM). If you are familiar with ASM, you might want

to skip Sections 1 through 5 and begin with Section 6.

ili

Sections 6 through 8 describe MAC macro facilities in detail. Section 7 describes
inline macros, and Section 8 explains the definition and evaluation of stored macros.
If you are familiar with macros, briefly skim these sections, referring primarily to the
examples. Section 9 explains macro applications, common macro forms, and pro-
gramming practices. Skim the examples and refer back to the explanations for a
detailed discussion of each program.

Sections 10 through 13 describe other features of macro assembler operation. Sec-
tion 10 details assembly parameters. Section 11 introduces iterative improvement, a
common debugging practice used in developing macros and macro libraries. Section
12 defines MAC’s symbol storage requirements.

Section 13 explains the differences between MAC and RMAC™, the CP/M Relo-
cating Macro Assembler.

Section 14 details XREF, an assembly language cross-reference program used with
MAC and RMAC.

Section 16 describes LINK-80™, the linkage editor that combines relocatable object
modules into an absolute file ready to run under CP/M or MP/M HU. Section 17
describes how to use LINK-80, in conjunction with the PL/I-80™ compiler, to pro-
duce overlays. Section 18 explains how to use LIB-80™, the software librarian for
creating and manipulating library files containing object modules.

The appendixes contain a complete list of error messages output by each of the

utility programs.

iv

Table of Contents

Macro Assembler Operation0 0.000 ccc cece e ene eeeneeeneees 1

Program Format.......... 0.0 c ccc cece eet nee e nee enn e eee eeneees 3

Forming the Operand

3.1 Labels... ccc ccc ccc ccc cece eee e nee nneeennnenaes 5
3.2 Numeric Constants 0.0.0... ccc ccc cece cece ene e teen aes 6

3.3. Reserved Words 2... 0... c ccc ccc ccc ence eee nee een ees 7
3.4 String Constants 21... . ccc ccc cee e eect e ee ene eee nnes 8

3.5 Arithmetic, Logical, and Relational Operators00. 8
3.6 Precedence of Operators ... 0... ccc ccc cece eee ence eee n aes 11

Assembler Directives

4.1 The ORG Directive oo... ccc cece cece eect e ee enes 14
4.2 The END Directive 00000 e cece e ee eens 14
4.3. The EQU Directive .. 0.00. e cece eee eaae 15

4.4 The SET Directive... 0.0.0. c cece ccc ccc cece eee e nee eeeenes 16

4.5 The IF, ELSE, and ENDIF Directives 0. ccc ceesceceeeee 16

4.6 The DB Directive 2.0.00... cece ccc cee eee eee eeae 21

4.7. The DW Directive 2.0.0.0... cece ccc cece cece e eee c eee ees 22

4.8 The DS Directive 2.0.0.0... ccc ccc cence eee ees 23

4.9 The PAGE and TITLE Directives 0.0.0. ccc cece eee cece eee 23
4.10 A Sample Program Using Pseudo Operations00.0000: 25

Operation Codes

5.1. Jumps, Calls, and Returns 0... ccc cece cee ee eens 30
5.2 Immediate Operand Instructions0 cece eee eee eee 32

6

7

8

9

Table of Contents (continued)

5.3 Increment and Decrement Instructionsccceeveee eevee

5.4. Data Movement Instructions 2.0.0.0... 0... cece cee cece eee eens

5.5 Arithmetic Logic Unit Operations cece eee eect ence
5.6 Control Instructions 0... cece cece eee tanec nnnes

An Introduction to Macro Facilities

Inline Macros

7.1 The REPT-ENDM Group 0. ccc eee c cree eee en eee nena
7.2 The IRPC-ENDM Group cece cece ete eee te este ee neeee
7.3. The IRP-ENDM Group 0 cece eect e eect ete tent ences
7.4 The EXITM Sratement 2.0... 0... cc cece cee eet e eee e nen ees
7.5 The LOCAL Statement ccc cece eect tenn neees

Definition and Evaluation of Stored Macros

8.1 The MACRO-ENDM Group0 cece eee cert tence neers
8.2 Calling a Macro oo. ccc ccc ccc tenn teen eee nn eee

8.3 Testing Empty Parameters 0... eee cece eee eens

8.4 Nested Macro Definitions 0... ccc ccc cece ee cnet ene n eens
8.5 Redefinition of Macros 0... ccc ccc cece cece teen nent enes
8.6 Recursive Macro Invocation 1... .. cece cece eee ne nee eens

8.7 Parameter Evaluation Conventionsc ccc cece eee eee e eee

8.8 The MACLIB Statement 0. cc cece eee eet e eee e een e eee

Macro Applications

9.1 Special Purpose Languages 0... eee cee eee eee ees
9.2. Machine Emulation 0... cece eee teeter teens

vi

10

11

12

13

14

15

Table of Contents (continued)

9.3. Program Control Structures

9.4 Operating System Interface

Assembly Parameters

Debugging Macros

Symbol Storage Requirements

RMAC, Relocating Macro Assembler

13.1 RMAC Operation

13.2 Expressions

13.3 Assembler Directives
13.3.1 The ASEG Directive 00. cee cee cee ene eeee

13.3.2. The CSEG Directive 2.0... ec eee eee eee eens

13.3.3. The DSEG Directive 0.0.0... ccc cece cece cee

13.3.4 The COMMON Directive 00. ccc eee ee cee

13.3.5 The PUBLIC Directive ... 0... ccc cece cece eee ee

13.3.6 The EXTRN Directive oo... . 00. cece eee eee eee

13.3.7. The NAME Directive oo... 0... cee cee ec ee

XREF

LINK-80

15.1 Introduction ... 0. ccc ccc ccc cece eee eee eee eens ene

15.2 LINK-80 Operation 0... cece cee eee tent t eens

15.3 Multiline Commands 1.0.0.0... cc ccc ce ccc cee cence ences

Vii

16

Table of Contents (continued)

15.4 LINK-80 Switches 2.00... ccc ccc ccc cee cece eee eeeeneenns 239
15.4.1. The Additional Memory (A) Switch00005 239
15.4.2. The Data Origin (D) Switch 00000. e eee eee 240
15.4.3 The Go (G) Switch wo... 00. c eee eee eee eaes 240

15.4.4 The Load Address (L) Switch0.. 0... cece eee eee 240
15.4.5 The Memory Size (M) Switchcccec eee ee eee 241
15.4.6 The No List (NL) Switch 1.0.0.0... cece cee eee eae 241

15.4.7 The No Recording of Symbols (NR) Switch 241
15.4.8 The Output COM File (OC) Switch, 241
15.4.9 The Output PRL File (OP) Switchcc0ccce eee. 241
15.4.10 The Program Origin (P) Switch0.0..0 0s eee 241
15.4.11 The ? Symbol (Q) Switch 2.0.00... 0. cece cee eee 242
15.4.12 The Search (S) Switch wo... ccc ccc cece cece eee a aes 242

15.5 The $ Switch 0c. c eee e eee te ee eee eeee 242

15.5.1 $Cd—Console 2.0.0... eee cece eee eee eee 243
15.5.2 $ld—Intermediate 2.0.0.0... cece cece eee 243
15.5.3 $Ld—Library occ eee eect eee eens 243
15.5.4 $Od—Object 0. cece cece cece een ee 243

15.5.5 $Sd—Symbol 1.0.0... ccc cece cece eee e eens 243
15.5.6 Command Line Specification 0.00 cece eee eee 244

15.6 Creating MP/M II PRL Files 0.0.0.0... 000 ce ee eee eee eee 244
15.7 The Request Item... eee ccc cece nett nee e nuns 245
15.8 REL File Format 2.0.0.0... cece cece eee cence eee nen ec eens 246
15.9 IRL File Format 00... ccc cece eee eee cette eee eee eeeens 248

Overlays

16.1 Introduction 20... ccc cece cece eee een e ene t een tnnees 251
16.2 Using Overlays in PL/I Programs 0. cece cece cece eees 252

16.2.1 Overlay Method 1.0... cee ccc cee ct eee eens 252

16.2.2 Overlay Method 2.0.0.0... 0.0 cece cece ccc e en ene 254
16.3 Specifying Overlays in the Command Line0000 255
16.4 Sample LINK-80 Execution ccc cece cence een eee ennas 256

Vili

17

Table of Contents (continued)

16.5 Other Overlay Systems 0.00. c cc eee eee cece cece eeenenes 259

LIB-80

17.1 Introduction 0.0.0.0... ccc ccc ccc cece cece eee e eee eenneee 261
17.2 LIB-80 Operation 0... cc ccc ccc ce cee cence eee eeeenes 261

17.3 LIB-80 Switches 2.0.00... 0c. c cece e eee eee eeennenas 263

ix

m
o
O

F

>

“r
y

Table of Contents (continued)

Appendixes

MAC/RMAC Error Messages 000 ccc ccc ec cneeeteteveeeeees 265

XREF Error Messages 0... ccc cece cece ee eeee ee eenectanens 269

LINK-80 Error Messages 0.0.0. cece ccc ceeecceeenceenveseeuans 271

Overlay Manager Run-time Error Messages00cecceeueees 275

LIB-80 Error Messages 00. c ccc e ete eee e sence tent e ne eeneenes 277

8080 CPU Imstructions 0.0.0... 0... cece cece eee een ee eens 279

ww

ey
 Rr

>

S
a
i
l
s

P
O
O
P
S
>
>
I
S
Y

P
r
e
r
e
p
p
A
a
s
.

r
e
e

ies
)

a

'
iy

1
i

1
1

t
t

'
'

y
i

w
p
e
r
u
d
w
n
y
e
e

m
A
a
n
a
A
r
a
n
b

P
D
D

D
E

Table of Contents (continued)

List of Tables

8080 Registers and Values ccc ccc cece ceucecreceuntevatens
Operators 2.6... cence eee eee een e ene eeenneeees
Equivalent Forms of Relational Operators00.0eceeeuee
Pseudo Operations 0. ccc c ccc cece eee e tees cence vaneeuas
KDF-11 Operation Codes 00... ccc cece cece eee e eens
Assembly Parameterscccccccevecceceuceeceuuceteenas
LIB-80 Switches 0.0... ccc cece cece ccc eee e tere neeee eevee eeenes
MAC/RMAC Error Messages00. ccc cece eeee scence ceeanes

Terminal Error Conditions 000000 c cece eee e eee eeeveeaeees
XREF Error Messages ccc cece c eect eee eee eevee eeaneeeees

LINK-80 Error Messages ccc ccc cece ccc eens et eeeet cannes

Run-time Error Messages ccc cece cc ce sec eeueecceernceeaa

LIB-80 Error Messages ec ect e ccc eee e eet eee eeseneeanens

8080 CPU Instructions 0. ccc cc cece cence ee ene enenes

IRL File Index... . 0... cece cece cence eee eee ebeneaaeees
Tree-structured Overlay System 1.0.0.0... ccc ccc cece cece eee eees
Separate Overlay System 0... c cece c eee e eee ence eenenes

List of Listings

Sample ASM, PRN, SYM, and HEX files from MAC

Conditional Assembly with TTY True 00000 cece eee
Conditional Assembly with TTY False 0... cece eee eens
Conditional Assembly Using ELSE for Alternate
Sample Program Using Nested IF, ELSE, and ENDIF
TYPER Program Listing 0... cece cee eee eee eet e ete tees

Assembly Showing Jumps, Calls, Returns, and Restarts

Assembly Using Immediate Operand Instructions0..+e00e:
Assembly Containing Increment and Decrement Instructions
Assembly Using Various Register/Memory Moves00005
Assembly Showing ALU Operations0c cece eeeeeeees

Xi

QO

CO

oo

i°.
2)

io
]

1
e
o

\o

So

©
vo

P
R
E

rw

P
N
A
K

A
Y
E

\o

FF

\o

os
)

\o
t

t
i

|
i)

1
'

i}
t

P
R
R

e
e
e

R
O

W
A
N
A
M
A

D
A
n
P
w
h
P
o
r
’

r
s

*
F
P
"

\O

O
O

SO

\O

O
O

\O

DO

\O

SO

SO

NO

LO

Table of Contents (continued)

A Sample Macro Library 00... ccc ccc eee enna 43
A Sample Assembly Using the MACLIB Facility20005 45
A Sample Program Using the REPT Group00cc cece eee 50

Original (ASM) File with IRPC Example 0.0000 e ues 52
Resulting (PRN) file with IRPC Example0 00sec eee 53
A Sample Program Using IRP 0.0 ccc cece cece nes 57
Use of the EXITM Statement in Macro Processing0005 59
Assembly Program Using the LOCAL Statement000. 62
Output from Program of Listing 7-5a. eee eee ee eee eee eee 63

Example of Macro Definition and Invocation-0000- 69
Sample Message Printout Macro cee eect eeetene ees 71
Sample Program Using the NUL Operator0000 eee 74
Sample Program Showing a Nested Macro Definition 78
Sample Program Showing Macro Redefinition-. 80
Sample Program Showing a Recursive Macro... eee. eee eee 83

Macro Parameter Evaluation Example 0000 ceee eee eee eee 87
Parameter Evaluation Using Bracketed Notation0-00 89
Examples of Macro Parameter Evaluation00 0005 91
Macro Library for Basic Intersection 0c cece eee e neers 98
Macro Library for Treadle Control 0.0 c eee eee eee 100
Macro Library for Corner Pushbuttons 000 cece eee eee 100
Traffic Control Algorithm Using -M Option-.00 0 ee eee 102
Intersection Algorithm with *M in Effect---.0 eee eee eee 103
Algorithm with Generated Instructions 0.00.00 cece eee e eee 104
Library Segment with Debug Facility 0.00 ee eee eee 106

Sample Intersection Program with Debug0 cece eee 107

Debug Trace Printout 0.0... . 0. cece eee tenes 107
A-D Averaging Program Using Stack Machine-....0005. 110

Stack Machine Opcode Macros cc reece eee ee eee etna 111
Averaging Program with Expanded Macros 1.0.0... cscs eevee ees 114
Averaging Program with Debugging Statements Lene 117

Sample Execution of AVER Using DDT 0. cece eee ees 119
Stack Machine Macro Library 0... c cece ee eee eee teenies 121

Program for Tool Travel Computation 000 cece eee 139
Sample Execution of Distance Using DDT 0... . ccc eee een ees 143
Partial Listing of Distance with Full Trace 000s eee 144
Simple 1/O Macro Library 2.2... cece cece nee nes 147
Macro Library for Simple Comparison Operations 148

xii

9-17a.

9-17b.

9-18.
9-19a.

9-19b.

9-20.

9-2 1a.

9-21b.

9-22.
9-23a.

9-23b.

9-24a.

9-24b.

9-25a.

9-25b.

9-25c.

9-26.

9-27.

9-28.

9-29.

9-30.

9-31.

9-32.

16-1.

16-2.

Table of Contents (continued)

Single Character Processing using COMPARE.................0--.
Partial Trace of Listing 9-17a with Macro Generation
Expanded NCOMPARE Comparison Operators0.e00:
Sample Program using NCOMPARE Library 2.0.0... 0.0. cece uae
Segment of Listing 9-19a with +M Option0.ceceueees
Macro Library for the WHEN Statement ccc cc ceeeees
Sample WHEN Program with -M in Effect0..00eeeeeee
Partial Listing of Listing 9-21a with +M Option
Macro Library for the DOWHILE Statement0000c sees
An Example Using the DOWHILE Statement 000000
Partial Listing of Listing 9-23a with Macro Generation
Macro Library for SELECT Statement 0.0 cece eee eae
Library for SELECT Statement 00.00 cece cece ee ceeeeees
Sample Program Using SELECT with -M +S Options
Segment of Listing 9-25a with Mnemonics0.ccueeees
Segment of Listing 9-25a with +M Option0....000-
Program Using WHEN, DOWHILE, and SELECT

Lower- to Upper-case Conversion Program 0000... eee ee

Sequential File Input/Output Library0.00.0... 00. ee eee
Sample FILE Expansion Segment00. 00. c cece cece eee ve ees
Program for Line Printer Page Formattinge00eeee
File Merge Program .. 0... cee cece cece eee e cence eennenens
Sample MERGE Disk Files... ... 0c. c cece eect eens
LINK-80 Console Interaction 0.0.0.0... ccc cece cece cece ens

xiii

Section 1
Macro Assembler Operation

Start MAC with a command of the form:

MAC filename

where filename corresponds to the assembly language file with an assumed filetype
ASM. During the translation process, MAC creates a file called filename.HEX con-
taining the machine code in the Intel hexadecimal format. You can subsequently load
or test this HEX file. (See the LOAD command and the Dynamic Debugging Tool,
DDT™, in the CP/M documentation.) MAC also creates a file named filename.PRN
containing an annotated source listing, along with a file called filename.SYM contain-
ing a sorted list of symbols defined in the program.

Listing 1-1 provides an example of MAC output for a sample assembly language
program stored on the disk under the name SAMPLE.ASM. Type MAC SAMPLE
followed by a carriage return to execute the macro assembler. The PRN, SYM, and

HEX files then appear as shown in the listing. The assembler listing file (PRN)
includes a 16-column annotation at the left showing the values of literals, machine
code addresses, and generated machine code. Note that an equal sign (=) is used to
denote literal values to avoid confusion with machine code addresses. (See Section

4.3.) Output files contain tab characters (ASCII CTRL-I) whenever possible to con-

serve disk space.

Source Program (SAMPLE.ASM)

org 1060h transient Program area

bdos equ O005h jbdos entry Point

woehar eau 2 jw@rite character function

5 enter with ccp’s return address in the stack

5 Write a single character (7) and return

my 1 crwchar jwrite character function

mv i ey?’ scharacter to write

call bdos jWwrite the character

ret return to the ccr

end 100h Start address is 100h

Listing 1-1. Sample ASM, PRN, SYM, and HEX files from MAC

"a
o
‘a
a.
ie)
3

1 Macro Assembler Operation Programmer’s Utilities Guide

Assembler Listing File (SAMPLE.PRN)

0100 ORG 100H sTRANSIENT PROGRAM AREA

0005 = BboOSs EQU Q005H jBDDS ENTRY POINT

0002 = WCHAR EQU 2 iWRITE CHARACTER FUNCTION

j ENTER WITH CCP’S RETURN ADDRESS IN THE STACK

; WRITE A SINGLE CHARACTER (?) AND RETURN

0100 OE02 MYT C »WCHAR $WRITE CHARACTER FUNCTION

0102 1€3F MYT Ey’?! CHARACTER TO WRITE

0104 CD0500 CALL BOOS iWRITE THE CHARACTER

0107 C9 RET iRETURN TO THE CCP

0108 END 100H +START ADDRESS IS 100H

Assembler Sorted Symbol File (SAMPLE.SYM)

0005 BDOS 0002 WCHAR

Assembler Hex Output File (SAMPLE.HEX)

:OBO1LOGQ00E0Z1ESFCDOSOOCSEF

:00010000FF

Listing 1-1. (continued)

End of Section 1

Section 2
Program Format

A program acceptable as input to the macro assembler consists of a sequence of
statements of the form

line# label operation operand comment

where any or all of the elements can be present in a particular statement. Each
assembly language statement terminates with a carriage return and line-feed. Note
that the ED program automatically inserts the line-feed when you enter a carriage
return. You can also terminate an assembly language statement by typing the excla-
mation point (!) character. MAC treats this character as an end-of-line. You can
write multiple assembly language statements on the same physical line if you separate
them with exclamation points.

A sequence of one or more blank or tab characters delimits statement elements.
Tab characters are preferred because they conserve source file space and reduce the
listing file size. The tab characters are not expanded until the file is printed or typed
at the console.

The line# is an optional decimal integer value representing the source program
line number. It is allowed on any source line. The assembler ignores the optional
line#.

The label field takes the form:

identifier

or

identifier:

The label field is optional, except where noted in particular statement types.

The identifier is a sequence of alphanumeric characters: alphabetics, question marks,
commercial at-signs, and numbers, the first character of which is not numeric. You
can use identifiers freely to label elements such as program steps and assembler
directives, but identifiers cannot exceed 16 characters in length.

1

")
i)
a)
a.
e)
3
i)

2 Program Format Programmer’s Utilities Guide

All characters are significant in an identifier, except for the embedded dollar sign
($} that you can use to improve name readability. Further, MAC treats all lower-case

alphabetics in an identifier as though they were upper-case. Note that the colon (:)
following the identifier in a label is optional. The following examples are all valid
labels:

x KY long#name

x? xyls longer#named$data

xl xe @i23: 7? @@aboDEF

Gamma @GAMMA TARESWESHERE?

KZ294$5G678$9012$3456:

The operation field contains an assembler directive (pseudo operation), 8080 machine
operation code, or a macro invocation with optional parameters. The pseudo opera-
tions and machine operation codes are described in Section 5. Macro calls are dis-
cussed in Section 6.

The operand field of the statement contains an expression formed from constant
and label operands, with arithmetic, logical, and relational operations on these oper-
ands. Properly formed expressions are detailed in Section 3.

A leading semicolon character denotes the comment field, which contains arbitrary
characters until the next carriage return or exclamation point character. MAC reads,
lists, and otherwise ignores comment fields. To maintain compatibility with other
assemblers, MAC also treats statements that begin with an asterisk (*) in column one

as comment lines.

The assembly language program is thus a sequence of statements of the form
described above, terminated optionally by an END statement. The assembler ignores
all statements following the END.

End of Section 2

Section 3
Forming the Operand

Expressions in the operand field consist of simple operands—labels, constants, and
reserved words—combined into properly formed subexpressions by arithmetic and
logical operators. MAC carries out expression computation as the assembly proceeds.
Each expression produces a 16-bit value during the assembly. The number of signifi-
cant digits in the result must not exceed the intended use. That is, if an expression is
to be used in a byte move immediate (see the MVI instruction), the absolute value of

the operand must fit within an 8-bit field. Instructions for each expression give the
restrictions on expression significance.

3.1. Labels

A label is an identifier of a statement. The label’s value is determined by the type
of statement it precedes. If the label occurs on a statement that generates machine
code or reserves memory space, such as a MOV instruction or a DS pseudo opera-
tion, then the label is given the value of the program address it labels. If the label
precedes an EQU or SET, then the label is given the value that results from evaluat-
ing the operand field. In a macro definition, the label is given a text value, a sequence
of ASCII characters, that is the body of the macro definition. With the exception of
the SET and MACRO pseudo operations, an identifier can label only one statement.

When a nonmacro label appears in the operand field, the assembler substitutes its
16-bit value. This value can then be combined with other operands and operators to
form the operand field for an instruction. When a macro identifier appears in the
operation field of the statement, the text stored as the value of the macro name is
substituted for the name. In this case, the operand field of the statement contains
actual parameters. These are substituted for dummy parameters in the body of the
macro definition. Later sections give the exact mechanisms for defining, calling, and
substituting macro text.

n
@
(a)
ct.
°
|

W

3.2. Numeric Constants Programmer’s Utilities Guide

3.2. Numeric Constants

A numeric constant is a 16-bit value in a number base. A trailing radix indicator
denotes the base, called the radix of the constant. The radix indicators are

binary constant (base 2)
octal constant (base 8)
octal constant (base 8)
decimal constant (base 10)

hexadecimal constant (base 16) L
T
o
U
L
C
F

Q is an alternate radix indicator for octal numbers because the letter O is easily
confused with the digit 0. Any numeric constant that does not terminate with a radix
indicator is assumed to be a decimal constant.

A constant is composed of a sequence of digits, followed by an optional radix
indicator, where the digits are in the appropriate range for the radix. Binary con-
stants must be composed of 0 and 1 digits. Octal constants can contain digits in the
range 0-7. Decimal constants contain decimal digits. Hexadecimal constants contain
decimal digits and hexadecimal digits A through F, corresponding to the decimal
numbers 10 through 15.

Note that the leading digit of a hexadecimal constant must be a decimal digit to
avoid confusing a hexadecimal constant with an identifier. A leading 0 prevents
ambiguity. A constant composed in this manner produces a binary number that can
be contained within a 16-bit counter, truncated on the right by the assembler. Like
identifiers, embedded $ symbols are allowed within constants to improve readability.

Finally, the radix indicator translates to upper-case if a lower-case letter is encoun-
tered. The following examples are valid numeric constants:

1234 1234D 11008 1111%0000$1111$0000B

1234H OFFFEH 33770 33$77$220

33770 Ofe3h 1234d offffh

Programmer’s Utilities Guide 3.3 Reserved Words

3.3. Reserved Words

Several reserved character sequences have predefined meanings in the operand field
of a statement. The names of 8080 registers and their values are given in Table 3-1.

Table 3-1. 8080 Registers and Values

symbol value symbol value

A 7 B 0

Cc 1 D 2

E 3 H 4

L 5 M 6
SP 6 PSW 6

Lower-case names have the same values as their upper-case equivalents. Machine
instructions can also be used in the operand field, resulting in their internal codes.
For instructions that require operands, where the operand is a part of the binary bit
pattern of the instruction (e.g.. MOV A,B), the value of the instruction is the bit

pattern of the instruction, with zeros in the optional fields. For example, the statement

LXT H»MOV

assembles an LXI H instruction with an operand equal to 40H, the value of the
MOV instruction with zeros as operands.

When the $ symbol appears in the operand field—not embedded within identifiers
and numbers—its value is the address of the beginning of the current instruction. For
example, the two statements

Ke JMP x

and

JMP $

produce a jump instruction to the current location. As an exception, the $ symbol at
the beginning of a logical line can introduce assembly formatting instructions. (See
Section 10.)

3.4 String Constants Programmer’s Utilities Guide

3.4 String Constants

String constants represent sequences of graphic ASCII characters, enclosed in apos-
trophes (’). All strings must be fully contained within the current physical line, with
the exclamation point (!) character within strings treated as an ordinary string char-
acter. Each individual string must not exceed 64 characters in length, or MAC reports
an error. The apostrophe character can be included in a string by typing two apos-
trophes (’’). The assembler reads the two apostrophes as a single apostrophe.

Note that particular operation codes can require the string length to be no longer
than one or two characters. The LXI instruction, for example, accepts a character
string operand of one or two characters. The CPI instruction accepts only a one-
character string. The DB instruction, however, allows strings zero through 64 char-
acters long in its list of operands. In the case of single-character strings, the value is
the 8-bit ASCII code for the character, without case translation. Two-character strings
produce a 16-bit value with the second character as the low-order byte and the first
character as the high-order byte. For example, the string constant ‘A’ is equivalent to
41H. The two-character string ‘AB’ produces the 16-bit value 4142H. The following
are valid strings in MAC statements:

‘A? ‘AB’ ‘at’ fo? aoe fo?é ‘she said "hello" ’

Note: You can use the ampersand (&) character to cause evaluation of dummy

arguments within macro expansions inside string quotes. Section 8 details the substi-
tution process.

3.5 Arithmetic, Logical, and Relational Operators

MAC can combine the operands described above in algebraic notation using prop-
erly formed operands, operators, and parenthesized expressions. The operators MAC
recognizes in the operand field are listed below.

a+b produces the arithmetic sum of a and b; +b is b.

a—b produces the arithmetic difference between a and b; —b is 0—b.

a/b is the unsigned division of a by b.

.

7

m a*b is the unsigned multiplication of a by b.

2

m= a MOD bis the remainder after division of a by b.

7 a SHL b produces a shifted left by b, with zero right fill.

Programmer’s Utilities Guide

@ a SHR b produces a shifted right by b, with zero left fill.

NOT b is the bit-by-bit logical inverse of b.

a EQ b produces true if a equals b, false otherwise.

a LT b produces true if a is less than b, false otherwise.

a GT b produces true if a is greater than b, false otherwise.

a XOR b produces the logical exclusive OR of a and b.

HIGH b is identical to b SHR 8 (high-order byte of b).

LOW b is identical to b AND OFFH (low-order byte of b).

3.5 Operators

a LE b produces true if a is less than or equal to b, false otherwise.

a GE b produces true if a is greater than or equal to b, false otherwise.

a AND b produces the bitwise logical AND of a and b.

a OR b produces the bitwise logical OR of a and b.

The letters a and b represent operands that are treated as 16-bit unsigned quantities
in the range 0-65535. All arithmetic operators produce a 16-bit unsigned arithmetic
result. Relational operators produce a true (OFFFFH) or false (OOOOH) 16-bit result.
Logical operators operate bit-by-bit on their operands producing a 16-bit result of
16 individual bit operations. The HIGH and LOW functions always produce a 16-
bit result with a high-order byte of zero. Table 3-2 lists arithmetic, logical, and
relational operators.

Table 3-2. Operators

arithmetic relational logical

+ EQ NOT
— LT AND

* LE OR

/ GT XOR

MOD GE

SHL NE

SHR

3.5 Operators Programmer’s Utilities Guide

MAC performs all computations during the assembly process as 16-bit unsigned
operations, as described above. The resulting expression must fit the operation code
in which it is used. For example, the expression used in an ADI (add immediate)
instruction must fit into an 8-bit field. Thus, the high-order byte must be zero. If the
computed value does not fit the field, the assembler produces a value error for that
statement.

As an exception to this rule, negative 8-bit values are allowed in 8-bit fields under
the following conditions: if the program attempts to fill an 8-bit field with a 16-bit
value that has all Is in the high-order byte, and the sign bit is set, then the high order
byte is truncated, and no error is reported. This condition arises when a negative
sign is placed in front of a constant. For example, the value -2 is defined and com-
puted as 0-2, producing the 16-bit value OFFFEH, where the high-order byte (OFFH)

contains extended sign bits that are all 1s, and the low-order byte (OFEH) has the

sign bit set. The following instructions do not produce value errors in MAC:

ADI -1 ADI -15 ADI -127 ADI -128 ADI OFFS8OH

The following instructions produce value errors:

ADI 256 ADI 32768 ADI -129 ADI OFF?7FH

The special operator NUL is used in conjunction with macro definition and expan-
sion operations. The NUL operator takes a single operand. NUL must be the last
operator in the operand field.

Expressions can be formed from simple operands such as labels, numeric con-
stants, string constants, and machine operation codes, or from fully enclosed paren-
thesized expressions such as

10+20,

16H+370 +

Li/3+

{(L2 + 4) SHR 3»

(‘a’ and Sfh) + “O's

(’BB’ + B) OR (PSH + M)s

(i+ (24+C)) shr (A-(B +1))>

(HIGH A) SHR 3

where blanks and tabs are ignored between the operators and operands of the

expression.

10

Programmer’s Utilities Guide 3.6 Precedence of Operators

3.6 Precedence of Operators

MAC assumes operators have a relative precedence of application allowing expres-
sions to be written without nested parentheses. The resulting expression has assumed
parentheses that are defined by this relative precedence. The order of application of
operators in unparenthesized expressions is listed below. Operators listed first have
highest precedence. These are applied first in an unparenthesized expression. Opera-
tors listed last have lowest precedence and are applied last. Operators listed on the
same line have equal precedence and are applied from left to right as they are
encountered in an expression:

* / MOD SHL SHR
+ -

EQ® LT LE GT GE NE

NOT

AND

OR xXOR

HIGH LO

The following expressions are equivalent:

a * b + c produces (a * bb) + ¢
a + b&b * c produces a + (b * c)
a MOD b * c SHL d produces ((a MOD b) * ©) SHL D

a OR t AND NOT c + d SHL e produces
a OR (6b AND (NOT (ec + (d SHL @))))

Balanced parenthesized subexpressions can always override the assumed parenthe-
ses. The last expression above can be rewritten to force application of operators in a
different order, as shown below:

(a OR tt) AND (NOT c) + @ SHL e

resulting in the assumed parentheses

(a OR 6) AND (CNOT c? + (d SHL e))

Note that an unparenthesized expression is well formed only if the expression that
results from inserting the assumed parentheses is well formed.

11

3.6 Precedence of Operators Programmer’s Utilities Guide

Relational operators can be expressed in either of two forms, as shown in Table
3-3.

Table 3-3. Equivalent Forms
of Relational Operators

< LT

<= LE
= EQ

<> NE

>= GE

> GT

End of Section 3

12

Section 4

Assembler Directives

Assembler directives set labels to specific values during assembly, perform condi-
tional assembly, define storage areas, and specify starting addresses in the program.
Each assembler directive is denoted by a pseudo operation that appears in the oper-

2)
ation field of the statement. Table 4-1 lists the acceptable pseudo operations. 4

a =

a

Table 4-1. Pseudo Operations >

Directive Meaning

ORG sets the program or data origin.
END terminates the physical program.
EQU performs a numeric equate.
SET performs a numeric set or assignment.
IF begins a conditional assembly.
ELSE is an alternate to a previous IF.

ENDIF marks the end of conditional assembly.
DB defines data bytes or strings of data.
DW defines words of storage (double bytes).
DS reserves uninitialized storage areas.
PAGE defines the listing page size for output.
TITLE enables page titles and options.

In addition to those listed above, several pseudo operations are used in conjunction
with the macro processing facilities. MACRO, EXITM, ENDM, REPT, IRPC, IRP,

LOCAL, and MACLIB are reserved words. They are fully described in Sections 7
and 8. The nonmacro pseudo operations are detailed below.

13

4.1. The ORG Directive Programmer’s Utilities Guide

4.1 The ORG Directive

The ORG statement takes the form

label ORG expression

where label is an optional program label—an identifier followed by an optional
colon (:)—and expression is a 16-bit expression consisting of operands defined before
the ORG statement. The assembler begins machine code generation at the location
specified in the expression. There can be any number of ORG statements within a
program. There are no checks to ensure that you are not redefining overlapping
memory areas. Note that most programs written for CP/M begin with an ORG 100H
statement that causes machine code generation to begin at the base of the CP/M
Transient Program Area. Programs assembled with RMAC and linked with LINK-80
do not need an ORG 100H statement. (See Sections 13 and 15.)

If the ORG statement has a label, then the label takes on the value given by the
expression. The expression is the next machine code address to assemble. This label
can then be used in the operand field of other statements to represent this expression.

4.2 The END Directive

The END statement is optional in an assembly language program; if present, it
must be the last statement. All statements following the END are ignored. The two
forms of the END statement are

label END
label END expression

where the label is optional. If the first form is used, the assembly process stops, and
the default starting address of the program is taken as 0000. Otherwise, the expres-
sion is evaluated and becomes the program starting address. This starting address is
included in the last record of the Intel format machine code hex file resulting from
the assembly. Most CP/M assembly language programs end with the statement

END 100H

resulting in the default starting address of 100H, the beginning of the Transient
Program Area.

14

Programmer’s Utilities Guide 4.3 The EQU Directive

4.3 The EQU Directive

The EQU (equate) statement names synonyms for particular numeric values. The
directive takes the form:

label EQU expression

The label must be present, and it must not label any’ other statement. The assembler
evaluates the expression and assigns this value to the identifier given in the label field.
The identifier is usually a name describing the value in a more human-oriented man-
ner. You can use this name throughout the program as a parameter for certain
functions. Suppose, for example, that data received from a teletype appears on an
input port, and data is sent to the teletype through the next output port in sequence.
The series of equate statements that can define these ports for a particular hardware
environment is shown below.

TTYBASE EQU 10H SBASE TTY PORT

TTYIN EQU TTYBASE ITTY DATA IN

TTYOUT EQU TTYBASE+1 ITTY DATA OUT

At a later point in the program, the statements that access the teletype could appear
as

IN TTYIN jREAD TTY DATA TO A

OUT TTYOUT jWRITE DATA FROM A

making the program more readable than the absolute I/O port addresses. If the
hardware environment is later redefined to start the teletype communications ports
at 7FH instead of 10H, the first statement need only be changed to

TTYBASE EQU 7FH jBASE PORT NUMBER FOR TTY

and the program can be reassembled without changing any other statements.

15

4.4 The SET Directive Programmer’s Utilities Guide

4.4 The SET Directive

The SET statement is similar to the EQU, taking the form

label SET expression

except that the label, taken as a variable name, can occur on other SET statements
within the program. The expression is evaluated and becomes the current value
associated with the label. Thus, unlike the EQU statement, where a label takes on a
single value throughout the program, the SET statement can assign different values
to a name at different parts of the program. In particular, the SET statement gives
the label a value that is valid from the current SET statement to the point where the
label occurs on the next SET statement. The use of SET is similar to the EQU, except
that SET is used more often to control conditional assembly within macros.

4.5 The IF, ELSE, and ENDIF Directives

The IF, ELSE, and ENDIF directives define a range of assembly language state-
ments to be included or excluded during the assembly process. The IF and ENDIF
statements alone can bound a group of statements to be conditionally assembled, as
shown in the following example:

IF expression
statement# 1

statement#2

statement#n

ENDIF

Upon encountering the IF statement, the assembler evaluates the expression following
the IF. All operands in the expression must be defined ahead of the IF statement. If
the expression evaluates to a nonzero value, then statement#1 through statement#n
are assembled. If the expression evaluates to zero, then the statements are listed but
not assembled.

Conditional assembly is often used to write a single generic program that includes
a number of possible alternative subroutines or program segments, where only a few
of the possible alternatives are to be included in any given assembly. Listings 4-1 and
4-2 give an example of such a program.

16

Programmer’s Utilities Guide 4.5 IF, ELSE, and ENDIF

Assume that a console device, either a teletype or a CRT, is connected to an 8080
microcomputer through I/O ports. Due to the electronic environment, the current
loop teletype is connected through ports 10H and 11H, while the RS-232 CRT is
connected through ports 20H and 21H. The program continually loops, reading and
writing console characters. The program shown below operates either with a teletype
or a CRT, depending on the value of the symbol TTY.

Listing 4-1 shows an assembly for the teletype environment. Listing 4-2 shows the
assembly for a CRT-based system. Note that the assembler leaves the leftmost 16
columns blank when statements are skipped due to a false condition.

CP/M MACRO ASSEM 2.0 #001 Teletype Echo Program

FFFF = TRUE EQU OFFFFH sDEFINE TRUE

0000 = FALSE EQU NOT TRUE iDEFINE FALSE

FFFF = TTY EQU TRUE §SET TTY ON

0010 = TTYBASE EQU 10H sBASE OF TTY PORTS

o020 = CRTBASE EQU 20H SBASE OF CRT PORTS

IF TTY sASSEMBLE TTY PORTS

TITLE ‘Teletype Echo Program’

Oo10 = CONIN EQU TTYBASE SCONSOLE INPUT

OO11 = CONOUT EQU TTYBASE+1 iCONSOLE OUT

ENDIF

IF NOT TTY s$ASSEMBLE CRT PORTS

TITLE ‘ERT Echo Program’

CONIN EQU CRTBASE SCONSOLE IN

CONOUT EQU CRTIBASE+1 }CONSOLE OUT

ENDIF

H

0000 DB1O ECHO: IN CONIN sREAD CONSOLE

CHARACTER

0002 D311 OUT CONOUT iWRITE CONSOLE

CHARACTER

0004 C30000 JMP ECHO

0007 END

Listing 4-1. Conditional Assembly with TTY True

17

4.5 IF, ELSE, and ENDIF

CP/M MACRO ASSEM 2.0

FFFF
00g00

ao00

o010

0020

0020

oo21

0000

9002

o00d

0007

18

DB20

D321

C30000

TRUE

FALSE

TTY

TTYBASE

CRTBASE

CONIN

CONOUT

CONIN

CONOUT

ECHO:

#001

EQU

EQU

EQU

EQU

EQU

IF

TITLE

EQU

EQU

ENDIF

IF

TITLE

EQU

EQU

ENDIF

IN

OUT

JMP

END

Programmer’s Utilities Guide

CRT Echo Program

OFF FFH SDEFINE TRUE

NOT TRUE iDEFINE FALSE

FALSE iSET CRT ON

10H $BASE OF TTY PORTS

20H SBASE OF CRT PORTS

TTY sASSEMBLE TTY PORTS

‘Teletype Echo Program’

TTYBASE SCONSOLE INPUT

TTYBASE+1 }CONSOLE OUT

NOT TTY SASSEMBLE CRT PORTS

‘CRT Echo Program’

CRTBASE sCONSOLE IN

CRTBASE+1 iCONSOLE DUT

CONIN READ CONSOLE

CHARACTER

CONOUT jWRITE CONSOLE

CHARACTER

ECHO

Listing 4-2. Conditional Assembly with TTY False

Programmer’s Utilities Guide 4.5 IF, ELSE, and ENDIF

The ELSE statement can be used as an alternative to an IF statement. The ELSE

statement must occur between the IF and ENDIF statements. The form ts

IF —_ expression

statement# 1

statement#2

statement#n

ELSE

statement#n + 1

statement#n + 2

statement#m

ENDIF

If the expression produces a nonzero (true) value, then statements 1 through n are

assembled as before. However, the assembly process skips statements n+1 through
m, When the expression produces a zero value (false), MAC skips statements 1
through n and assembles statements n+1 through m. For example, the conditional
assembly shown in Listings 4-1 and 4-2 can be rewritten as shown in Listing 4-3.

CP/M MACRO ASSEM 2.0 #001

FFFF = TRUE EQU

0000 = FALSE EQU

0000 = TTY EQU

9010 = TTYBASE EQU

0020 = CRTBASE EQU

IF

TITLE

CONIN EQU

CONOUT EOU

ELSE

TITLE

0020 = CONIN EQU

0021 = CONOUT EQU

ENDIF

i

0000 DB20 ECHO: IN

0002 D321 OUT

oo0d C30000 JMP

0007 END

Listing 4-3.

CRT Echo Program

OFFFFH iDEFINE TRUE

NOT TRUESDEFINE FALSE

FALSE }SET CRT ON

10H 3BASE OF TTY PORTS

20H sBASE DF CRT PORTS

TTY SASSEMBLE TTY PORTS

‘Teletype Echo Program’

TTYBASE SCONSOLE INPUT

TTYBASE+1 }CONSOLE QUT

sASSEMBLE CRT PORTS

‘CRT Echo Program’

CRTBASE iCONSOLE IN

CRTIBASE+1 sCONSOLE QUT

CONIN iREAD CONSOLE CHARACTER

CONOUT WRITE CONSOLE CHARACTER

ECHO

Conditional Assembly Using ELSE for Alternate

19

4.5 IF, ELSE, and ENDIF Programmer’s Utilities Guide

Properly balanced IF, ELSE, and ENDIF statements can be completely contained
within the boundaries of outer encompassing conditional assembly groups. The struc-
ture outlined below shows properly nested IF, ELSE, and ENDIF statements:

IF exp#1
group#1
IF exp#2
group#2

ELSE
group#3
ENDIF
group#4

ELSE
group#5

IF exp#3
group#6

ENDIF
group#7

ENDIF

Groups 1 through 7 are sequences of statements to be conditionally assembled, and
exp#1 through exp#3 are expressions that control the conditional assembly. If exp#1
is true, then group#1 and group#4 are always assembled, and groups 5, 6, and 7
are skipped. Further, if exp#1 and exp#2 are both true, then group#2 is also included
in the assembly. Otherwise, group#3 is included. If exp#1 produces a false value,
groups 1, 2, 3, and 4 are skipped, and groups 5 and 7 are always assembled. If
exp#3 is true under these circumstances, then group#6 is also included with 5 and
7. Otherwise, it is skipped in the assembly. A structure similar to this is shown in
Listing 4-4, where literal true/false values show conditional assembly selection.

20

4.5 IF, ELSE, and ENDIF Programmer’s Utilities Guide

There can be up to eight pending IFs or ELSEs with unresolved ENDIFs at any
point in the assembly, but the assembly usually becomes unreadable after two or
three levels or nesting. The nesting level restriction also holds, however, for pending
IFs and ELSEs during macro evaluation. Nesting level overflow produces an error
during assembly.

FFFF = TRUE EQU OFFFFH sDEFINE TRUE

g000 = FALSE EQU NOT TRUE iDEFINE FALSE

IF FALSE

MYT Art

IF TRUE

MYI Ar2

ELSE

MYT A+3

ENDIF

MYI Ard

ELSE

g000 3E05 MUI Ard

IF TRUE

0002 3E06 MUI AG

ELSE

MUTI Ai?

ENDIF

9004 3E08 MYT 4:8

ENDIF

END

Listing 4-4. Sample Program Using Nested IF, ELSE, and ENDIF

4.6 The DB Directive

The DB directive defines initialized storage areas in single-precision (byte) format.

The statement form is

label DB e#1, e#2,..., e#n

where the label is optional, and e#1 through e#n are either expressions that produce
8-bit values (the high-order eight bits are zeros, or the high-order nine bits are ones),

or are ASCII strings no longer than 64 characters each. There is no practical restric-
tion on the number of expressions included on a single source line. The assembler
evaluates expressions and places them into the machine code sequentially following

the last program address generated.

21

4.6 The DB Directive Programmer’s Utilities Guide

String characters are similarly placed into memory, starting with the first character
and ending with the last character. Strings longer than two characters cannot be used
as operands in more complicated expressions. They must stand alone between the
commas. Note that ASCII characters are always placed in memory with the high-
order (parity) bit reset to zero. Further, recall that there is no translation from lower

to upper-case within strings. The optional label can be used to reference the data
area throughout the program. The following are examples of valid DB statements:

datas DB O0+91921+13»4,556

DB data and Of fh+5;s3770,1+2+3+4

signons: DB ‘please type your name:’screif +0

DB ‘AB’ SHR 8+ ‘’C’s ‘DE’ AND 7FH

DB HIGH data» LOW (signon GT data)

4.7 The DW Directive

The DW statement is similar to the DB statement except double-precision (two-
byte) words of storage are initialized. The form of the DW statement is

label DW e#1, e#2,..., e#n

where the label is optional, and e#1 through e#n are expressions that produce 16-
bit values. Note that ASCII strings one or two characters long are allowed, but
strings longer that two characters are disallowed. In all cases, the data storage is
consistent with the 8080 processor; the least significant byte of the expression is
stored first in memory, followed by the most significant byte. The following are
examples of properly formed DW statements:

doubts: DW Offefh:+ doubt, signon-$+255+255

DW ‘a’s Se ’AB‘Ss? ‘CD’ s doub LT signon

22

Programmer’s Utilities Guide 4.8 The DS Directive

4.8 The DS Directive

The DS statement reserves an area of uninitialized memory and takes the form

label DS expression

where the label ts optional. The assembler begins subsequent code generation after
the area reserved by the DS. Thus, the DS statement given above has exactly the
same effect as the statement sequences:

label: EQU $;CURRENT CODE LOC
ORG $+expression ;MOVE PAST AREA

4.9 The PAGE and TITLE Directives

The PAGE and TITLE pseudo operations give you control over the output format-
ting that is sent to the PRN file or directly to the printer device. The forms for the
PAGE statement are

PAGE
PAGE expression

If the PAGE statement stands alone, an ASCII CTRL-L (form-feed) is sent to the

output file after the PAGE statement has been printed. The PAGE command is often
issued directly ahead of major sections of an assembly language program, such as a
group of subroutines, to cause the next statement to appear at the top of the follow-
ing page.

The second form of the PAGE command specifies the output page size. In this case,
the expression following the PAGE pseudo operation determines the number of out-
put lines to be printed on each page. If the expression is zero, there are no page
breaks. The print file is simply a continuous sequence of annotated output lines. If
the expression is nonzero, then the page size is set to the value of the expression.
Form-feeds are issued to cause page ejects when this count is reached for each page.

23

4.9 PAGE and TITLE Directives Programmer’s Utilities Guide

The assembler initially assumes that

PAGE 56

is in effect, producing a page eject at the beginning of the listing and at each 56-line
increment.

The TITLE directive takes the form

TITLE string-constant

where the string-constant is an ASCII string enclosed in apostrophes, not exceeding
64 characters in length. If a TITLE pseudo operation is given during the assembly,
each page of the listing file is prefixed with the title line, preceded by a standard
MAC header. The title line thus appears as

CP/M MACRO ASSEM n.n_ #ppp string-constant

where n.n is the MAC version number, #ppp is the page number in the listing, and
string-constant is the string given in the TITLE pseudo operation. MAC initially
assumes that the TITLE operation is not in effect. When specified, the title line and
the blank line following the title are not included in the line count for the page. No
more than one TITLE statement is included in a program. Similarly, only one PAGE
statement with the expression option is included.

If a TITLE statement is included, and the Symbol Table is being appended to the
PRN file (see Section 10), then the SYM file also contains the title at the beginning
of the symbol listing with page breaks given by either the default or specified value
of the PAGE statement.

24

Programmer’s Utilities Guide 4.10 A Sample Program

4.10 A Sample Program Using Pseudo Operations

The program in Listing 4-5 demonstrates the pseudo operations available in MAC.
The sample program, called TYPER, operates in the CP/M environment by selecting
one of three messages for output at the console. This program is created using the
ED program, assembled using MAC, and then placed into COM file format using
the CP/M LOAD function. After these steps have been accomplished, TYPER exe-
cutes at the Console Command Processor level of CP/M by typing one of the
commands:

TYPER A

TYPER B

TYPER C

to select message A, B, or C for printing. The TYPER program loads under the CCP
and jumps to the label START where the 8080 stack is initialized. The TYPER
program then prints its sign-on message:

‘typer’ version 1,90

The program then retrieves the first character typed at the console following the
command TYPER. This character should be A, B, or C. If one of these letters is not

specified, then TYPER reboots the CP/M system to give control back to the CCP. If
a valid letter is provided, TYPER selects one of the three messages (MESS@A,
MESS@B, or MESS@C) and prints it at the console before returning to CP/M.

The TITLE and PAGE statements produce a title at the beginning of each page;
page size is 33 lines, excluding the title lines. Form-feeds are suppressed. A number
of EQU statements at the beginning improve program readability. Note that through-
out the program the exclamation point allows several simple assembly language
statements on the same line. Although multiple statements make the program more
compact, they often decrease the overall readability of the source program. Note also
that the program terminates without the END statement. The END statement is
necessary only if a starting address is specified. The END statement is often included,
however, to maintain compatibility with other assemblers.

The DB statements labeled by SIGNON contain simple strings of characters and
expressions that produce single-byte values. The DW statement following TABLE

defines the base address of each string, corresponding to A, B, and C. Finally, the DS

statement at the end of the program reserves space for the stack defined within the
TYPER program.

25

4.10

0008

0000

0005

oosc

ooa?

oo0D

N00a

0010

0100

0100

o103

0106

0108

O10E

O112

O115

0118

OL1B

O11E

0120

0122

26

A Sample Program

CP/M MACRO ASSEM

C3120

7EB7C8

SFOEOZES

CDOSOOEL

29030901

31C101

213701

CDO301

SASDOO

D641

FEQ3

Dz20000

TITLE

PAGE

i

YERS EQU

BOOT EQU

BOOS EQU

TFCB EQU

WCHAR EQU

CR EQU

LF EQU

STKSIZ EQU

;

ORG

JMP

i

WMESSAGE:

i

START: sENTER

LXI

LXI

CALL

j

LDA

SUI

CPI

JNC

Programmer’s Utilities Guide

2.0 #001 Typer Program

‘Typer Program’

33

PRINT THE MESSAGE SELECTED BY THE INPUT COMMAND A+B+ OR C

10 SVERSION NUMBER N.N

Q0O0H sREBOOT ENTRY POINT

Q005H 3BDOS ENTRY POINT

QOSCH jDEFAULT FILE CONTROL BLOCK (GET A»B» OR C)

2 iWRITE CHARACTER FUNCTION

ODH CARRIAGE RETURN CHARACTER

OAH jLINE FEED CHARACTER

16 iSTZE OF LOCAL STACK (IN DOUBLE BYTES)

100H }ORIGIN AT BASE OF TPA

START +JUMP PAST THE MESSAGE SUBROUTINE

SWRITE THE STRING AT THE ADDRESS GIVEN BY HL ‘TIL OO

MOV AsM! ORA A! RZ FRETURN IF AT 00

MOY EsA! MVI CyWCHAR! PUSH H #READY TO PRINT

CALL BDOS! POP H $CHARACTER PRINTED: GET NEXT

INK H! JMP WMESSAGE

HERE FROM THE CCP+ RESET TO LOCAL STACK

SP »STACK iSET TO LOCAL STACK

H+ SIGNON jWRITE THE MESSAGE

WMESSAGE j/TYPER’ VERSION N.N

TFCBt+1 iGET FIRST CHAR TYPED AFTER NAME

“AY JNORMALIZE TO O%1:2

TABLEN iCOMPARE WITH THE TABLE LENGTH

BOOT jREBOOT IF NOT VALID

COMPUTE INDEX INTO ADDRESS TABLE BASED ON A’S VALUE

Listing 4-5. TYPER Program Listing

Programmer’s Utilities Guide

0125

0126

0128

0128

012C

0120

O12E

O12F

0130

O131

0134

0137

0147

014A

014d

0003

0153

0167

O182

O1al

CP/M MACRO ASSEM 2.0

oF

1600

214001

19

19

SE

23

36

EB

CDO301

C30000

5

SIGNON:

2774797065

312E30

ODOADG

3

TABLE:

9301670182

= TABLEN

7468697320MESS@A:

796F752073MESS@B:

7468697320MESSBC:

y

STACK:

4.10 A Sample Program

#002 Typer Program

MOY E+A $LOW ORDER INDEX

MUI Dyo sEXTENDED TO DOUBLE PRECISION

LXI H+» TABLE jBASE OF THE TABLE TO INDEX

DAD D SSINGLE PRECISION INDEX

DAD D ‘DOUBLE PRECISION INDEX

MOV EyM ‘LOW ORDER BYTE TO E

INX H

MOV DaM jHIGH ORDER MESSAGE ADDRESS TO DE

XCHG SREADY FOR PRINTOUT

CALL WMESSAGE SMESSAGE WRITTEN TO CONSOLE

JMP BOOT JREBOOT, GO BACK TO CCP LEVEL

DATA AREAS

OB ‘''typep’? version '

DB VERS/10+/0’s ‘4’ VERS MOD 10 +’0'

DB CR+LF»O $END OF MESSAGE

i0F MESSAGE BASE ADDRESSES

DW

EQU

DB

DB

DB

DS

End of Section 4

STACK

MESS@A »MESS@B »MESS@C

($-TABLE}/2 sLENGTH OF TABLE

‘this is message a’ sCRr+LF 10

‘you selected b this time’ »CR+LF +0

‘this message comes out for c’sCR+LF 10

STKSIZ#2 SRESERVES AREA FOR

Listing 4-5. (continued)

27

Section 5
Operation Codes

Operation codes, found in the operation field of the statement, form the principal
components of assembly language programs. MAC accepts all the standard mnemon-
ics for the Intel 8080 microcomputer. These standard mnemonics are detailed in the
8080 Assembly Language Programming Manual, published by Intel. Labels are optional
on each input line and, if included, take the value of the instruction address immedi-
ately before the instruction is issued by the assembler. The individual operators are
listed briefly in the following sections. See the Intel documentation for exact operator
details. In this section, operation codes are categorized for discussion; a sample assembly
shows the hexadecimal codes produced for each operation. The following notation is
used throughout:

G
UO

ND
3S

e3 represents a 3-bit value in the range 0-7 that usually takes one of the
predefined register values A, B, C, D, H, L, M, SP, or PSW

8 represents an 8-bit value in the range 0-255; signed 8-bit values are
also allowed in the range — 128 through +127

el6 represents a 16-bit value in the range 0-65535

where e3, e8, and e16 can be formed from an arbitrary combination of operands
and operators in a well-formed expression. In some cases, the operands are restricted
to particular values within the range, such as the PUSH instruction.

29

5.1 Jumps, Calls, and Returns Programmer’s Utilities Guide

5.1 Jumps, Calls, and Returns

In some cases, the condition flags are tested to determine whether or not to take
the jump, call, or return. The forms are shown below. The jump instructions are

JMP e16 JNZ el6 JZ e16
JNC e16 JC el6 JPO el6
JPE 16 JP e16 JM el6

The call instructions are

CALL e16 CNZ e16 CZ e16

CNC e16 CC el6 CPO e16

CPE e16 CP e16 CM el6

The return instructions are

RET RNZ RZ
RNC RC RPO
RPE RP RM

The restart instruction takes the form:

RST e3

and performs exactly the same function as the instruction CALL e3*8 except that
RST e3 requires only one byte of memory.

Listing 5-1 shows the hexadecimal codes for each instruction, along with a short
comment on each line describing the function of the instruction.

30

Programmer’s Utilities Guide

0000

0003

0006

ooog

000C

OGOF

og12

Oo15

0018

OO1B

DOLE

oo21

0024

0027

00248

oo02D

0030

0033

0036

0037

0038

0039

003A

003B

aa3c

003D

QO3E

OO3F

oado

0002

00a1

CP/M MACRO ASSEM

C31B00

c25C00

CAg00!

D21F00

DA4142

E21700

EAQDOO

F24t00

FALBOO

CD3G600

C43800

ccooel

D43A00

pcoeag

E43200

ECog00

F4d190

FC4ta0

C7?

DF

cg

co

c8

DO

D8

EO

E8

FQ

FS

Listing 5-1.

Lis

Si:

GAMMA:

240 #001 BO80 JUMPS» CALLS» AND RETURNS

TITLE “BOBO JUMPS, CALLS+ AND RETURNS’

JUMPS ALL REGUIRE A 16-BIT OPERAND

JMP ui $JUMP UNCONDITIONALLY TO LABEL

JNZ Li+’A’ $JUMP ON NON ZERO TO LABEL

Jz 100H iJUMP ON ZERO CONDITION TO LABEL

JNC Li+d sJUMP ON NO CARRY TO LABEL

Jc ‘AB’ sJUMP ON CARRY TQ LABEL

JPO $+8 sJUMP ON PARITY ODD TQ LABEL

JPE Li/2 ?JUMP ON EVEN PARITY TO LABEL

JP GAMMA jJUMP ON POSITIVE RESULT TO LABEL

JM LOW L1 JUMP ON MINUS TO LABEL

CALL OPERATIONS ALL REQUIRE A 1G6-BIT OPERAND

CALL 51 CALL SUBROUTINE UNCONDITIONALLY

CNZ Si+X }CALL SUBROUTINE IF NON ZERO FLAG

C2 100H sCALL SUBROUTINE IF ZERO FLAG

CNC Sit+d CALL SUBROUTINE IF NO CARRY FLAG

cc Si MOD 35CALL SUBROUTINE IF CARRY FLAG

CPO $+8 CALL SUBROUTINE IF PARITY OOD

CPE 51-$ }CALL SUBROUTINE IF PARITY EVEN

cP GAMMA $CALL SUBROUTINE IF POSITIVE

CM GAM$MA SCALL SUBROUTINE IF MINUS FLAG

PROGRAMMED RESTART (RST) REQUIRES 3-BIT OPERAND

(RST X IS EQUIVALENT TO CALL X*8)

RST Q tRESTART TO LOCATION ©

RST X+1

RETURN INSTRUCTIONS HAVE NO OPERAND

RET SRETURN FROM SUBROUTINE

RN2 JRETURN IF NON ZERO

RZ sRETURN IF ZERO FLAG SET

RNC SRETURN IF NO CARRY FLAG

RC SRETURN IF CARRY FLAG SET

RPO sRETURN IF PARITY IS OOD

RPE jRETURN IF PARITY IS EVEN

RP SRETURN IF POSITIVE RESULT

RM SRETURN IF MINUS FLAG SET

EQU 2

END

Assembly Showing Jumps, Calls, Returns, and Restarts

5.1 Jumps, Calls, and Returns

31

5.2 Immediate Operand Instructions Programmer’s Utilities Guide

5.2 Immediate Operand Instructions

Several instructions load single- or double-precision registers or single-precision
memory locations with constant values. Other instructions perform immediate arith-
metic or logical operations on the accumulator (register A). The move immediate
instruction takes the form:

MVI e3,e8

where e3 is the register to receive the data given by the value e8. The expression e3
must produce a value corresponding to one of the registers A, B, C, D, E, H, L, or

the memory location M, which is addressed by the HL register pair.

The accumulator immediate operations take the form:

ADI e8 ACI 8 SUI e8 SBI e8
ANI e8 XRI e8 ORI e8 CPI e8

where the operation is always performed on the accumulator using the immediate
data value given by the expression e8.

The load extended immediate instructions take the form:

LXI ¢3,e16

where e3 designates the register pair to receive the double-precision value given by
e16. The expression e3 must produce a value corresponding to one of the double-
precision register pairs B, D, H, or SP.

32

Programmer’s Utilities Guide 5.2 Immediate Operand Instructions

Listing 5-2 shows the accumulator immediate operations in an assembly language
program and briefly describes each instruction.

CP/M MACRO ASSEM 2.0 #001 IMMEDIATE OPERAND INSTRUCTIONS

0000 OGFF

0002 C601

0004 CEFF

0006 0613

0008 DE10

000A E602

OOOC EE3C

OOOE FEFD

0010

Lis

TITLE "IMMEDIATE OPERAND INSTRUCTIONS‘

MVI

MYT

ALL

ADI

ACI

SUI

SBI

ANI

XRI

ORI

END

USES A REGISTER (3-BIT) OPERAND AND 8-BIT DATA

Bi255 iMOVE IMMEDIATE A+B sCsDsEsHoL om

REMAINING IMMEDIATE OPERATIONS USE A REGISTER

1 sADD IMMEDIATE TO A W/O CARRY

OFFH jADD IMMEDIATE TO A WITH CARRY

Lita SUBTRACT FROM A W/O BORROW (CARRY)

LOW Li sSUBTRACT FROM A WITH BORROW (CARRY)

$ AND 7 $LOGICAL AND WITH IMMEDIATE DATA

1LL11$00BSLOGICAL XOR WITH IMMEDIATE DATA

-3 iLOGICAL OR WITH IMMEDIATE DATA

Listing 5-2. Assembly Using Immediate Operand Instructions

5.3. Increment and Decrement Instructions

The 8080 set includes instructions for incrementing or decrementing single- and
double-precision registers. The instruction forms for single-precision registers are

INR e3 DCR e3

where e3 produces a value corresponding to register A, B, C, D, H, L, or M. These

registers correspond to the byte value at the memory location addressed by HL. The
double-precision instructions are

INX e3 DCX e3

where e3 must be equivalent to one of the double-precision register pairs B, D, H, or
SP.

33

5.3. Increment and Decrement Programmer’s Utilities Guide

Listing 5-3 shows a sample assembly language program using both single- and
double-precision increment and decrement operations.

CP/M MACRO ASSEM 2.0 #001 INCREMENT AND DECREMENT INSTRUCTIONS

TITLE ‘INCREMENT AND DECREMENT INSTRUCTIONS’

j INSTRUCTIONS REQUIRE REGISTER (3-BIT) GPERAND

0000 IC INR E iBYTE INCREMENT A+B sC+D+EsHeLl oM

0001 30 DCR A BYTE DECREMENT A»B»C»O+E+HoL oM

0002 33 INX SP $16-BIT INCREMENT B»D+H+SP

0003 0B DCX B 11G6-BIT DECREMENT B»+D»H»SP

0004 END

Listing 5-3. Assembly Containing Increment
and Decrement Instructions

5.4. Data Movement Instructions

A number of 8080 instructions move data from memory to the CPU and from the
CPU to memory. Data movement instructions also include a number of register-to-
register move operations. The single-precision move register instruction takes the
form:

MOV ¢3, 63’

where the e3 and e 3’ expressions each produce a single-precision register A, B, C, D, E, H,

L, or M, where the M register corresponds to the memory location addressed by HL. The
register named by e3 always receives the 8-bit value given by the register expression e3’.
The instruction is often read as move to register ¢3 from register e3’. The instruction
MOV B,H would thus be read as move to register B from register H. Note that the

instruction MOV M,M is not allowed.

The single-precision load and store extended operations take the form:

LDAX e3 STAX 6&3

where e3 is a register expression that must produce one of the double-precision
register pairs B or D. The 8-bit value in register A is either loaded from (LDAX) or
stored to (STAX) the memory location addressed by the specified register pair.

34

Programmer’s Utilities Guide 5.4 Data Movement Instructions

The load and store direct instructions operate on either the A register for single-
precision operations, or on the HL register pair for double-precision operations.
Load and store direct instructions take the form:

LHLD e16 SHLD e16 LDA el16 STA e16

where e16 is an expression that produces the memory address to obtain (LHLD,
LDA) or store (SHLD, STA) the data value.

The stack pop and push instructions perform double-precision load and store oper-
ations, with the 8080 stack as the implied memory address. The forms are

POP e3 PUSH e3

where e3 must evaluate to one of the double-precision register pairs PSW, B, D, or
H.

The input and output instructions are also in this category, even though they
receive and send their data to the electronic environment external to the 8080 pro-
cessor. The input instruction reads data to the A register; the output instruction sends
data from the A register. In both cases, the data port is given by the data value that
follows the instruction. The forms are

IN e8 OUT e8

A set of instructions transfers double-precision values between registers and the
stack. These instructions are

XTHL PCHL SPHL XCHG

Listing 5-4 lists these instructions in an assembly language program and briefly describes
them.

35

5.4 Data Movement Instructions Programmer’s Utilities Guide

CP/M MACRO ASSEM 2.0 #001 DATA/MEMORY/REGISTER MOVE OPERATIONS

TITLE "DATA/MEMORY/REGISTER MOVE OPERATIONS’

; THE MOY INSTRUCTION REQUIRES TWO REGISTER OPERANDS

i (3-BITS) SELECTED FROM AsB:CiD+EyHs OR M (MoM INVALID)
o000 78 MO B18 iMOVE DATA TO FIRST REGISTER FROM

}SECOND

j LOAD/STORE EXTENDED REQUIRE REGISTER PAIR B OR D

O001 GA LDAX B sLOAD ACCUM FROM ADDRESS GIVEN BY BC

0002 12 STAXK D sSTORE ACCUM TO ADDRESS GIVEN BY DE

4

; LOAD/STORE DIRECT REQUIRE MEMORY ADDRESS

9003 2A1900 LHLD Dt sLOAD HL DIRECTLY FROM ADDRESS D1

0006 221B00 SHLD Dit2 STORE HL DIRECTLY TO ADDRESS D1it2

9009 3A1900 LDA D1 jLOAD THE ACCUMULATOR FROM D1

000C 326400 5TA D1 SHL 2iSTORE THE ACCUMULATOR TO D1 SHL 2

4

3 PUSH AND POP REQUIRE PSW OR REGISTER PAIR FROM B+D+H

QOOF Fil POP PSW sLOAD REGISTER PAIR FROM STACK

0010 CS PUSH 8 }STORE REGISTER PAIR TO THE STACK

’

; INPUT/QUTPUT INSTRUCTIONS REQUIRE 8-BIT PORT NUMBER

9011 DBOG IN hears ‘READ DATA FROM PORT NUMBER TO A

0013 O3FE OUT OF EH iWRITE DATA TO THE SPECIFIED PORT

4

j MISCELLANEOUS REGISTER MOVE OPERATIONS

OO15 E3 ATHL SEXCHANGE TOP OF STACK WITH HL

0016 E9 PCHL PC RECEIVES THE HL VALUE

0017 F9 SPHL iSP RECEIVES THE HL VALUE

0018 EB ”xCHG sEXCHANGE DE AND HL

5

; END OF INSTRUCTION LIST

0019 Di: DS 2 HDOUBLE WORD TEMPORARY

0018 DS 2 SANOTHER TEMPORARY

9004 = x EQU a SLITERAL VALUE

9010 END

Listing 5-4. Assembly Using Various Register/Memory Moves

36

Programmer’s Utilities Guide 5.5 ALU Operations

5.5 Arithmetic Logic Unit Operations

The 8080 set includes instructions that operate between the accumulator and sin-
gle-precision registers, including operations on the A register and carry flag. The
accumulator/register instructions are

ADD e3 ADC e3 SUB e3 SBB e3
ANA e3 XRA €3 ORA e3 CMP e3

where e3 produces a value corresponding to one of the single-precision registers A,
B, C, D, E, H, L, or M, where the M register is the memory location addressed by

the HL register pair.

The accumulator/carry operations given below operate upon the A register, or

carry bit, or both.

DAA CMA STC CMC
RLC RRC RAL RAR

The function of each instruction is listed in the comment line shown in Listing 5-5.

37

5.5 ALU Operations

9000

o001

0002

0003

0004

0005

0006

0007

0008

oo0g

Q00A

0008

oo0C

000d

OOOE

QO0F

oo10

oot

CP/M MACRO ASSEM 2,0

80

8D

g4

g9

Al

AF

BO

BC

09

27

2F

37

oF

07

OF

17

1F

TITLE

ADD

ADC

SUB

SBB

ANA

XRA

ORA

CMP

Programmer’s Utilities Guide

#001 ARITHMETIC LOGIC UNIT OPERATIONS

“ARITHMETIC LOGIC UNIT OPERATIONS’

ASSUME OPERATION WITH ACCUMULATOR AND REGISTER,
WHICH MUST PRODUCE Ay By» C+ Dy Ey H+ Ly OR M

iADD REGISTER TO A W/O CARRY

7ADD TO A WITH CARRY INCLUDED

iSUBTRACT FROM A W/O BORROW

iSUBTRACT FROM A WITH BORROW

iLOGICAL AND WITH REGISTER

jLOGICAL XOR WITH REGISTER

sLOGICAL OR WITH REGISTER

COMPARE REGISTER» SETS FLAGS r
o
e
r
n
a
r
t
r
a

+ -

j DOUBLE ADD CHANGES HL PAIR ONLY

DAD B iDOUBLE ADD BsD+H+SP TO HL

j REMAINING OPERATIONS HAVE NO OPERANDS

DAA

CMA

STC

CMC

RLC

RRC

RAL

RAR

END

Listing 5-5.

DECIMAL ADJUST REGISTER A USING LAST OP

sCOMPLEMENT THE BITS OF THE A REGISTER

3SET THE CARRY FLAG TO 1

iCOMPLEMENT THE CARRY FLAG

i8-BIT ACCUM ROTATE LEFT» AFFECTS CY

#8-BIT ACCUM ROTATE RIGHT; AFFECTS CY

49-BIT CY/ACCUM ROTATE LEFT

49-BIT CY/ACCUM ROTATE RIGHT

Assembly Showing ALU Operations

The double-precision add instruction performs a 16-bit addition of a register pair
(B, D, H, or SP) into the 16-bit value in the HL register pair. This addition produces
the 16-bit (unsigned) sum of the two values. The sum is placed into the HL register
pair. The form is

DAD ¢3

38

Programmer’s Utilities Guide 5.6 Control Instructions

5.6 Control Instructions

The four remaining instructions in the 8080 set are control instructions. These take
the forms:

HLT
DI
EI
NOP

They stop the processor (HLT), enable the interrupt system (EI), disable the interrupt

system (DI), or perform a no-operation (NOP).

End of Section 5

39

Section 6

An Introduction to

Macro Facilities

The fundamental difference between the Digital Research ASM and MAC assem-
blers is that ASM provides only the facilities for assembling 8080 operation codes,
and MAC includes a powerful macro processing facility. MAC implements the indus-
try standard Intel macro definition, which includes the following pseudo operations.

Macro definitions allow groups of instructions to be stored and substituted in the
source program as the macro names are encountered. Definitions and macro calls
can be nested; symbols can be constructed through concatenation using the special
& operator, and locally defined symbols can be created using the LOCAL pseudo
operation. Macro parameters can be formed to pass arbitrary strings of text to a
specific macro for substitution during expansion.

The MACLIB (macro library) feature allows the programmer to define a set of
macros, equates, and sets and automatically includes them in a program. A macro
library can contain an instruction set for another central processor that is not directly
supported by the MAC built-in mnemonics. The macro library can also include
general purpose input/output macros used in programs that operate in the CP/M
environment to perform peripheral or disk I/O functions.

IRPC, IRP, and REPT pseudo operations repeat source statements under control
of a count or list of characters or items to be substituted each time the assembler
rereads the statements. This feature is particularly useful in generating groups of
assembly language statements with similar structure, such as a set of File Control
Blocks where only the filetype is changed in each statement.

41

9
U
0
}
2
3
S

6 Introduction to Macro Facilities Programmer’s Utilities Guide

To illustrate the power of macro facility, consider the macro library shown in
Listing 6-1, which resides in a disk file called MSGLIB.LIB. This macro library con-
tains macro definitions that have standard instruction sequences for program startup,
message typeout, and program termination. The program shown in Listing 6-2 pro-
vides an example of the use of this macro library. The assembly shown in Listing
6-2 lists both the macro calls and the statements in macro expansions that generate
machine code. The statements marked by + in Listing 6-2 are generated from the
macro calls. The remaining statements are a part of the calling program.

The macro call

ENTCCP 10

in Listing 6-2 shows a specific expansion of ENTCCP (enter from CCP), ENTCCP is
defined in Listing 6-1. The macro call causes MAC to retrieve the definition—the
text between MACRO and ENDM in Listing 6-1—and substitute this text following
the macro call in Listing 6-2. Upon entry to the program from CCP, this macro saves
the stack pointer (SP) into a variable called @ENTSP for later retrieval. The stack

pointer is then reset to a local area for the remainder of the program execution.

The size of the local stack is defined by the macro parameter named in the macro
definition as SSIZE (see Listing 6-1), and filled in at the call with the value 10. The

ENTCCP macro reserves space for a local stack of SSIZE=10 double bytes (2*10
bytes) and, after setting up the stack, branches around this reserved area to continue
the program execution.

42

6 Introduction to Macro Facilities Programmer’s Utilities Guide

i SIMPLE MACRO LIBRARY FOR MESSAGE TYPEQUT

REBOOT EQU OQ0Q0H sWARM START ENTRY POINT

TPA EQU OL100H }TRANSIENT PROGRAM AREA

Boos EQU QOO3H iSYSTEM ENTRY POINT

TYPE ESU 2 SWRITE CONSOLE CHARACTER FUNCTION

CR EQU ODH iCARRIAGE RETURN

LF EQU OAH sLINE FEED

i

sMACRO DEFINITIONS

3

CHROUT MACRO iWRITE A CONSOLE CHARACTER FROM REGISTER A

MYT C+TYPE $4TYPE FUNCTION

CALL BDOS sHENTER THE BDOS TO WRITE THE CHARACTER

ENDM

i

TYPEQUT MACRO MESSAGE iTYPE LITERAL MESSAGE AT CONSOLE

LOCAL PASTSUB 35J4UMP PAST SUBROUTINE INITIALLY

JMP PASTSUB

MSGOUT: S7THIS SUBROUTINE PRINTS THE MESSAGE STARTING AT HL ‘TIL 00

MOV EoM sHNEXT CHARACTER TO E

MOV AvE 3370 ACCUM TO TEST FOR 00

ORA A py=007

RZ S7RETURN IF END OF MESSAGE

INK H S;OTHERWISE MOVE TO NEXT CHARACTER AND PRINT

PUSH H s#SAVE MESSAGE ADDRESS

CHROUT

PoP H +;RECALL MESSAGE ADDRESS

JMP MSGOUT $3F0R ANOTHER CHARACTER

PASTSUB:

ii REDEFINE THE TYPEQUT MACRO AFTER THE FIRST INVOCATION

TYPEQUT MACRO MESSAGE

LOCAL TYMSG $;LABEL THE LOCAL MESSAGE

LOCAL PASTM

LXI H+TYMSG i3ADDRESS THE LITERAL MESSAGE

CALL MSGOUT $iCALL THE PREVIQUSLY DEFINED SUBROUTINE

JMP PASTM

ui INCLUDE THE LITERAL MESSAGE AT THIS POINT

TYMSG: DB ‘FROM CONSOLE: &7?MESSAGE’ sCR+LF +0

i ARRIVE HERE TO CONTINUE THE MAINLINE CODE

PASTM: ENDM

TYPEQUT «?MESSAGE >

ENOM

Listing 6-1. A Sample Macro Library

43

6 Introduction to Macro Facilities Programmer’s Utilities Guide

ENTCCP MACRO SSIZE sENTER PROGRAM FROM CCP+ RESERVE 2*SSIZE STACK LOCS
LOCAL START $3ARQUND THE STACK

LXI H+0

DAD SP $35P YALUE IN HL

SHLD @ENTSP HsENTRY SP

LXI SP+@STACKS3SET TO LOCAL STACK

JMP START

IF NUL SSIZE

DS 32 sIDEFAULT 16 LEVEL STACK

ELSE

Ds 2*SSIZE

ENDIF

@STACK: §3LOW END OF STACK

@ENTSP: DS 2 HIENTRY SP

START: ENDM

'

RETCCP MACRO HRETURN TO CONSOLE PROCESSOR

LHLD @ENTSP 3}RELOAD CCP STACK

SPHL

RET i3BACK TO THE CCP

ENDM

y

ABORT MACRO sABORT THE PROGRAM

JMP REBOOT

ENDM

i END OF MACRO LIBRARY

Listing 6-1. (continued)

44

Programmer’s Utilities Guide 6 Introduction to Macro Facilities

CP/M MACRO ASSEM 2.0 001 SAMPLE MESSAGE OUTPUT MACRO

TITLE ‘SAMPLE MESSAGE OUTPUT MACRO’

MACLIB MSGLIB $INCLUDE THE MACRO LIBRARY

0100 ORG TPA VORIGIN AT THE TRANSIENT AREA

i USE THE MACRO LIBRARY TO TYPE TWO MESSAGES

ENTCCP 10 ENTER PROGRAM,» RESERVE 10 LEVEL STACK

01004210000 LXI HO

0103433 DAD SP

01044222101 SHLD @ENTSP

O1074+312101 LXI SP +@STACK

O1004C32301 JMP 220001

OL1o0d+ 0S 2#10

OL21+ @ENTSP: DS 2

TYPEQUT <THIS IS THE FIRST MESSAGE>

01294033401 JMP 270002

O1264+5E MOW EaM

O127+B7 ORA A

O128+CB R2

0129+23 INX H

OL2At+ES PUSH H

OL2B+OEO2 MI CTYPE

O12D+CD0500 CALL BDOS

OL30+E1 POP H

01314032601 JMP MSGOUT

O13d+2 13001 LXI H+??0003

0137+CD2601 CALL MSGOUT

OL3A+C36701 JMP 270004

OLGD+4B524F 4020770003: DB ‘FROM CONSOLE: THIS IS THE FIRST MESSAGE‘ »CRILF 10

TYPEOUT «THIS IS THE SECOND MESSAGE?

O167+217001 LXT H+?70005

O1G6A+CD2601 CALL MSGOUT

O160+C39B01 JMP 220006

O170+d6524FdD207 700082 DB ‘FROM CONSOLE: THIS IS THE SECOND MESSAGE’ »CRoLF +0

TYPEOUT «THIS IS THE THIRD MESSAGE?

OL9B+21Ad01 LXI H+? 70007

OL9E+CD2601 CALL MSGOUT

OLA1+C3CEO1 IMP 920008

OLAd+dBS24FAD207 700078 0B “FROM CONSOLE: THIS IS THE THIRD MESSAGE’ +CR+LF 10

RETCCP $RETURN TO THE CONSOLE COMMAND PROCESSOR

OLCE+2AL1O1 LHLD @ENTSP

O1D1+F9 SPHL

01D2+C9 RET

0103 END

Listing 6-2. A Sample Assembly Using the MACLIB Facility

45

6 Introduction to Macro Facilities Programmer’s Utilities Guide

Consider also the special macro statements used in Listing 6-1 within the body of
the ENTCCP macro. The LOCAL statement defines the label START within the
macro body. Each LOCAL statement causes the macro assembler to construct a
unique symbol starting with ?? each time it is encountered. Thus, multiple macro
calls reference unique labels that do not interfere with one another. ENTCCP also
contains a conditional assembly statement that uses the NUL operator; this tests
whether a macro parameter has been supplied or not. In this case, the ENTCCP
macro can be started by

ENTCCP

with no actual parameter, resulting in a default stack size of 32 bytes. The following
sections give exact details and examples.

The TYPEOUT macro is a more complicated example of macro use. Note that this
macro contains a redefinition of itself within the macro body. The structure of
TYPEOUT is

TYPEOUT MACRO PMESSAGE

TYPEOUT MACRO PPMESSAGE

ENDM

#¢¢

ENDM

where the outer definition of TYPEOUT completely encloses the inner definition. The
outer definition is active upon the first invocation of TYPEOUT, but upon comple-
tion, the nested inner definition becomes active.

To see the use of such a nested structure, consider the TYPEOUT macro. Each

time it starts, TYPEOUT prints the message sent as an actual parameter at the
console device. The typeout process, however, can be easily handled with a short
subroutine. Upon the first invocation, include the subroutine inline. Then simply call
this subroutine on subsequent invocations of TYPEOUT. Thus, the outer definition
of TYPEOUT defines the utility subroutine and then redefines itself, so that the
subroutine is called, rather than including another copy of the utility subroutine.

46

Programmer’s Utilities Guide 6 Introduction to Macro Facilities

Note that macro definitions are stored in the symbol table area of the assembler,
so each macro reduces the remaining free space. MAC allows double semicolon
comments to indicate that the comment itself is to be ignored and not stored with
the macro. Thus, comments with a single semicolon are stored with the macro and
appear in each expansion; comments with two preceding semicolons are listed only
when the macro is defined.

Listing 6-2 gives three examples of TYPEOUT invocations, with three messages
that are sent as actual parameters. Note that the LOCAL statement causes a unique
label to be created (??0002) in the place of PASTSUB, which is used to branch

around the utility subroutine included inline between addresses 0126H and 0133H.
The utility subroutine is then called, followed by another jump around the console
message, also included inline. However, subsequent invocations of TYPEOUT use
the previously included utility subroutine to type their messages.

Although this example concentrates all macro definitions in a separate macro library,
macros are often defined in the mainline (.ASM) source program. In fact, many

programs that use macros do not use the external macro library facility at all.

The rest of this manual examines many applications of macros. Macro facilities
can simplify the programming task by abstracting from the primitive assembly lan-
guage levels. That is, you can define macros that provide more generalized functions
that are allowed at the pure assembly language level, such as macro languages for a
given application, improved control facilities, and general purpose operating systems
interfaces. The remainder of this manual first introduces the individual macro forms,

and then presents several uses of the macro facilities in realistic applications.

End of Section 6

47

Section 7

Inline Macros

The simplest macro facilities involve the REPT (repeat), IRPC (indefinite repeat
character), and IRP (indefinite repeat) macro groups. All these forms cause the assem-
bler to reread portions of the source program under control of a counter or list of
textual substitutions. These groups are listed below in order of increasing complexity.

7.1. The REPT-ENDM Group

The REPT-ENDM group is written as a sequence of assembly language statements
starting with the REPT pseudo operation and terminated by an ENDM pseudo oper-
ation. The form is

label: REPT expression
statement-1]

statement-2

statement-n

label: ENDM

where the labels are optional. The expression following the REPT is evaluated as a
16-bit unsigned count of the number of times that the assembler is to read and
process statements 1 through n, enclosed within the group.

Listing 7-1 shows an example of the use of the REPT group. In this case, the
REPT-ENDM group generates a short table of the byte values 5, 4, 3, 2, and 1.
Upon entry to the REPT, the value of NXTVAL is 5. This is taken as the repeat
count, even though NXTVAL changes within the REPT. The macro lines that do not
generate machine code are not listed in the repetition, while the lines that do generate
code are listed with a + sign after the machine code address. Full macro tracing is
optional, however, using assembly parameters. (See Section 10.)

49

L
uo
nd
as

7.1. The REPT-ENDM Group Programmer’s Utilities Guide

CP/M MACRO ASSEM 2.0 #001 SAMPLE REPT STATEMENT

0100 ORG 100H sBASE OF TRANSIENT AREA

TITLE ‘SAMPLE REPT STATEMENT ’

; THIS PROGRAM READS INPUT PORT © AND INDEXES

INTO A TABLE

i BASED ON THIS VALUE, THE TABLE VALUE IS FETCHED

AND SENT

; TO OUTPUT PORT 0

y

0005 = MAXYVAL EQU 3 LARGEST VALUE TO PROCESS

0100 DBOO RLOOP: IN 0 $READ THE PORT VALUE

O102 FEOS CPI MAXVAL sT00 LARGE?

0104 D20001 JNC RLOOP SIGNORE INPUT IF INVALID

0107 211401 LXI H+TABLE ADDRESS BASE OF TABLE

O10A SF MOV E,A $LOW ORDER INDEX TOE

0108 1600 MUI D+0 HIGH ORDER 0G FOR INDEX

O10D 19 DAD D jsHL HAS ADORESS OF ELEMENT

Q10E 7E MOV AM FETCH TABLE VALUE FOR OUTPUT

OLOF D300 OUT Q $SEND TO THE OUTPUT PORT AND LOOP

O111 C30001 JMP RLOOP sFOR ANOTHER INPUT

4

j GENERATE A TABLE OF VALUES | iXVAL +MAXVAL-Liver ol

O00 # NXTYVAL SET MAXYAL START COUNTER AT MAXVAL

TABLE: REPT NXTYAL

DB NXTVAL $FILL ONE (MORE) ELEMENT

NXTVAL SET NXTVAL-L43AND DECREMENT FILL VALUE

ENDM

0114+05 DB NXTVAL $FILL ONE (MORE) ELEMENT

oO11s+0d DB NXTVAL $FILL ONE (MORE) ELEMENT

O116+03 DB NXTVAL $FILL ONE (MORE) ELEMENT

O117+02 DB NXTVAL FILL ONE (MORE) ELEMENT

O11B8+01 DB NXTVAL $FILL ONE (MORE) ELEMENT

o1ig END

Listing 7-1. A Sample Program Using the REPT Group

If a label appears on the REPT statement, its value is the first machine code

address that follows. This REPT label is not reread on each repetition of the loop.

The optional label on the ENDM is reread on each iteration; thus constant labels,

not generated through concatenation or with the LOCAL pseudo operation, generate

phase errors if the repetition count is greater than 1.

50

Programmer’s Utilities Guide 7.1 The REPT-ENDM Group

Properly nested macros, including REPTs, can occur within the body of the REPT-
ENDM group. Further, nested conditional assembly statements are also allowed,
with the added feature that conditionals beginning within the repeat group automat-
ically terminate upon reaching the end of the macro expansion. Thus, IF and ELSE
pseudo operations are not required to have their corresponding ENDIF when they
begin within the repeat group, although the ENDIF is allowed.

7.2. The IRPC-ENDM Group

Similar to the REPT group, the IRPC-ENDM group causes the assembler to reread
a bounded set of statements, taking the form:

label: IRPC identifier,character-list

statement- 1

statement-2

statement-n
label: ENDM

where the optional labels obey the same conventions as in the REPT-ENDM group.
The identifier is any valid assembler name, not including embedded $ separators.
Character list denotes a string of characters terminated by a delimiter (space, tab,
end-of-line, or comment).

The IRPC controls the reread process as follows: the statement sequence is read
once for each character in the character list. On each repetition, a character is taken
from the character list and associated with the controlling identifier, starting with the
first and ending with the last character in the list. Thus, an IRPC header of the form

IRPC ?X -ABCDE

rereads the statement sequence that follows (to the balancing ENDM) five times,

once for each character in the list ABCDE. On the first iteration, the character A is

associated with the identifier ?>X. On the fifth iteration, the letter E is associated with

the controlling identifier.

On each iteration, the macro assembler substitutes any occurrence of the control-
ling identifier by the associated character value. Using the preceding IRPC header, an
occurrence of ?X in the bounds of the IRPC-ENDM group is replaced by the char-
acter A on the first iteration, and by E on the last iteration.

51

7.2 The IRPC-ENDM Group Programmer’s Utilities Guide

The programmer can use the controlling identifier to construct new text strings
within the body of the IRPC by using the special concatenation operator, denoted by
an ampersand (&) character. Again using the preceding IRPC header, the macro
assembler replaces LAB&?X with LABA on the first iteration. LABE is produced on
the final iteration. The concatenation feature is most often used to generate unique
label names on each iteration of the IRPC reread process.

The controlling identifier is not usually substituted within string quotes because
the controlling identifier can appear as a part of a quoted message. Thus, the macro
assembler performs substitution of the controlling identifier when it is preceded or
followed by the ampersand operator. Further, all alphabetics outside string quotes
are translated to upper-case, but no case translation occurs within string quotes. So
the controlling identifier must not only be preceded or followed by the concatenation
operator within strings, but it must also be typed in upper-case.

Listings 7-2a and 7-2b illustrate the use of the IRPC-ENDM group. Listing 7-2a
shows the original assembly language program, before processing by the macro
assembler. The program is typed in both upper- and lower-case. Listing 7-2b shows
the output from the macro assembler, with the lower-case alphabetics translated to
upper-case. Three IRPC groups are shown in this example. The first IRPC uses the
controlling identifier reg to generate a sequence of stack push operations that save
the double-precision registers BC, DE, and HL. The lines generated by this group are
marked by a + sign following the machine code address.

i construct a data table

i save relevant registers

enter: itpc regsbdh

Push reg issave reg

endm

; initialize a partial ascii table

irec cr1lAb$?7e@

datake: db "aC

endm

i Testore registers

irpc regshdbh

POP reg ijrecall reg

endm

ret

end

Listing 7-2a. Original (.ASM) File with IRPC Example

52

Programmer’s Utilities Guide 7.2 The IRPC-ENDM Group

; CONSTRUCT A DATA TABLE

;

i SAVE RELEVANT REGISTERS

ENTER: IPC REG+BDH

PUSH REG siSAVE REG

ENDM

goog+CS PUSH B

O001+D5 PUSH D

OO02+ES PUSH H

i INITIALIZE A PARTIAL ASCII TABLE

IRPC C+iABS?@

DATA&C: DB "aC!

ENDM

9003+31 DATAL: DB ye

oo0d+d1 DATAA: DB “A!

oo0gg+d2 DATAB: OB ‘B’

9006+24 DATAS: DB ‘$!

O0074+3F DATA?: DB of

aoag+do DATA@: DB ‘e’

;

j RESTORE REGISTERS

IRPC REG +HDB

POP REG SoRECALL REG

ENDM

OOQOStEL POP H

OOOA+D1 POP D

QOOBtC1 POP B

o00c C9 RET

oooD END

Listing 7-2b. Resulting (.PRN) File with IRPC Example

The second IRPC shown in Listing 7-2a uses the controlling identifier C to gener-
ate a number of single-byte constants with corresponding labels. Although the con-
trolling variable was typed in lower-case, it has been translated to upper-case during
assembly. The string ‘&C’ occurs within the group and, because the controlling
variable is enclosed in string quotes, it must occur next to an ampersand operator
and be typed in upper-case for the substitution to occur properly. On each iteration
of the IRPC, a label is constructed through concatenation, and a DB is generated
with the corresponding character from the character list.

53

7.2 The IRPC-ENDM Group Programmer’s Utilities Guide

Substitution of the controlling identifier by its associated value can cause infinite
substitution if the controlling identifier is the same as the character from the charac-
ter list. For this reason, the macro assembler performs the substitution and then
moves along to read the next segment of the program, rather than rereading the
substituted text for another possible occurrence of the controlling identifier. Thus, an

IRPC of the form

IRPC C+1AC$7@

produces

DATAC: DB ‘C?

in place of the DB statement at the label DATAA in Listing 7-2b.

The last IRPC restores the previously saved double-precision registers and performs

the exact opposite function from the IPRC at the beginning of the program.

When no characters follow the identifier portion of the IRPC header, the group of

statements is read once, and the controlling identifier is deleted when it is read. It is

replaced by the null string.

7.3. The IRP-ENDM Group

The IRP (indefinite repeat) functions like the IRPC, except that the controlling

identifier can take on a multiple character value. The form of the IRP group is

label: IRP identifier,1<4c1-1,c1-2,...,cl-n1>2

statement- 1

statement-2

statement-m

label: ENDM

where the optional labels obey the conventions of the REPT and IRPC groups. The

identifier controls the iteration, as follows. On the first iteration, the character list

given by cl-1 is substituted for the identifier wherever the identifier occurs in the

bounded statement group (statements 1 through m). On the second iteration, c1-2

becomes the value of the controlling identifier. Iteration continues in this manner

until the last character list, denoted by cl-n, is encountered and processed. Substitu-

tion of values for the controlling identifier is subject to the same rules as in the IRPC.

54

Programmer’s Utilities Guide 7.3 The IRP-ENDM Group

Note rules for substitution within strings and concatenation of text using the amper-
sand & operator. Controlling identifiers are always ignored within comments.

Listing 7-3 gives several examples of IRP groups. The first occurrence of the IRP
in Listing 7-3 is a typical use of this facility—-to generate a jump vector at the
beginning of a program or subroutine. The IRP assigns label names (INITIAL, GET,
PUT, and FINIS) to the controlling identifier 2LAB and produces a jump instruction
for each label by rereading the IRP group, substituting the actual label for the formal
name on each iteration.

The second occurrence of the IRP group in Listing 7-3 points out substitution
conventions within strings for both IRPC and IRP groups. The controlling identifier
IS takes on the values A-ROSE and ? on the two iterations of the IRP group,
respectively.

The controlling identifier is replaced by the character lists in the two occurrences
of &IS and IS& inside the string quotes because they are both adjacent to the
ampersand operator. is& is not replaced because the controlling identifier is typed in
lower-case, and there is no automatic translation to upper-case within strings. The
occurrences of IS within the comments are not substituted.

The last IRP group shows the effects of an empty character list. The value of the
controlling identifier becomes the null string of symbols and, in the cases where ?X
is replaced, produces the statement:

DB ad

DB produces no machine code and is therefore not listed in the macro expansion.
The three statements

DB ‘’?x’ DB ’?X’ DB /R’

appear in the expansions because the ‘?x’ is typed in lower-case and thus is not
replaced. The ‘?X’ does not appear next to an ampersand in the string and is thus
not replaced. In the last case, only one of the double ampersands is absorbed in the
‘8c &?X8&’ string. Here, the two ampersands surrounding ?X are removed because
they occur immediately next to the controlling identifier within the string.

55

7.3 The IRP-ENDM Group Programmer’s Utilities Guide

Substitution rules outside of string quotes and comments are much less compli-
cated; the controlling identifier is replaced by the current character-list value when-
ever it occurs in any of the statements within the group. The ampersand operator
can be placed before or after the controlling identifier to cause the preceding or
following text to be concatenated.

The actual forms for the character lists (cl-1 through cl-n) are more general than
stated here. In particular, bracket nesting is allowed, and escape sequences allow
delimiters to be ignored. The exact details of character list forms are discussed in the
macro parameter sections.

56

Programmer’s Utilities Guide 7.3 The IRP-ENDM Group

; CREATE A JUMP VECTOR USING THE IRP GROUP

IRP PLAB SC INITIAL »GET »PUTFINIS>

JMP ?LAB siGENERATE THE NEXT JUMP

ENDM

0000+C30C00 JMP INITIAL

0003+C34300 JMP GET

0006+C34600 JMP PUT

0009+034900 JMP FINIS

1

3 INDIVIDUAL CASES

INITIAL:

o00C 211200 LXI H+CHRS

OOOF C35100 JMP ENDCASE

CHRS: IRP 1S s¢A-ROSE +?>

OB "&®I1S IS I1Sk‘ $15 IS &1S

DB “RIS isn’ ’t ish’

ENDM

0012+412D524F53 DB ‘A-ROSE IS A-ROSE’ sIS IS &IS

0022+412D524F53 DB ‘A-ROSE isn’’t ish’

0032+3F 20495320 DB ‘2 1G ?! 31S 1S &1S

0038+3F2069736E DB “? isn’’t 18k’

4

0043 C35100 GET: JMP ENDCASE

¥

0046 C35100 PUT: JMP ENDCASE

q

0049 C35100 FINIS: JMP ENDCASE

IRP PKs >

DB "Oy!

DB (OX!

DB "ROK!

DB "RPK!

OB RAPKE |

ENDM

004C0+3F78 DB (9x!

OO4E+3F58 DB 72K!

0050+26 DB "a!

ENDCASE:

0051 C9 RET

Q052 END

Listing 7-3. A Sample Program Using IRP

$7

7.4 The EXITM Statement Programmer’s Utilities Guide

7.4 The EXITM Statement

The EXITM pseudo operation can occur within the body of a macro. Upon
encountering the EXITM statement, the macro assembler aborts expansion of the
current macro level. The EXITM pseudo operation occurs in the context

macro-heading
statement-1

label: EXITM

statement-n

ENDM

where the label is optional, and macro-heading denotes the REPT, IRPC, or IRP

group heading as described above. The EXITM statement can also be used with the
MACRO group, as discussed in later sections.

The EXITM statement usually occurs within the scope of a surrounding condi-
tional assembly operation. If the EXITM occurs in the scope of a false conditional
test, the statement is ignored, and macro expansion continues. If the EXITM occurs

within the scope of a true conditional, the expansion stops where the EXITM is
encountered, Assembly statement processing continues after the ENDM of the group
aborted by the EXITM statement.

Two examples of the EXITM statement are shown in Listing 7-4. This listing
shows two IRPCs used to generate DB statements up to eight characters long. These
IRPCs might occur within the context of another macro definition, such as in the
generation of CP/M File Control Block (FCB) names. In both cases, the variable LEN

counts the number of filled characters. If the count reaches eight characters, the
EXITM statement is assembled under a true condition, and the IRPC stops expansion.

The first IRPC generates the entire string SHORT because the length of the char-
acter list is less than eight characters. Each evaluation of LEN = 8 produces a false
value, and the EXITM is skipped. This IRPC terminates by exhausting the character
list through its five repetitions.

The second IRPC stops generation at the eighth character of the list LONG-
STRING when the conditional LEN EQ 8 produces a true value, resulting in assem-
bly of the EXITM statement. Note that = and EQ are equivalent operators. The
EXITM causes immediate termination of the expansion process.

58

Programmer’s Utilities Guide 7.4 The EXITM Statement

The second IRPC also contains a conditional assembly without the balancing ENDIF.
In this case, the ENDIF is not required because the conditional assembly begins
within the macro body. The ENDM serves the dual purpose of terminating unmatched
IFs and marking the physical end of the macro body.

g000 #

0000453

0001+48

O002+4F

0003+52

o0dd+54

oo000 #

0005+4C

OOOG+4F

OO07+4E

0008+47

0009+53

Oo0AtSA

OO0B+52

000C+d9

o00D

i SAMPLE USE OF THE EXITM STATEMENT WITH THE IRPC MACRO

i THE FOLLOWING IRPC FILLS AN AREA OF MEMORY WITH AT MOST

i EIGHT BYTES OF DATA:

LEN SET 0 jINITIALIZE LENGTH TO 0

IRPC N+ SHORT

DB "RN!

LEN SET LEN+1

IF LEN = 8

EXITM $STOP MACRO IF AREA IS FULL

ENDIF

ENDM

DB "S$!

D6 "H!

DB 0’

DB “R!

DB ‘T!

’

i

j THE FOLLOWING MACRO PERFORMS EXACTLY THE SAME FUNCTIONS AS

i SHOWN ABOVE, BUT ABORTS EXPANSION WHEN LENGTH EXCEEDS 8

LEN SET

IRPC

DB

LEN SET

IF

EXITM

ENDM

DB

DB

DB

DB

DB

DB

DB

0B

END

Listing 7-4. Use of the EXITM Statement in Macro Processing

0 VINITIALIZE LENGTH COUNTER

N»LONGSTRING
“RN?

LEN+1

LEN EQ 8

LL?

"OC

NE

em

S?

T?

Re

‘y?

59

7.5 The LOCAL Statement Programmer’s Utilities Guide

7.5 The LOCAL Statement

It is often useful to generate labels for jumps or data references unique on each
repetition of a macro. This facility is available through the LOCAL statement. The
LOCAL statement takes the form:

macro-heading

label: LOCAL id-1,id-2,. . .,id-n

ENDM

where the label is optional, macro-heading is a REPT, IRPC, or IRP heading, already
discussed, or a MACRO heading as discussed in following sections, and id-1 through
id-n represent one or more assembly language identifiers that do not contain embed-
ded $ separators. The LOCAL statement must occur within the body. It should
appear immediately following the macro header to be compatible with the standard
Intel macro facility.

Upon encountering the LOCAL statement, the assembler creates a new frame of
the form

??nnnn

for association with each identifier in the LOCAL list, where nnnn is a four-digit
decimal value assigned in ascending order starting at 0001. Whenever the assembler
encounters one of the identifiers in the list, the corresponding created name is substi-
tuted in its place. Substitution occurs according to the same rules as those for the
controlling identifier in the IRPC and IRP groups.

Avoid the use of labels that begin with the two characters ??, so that no conflicting
names accidentally occur. Symbols that begin with ?? are not usually included in the
sorted symbol list at the end of assembly. (See Section 10 to override this default.) A
total of 9999 LOCAL labels can be generated in any assembly. An overflow error
occurs if more generations are attempted.

Listing 7-Sa shows an example of a program using the LOCAL statement to gen-
erate both data references and jump addresses. This program uses the CP/M operat-
ing system to print a series of four generated messages, as shown in the output from
the program in Listing 7-5b.

60

Programmer’s Utilities Guide 7.5 The LOCAL Statement

The program begins with equates that define the operating system primary entry
point, along with names for the nongraphic ASCII characters CR (carriage return)
and LF (line-feed). The REPT statement that follows contains a LOCAL statement

with the identifiers X and Y. These identifiers are used throughout the body of the
REPT group.

On the first iteration, X’s value becomes ??0001, the first generated label; Y’s value
becomes ?20002. The substitution for X and Y within the generated strings follows
the rules stated for controlling identifiers in previous sections.

61

7.5 The LOCAL Statement Programmer’s Utilities Guide

Upon completion, four messages are generated along with four CALLs to the
PRINT subroutine. At each call to PRINT, the message address is present in the DE
register pair. The subroutine loads the print string function number into register C
(C =9) and calls the operating system to print the string value.

0100 ORG 100H ‘BASE OF THE TRANSIENT AREA

00053 = BDOS EQU ss) iBDOS ENTRY POINT

000D = CR EQU ODH CARRIAGE RETURN (ASCII)

QO0A = LF EQU OAH LINE FEED (ASCII)

j SAMPLE PROGRAM SHOWING THE USE OF ‘LOCAL’

REPT 4 jREPEAT GENERATION 4 TIMES

LOCAL Ko¥ jiGENERATE TWO LABELS

JMP Y 3JUMP PAST THE MESSAGE

Xs DB “Print x=&X+ y=hYsCReL Fs’ $’

Y3 LXI DX SREADY PRINT STRING

CALL PRINT

ENDM

O100+C31E01 JMP 2??0002 4JUMP PAST THE MESSAGE

0103+7072696E74770001: DB ‘print x=??00015 ¥=?70002/sCRILFs ‘S$!

OL11E+110301 270002: LXI D+??70001 READY PRINT STRING

0121+CD9101 CALL PRINT

0124+C34201 JMP 220004 sJUMP PAST THE MESSAGE

0127+7072696E74270003: DB ‘print x=??0003» v=?70004/ sCRILF + ’$’

01424112701 220004: LXI D+??0003 jREADY PRINT STRING

0145+CD9101 CALL PRINT

0148+C36601 JMP 220006 iJUMP PAST THE MESSAGE

O14B+7072696E74?70005: DB ‘print x=??0005s y=??0006/ sCRiLF + ‘$’

O166+114B01 270006: LXI D+??70005 SREADY PRINT STRING

O169+CD9101 CALL PRINT

O16C+C3BA01 JMP 220008 %$SJUMP PAST THE MESSAGE

O16F+7072696E74?70007: DB ‘print x=??20007s y=??0008/' CRLF 1 ‘$’

O1B8A+116F01 2720008: LXI D+??0007 SREADY PRINT STRING

018D+CD9101 CALL PRINT

0190 C9 RET

y

0191 OEO9 PRINT: MYI C:9

9193 CDOS00 CALL BDOS

0196 C9 RET

0197 END

Listing 7-5a. Assembly Program Using the LOCAL Statement

62

Programmer’s Utilities Guide

Print

Print

print

print

K=??P0O0L1 +

x=??0003 5

x=??0005)

K=??00075

¥=720002

y=2??0004

y¥=??0006

y=??0008

7.5 The LOCAL Statement

Listing 7-Sb. Output from Program in Listing 7-5a

Upon completion of the program, control returns to the Console Command Pro-
cessor (CCP) for further operations. This program uses the default stack passed by
the CCP. About 16 levels are available. This example is primarily intended to show
operation of the LOCAL statement. Consult the CP/M documentation for BDOS
interface conventions to follow this example completely.

End of Section 7

63

Section 8

Definition and Evaluation of

Stored Macros

The stored macro facility of MAC allows you to name a sequence of assembly
language prototype statements to be included at selected places throughout the assembly
process. Macro parameters can be supplied in various forms at the point of expan-
sion which are substituted as the prototype statements are reread. These parameters
tailor the macro expansion to a particular case.

Although similar in concept to subroutine definition and call, macro processing is
purely textual manipulation at assembly time. That is, macro definitions cause source
text to be saved in the assembler’s internal tables, and any expansion involves manip-
ulating and rereading the saved text.

You can combine macro features in various ways to greatly enhance the available
facilities. Specifically, you can

® easily manipulate generalized data definitions
® define macros for generalized operating systems interface
™ define simplified program control structures
™ support nonstandard instruction sets, such as the Z80®

Finally, well-designed macros for an application can achieve a measure of machine
independence.

65

"@)
o
a
2.
.e)
=]
oo

8.1 The MACRO-ENDM Group Programmer’s Utilities Guide

8.1 The MACRO-ENDM Group

The prototype statements for a stored macro are given in the macro body enclosed
by the MACRO and ENDM pseudo operations, taking the general form

macname MACRO d-1,d-2,. ..,d-n
statement- 1

statement-2

statement-m

label: ENDM

where the macname is any nonconflicting assembly language identifier; d-1 through
d-n constitutes a (possibly empty) list of assembly identifiers without embedded $
separators, and statement-1 through statement-m are the macro prototype state-
ments. The identifiers denoted by d-1 through d-n are called dummy parameters for
this macro. Although they must be unique within the macro body, dummy parame-
ters can be identical to any program identifiers outside the macro body without
causing a conflict. The prototype statements can contain any properly balanced assembly
language statements or groups, including nested REPTs, IRPCs, MACROs, and IFs.

The prototype statements are read and stored in the assembler’s internal tables
under the name give by macname. They are not processed until the macro is expanded.
The following section gives the expansion process.

The label preceding the ENDM is optional.

8.2 Calling a Macro

The macro text stored through a MACRO-ENDM group can be brought out for
processing through a statement of the form

label: macname a-l,a-2,...,a-n

where the label is optional, and macname has previously occurred as the identifier
on a MACRO heading. The actual parameters a-1 through a-n are sequences of
characters separated by commas and terminated by a comment or end-of-line.

66

Programmer’s Utilities Guide 8.2 Calling a Macro

Upon recognition of the macname, the assembler first pairs off each dummy
parameter in the MACRO heading (d-1 through d-n) with the actual parameter text
(a-1 through a-n). The assembler associates the first dummy parameter with the first
actual parameter (d-1 is paired with a-1), the second dummy with the second actual,
and so forth until the list is exhausted. If more actuals are provided than dummy
parameters, the extras are ignored. If fewer actuals are provided, then the extra
dummy parameters are associated with the empty string (a text string of zero length).
The value of a dummy parameter is not a numeric value, but is instead a textual
value consisting of a sequence of zero or more ASCII characters.

After each dummy parameter is assigned an actual textual value, the assembler
rereads and processes the previously stored prototype statements and substitutes each
occurrence of a dummy parameter by its associated actual textual value, according
to the same rules as the controlling identifier in an IRPC or IRP group.

Listings 8-1 and 8-2 provide examples of macro definitions and invocations. List-
ing 8-1 begins with the definition of three macros, SAVE, RESTORE, and WCHAR.

The SAVE macro contains prototype statements that save the principal CPU registers
(PUSH PSW, B, D, and H). The RESTORE macro restores the principal registers

(POP H, D, B, and PSW). The WCHAR macro contains the statements necessary to

write a single character at the console using a CP/M BDOS call.

The occurrence of the SAVE macro definition between MACRO and ENDM causes
the assembler to read and save the PUSHs, but does not assemble the statements into

the program. Similarly, the statements between the RESTORE MACRO and the
corresponding ENDM are saved, as are the statements between the WCHAR MACRO
and ENDM statements. The fact that the assembler is reading the macro definition is
indicated by the blank columns in the leftmost 16 columns of the output listing.

67

8.2 Calling a Macro Programmer’s Utilities Guide

Referring to Listing 8-1, note that machine code generation starts following the
SAVE macro call. The prototype statements that were previously stored are reread
and assembled, with a + between the machine code address and the generated code
to indicate that the statements are being recalled and assembled from a macro defi-
nition. The SAVE macro has no dummy parameters in the definition, so no actual
parameters are required at the point of invocation.

The SAVE call is immediately followed by an expansion of the WCHAR macro.
The WCHAR macro, however, has one dummy parameter, called CHR, which is

listed in the macro definition header. This dummy parameter represents the character
to pass to the BDOS for printing. In the first expansion of the WCHAR macro, the
actual parameter H becomes the textual value of the dummy parameter CHR. Thus,
the WCHAR macro expands with a substitution of the dummy parameter CHR by
the value H. The CHR is within string quotes, so it is typed in upper-case and
preceded by the ampersand operator. Following the reference to WCHAR, the pro-
totype statements are listed with the + sign to indicate that they are generated by
the macro expansion.

68

Programmer’s Utilities Guide 8.2 Calling a Macro

0100 ORG 100H SBASE OF TRANSIENT AREA

0005 = Boos EQU a) sBDOS ENTRY POINT

9002 = CONOUT E9U 2 SCHARACTER OUT FUNCTION

4

SAVE MACRO sSAVE ALL CPU REGISTERS

PUSH PSW

PUSH B

PUSH D

PUSH H

ENOM

i

RESTORE MACRO HRESTORE ALL REGISTERS

POP H

POP D

POP B

POP PSW

ENDM

i

WCHAR MACRO CHR SWRITE CHR TO CONSOLE

MVI C »CONOUT siCHAR QUT FUNCTION

MVI Es ‘&CHR’ siCHAR TO SEND

CALL BDaSs

ENDM

j MAIN PROGRAM STARTS HERE

SAVE iSAVE REGISTERS UPON ENTRY

OLO0+FS PUSH PSW

O1014+C5 PUSH B

0102405 PUSH D

O103+E5 PUSH H

WCHAR H §SEND ‘H’ TO CONSOLE

O1LO4t+QEO2 MYT C »CONOUT

OL05+1E48 MUTT E,‘H’

OLO8+CDO500 CALL Boos

WOHAR I #SEND ‘I’ TO CONSOLE

OLOB+0EO2 MVI C ,CONOUT

OLOD+1E49 MUI Ey‘!

O1OF+Cp0500 CALL Boos

RESTORE +RESTORE CPU REGISTERS

O112+E1 POP H

0113+D1 POP D

O114+C1 POP B

OLLS+Ft POP PSW

0116 C9 RET JRETURN TO CCP

O117 END

Listing 8-1. Example of Macro Definition and Invocation

69

8.2 Calling a Macro Programmer’s Utilities Guide

The second invocation of WCHAR is similar to the first except that the dummy
parameter CHR is assigned the textual value I, causing generation of a MVIE, ‘I’ for
this case.

After the listing of the second WCHAR expansion, the RESTORE macro starts,

causing generation of the POP statements to restore the register state. The RESTORE
is followed by a RET to return to the CCP following the character output.

This program saves the registers upon entry, typing the two characters HI at the
console, restoring the registers, and then returning to the Console Command Proces-
sor. The SAVE and RESTORE macros are used here for illustration and are not
required for interface to the CCP, since all registers are assumed to be invalid upon
return from a user program. Further, this program uses the CCP stack throughout.
This stack is only eight levels deep.

Listing 8-2 shows another macro for printing at the console. In this case, the
PRINT macro uses the operating system call that prints the entire message starting at
a particular address until the $ symbol is encountered. The PRINT macro has a
slightly more complicated structure: two dummy parameters must be supplied in the
invocation. The first parameter, called N, is a count of the number of carriage return
line-feeds to send after the message is printed. The second parameter, called MES-
SAGE, is the ASCII string to print that must be passed as a quoted string in the

invocation.

The LOCAL statement within the macro generates two labels denoted by PASTM
and MSG. When the macro expands, substitutions occur for the two dummy para-
meters by their associated actual textual values, and for PASTM and MSG by their
sequentially generated label values. The macro definition contains prototype state-

ments that branch past the message (to PASTM) that is included inline following the

label MSG. The message is padded with N pairs of carriage return line-feed sequences,

followed by the $ that marks the end of the message. The string address is then sent

to the BDOS for printing at the console.

Listing 8-2 includes two invocations of the PRINT macro. The invocation sends

two actual parameters: the textual value 2 is associated with the dummy N, followed

by a quoted string associated with the dummy parameter MSG. The second actual

parameter includes the string quotes as a part of the textual value. The generated

message is preceded by a jump instruction and followed by N = 2 carriage return

line-feed pairs.

70

Programmer’s Utilities Guide 8.2 Calling a Macro

The second invocation of the PRINT macro is similar to the first, except that the
REPT group is executed N = 0 times, resulting in no carriage return line-feed pairs.

Similar to Listing 8-1, the program of Listing 8-2 uses the Console Command
Processor’s eight-level stack for the BDOS calls. When the program executes, it types
the two messages, separated by two lines, and returns to the CCP.

9100 ORG {GOH iBASE OF THE TPA

;

g0as = BOOS EQU 5 sBDO0S ENTRY POINT

0009 = PMSG EQU g SPRINT ‘TIL $ FUNCTION

OOOD = CR EQU ODH jCARRIAGE RETURN

Q00AR = LF EQU OAH SLINE FEED

i

PRINT MACRO N MESSAGE

us PRINT MESSAGE+ FOLLOWED BY N CRLF’S

LOCAL PASTM+MSG

JMP PASTM v3 JUMP PAST MSG

MSG: DB MESSAGE +$$INCLUDE TEXT TO WRITE

REPT N +HREPEAT CR LF SEQUENCE

DB CRLF

ENDM

DB ‘$! si MESSAGE TERMINATOR

PASTM: LX DoMSG S3MESSAGE ADDRESS

MYT C+PMSG $+PRINT FUNCTION

CALL Boos

ENDM

PRINT 2)‘The rain in Spain goes’

O1004+C31EO1 JMP 270001

0103+5468652072770002: DB ‘The rain in Spain goes’

0119+0D0A DB CRLF

O11B+0D0A DB CRLF

O110+24 DB ‘$/

O11E+110301 20001: LI D+? ? 0002

O121+0E09 MWT C+PMSG

0123+CD0500 CALL 6DOS

PRINT Oy’mainly down the drain.’

O1264+C3d001 JMP 270003

O129+GDE1GSGESGC7?20004: DB ‘mainly down the drains’

O13F+24 DB '$/

O140+i12901 270003: LXI D»??0OG0"d

0143+0E09 MAT C;+PMSG

01454000500 CALL BDoSs

0148 C9 RET

Listing 8-2. Sample Message Printout Macro

71

8.3 Testing Empty Parameters Programmer’s Utilities Guide

8.3 Testing Empty Parameters

The NUL operator is specifically designed to allow testing of null parameters. Null
parameters are actual parameters of length zero. NUL is used as a unary operator.
NUL produces a true value if its argument is of length zero and a false value if the
argument has a length greater than zero. Thus the operator appears in the context of
an arithmetic expression as:

... NUL argument

where the ellipses (...) represent an optional prefixing arithmetic expression, and
argument is the operand used in the NUL test. The NUL differs from other operators
because it must appear as the last operator in the expression. This is because the
NUL operator absorbs all remaining characters in the expression until the following
comment or end-of-line is found. Thus, the expression

x GT ¥Y AND NUL XXX

is valid because NUL absorbs the argument XXX, producing a false value in the scan
for the end-of-line. The expression

xX GT Y AND NUL M +2)

is deceiving but nevertheless valid, even though it appears to be an unbalanced
expression. In this case, the argument following the NUL operator is the entire
sequence of characters M + Z). This sequence is absorbed by the NUL operator in
scanning for the end-of-line. The value of NUL M + Z) is false because the sequence
is not empty.

72

Programmer’s Utilities Guide 8.3 Testing Empty Parameters

Listing 8-3 gives several examples of the use of NUL in a program. In the first
case, NUL returns true because there is an empty argument following the operator.
Thus, the true case is assembled, as indicated by the machine code to the left, and

the false case is ignored. Similarly, the second use of NUL in Listing 8-3 produces a
false value because the argument is nonempty. Both uses of NUL, however, are
contrived examples, because NUL 1s only useful within a macro group, as shown in
the definition of the NULMAC macro.

NULMAC consists of a sequence of three conditional tests that demonstrate the
use of NUL in checking empty parameters. In each of the tests, a DB is assembled if
the argument is not empty and skipped otherwise. Seven invocations of NULMAC
follow its definition, giving various combinations of empty and nonempty actual
parameters.

In the first case, NULMAC has no actual parameters. Thus all dummy parameters
(A, B, and C) are assigned the empty sequence. As a result, all three conditional tests
produce false results because both A and B are empty; B&C concatenates two empty
sequences, producing an empty sequence as a result.

The second invocation of NULMAC provides only one actual parameter, XXX,
assigned to the dummy parameter A. B and C are both assigned the empty sequence.
Thus only the DB for the first conditional test is assembled.

73

8.3 Testing Empty Parameters

0000 7472756520

0009 7878782069

0017+61203D2058

0029+62203D2058

003B+6263203D20

OO4F+6120302058

0061+6263203D20

0075+6263203D20

9089+6263203D20

00gc

Listing 8-3.

NULMAC

IF

DB

ELSE

DB

ENDIF

IF

0B

ELSE

DB

ENDIF

MACRO

IF

DB

ENDIF

IF

DB

ENDIF

IF

DB

ENDM

NULMAC

NULMAC

OB

NULMAC

OB

OB

NULMAC

DB

OB

NULMAC

DB

NULMAC

NULMAC

DB

END

Programmer’s Utilities Guide

NUL

‘true case’

‘false case’

NUL KK

"¥9xXxX 15s nul’

"OXX 16 not nul’

ABC

NOT NUL A

‘a = &A is not nul’

NOT NUL B

‘bo = &B is not nul’

NOT NUL B&C

‘be = &B&C is not nul’

XXX

‘a = XXX is not nul’

XXX

‘bo RAK 1s not mal’

"he = XXX 15 not nul’
ve yaa
ARK a9 ¥

‘a = XXX 18 not nul’

‘be = ¥¥Y is not nul‘

rr

‘bo = YY¥ 15 not nul!

Pt

yi iyit

‘be = '''* is not nul’

Sample Program Using the NUL Operator

The third case is similar to the second, except that the actual parameters for A and
C are omitted. Thus, the second and third conditionals both test. NOT NUL XXX,
which is true because B has the value XXX, and B&C produces the value XXX as
well.

74

Programmer’s Utilities Guide 8.3 Testing Empty Parameters

The fourth invocation of NULMAC skips the actual parameter for B but supplies
values for both A and C. Thus, the first and third test result in true values; the

second conditional group is skipped.

The fifth invocation provides an actual parameter only for C. As a result, only the
third conditional is true because B&C produces the sequence YYY.

The sixth invocation produces exactly the same result as the first because all three
actual parameters are empty.

The final expansion of NULMAC in Listing 8-3 shows a special case of the NUL
operator. The expression

NUL ’’

where the two apostrophes are in juxtaposition, produces the value true, even though
there are two apostrophe symbols on the line following NUL and before the end-of-
line. The value of A is the empty string in this case. The value assigned to both B
and C consists of the two apostrophe characters side by side; this is treated as a
quoted string of length zero, even though it is a sequence of two characters. In this
last expansion, the first conditional, however, evaluates the form

NOT NUL 7%’

that is the special case of NUL applied to a length zero quoted string, but not a
length zero sequence. Because of the special treatment of the length zero quoted
string, this expression also produces a false result. The third conditional, however,
must be considered carefully. The original expression in the macro definition takes

the form

NOT NUL B&C

with B and C both associated with the sequence of length two given by two adjacent
apostrophes. Thus, the macro assembler examines

NOT NUL ‘’87%

or, after concatenation,

NOT NUL /’°%?

where the four apostrophes are adjacent. Considering only the four apostrophes, the

75

8.3 Testing Empty Parameters Programmer’s Utilities Guide

macro assembler considers this a quoted string that happens to contain a single
apostrophe because double apostrophes are always reduced to a single apostrophe.
As a result, the test produces a true value, and the conditional segment is assembled.
Usually the NUL operator is used only to test for missing arguments, as shown in
later examples. (See Listing 8-6.)

8.4 Nested Macro Definitions

The MAC assembler allows you to include nested macro definitions. These take
the form

macl MACRO macl-list

mac2 MACRO mac2-list

ENDM

ENDM

where maci is the identifier corresponding to the outer macro, and mac2 is an
identifier corresponding to an inner nested macro that is wholly contained within the
outer macro. In this case, mac1-list and mac2-list correspond to the dummy parame-
ter lists for macl and mac2, respectively. As before, labels are allowed on the ENDM
statements.

The statements contained within a macro definition are prototype statements that
are read and stored by the assembler but not evaluated as assembly language state-
ments until the macro is expanded. Thus, in the preceding form, only the macl
macro is available for expansion because the assembler has stored but not processed
the body of macl that contains the definition of mac2. mac2 cannot be expanded
until mac] is first expanded, revealing the definition of mac2.

Properly balanced embedded macros of this form can be nested to any level, but
they cannot be referenced until their encompassing macros have themselves been
expanded.

76

Programmer’s Utilities Guide 8.4 Nested Macro Definitions

Listing 8-4 gives a practical example of nested macro definition and expansion.
This program writes characters either to the CP/M console device or to the currently
assigned list device, according to the value of the LISTDEV flag set for the assembly.
If the LISTDEV flag is true, then the assembly sends characters to the listing device.
Otherwise, the console is used for output. In either case, the macro OUTPUT is

produced; this sends a single character to the selected device.

The sample program in Listing 8-4 uses the macro SETIO to construct the OUT-
PUT macro. The OUTPUT macro is wholly contained within the SETIO macro and,
as a result, remains undefined until SETIO is expanded. Upon encountering the invo-
cation of SETIO, the macro assembler reads the prototype statements within SETIO
and, in the process, constructs the definition of the OUTPUT macro. Because LIST-

DEV is true for this assembly, the OUTPUT macro is defined as

OUTPUT MACRO CHAR

MW I E »CHAR

MUTI C»LISTOUT

CALL BOOS

ENDM

Note that the SETIO macro itself uses this newly created OUTPUT macro in its last
prototype statement to print a single + at the selected device.

77

8.4 Nested Macro Definitions Programmer’s Utilities Guide

Following the invocation of SETIO, the invocations of OUTPUT are recognized
because its definition has been entered in the process of reading the prototype state-
ments of SETIO. These invocations send the characters 1 and 2 to the list device.

9100 ORG 1O0H jBASE OF THE TPA

0000 = FALSE EQU OOOOH HVALUE OF FALSE

FFFF = TRUE EQU NOT FALSE SVALUE QF TRUE

j LISTDEY IS TRUE IF LIST DEVICE 18 USED

H FOR QUTPUT, AND FALSE IF CONSOLE IS USED

FFFF = LISTDEYV EQU TRUE

5

H

0005 = Boos EQU

0002 = CONOUT EQU

ooos = LISTOUT EQU

4

SETIO MACRO SSETUP QUTPUT MACRO FOR LIST OR CONSOLE

5

OUTPUT MACRO CHAR

cn
 sBDOS ENTRY POINT

jWRITE TQ CONSOLE

jWRITE TO LIST DEVICE n
h

MYT EsCHAR isREADY THE CHARACTER FOR PRINTING

IF LISTDEY

MYVI C»LISTOUT

ELSE

MYI C +CONOUT

ENDIF

CALL BDOS

ENDM

OUTPUT ‘x!

ENDM

j

SETIO sSETUP THE 10 SYSTEM

OL100+1E2A MUTI E,’e!

O1024+0E05 MYI C+LISTOUT

0104+CD0500 CALL BbDOS

OUTPUT ‘1°

QOLO7+1E31 MUI E,‘1!

O109+0E05 MVI C+LISTOUT

O10B+CD0500 CALL BOOS

OUTPUT ’2’

O10E+1E32 MVWI 2!

O110+0E05 MYI C+LISTOUT

0112+CD0500 CALL BOOS

o115 Ca RET

0116 END

Listing 8-4. Sample Program Showing a Nested Macro Definition

78

Programmer’s Utilities Guide 8.5 Redefinition of Macros

8.5 Redefinition of Macros

It is often useful to redefine the prototype statements of a macro after the initial
prototype statements have been entered. Redefinition is a specific instance of the
nesting described in the previous section, where the inner nested macro carries the
same name as the encompassing macro definition. Macro redefinition is extremely
useful if the macro contains a subroutine. In this case, the subroutine can be included
on the first expansion and simply called in any remaining expansions. Thus, if the
macro is never invoked, the subroutine is not included in the program.

Listing 8-5 shows an example of macro redefinition. This sample program defines
the macro MOVE. MOVE is intended to move byte values from a starting source
address to a target destination address for a particular number of bytes. The three
dummy parameters denote these three values: SOURCE is the starting address; DEST
is the destination address, and COUNT is the number of bytes to move (a constant

in the range 0-65535). The actions of the MOVE macro, however, are complicated

enough to be performed through a subroutine, rather than inline machine code each
time MOVE is expanded.

Examining the structure of MOVE in Listing 8-5, note that it contains a properly
nested redefinition of MOVE, taking the general form:

MOVE MACRO SOURCE,DEST,COUNT

(@MOVE subroutine

MOVE MACRO 2$,2D,2C

call to @MOVE

ENDM

invocation of MOVE

ENDM

Upon encountering the first invocation of MOVE, the assembler begins reading the
prototype statements. Note, however, that the first expansion of the MOVE includes
the subroutine for the actual move operation, labeled by @MOVE so that there is
no name conflict (with a branch around the subroutine). MOVE then redefines itself

as a sequence of statements that simply call the out-of-line subroutine each time it
expands. The last statement of the original MOVE macro is an invocation of the
newly defined version. As indicated by this example, once a macro has started expan-
sion, it continues to completion (or until EXITM is assembled), even if it redefines
itself.

79

8.5 Redefinition of Macros Programmer’s Utilities Guide

9100 ORG 1OOH 3BASE OF TPA

MOVE MACRO SOURCE sDEST »COUNT

ii MOVE DATA FROM ADDRESS GIVEN BY ‘SQURCE’

ii TO ADDRESS GIVEN BY ‘DEST’ FOR ‘COUNT’ BYTES

LOCAL PASTSUB 33LABEL AT END OF SUBROUTINE

JMP PASTSUB #iJUMP AROUND INLINE SUBROUTINE

@MOVE: $sINLINE SUBROUTINE TO PERFORM MOVE OPERATION

u3 HL IS SOURCE, DE IS DEST: BC IS COUNT

MOV Ail s3LOW ORDER COUNT

ORA B s$ZERD COUNT?

RZ s3STOP MOVE IF ZERO REMAINDER

MOV AMM SiGET NEXT SOURCE CHARACTER

STAK D s3PUT NEXT DEST CHARACTER

INK H HHADDRESS FOLLOWING SOURCE

INK D HHADDRESS FOLLOWING DEST

DCX B i} sCOUNT=COUNT-1

JMP @MOVE $3FOR ANOTHER BYTE TO MOVE

PASTSUB:

ig ARRIVE HERE ON FIRST INVOCATION - REDEFINE MOVE

MOVE MACRO 79?D+?C SiCHANGE PARM NAMES

LKI H+?S SSADDRESS THE SOURCE STRING

LKI D+?D SADDRESS THE DEST STRING

LXI BPC SyPREPARE THE COUNT

CALL @MOVE s3MOVE THE STRING

ENDM

i CONTINUE HERE ON THE FIRST INVOCATION TO USE

i THE REDEFINED MACRO TO PERFORM THE FIRST MOVE

MOVE SOURCE +DEST +COQUNT

ENDM

Listing 8-5. Sample Program Showing Macro Redefinition

80

Programmer’s Utilities Guide 8.5 Redefinition of Macros

MOVE XLoX2s5 MOVE 5S CHARS FROM X1 TO X2

OL00+C30E01 JMP 220001

0103+79 MOV ALC

0104+B0 ORA B

0105+C8 RZ

OL1064+7E MOV Aum

0107412 STAXK D

0108423 INK H

0109+13 INX D

O10A+0B DCX B

010B+C30301 JMP BMOVE

O10E+212701 LXI H»X1

O111+114001 LXI D+X2

O11d+o0tasao0 LxI B+5

0117+CD0301 CALL @MOVE

MOVE 3000H +1000H11500H 5BIG MOVER

O11A+210030 LXI H+3000H

O11D+110010 LXI D+1000H

01204010015 LXI Bs1500H

0123+CD0301 CALL @MOVE

0126 C9 RET iRETURN TO THE CCP

0127 6865726520K1: DB ‘here is same data to move’

0140 7878787878K2: DB "MXxXXwWe are! /

Listing 8-5. (continued)

It is important to note the use of ?S, 2D, and ?C in the previous example. The
innermost MOVE macro uses the same sequence of three parameters for the source,
destination, and count. The dummy parameter names must differ, however, because
they would be substituted by their actual values if they were the same. This is
because the inner MOVE macro is wholly contained within the outer macro, so
parameter substitution takes place regardless of the context.

Macro storage is not reclaimed upon definition, however, because the macro
assembler performs two passes through the source program and saves any preceding
definitions for the second pass scan.

81

8.6 Recursive Macro Invocation Programmer’s Utilities Guide

8.6 Recursive Macro Invocation

The prototype statements of a recursive macro x contain invocations of macros

that, in turn, invoke macros that eventually lead back to an invocation of x. A direct
recursion occurs when x invokes itself, as shown in the form below:

macname MACRO d-1,. . .,d-n

macname a-l,. . .,a-n

ENDM

Although this form is similar to the embedded macro definition discussed in the
previous section, macname is expanded within its own definition, rather than being
redefined. Recursion is only useful, however, in the presence of conditional assembly
where various tests are made that prevent infinite recursion. In fact, recursion is
allowed only to sixteen levels before returning to complete the expansion of an
earlier level.

Listing 8-6 shows a situation in which indirect recursive macro invocation is use-
ful. The macro WCHAR writes a character to the console device using the general
purpose operating system macro CBDOS (call BDOS). CBDOS acts as an interface
between the program and the CP/M system by performing the system function given
by FUNC, with optional information address INFO. CBDOS loads the specified
function to register C, then tests to see whether the INFO argument has been sup-
plied, using the NUL operator. If supplied, INFO is loaded to the DE register pair.
After register setup, the BDOS is called, and the macro has completed its expansion.

Assume, however, that CBDOS has the additional task of inserting a carriage
return line-feed before writing messages where operating system Function 9 (write

buffer until $) has been specified. In this case, CBDOS uses the WCHAR macro to
send the carriage return line-feed. The WCHAR macro, in turn, uses CBDOS to send
the character, resulting in two activations of CBDOS at the same time. The assembler
holds the initial invocation of CBDOS until the WCHAR macro has completed, then
returns to complete the initial CBDOS expansion.

In recursion the values of the dummy parameters are saved at each successive level
of recursion and restored when that level of recursion is reinstated. Reentry into a
macro expansion through recursion does not destroy the values of dummy arguments
held by previous entry levels.

82

Programmer’s Utilities Guide

0100

j

0005 = BbOS

0002 = CONOUT

0009 = MSGOUT

000D = CR

QOOA = LF

'

WCHAR

O100+0E02

0102+116B800

0105+CD0500

ORG LOQOH iBASE OF TRANSIENT AREA

SAMPLE PROGRAM SHOWING RECURSIVE MACROS

EQU Q0O5H SENTRY TO 8DOS

EQU 2 SCONSOLE CHARACTER OUT

EQU ss) SPRINT MESSAGE ‘TIL $

EQU OOH iCARRIAGE RETURN

EQU OAH sLINE FEEO

MACRO CHR

WRITE THE CHARACTER CHR TO CONSOLE

cBpoos CONOUT »CHR s$CALL BDOS

ENOM

MACRO FUNC + INFO

GENERAL PURPOSE BDOS CALL MACRG

FUNC IS THE FUNCTION NUMBER»

INFO IS THE INFORMATION ADDRESS OR NUL

CHECK FOR FUNCTION 9» SEND CRLF FIRST IF 50

IF FUNC =MSGOUT

PRINT CRLF FIRST

WCHAR CR

WCHAR LF

ENDIF

NOW PERFORM THE FUNCTION

MUI C+FUNC

INCLUOE LXI TO DE IF INFO NOT EMPTY

IF NOT NUL INFO

LXI D+INFO

ENDIF

CALL BDOS

ENDM

WCHAR hl sSEND + "H" TO CONSOLE

MYT C +CONOUT

LKI Di'h’

CALL BDOS

Listing 8-6. Sample Program Showing a Recursive Macro

8.6 Recursive Macro Invocation

83

8.6 Recursive Macro Invocation Programmer’s Utilities Guide

WCHAR yh! 3SEND ‘I’ TO CONSOLE

0108+0E02 MVI C +CONOUT

010A+116900 LXI Di’i’

010D+CD0500 CALL BOOS

CBODOS MSGOUTsMSGADDR $SEND MESSAGE

OL1L0+0E02 MVI C sCONOUT

01124110000 LXI DCR

0115+CD0500 CALL BDOS

OL18+0E02 MUT C sCONOUT

OL1A+110A00 LXI D>LF

0110+CD0500 CALL BDOS

O120+0E09 MYI C »MSGOUT

0122+112901 LXI D»MSGADDR

0125+CD0500 CALL BDOS

0128 C9 RET s3TERMINATE PROGRAM

4

MSGADDR:

0129 G1GEG4206C OB “and lois$’

0132 END

Listing 8-6. (continued)

8.7 Parameter Evaluation Conventions

You can exercise a number of options in the construction of actual parameters,
and in the specification of character lists for the IRP group. Although an actual
parameter is simply a sequence of characters placed between parameter delimiters,
these options allow overrides where delimiter characters themselves become a part of
the text. A parameter x occurs in the context:

label: macname <...,x,...>

where macname is the name of a previously defined macro, and the preceding label
is optional. The ellipses ... represent optional surrounding actual parameters in the
invocation of macname. In the case of an IRP group, the occurrence of a character
list x is

label: IRP id,...,x,...

where the label is again optional, and the ellipses represent optional surrounding
character lists for substitution within the IRP group where the controlling identifier
id is found. In either case, the statements can be contained within the scope of a

84

Programmer’s Utilities Guide 8.7 Parameter Evaluation

surrounding macro expansion. Hence, dummy parameter substitution can take place
for the encompassing macro while the actual parameter is being scanned.

The macro assembler follows the steps shown below in forming an actual parame-
ter or character list:

1. Leading blanks and tabs (control-l) are removed if they occur in front of x.

2. The leading character of x is.examined to determine the type of scan opera-
tion to take place.

3. If the leading character is a string quote (apostrophe), then x becomes the
text up to and including the balancing string quote, using the normal string
scanning rules: double apostrophes within the string are reduced to a single
apostrophe, and upper-case dummy parameters adjacent to the ampersand
symbol are substituted by the actual parameter values. Note that the string
quotes on either end of the string are included in the actual parameter text.

4. If the first character is the left angle bracket (<), then the bracket is removed,

and the value of x becomes the sequence of characters up to, but not includ-
ing, the balancing right angle bracket (>). The right angle bracket does not
become a part of x. In this case, left and right angle brackets can be nested
to any level within x, and only the outer brackets are removed in the evalu-
ation. Quoted strings within the brackets are allowed, and substitution within
these strings follows the rules stated in 3 above. Left and right brackets
within quoted strings become a part of the string; these are not counted in
the bracket nesting within x. Further, the delimiter characters comma, blank,

semicolon, tab, and exclamation point become a part of x when they occur
within the bracket nesting.

5. If the leading character is a percent (%) character, then the sequence of

characters that follows is taken as an expression that is evaluated immedi-
ately as a 16-bit value. The resulting value is converted to a decimal number
and treated as an ASCII sequence of digits, with left zero suppression (0-
65535).

6. If the leading character is not a quote, a left bracket, or a percent, the

possibly empty sequence of characters that follows, up to the next comma,
blank, tab, semicolon, or exclamation point, becomes the value of x.

85

8.7 Parameter Evaluation Programmer’s Utilities Guide

There is one important exception to the preceding rules: the single-character escape,
denoted by an up arrow, causes the macro assembler to read the special (nonalpha-
betic) character immediately following as a part of x without treating the character
as significant. The character following the up arrow, however, must be a blank, tab,
or visible ASCH character. The up arrow itself can be represented by two up arrows
in succession. If the up arrow directly precedes a dummy parameter, then the up
arrow is removed, and the dummy parameter is not replaced by its actual parameter
value. Thus, the up arrow can be used to prevent evaluation of dummy parameters
within the macro body. Note that the up arrow has no special significance within
string quotes and is simply included as a part of the string.

Evaluation of dummy parameters in macro expansions has been presented throughout
the previous sections. The macro assembler evaluates dummy parameters as follows:

= [f a dummy parameter is either preceded or followed by the concatenation
operator &, then the preceding or following & operator is removed, the
actual parameter is substituted for the dummy parameter, and the implied
delimiter is removed at the position where the ampersand occurs.

Dummy parameters are replaced only once at each occurrence as the encom-
passing macro expands. This prevents the infinite substitution that occurs if a
dummy parameter evaluates to itself.

In summary, parameter evaluation follows these rules:

Leading and trailing tabs and blanks are removed.
Quoted strings are passed with their string quotes intact.
Nested brackets enclose arbitrary characters with delimiters.
A leading percent symbol causes immediate numeric evaluation.
An up arrow passes a special character as a literal value.
An up arrow prevents evaluation of a dummy parameter.
The & operator is removed next to a dummy parameter.
Dummy parameters are replaced only once at each occurrence.

86

Programmer’s Utilities Guide 8.7 Parameter Evaluation

Listings 8-7, 8-8, and 8-9 show examples of macro definitions and invocations
illustrating these points. In Listing 8-7, for example, two macros are defined, called

MAC1 and MAC2. Each has several dummy parameters. In this case, the macro
definitions are headed by DB statements to reveal the actual values passed in each
case. There is a single mainline invocation of MAC2 with the actual parameters

IT o+s Kets * KR + Ls “Kwote’

that associates I with E, the null sequence with F, the sequence X+1 with G, the
value 16 with H, and the literal string ‘kwote’ with $. MAC2 expands, filling the DB
and MVI instructions with the substituted values. Before leaving MAC2, MAC1 is
invoked with the value of E (the sequence I), the concatenation of the dummy argu-
ment F with the sequence M (producing M since F’s value is null), along with the

literal value A, followed by the value of H (which is 16), and terminated by the value

of S (yielding the string ‘kwote’). These values are associated with MAC1’s dummy
parameters.

i MACRO PARAMETER EVALUATION

maACI MACRO ArBsC105S

i ENTERING MACRO t:

DB ‘RA &B RC 8D’

OB ss)

A: NOP

MVI Bil

Cel: NOP

L&A&D: NOP

i LEAVING MACRO 1

ENDM

MACZ MACRO EyFsGsHeS

j ENTERING MACRO 2:

DB ‘RE &F &G &H’

DB 5

MYI M+H

MAC1 EsFaMsA1HsS

i LEAVING MACRO 2

ENDM

Listing 8-7. Macro Parameter Evaluation Example

87

8.7 Parameter Evaluation Programmer’s Utilities Guide

OQOF = x EQU 15

MAC2 I rp Mtle ZX + Le ‘Kwote’

+ i

+ 3 ENTERING MACRO 2:

00004+492020582B DB ‘I X+1 16°

0009+6B77G6F 7465 DB “Kwote ’

OQO0E+3610 MUI MiG

+ MACI TsMsIsiG+‘Kwote’

+ i

+ H ENTERING MACRO 1:

0010+4920402049 DB ‘TM IT 16°

0018+6B776F7465 DB ‘Kwote ’

001D+00 I: NOP

OOL1E+3601 MUI Mal

0020+00 Ii: NOP

0021+00 LITi6: NOP

+ ; LEAVING MACRO 1

+ i

+ ENDM

+ i LEAVING MACRO 2

+ j

+ ENDM

0022 END

Listing 8-7. (continued)

Upon expanding MAC1, the DB statements are filled out, followed by the substitu-
tion of A as a label (producing A’s value I). The MVI instruction references memory
because B’s value is M. Note that the concatenation of C with 1 reduces to a conca-
tenation of A with 1 because C’s value is A. The replacement of C by A constitutes
a substitution of a single occurrence of a dummy parameter. Thus the A that is
produced is not itself replaced at this point. Finally, the literal value L is concaten-
ated to the value of A and D to produce the label LI16.

Listing 8-8 illustrates the use of bracketed notation, using IRPs (indefinite repeats)

within three macros, called IRPM1, IRPM2, and IRPM3. Note that one bracket level

is removed in the first invocation of IRPM1, leaving the IRP list with one bracket
level (required in the IRP heading). Similarly, the IRPM2 invocation also eliminates
the outer bracket level, but these brackets are replaced at the IRP heading within
IRPM2. IRPM3 has three distinct dummy parameters that are reconstructed as a
single list at the IRP heading it contains. IRPM4 shows the effect of passing parame-
ters through two macro invocation levels by accepting a single parameter X, which

88

Programmer’s Utilities Guide 8.7 Parameter Evaluation

is immediately passed along to the IRPM1 macro. Note that the invocation requires
three bracket levels: the first is removed at the nested invocation of IRPM1 inside
IRPM4, and the innermost level is required at the IRP heading within IRPM1.

Listing 8-9 presents various combinations of bracketed actual parameters, quoted
strings, and escape sequences. The MAC1 macro has two parts: the first portion
includes a DB statement showing the value of the first parameter X, if it is not empty,
and the second part produces the value of Y, if not empty. Note that the first
invocation includes a properly nested bracketed sequence for X and an empty param-
eter for Y. The second invocation sends a properly nested bracketed expression for
X that produces an empty value because no characters remain after the brackets are
removed. The second parameter includes a quoted string (‘string of pearls’) and a
hexidecimal value that becomes a part of the DB in MAC1.

The third invocation of MAC1 passes a bracketed expression, including a quoted
string (the pair of adjacent apostrophes), followed immediately by a sequence of
ASCII characters. Note that the pair of apostrophes are passed intact because they
appear as an empty quoted string. In this case, the value of Y is empty. The remain-
ing examples show various cases of strings and escape sequences. Take care in pass-
ing quoted strings that contain apostrophes because a pair of apostrophes is consid-
ered a single apostrophe at each evaluation level in the sequence of macro invocations.
Pay particular attention to the use of the escape character to pass an unevaluated
dummy parameter from MAC2 to the MAC1 invocation.

IRPM1 MACRO x

iy INDEFINITE REPEAT MACRO

IRP YoxX

Ys NOP

ENDM

ENDM

IRPM1 €<ONE + TWO+ THREE > >

0000+00 ONE: NOP

0001+00 TWO: NOP

0002+00 THREE: NOP

5

IRPM2 MACRO x

IRP YsiX>

Y: NOP

ENDOM

ENOM

Listing 8-8. Parameter Evaluation Using Bracketed Notation

89

8.7 Parameter Evaluation

0003400

Qg0gd+00

0005+00

00g06+00

agog7+00

a008+00

0009+00

QOOA+O0

ogOB+00

Q00C

90

SEVEN:

EIGHT:

NINE:

;

IRPM4

TEN:

ELEVEN:

TWELVE:

IRPM2

NOP

NOP

NOP

MACRO

IRP

NOP

ENDM

ENDM

IRPM3

NOP

NOP

NOP

MACRO

IRPM1

ENOM

IRPM4

NOP

NOP

NOP

END

“FOUR »FIVE sSIX>

RLeX29K3

Voth 1 se X2 9X32

SEVEN s EIGHT »NINE
Bo

oe

Programmer’s Utilities Guide

SAe TEN + ELEVEN + TWELVE > 2 >

Listing 8-8. (continued)

Programmer’s Utilities Guide 8.7 Parameter Evaluation

i SAMPLE BRACKETED PARAMETERS: WITH ESCAPE CHARACTER

MACI MACRO K+¥

DB "RN! ¥(ONE)

IF NUL Y

EXITM

ENDIF

DB Y s(TWO)

ENDM

i

MACi <<LEFT SIDE® MIDDLE «RIGHT SIDE?>?

0000+3C4C454654 DB “€LEFT SIDE® MIDDLE <RIGHT SIDE?’ 3(ONE)

i

MACI <ba<’string of pearls‘ +3dH>

OO1F+737472696E OB ‘string of Pearls’+s3dH (TWO)

j

MACI <A QUOTE IS A ’’s RIGHT?>

0030+412051554F DOB ‘A QUOTE IS A ’‘ RIGHT?’ + (ONE)

i

MACI €bed’pights but also ‘/''%>

0046+7269676874 DB ‘pights but also ‘°’ (TWO)

i

MACI rfis this ‘9/''?’ ‘confusing’ /’''s63>

0057+6973207468 DB ‘as this ‘’+’/’confusing’’’»63 (TWO)

j

MACI <HERE IS A * > AND A *

006B+4845524520 DB "HERE IS A > AND A “' +(ONE)

MAC2 MACRO APAR s+ BPAR

LOCAL X

x EQU 10

DB APAR

MACI “APAR »BPAR

ENDM

j

MAC2 (Xt5)*4s what’ /’/ 44!" ’is going on?’

OOOAt= 270001 EQU to

OO7E+3C DB (CP 2000145) #4

OO7F+41504152 DB “APAR’ } CONE}

0083+7768617427 BB ‘'what’’s going on?’ ${TWO)

Listing 8-9. Examples of Macro Parameter Evaluation

Examine the various parameters and their evaluations in Listing 8-9 to ensure that

the rules for evaluation given in this section are consistent.

91

8.8 The MACLIB Statement Programmer’s Utilities Guide

8.8 The MACLIB Statement

The macro assembler allows you to create and reference macro library files that
are external to the mainline program. The form of the macro library reference is

MACLIB libname

where libname is an identifier referencing file libname.LIB assumed to exist on the
disk. Macro libraries are in source program form, so you can easily create and
modify them using an editor program.

In order to speed up the assembly process, macro libraries are read only on the
first assembly pass. This places some restrictions on the use of the MACLIB state-
ment, as listed below:

m The statements included in the macro library cannot generate machine code.
For example, comments, EQUs, SETs, and MACRO definitions are allowed;

DB statements outside macro definitions are not allowed.

™ Macro libraries are not listed with the source program, although an overrid-
ing parameter can be supplied. (See Section 10.)

@ All MACLIB statements must appear before the mainline program macro
definitions. The MACLIB statements are placed at the beginning of the pro-
gram, followed by the mainline declarations and machine code.

The principal advantage of the MACLIB feature is that you can predefine macros
that enhance the facilities of the assembly language itself. For example, the additional
operations codes of the Zilog Z80 microprocessor can be defined in a macro library
that is referenced in a single statement

MACLIB 280

causing the assembler to read the file Z780.LIB from the disk that contains the neces-
sary macros for Z80 code generation. These macros can then be referenced within
the program, intermixed with the usual 8080 mnemonics.

92

Programmer’s Utilities Guide 8.8 The MACLIB Statement

The libname.LIB file is assumed to exist on the currently logged disk drive. You
can override this default condition using a special parameter (L) when the macro
assembler is started that redirects the .LIB references to a different disk. (See Section

10.)

Listings 6-1 and 6-2 show the use of the macro library facility, as introduced in
the initial macro discussion. The following sections contain additional examples of
the use of MACLIB in practical applications.

End of Section 8

93

Section 9
Macro Applications

The MAC assembler provides a powerful tool for microcomputer systems develop-
ment through its macro facilities. To demonstrate this, the following sections describe
a number of macro applications that solve practical problems in four applications
areas:

implementation of special purpose languages
emulation of nonstandard machine architectures
implementation of additional control structures
operating systems interface macros

9.1 Special Purpose Languages

A wide variety of microcomputer designs can be broadly classed as controller
applications. Specifically, the microcomputer is used as the controlling element in
sequencing and decision making as real-time events are sampled and directed.

Typical applications of this sort include assembly line sensing and control, metal
machine control, data communications and terminal control functions, production
instrumentation and testing, and traffic control systems.

In many cases, application programmers set up the sequence of operations that the
microprocessor carries out in performing its task. To avoid unnecessary details, the
application programmer is not expected to know how to program and debug micro-
computer assembly language programs.

In this situation, it is useful to define a language through macros that suit the
application. The application programmer uses these predefined macros as the primi-
tive language elements. If properly defined, the application language is easily pro-
grammed, allowing considerable machine independence. That is, an application pro-
gram written for a particular microprocessor can be used with another processor by
changing the definitions of the individual macros that implement the primitive oper-
ations. Further, the macro bodies can incorporate debugging facilities for application
development.

95

i")
0)
a
R=5
°
3
‘9

9.1 Special Purpose Languages Programmer’s Utilities Guide

To illustrate language definition, consider the following situation. Hornblower
Highway Systems, Inc. produces turnkey traffic control systems for cities throughout
the country. Their hardware subsystems consist of various traffic lights and sensors
customized for the traffic layout in a particular city. When Hornblower negotiates a
contract, their engineers survey the intersections of the city and produce plans show-
ing a configuration of their standard hardware for each intersection, along with the

algorithms required for traffic flow at that point.

The standard hardware items Hornblower manufactures consist of central and
corner traffic lights that display green, yellow, and red (or off completely); pushbut-
ton switches for pedestrian cross requests; road treadles for sensing the presence of
an automobile at an intersection; and a central controller box.

The central controller box contains an 8080 microcomputer connected through
external logic to relays that control the lights and latches that hold the sensor input
information. The controller box also contains a time of day clock that changes on an
hourly basis from 0 through 23. The 8080 processor in the controller box can be
configured for any particular intersection with up to 1024 bytes of programmable
Read-Only Memory (PROM) in 256-byte increments. Although Random Access
Memory can be included in the controller box, Hornblower uses only ROM when
possible.

Thus, the Hornblower engineers examine the hardware requirements for each
intersection in the city and produce hardware configuration plans that intermix the
various standard components. Programs are then written and debugged that control
each intersection, based on predicted traffic patterns.

96

Programmer’s Utilities Guide 9.1 Special Purpose Languages

The intersection of Easy Street and Maria Avenue, for example, controls minimal
traffic and thus consists of a controller box with a single central light. The algorithm
for this intersection simply alternates red and green lights between Easy and Maria,
with a bias toward Easy Street because traffic along Easy has measured higher in the
past surveys. Thus the green light along Easy lasts for 20 seconds, while the green
along Maria lasts for only 15 seconds. Given this situation, the application program-
mer writes the following program:

HORNBLOWER HIGHWAYS SYSTEMS,» INC.

INTERSECTION:

EASY STREET (N-S) / MARIA AVENUE (CE-W)

n
e
e

we

ee

MACLIB INTERSECT sLOAD MACROS

i

CYCLE: SETLITE NS +GREEN

SETLITE EW »+RED

TIMER 20 jWAIT 20 SECS

3

3 CHANGE LIGHTS

SETLITE NS,/ELLOW

TIMER 3 jWAIT 3 SECS

SETLITE NS »RED

SETLITE EW »GREEN

TIMER 15 MWAIT 15 SECS

3

3 CHANGE BACK

SETLITE EW, YELLOW

TIMER 3 IWATT 3 SECS

RETRY CYCLE

The macro library INTERSECT.LIB contains the macro definitions that implement
the primitive operations SETLITE and TIMER, setting the central traffic light and
time out for the specified interval, respectively. Further, the RETRY macro causes
the traffic light to recycle on each light change. The sequence of operations is easy to
write and is completely machine independent.

97

9.1 Special Purpose Languages Programmer’s Utilities Guide

Listing 9-1 gives an example of a macro library for intersect that assumes the
following hardware with an 8080 processor: the central traffic light is controlled by
the 8080 output port 0 (given by light); the time of day clock is read from port 3
(clock). Further, the north-south (nsbits) of the central light are given by the high-
order 4 bits of output port 0; the east-west direction (ewbits) is specified in the low-

order 4 bits of output port 0. When either of these fields is set to 0, 1, 2, or 3, the

light in that direction is turned off, or set to red, yellow, or green, respectively. Thus,

the SETLITE macro in Listing 9-1 accepts a direction (NS or EW) along with a color

(OFF, RED, YELLOW, or GREEN) and sets the specified direction to the appropri-

ate color.

; macro library for basic intersection

j

; input/outeut Ports for light and clock

light equ 00h traffic light control

clock equ O3h $24 hour clock (Orltees #23)

i

i constants for traffic light control

nsbits eau 4 inorth south bits

ewbits e4u 0 jeast west bits

j

off equ 0 Sturn light off

red equ 1 juvalue for red light

yellow e9u 2 juvalue for yellow light

green equ 3 hdreen light

5

setlite macro dirycolor

4 set light i"dir" (nsvew) to S"color" (offsredsyellowsdreen)

mud a color shl dir&bits jicolor readied

out light jisent in proper bit Position

endm

j

timer macro seconds

i) construct inline time-out loop

local tiet2rta jiloop entries

mud ds4*seconds iibasic loop control

ti: mud b+250 +3250msec #4 = 1 sec

te: mui c+182 $:182%5,S5usec = imsec

ta: der c sol ocy = «3 usec

unz t3 y34+10 cy = 5,5 usec

dcr b Sicount 250+2d9..,

Jnz t2 iiloop on b register

der d sibasic loop control

nz tl jiloop on d register

Listing 9-1. Macro Library for Basic Intersection

98

Programmer’s Utilities Guide 9.1 Special Purpose Languages

3 arrive here with approximately i"seconds” secs timeout

endm

H

clock? macro low+highsiftrue

a) jump to s“iftrue" if clock is between low and high

local iffalse tialternate to true case

in clock siread real-time clock

if not nul high ticheack high clock

CPi high ssequal or greater?

une iffalse iiskiep to end if so

endif

CPl low siless than low value?

Jnc iftrue jiskir to label if not

iffalse:

endm

j

retry macro solabel

a4 continue execution at s"golabel"

Jmp golabel

endm

Listing 9-1. (continued)

The TIMER macro in Listing 9-1 uses the internal cycle time of the 8080 processor
to construct an inline timing loop, based on the value of SECONDS. This loop is not
generated as a subroutine because Hornblower prefers not to include RAM in the
controller box. (Subroutines require return addresses in RAM.)

In addition to the basic intersection macro library, Hornblower has also defined
macro libraries for all of the optional hardware components. Listing 9-2a, for exam-
ple, is included when the intersection contains treadles in the street to detect auto-
mobiles; Listing 9-2b shows the macro library for pedestrian pushbuttons. In the case
of automotive treadles, the sensors are attached to input port 1 (trinp) of the proces-
sor. The treadles, however, require a reset operation that clears the latched value
through output port 1 (trout) of the controlling 8080 processor. In any particular
intersection, the treadles are numbered clockwise from true north, labeled 0, 1, through
a maximum of 7 treadles. Each sensor and reset position of the treadle ports corre-
sponds to one bit position, numbered from the least to most significant bit. Thus the
treadle #0 sensor is read from bit 0 of port 1 and reset by setting bit 0 of output
port 1. Similarly, treadle #1 uses bit position 1 of input and output port 1. The
TREAD? macro is invoked to sense the presence of a latched value for treadle tr and,
if on, the sensor is reset, with control transferring to the label given by iftrue.

99

9.1 Special Purpose Languages Programmer’s Utilities Guide

Listing 9-2b shows the macro library that processes pedestrian pushbuttons. Horn-
blower’s hardware senses the latched pedestrian switches on input port 0 (cwinp) as
a sequence of 1s and Os in the least significant positions, corresponding to the switches
at the intersection. Thus, if there are four pedestrian switches, bit positions 0, 1, 2,
and 3 correspond to these switches. A 1 bit in any of these positions indicates that
the pushbutton has been depressed. Unlike the automotive treadles, the crosswalk
switch latches are all cleared whenever input port 0 is read. Hornblower has defined
several other libraries that support optional hardware manufactured by their company.

3 macro library for street treadles

5

trine equ Oth itreadle input Port

trout equ Olh itreadle output Port

j

tread? macro troiftrue

i"tread?" is invoked to check if

treadle given by tr has been sensed,

v4 if sor the latch is cleared and control

v4 transfers to the label s"iftrue"

local iffalse iin case not set

a5

in trine iiread treadie switches

ani i shi tr jimask Proper bit

Jz iffalse siskip reset if 0

my aryl shi tr sito reset the bit

out trut siclear it

JmP iftrue $ig0 to true label

iffalse:

endm

Listing 9-2a. Macro Library for Treadle Control

i macro library for Pedestrian Pushbuttons

j

cwinP equ 00h jinput Port for crosswalk

j

push? macro iftrue

v4 s"push?" jumps to label #"iftrue" when any one

a of the crosswalk switches is depressed, The

4 value has been latcheds and reading the Port

5 clears the latched values

in cwinr iiread the crosswalk switches

ani (1 shl cwent) - 1 tibuild mask

nz iftrue jtany switches set?

v5 continue on false condition

endm

Listing 9-2b. Macro Library for Corner Pushbuttons

100

9.1 Special Purpose Languages Programmer’s Utilities Guide

The intersection of Bumpenram Boulevard and Lullabye Lane presents a more
complicated situation. Bumpenram carries heavy traffic in an E-W direction to and
from the center of town. Lullabye, however, feeds a residential portion of the city,
running perpendicular to Bumpenram in a N-S direction. The contracting city wants
the traffic control biased toward Bumpenram as follows: the traffic light must remain
green along Bumpenram until the treadles along Lullabye detect the presence of
automobiles or until the pedestrian switches are pushed. At that time, the light must
change to allow the traffic to move N-S through Lullabye, allowing all traffic to clear
before returning to the major E-W flow along Bumpenram. Late night traffic along
Bumpenram is not very heavy, so the city also wants the E-W light to flash yellow
and the N-S direction to flash red between the hours of 2 and 5 a.m.

The application program created by Hornblower for the Bumpenram and Lullabye
intersection is shown in Listings 9-3a, 9-3b, and 9-3c. Each major cycle of the traffic
light enters at CYCLE where the time of day is tested. Between 2 and 5 a.m., control
transfers to NIGHT where the yellow and red lights are flashed in the appropriate
directions. During other hours, the switches and treadles are sampled until N-S traffic
along Lullabye is sensed. If cross traffic is detected, the lights switch until all the
traffic is through. Sampling also stops when the time of day reaches 2 a.m.

Listing 9-3a shows the assembly with no macro generated lines, controlled by the
-M parameter. (See Section 10.) Although the machine code locations are shown to
the left, no 8080 machine code is listed. Listing 9-3b shows a segment of this same
program with machine code generation, but no 8080 mnemonics, controlled by *M.
Listing 9-3a is the most readable to the application programmer. Listings 9-3b and
9-3c are useful for macro debugging.

Note that the resulting program requires no RAM for execution because all tem-
porary values are maintained in the 8080 registers. Further, the program is less than
256 bytes, so it can be placed in a single programmable Read-Only memory chip for
a minimum memory/processor configuration.

101

9.1 Special Purpose Languages Programmer’s Utilities Guide

BUMPENRAM BLVD / LULLABYE LN.

4 CROSSWALK SWITCHES

jNAME FOR TREADLE ZERO

jNAME FOR TREADLE ONE

iBASIC INTERSECTION

VINCLUDE TREAOLES

FINCLUDE PUSHBUTTONS

HERE ON EACH MAJOR CYCLE OF THE LIGHT

SSPECIAL FLASHING?

#RED LIGHT ON LULLABYE

iGREEN ON BUMPENRAM

TREADLES

THERE?

iTREADLE 0?

jTREADLE 1?

iPAST 2AM?

sTRY AGAIN IF NOT

iSLOW EM DOWN

iWAIT 3 SECONDS

iSTOP ‘EM

iLET “EM GO

5FOR AWHILE

THE TRAFFIC THROUGH ON LULLABYE?

iTREADLE 0?

STREADLE 17

iFOR ANOTHER LOOP

SWAIT 5 SECONDS

iTRY AGAIN

i TURN

i TURN

iWAIT

OFF
OFF
WITH OFF

}TURN TO YELLOW
iTURN TO RED
}LEAVE ON FOR 1 SEC

; INTERSECTION:

0004 = CWCNT EQU 4 iSET TO

0000 = LULLO EQU 0

0001 = LULL1 EQU 1

MACLIB INTER

MACLIB TREAODLES

MACLIB BUTTONS

CYCLE: sENTER

0000 CLOCK? 2+5+sNIGHT

iNOT BETWEEN 2 AND 5 AM

o0ooc SETLITE NS»RED

0010 SETLITE EWsGREEN

SAMPLE: iSAMPLE THE BUTTONS AND

0014 PUSH? SWITCH #ANYONE

0016 TREAD? LULLO+SWITCH

0029 TREAD? LULL1 SWITCH

0037 CLOCK? 2++NIGHT

O0O3E RETRY SAMPLE

SWITCH:

sSOMEONE IS WAITING, CHANGE LIGHTS

0041 SETLITE EW;sYELLOW

0045 TIMER 3

0057 SETLITE EW+RED

0058 SETLITE NS+GREEN

OOSF TIMER 23

DONE?: $15 ALL

0071 TREAD? LULLO»NOTDONE

OO7F TREAD? LULL1sNOTDONE

NEITHER TREADLE 1S SET» CYCLE

0080 RETRY CYCLE

NOTDONE:

0090 TIMER 5

00AZ RETRY DONE?

NIGHT: $THIS IS NIGHTTIME, FLASH LIGHTS

OOAS SETLITE EWsOFF

00AS SETLITE NS»+OFF

OOAD TIMER 1

OOBF SETLITE EWsYELLOW

00C3 SETLITE NS »RED

00C?7 TIMER 1
ooDg RETRY CYCLE

Listing 9-3a.

102

3GO AROUND AGAIN

Traffic Control Algorithm using -M Option

Programmer’s Utilities Guide

000d = CWCNT

0000 = LULLO

ooo1 = LULL1

MACLIB

MACLIB

MACLIB

CYCLE:

0000+DB03

000Z+FE05S

0004+D20C00

0007+FE02

0009+D2A500

OOO0C+3E10

OO0E+D300

0010+3E03

0012+D300

SAMPLE:

0014+DB00

OOL16+E6OF

0018+024100

001B+DB01

OO1D+E601

0O1F+CAZ900

0022+3E01

0024+D0301

0026+034100

0029+DB01

0O0Z2B+E602

002D+CA3700

0030+3E02

0032+D301

0034+034100

0037+0B03

0O39+FEO2

003B+D2A500

O0O03E+C31400

Listing 9-3b.

INTERSEC

EQU

EQU

EOU

INTER

TREADLES

BUTTONS

sENTER H

CLOCK?

iNOT BET

SETLITE

SETLITE

SAMPLE

PUSH?

TREAD?

TREAD?

CLOCK?

RETRY

9.1 Special Purpose Languages

TION: BUMPENRAM BLYD / LULLABYE LN.

4 iSET TO 4 CROSSWALK SWITCHES

0 ijNAME FOR TREADLE ZERO

1 iNAME FOR TREADLE ONE

sBASIC INTERSECTION

sINCLUDE TREADLES

SINCLUDE PUSHBUTTONS

ERE ON EACH MAJOR CYCLE OF THE LIGHT

295 sNIGHT iSPECIAL FLASHING?

WEEN 2 AND 5 AM

NS +REO RED LIGHT ON LULLABYE

EW,» GREEN }GREEN ON BUMPENRAM

THE BUTTONS AND TREADLES

SWITCH ANYONE THERE?

LULLO »SWITCH iTREADLE 0?

LULL1+SWITCH STREADLE 1?

2+ »NIGHT PAST 2 AM?

SAMPLE iTRY AGAIN IF NOT

Intersection Algorithm with *M in Effect

103

9.1 Special Purpose Languages

0041+3E02

0043+D300

0045+160C

0047+06FA

0049+0EB6

OO4B+00

004C+C24B00

OO4F +05

0050+C24900

0053+15

0054+C24700

0057+3E01

0059+D300

005B+3E30

005D+0300

OOSF+165C

0061+06FA

0063+03B6

0065+0D

0066+C26500

0069+05

00B6A+C26300

OOBD+15

OOBE+C26100

007140801

0073+E601

0075+CA7F00

0078+D301

007A+D301

007C+C39000

OO7F+DBO1

00B81+E602

0083+CA8D00

0086+3E02

0088+D301

008A+C39000

00BD+C30000

104

SWITCH:

SSOMEONE IS WAITING: CHANGE LIGHTS

SETLITE EW, YELLOW

MVI

OUT

TIMER

MUI

220005: MYI

270006: MYI

??0007: DCR

JNZ

DCR

JNZ

OCR

JNZ

SETLITE

MVI

OUT

SETLITE

MUTI

OUT

TIMER

MUTI

220008: MVI

270009: MVI

220010: DCR

JNZ

OCR

JNZ

DCR

JNZ

DONE?:

IN

ANI

Jz

MUTI

OUT

JMP

TREAD?

IN

ANI

Jz

MUI

OUT

JMP

$19 ALL

TREAD?

sSLOW ‘EM DOWN

AYELLOW SHL EWBITS

LIGHT

3 iWAIT 3 SECONDS

D:4*3

B+250

C+182

C

270007

B

770006

D

270005

EW »RED

AyREO SHL EWBITS

LIGHT

NS »GREEN sLET 'EM GO

A GREEN SHL NSBITS

LIGHT

23 FOR AWHILE

D14#23

B+250

C1182

Cc

970010

B

220009

D

270008

STOP ‘EM

THE TRAFFIC THROUGH ON LULLABYE?

LULLO sNOTDONE iTREADLE 0?

TRINP

1 SHL LULLO

2?0011

Art SHL LULLO

TROUT

NOTDONE

LULL 1 »NOTDONE

TRINP

1 SRL OLULLI

220012

A+i SHL LULL

TROUT

NOTDONE

}TREADLE 1?

sNEITHER TREADLE IS SET» CYCLE

RETRY

JMP

Listing 9-3c.

CYCLE

CYCLE

sFOR ANOTHER LOOP

Algorithm with Generated Instructions

Programmer’s Utilities Guide

Programmer’s Utilities Guide 9.1 Special Purpose Languages

Macro-based languages of this sort can easily incorporate debugging facilities. In
the case of Hornblower, Inc., the principal algorithms are constructed and tested in
the CP/M environment by including debugging traces within each macro. In each
case, a debug flag is tested and, if true, machine code is generated to trace the
operation at the console, rather than actually executing the input/output calls.

Listing 9-4 shows the modification required to the INTER.LIB file to include the
debugging code. Although only the SETLITE macro is shown, similar coding is easily
included for the remaining macros. Listing 9-4 includes the debug flag at the begin-
ning of the library, initially set to FALSE, along with the appropriate equates for
CP/M system calls. If the debug flag is set to true by the application programmer,
special trace calls are included. For example, the setlite macro constructs a message
of the form

DIR changing to COLOR

where DIR and COLOR are the parameters sent to the macro. If debug remains false
in the application program, this trace code is not assembled.

105

9.1 Special Purpose Languages

1

q

;

true

false

debug

bdos

rchar

whuff

cr

if

clock

j

j

nsbits

ewbits

setlite

uy

setmsg:

Pastmsg:

106

macro library for basic intersection

Slobal

equ

equ

set

equ

equ

equ

equ

eau

definitions for debug processing

Offff h sualue of true

not truejvalue of false

false jinitially false

5 Sentry to cpe/m bdos

i jread character funetion

9 jwrite buffer function

Qdh icarriage return

Oah Sline feed

input/output Ports for light and clock

equ

equ

oon itraffic light control

O3h $24 hour clock (Ortos.. 923)

bit Positions for traffic light control

ean

eau

4 inorth south bits

a feast west bits

constant values for the light control

equ

equ

equ

macr

0 jturn light off

1 jualue for red light

2 jualue for yellow light

3 $d3reen light

dirscolor

set light given ty "dir" to color given by “color”

if

local

mui

lxi

call

sme

db

db

exitm

endif

mud

out

endm

debug siprint info at console

SetmsssPastms gs

ceowbuff siwrite buffer function

dssetmsg

bdos iswrite the trace info

Pastmsg

croif

‘RDIR changing te &COLORS’

a,color shl dir&bits readied

light sisent in Proper bit Position

(remaining macros are identical to the previous figure,
but each contains trace information similar to “setlite’’)

Listing 9-4. Library Segment with Debug Facility

Programmer’s Utilities Guide

Programmer’s Utilities Guide 9.1 Special Purpose Languages

Listing 9-5a shows an application program for an intersection where the debug
flag is set to TRUE after the macro library is included. As a result, each macro
expansion assembles a call to the CP/M operating system to trace the light direction
and color change, skipping the machine code that is eventually assembled to drive

the actual Hornblower hardware.

The application programmer then uses CP/M to trace the operation of the algo-

rithm, resulting in the printout shown in Listing 9-Sb. Each trace line corresponds to

a SETLITE call with a specific direction and color, with the appropriate wait time

between printouts.

sREADY FOR THE DEBUG RUN

+BASIC MACRO LIBRARY

sREADY DEBUG TOGGLE

0100 ORG 100H

MACLIB INTER

FFFFS DEBUG SET TRUE

0100 CYCLE: SETLITE NS+RED

0120 SETLITE EWsGREEN

0142 TIMER 10

0154 SETLITE EW, YELLOW

0177 TIMER 2

1089 SETLITE EW sRED

O1A9 SETLITE NS»GREEN

O1CB TIMER 10

o1idd SETLITE NS»YELLOW

0200 TIMER 2

0212 RETRY CYCLE

Listing 9-Sa.

NS

EW

EW

EW

NS

NS

NS

EW

EW

EW

Listing 9-5b. Debug Trace Printout

Sample Intersection Program with Debug

changing

changing

changing

changing

changing

changing

changing

changing

changing

changing

aoe

RED

GREEN

YELLOW

RED

GREEN

YELLOW

RED

GREEN

YELLOW

RED

107

9.1 Special Purpose Languages Programmer’s Utilities Guide

Upon completion of the initial debugging under CP/M, the SET statement in the
application program is removed—the ORG can be removed as well—and the pro-
gram is reassembled. This time, the CP/M traces are not included because the debug
flag remains FALSE. As a result, the actual Hornblower hardware interface is assem-
bled instead. The newly assembled program is then placed into PROM in the con-
troller box for that intersection and tested in its target environment.

This approach to macro based language facilities provides a simple tool for rapid
development and debugging of programs where high-level languages are not avail-
able, but a measure of machine independence is required. The macros are easy to
develop, and the application programs are simple to write and debug.

9.2 Machine Emulation

A second application of macro processing is in the emulation of a machine opera-
tion code set that is different from the 8080 microprocessor. In particular, a machine
architecture is selected, based on an existing or fictitious operation code set, and a
macro is written for each opcode, taking the general form:

op MACRO d-1,d-2,. . .,d-n
opcode emulation
ENDM

where op is a mnemonic instruction in the emulated machine, and the dummy
parameters d-1 through d-n represent the optional operands required by op. The
macro body includes 8080 instructions that carry out the operation on the 8080
microprocessor. This means the instructions within the macro body perform the same
function as the op with its arguments on the emulated machine.

Upon completion of the opcode macro definitions, a program can be written using
these opcodes. These opcodes expand to the equivalent 8080 instructions but per-
form the emulated machine operations.

108

Programmer’s Utilities Guide 9.2 Machine Emulation

For example, consider the situation encountered by Nachtflieger Maschinewerke,
an internationally famous manufacturer and distributor of automated machining
equipment. Though incorporating microprocessors in controlling their equipment,
Nachtflieger expects to build a custom LSI processor for their future products. The
processor, called the KDF-10, will be used primarily as an analog sensing and control
element in a larger electronic environment. As a result, the KDF-10 word size must
accommodate digital values corresponding to analog signals of up to 12 bits. To
allow computations on these 12-bit values, Nachtflieger engineers are going to allow
a full 16-bit word in the KDF-10, along with a number of primitive operations on
these values. Externally, the KDF-10 will provide four analog-to-digital input ports
(A-D) that can be read by KDF-10 programs, along with four digital-to-analog out-
put ports (D-A) that can be written by the program. The KDF-10 will automatically
perform the A-D and D-A conversion at these ports.

Being forward thinkers, the engineers at Nachtflieger have designed the KDF-10 as
a stack machine, similar in concept to the Hewlett-Packard HP-65 handheld pro-
grammable calculator, where data can be loaded to the top of a stack of data ele-
ments, automatically pushing existing elements deeper onto the stack. Similar to the
Reverse Polish Notation (RPN) of an HP-65, arithmetic on the KDF-10 will be

performed on the topmost stacked elements, automatically absorbing the stacked
operands as the arithmetic is performed. The designers settled on the following three-
character operation codes for the KDF-10:

SIZ n reserves n 16-bit elements as the maximum size of the KDF-10
operand stack. This operation code must be provided at the begin-
ning of the program.

RDM i reads the analog signal from input port i (0, 1, 2, or 3) to the top

of the stack.

WRM o writes the digital value from the top of the stack to the D-A output
port given by o (0, 1, 2, or 3). The value at the stack top is

removed.

DUP duplicates the top of the KDF-10 stack.

SUM adds the top two elements of the KDF-10 stack. Both operands
are removed, and the resulting sum is placed on the top of the
stack.

109

9.2 Machine Emulation Programmer’s Utilities Guide

LSR n performs a logical shift of the topmost stacked element to the right
by n bits (1, 2,...,15), replacing the original operand by the shifted
result. LSR n performs a division of the topmost stacked value by
the divisor 2 to the n power.

JMP a branches directly to the program address given by label a.

Because the KDF-10 does not exist, except in the minds of the Nachtflieger engineers,
the software designers decided to use the macro facilities of MAC to emulate the
KDF-10, using the 8080 microcomputer.

Listing 9-6 shows an example of a program for the KDF-10 that was processed by
MAC using the macro library defined by the Nachtflieger software group. In this
situation, the KDF-10 is connected to four temperature sensors attached at strategic
places on the machining equipment. The program continuously reads the four input
values from the A-D ports and computes their average value by summing and divid-
ing by four. This average value is sent to D-A output port 0 where it is used to set
environmental controls.

j AVERAGE THE VALUES WHICH ARE READ FROM ANALOG

H INPUT PORTS+ WRITE THE RESULTING VALUE TO ALL

j THE D-A DUTPUT PORTS,

MACLIB STACK #READ THE STACK MACHINE OPCODES

0000 SIZ 20 iCREATE 20 LEVEL WORKING STACK

O12E LOOP: ROM 0 sREAD A-D PORT 0

0134 RDM 1 sREAD A-D PORT 1

0136 RDM 2 sREAD A-D PORT 2

013A RDM 3 READ A-D PORT 3

j ALL FOUR VALUES ARE STACKED, ADD THEM UP

O13E SUM $AD3+AD2Z

0140 SUM i (AD3+AD2)+AD1

0142 SUM §((AD3+AD2)+AD1L)+AD0

i SUM IS AT TOP OF THE STACK, DIVIDE BY 4

o1dd LSR 2 SSHIFT RIGHT TWO = DIY BY 4

0152 WRM 0 iWRITE RESULT TO D-A PORT 0

O156 C32E01 JMP LOOP iGO GET ANOTHER SET OF VALUES

Listing 9-6. A-D Averaging Program Using Stack Machine

110

Programmer’s Utilities Guide 9.2 Machine Emulation

As shown in Listing 9-6, the program begins by reserving a stack of 20 elements,
a much larger stack than required for this application, since a maximum of four
elements are actually stacked. The program then cycles following LOOP, where the
values are read and processed. The four operations RDM 0, RDM 1, RDM 2, and

RDM 3 read all four temperature sensors, placing their data values in the stack. The
three SUM operations that follow the read operations perform pairwise addition of

the temperature values, producing a single sum at the top of the stack. Because the
average value is wanted, the LSR 2 operator is applied to the stack top to perform
the division by four. Finally, the resulting average is sent to the D-A port using the
WRM 0 operation code. Control then transfers back to LOOP, where the entire
operation is performed again.

Because Nachtflieger designers are emulating KDF-10s using 8080s, they have cre-
ated the macro library file, called STACK.LIB, as shown in Listing 9-7. A macro is
shown in this listing for each of the KDF-10 opcodes, starting with the SIZ operator.
In this case, the program origin is set, since this must be the first opcode in the
program, and the stack area is reserved. Note that double words of storage are
reserved because a 16-bit word size is assumed. The DUP, SUM, and LSR operators

follow the SIZ macro. In each case, the KDF-10 stack top is assumed to be in 8080's
HL register pair. Further, each operation that pushes the KDF-10 stack causes the
element in the 8080 HL pair to be pushed to the 8080 memory area reserved by the
SIZ opcode.

siz macro $iz@

4 set "org" and create stack

local Stack jilabel on the stack

org 100h ss5at base of TPA

Lxi sPsstack

JmP stack siPast stack

ds size#¥2 sidauble precision

stack: endm

H

dup macro

ui duplicate top of stack

Push h

endm

Listing 9-7. Stack Machine Opcode Macros

111

9.2. Machine Emulation

sum macro

i add the tor two stack elements

POP d iitop-1 to de

dad d siback to hi

endm

5

Isr macro len

Wy logical shift right by len

rept len iigenerate inline

xTa a iiclear carry

mov arh

rar sirotate with high 0

mov hoa

mou arl

rar

moy lia jiback with high bit

endm

endm

j

adcO equ 1080h ta-d converter 0

adel equ 1082h fa-d converter 1

adc2 equ 10B84h fa-d converter 2

adc3 equ 1086h ja-d converter 3

q

dacd equ 1090h jd-a converter 0

dacl equ 1092h id-a converter 1

dac2 equ 109dh jd-a converter 2

dac3 equ 1096h id-a converter 3

j

rdm macro 2c

is read a-d converter number "?c"

Push h siclear the stack

j tread from memory mapred input address

lhid adc&?c

endm

j

wrm macro ?C

3 write d-a converter number "?c"

shld dac&?c jivalue written

POP h direstore stack

endm

Listing 9-7. (continued)

112

Programmer’s Utilities Guide

Programmer’s Utilities Guide 9.2 Machine Emulation

The DUP opcode simply pushes the HL register pair to memory since the HL pair
is not altered in the 8080 during this operation. In the case of the SUM operator, it
is assumed that the KDF-10 programmer has somehow loaded two values to the
KDF-10 stack. So the HL registers contain the most recently loaded value, and the
8080 memory stack contains the next-to-most recently stacked value. The POP D
operation loads the second operand to the DE pair in the 8080 CPU. Then the
topmost value and next to top value are added, using the DAD D operation. The
resulting operand goes into the HL register pair. This is necessary in the KDF-10
emulation because the top of the KDF-10 stack is located in the 8080’s HL register
pair.

The LSR opcode is more complicated. The values must go through the accumula-
tor because the 8080 does not support a double precision (16-bit) right shift of the
HL register pair. Thus, the LSR macro contains a REPT loop that generates inline
machine code for each right shift. The inline machine code performs the right shift
by first clearing the carry (XRA A), followed by a high-order right shift by one bit
(MOV A,H followed by RAR), then by a low-order bit shift (MOV A,L followed by
RAR). Note that an intermediate bit can move from the high-order byte to the low-
order byte using the carry between high- and low-order byte shifts.

In Listing 9-7, the RDM and WRM operation codes are defined by memory-
mapped input/output operations. That is, memory locations 1080H through 1087H
are intercepted external to the 8080 microprocessor and treated as external read
operations. Thus, a load from locations 1080H and 1081H to HL is treated as a
read from A-D device 0, rather than from RAM. This operation is simple to perform
in the KDF-10 emulation because all program addresses are assumed to be below
1000H, so any 8080 address bus values beyond 1000H must be memory mapped V/O.

As a result, ADCO through ADC3 correspond to the locations where A-D values 0
through 3 are obtained. Similarly, the D-A output values that are written to locations
1090H through 1097H are intercepted as memory mapped output values that are
sent to the D-A converters rather than to RAM.

The RDM instruction is emulated by simply performing an LHLD from the appro-
priate memory mapped input address, constructed through concatenation of the dummy
parameter. The HL value is first pushed because the KDF-10 RDM opcode performs
this task automatically. Then the new value is loaded into the HL register pair.

113

9.2 Machine Emulation Programmer’s Utilities Guide

The WRM opcode definition is similar, except the value to write is assumed to
reside at the top of the KDF-10 stack and thus appears in the 8080 HL register pair.
The value is written to the memory mapped output location, and the value is removed
from the HL pair by restoring HL from the 8080 stack.

To see the actual code generated by each of these macros, Listing 9-8 shows the
same averaging program as given in Listing 9-6, except that the generated 8080
instructions are interspersed throughout the listing file. Listing 9-8 is the usual output
from MAC; Listing 9-6 was generated using the parameter -M, which suppresses
generated mnemonics. Compare Listings 9-6, 9-7, and 9-8, so that you understand
the macro expansion processes.

j AVERAGE THE VALUES WHICH ARE READ FROM ANALOG

i INPUT PORTS» WRITE THE RESULTING YALUE TO ALL

i THE D-A OUTPUT PORTS,

MACLIB STACK $READ THE STACK MACHINE OPCODES

SIZ 20 iCREATE 20 LEVEL WORKING STACK

O100+ ORG 100H

01004+312E01 LXI SP +??70001

0103+C32E01 JMP 2?0001

0106+ DS 2042

LOOP: RDM 0) sREAD A-D PORT 0

OLZE+ES PUSH H

O12F+2AB010 LHLD ADCO

RDM 1 $READ A-D PORT 1

OLG2+ES PUSH H

0133+2A8210 LHLD ADCt

ROM 2 sREAD A-D PORT 2

OL36+E5 PUSH H

0137+2A8410 LHLD ADC2

RDM 3 SREAD A-D PORT 3

O13A+ES PUSH H

013B+2A8610 LHLD ADC3

Listing 9-8. Averaging Program with Expanded Macros

114

Programmer’s Utilities Guide 9.2. Machine Emulation

j ALL FOUR VALUES ARE STACKED; ADD THEM UP

SUM sAD3+AD2

O13E+D1 POP 0

O13F +19 DAD D

SUM 1(AD3+AD2)+AD1

0140+D1 POP D

0141+19 DAD D

SUM 3((AD3+AD2)+AD1)+AD0

0142+D1 POP D

0143+19 DAD D

; SUM IS AT TOP OF THE STACK» DIVIDE BY 4

LSR 2 SSHIFT RIGHT TWO = DIV BY 4

OLdd+AF XRA A

0145+7C MOV AsH

O146+1F RAR

0147+67 MOV Hi

0148+7D MOV Ail

OL49+1F RAR

O14A+6F MOV LsA

014B+AF XRA A

O1dC+7C MOV A:H

OL4D+1F RAR

O14E+67 MOV H+A

O14F+7D MOV Agel

OLSO+1F RAR

O151+6F MOV LA

WRM 9 jWRITE RESULT TO D-A PORT 0

0152+229010 SHLD DACO

OLSS+E1 POP H

0156 C32ZE01 JMP LOOP 1GO GET ANOTHER SET OF VALUES

Listing 9-8. (continued)

A problem arose at Nachtflieger MW, however, that had to be rectified. Although

programs could be effectively written for the KDF-10 computer using the 8080 emu-

lation, they could not be effectively debugged. The program in Listing 9-8, for exam-

ple, could be tested under the CP/M Dynamic Debugging Tool (see CP/M documen-

tation), but the program required monitoring and tracing at the 8080 machine code
level. It became clear that higher level debugging tools were necessary.

115

9.2 Machine Emulation Programmer’s Utilities Guide

As a result, Nachtflieger designers added several pseudo opcodes that allow debug-
ging traces. The opcodes can be interspersed in the program and selectively enabled
and disabled, depending on the debugging needs. In production, all debugging traces
are disabled, resulting only in absolute port I/O. The additional debugging opcodes
are listed below.

PRN msg Print the message given by “‘msg”’ at the debugging console when-
ever the print trace is enabled. The message must be enclosed in
angle brackets.

DMP Print the value of the top element in the KDF-10 stack in
hexadecimal.

TRT t Set machine code trace option to true. Each time a KDF-10 machine
operation is executed, the opcode is printed, followed by the
approximate KDF-10 machine code address, followed by the top
two elements of the KDF-10 stack, in the format:

' OPC oploc top top

where OPC is the opcode, oploc is the location, top is the top
element, and top’ is the second to the top element, all in hexadec-
imal notation.

TRF t Disable the machine code trace. Only the KDF-10 instructions
that physically appear between the TRT and TRF opcodes are
shown in the trace.

TRT p Enable the print/read trace. PRN opcodes that follow produce
output at the debugging console, and are otherwise treated as
comments. Further, RDM and WRM opcodes prompt and dis-
play data at the debugging console.

TRF p Disable the print/read trace. Only the PRN, RDM, and WRM
instructions that physically appear between TRT and TRF inter-
act with the console.

116

Programmer’s Utilities Guide 9.2. Machine Emulation

The traces are disabled at the beginning of the program and must be explicitly
enabled with TRT opcodes.

0000

0103

0103

0103

OL2ZE

OL1FO

0220

0267

026A

902A5

O2AB

02E3

OZE6

0310

0324

0327

0338

O33E

0352

0378

0378

0389

O3B1

O3Bd

OBEE

O3Fi

j AVERAGING PROGRAM WITH INTERSPERSED DEBUG CODE

MACLIB DSTACK

S12

TRT

TRT

PRN

LOOP: RDM

DMP

RDM

DMP

RDM

DMP

ROM

DMP

PRN

j ALL

SUM

DMP

SUM

DMP

SUM

PRN

DMP

j SUM

LSR

PRN

DMP

WRM

BRN

XIT

20
T

P

“TRACE

Q

io
n

sREAD THE STACK MACHINE QPCODES

iCREATE 20 LEVEL WORKING STACK

jMACHINE CODE TRACE ON

SPRINT TRACE ON

FOR AVERAGING PROGRAM>

sREAD A-D PORT 0

WRITE TOP OF STACK

jREAD A-D PORT 1

jWRITE TOP OF STACK

READ A-D PORT 2

jWRITE TOP OF STACK

jREAD A-D PORT 3

jWRITE TOP OF STACK

<FOUR VALUES HAVE BEEN READ:=

FOUR VALUES ARE STACKED, ADD THEM UP

§AD3+AD2

jWRITE FIRST SUM

i(ADG+AD2)+AD1

jWRITE SECOND SUM

3((AD3+AD2)+AD1)+AD0

«VALUES HAVE BEEN ADDED =

?

iWRITE SUM OF VALUES

IS AT TOP OF THE STACK, DIVIDE BY 4

3SHIFT RIGHT TWO = DIY BY 4

<AVERAGE VALUE CALCULATEC=

Q

LOOP

jWRITE AVERAGE VALUE

iWRITE RESULT TO D-A PORT 0

3GO GET ANOTHER SET OF WALUES

sEMIT EXIT CODE

Listing 9-9. Averaging Program with Debugging Statements

117

9.2. Machine Emulation Programmer’s Utilities Guide

Listing 9-9 shows the averaging program of Listing 9-6 with interspersed debug-
ging statements. The opcodes TRT t and TRT p are executed at the beginning of the
program, enabling all trace options throughout the execution. The PRN statement
above the LOOP label prints the initial sign-on; the DMP statements after each read
operation give the value of the A-D port. Upon completion of the four-element read,
the PRN opcode indicates this fact. Each SUM operator is followed by a DMP
opcode that shows the current sum. Finally, the PRN and DMP opcodes display the
final average value that is being sent to D-A port 0. The XIT opcode shown at the
end of the program is discussed below.

Listing 9-10 shows the execution of the averaging program under DDT. Note that
the program headings appear at the points in the program where PRN opcodes are
placed. Further, the console is prompted for input in the case of an RDM opcode,
giving the absolute memory mapped input address in decimal, while the WRM
instruction produces a “D-A OUTPUT . .” message that shows the absolute memory
mapped output address and the data that is written.

The opcodes are also traced showing the opcode mnemonic, address, and top two
stacked elements. The RDM trace at the beginning, for example, shows the instruc-
tion address 01AD, which is in the range of the first RDM of Listing 9-9 (012E to
O1EF), and is followed by the two values 0111 (the value just read) and C21D

(garbage value, because only one element is stacked). The trace is easily followed at
the KDF-10 level, showing each value that is read in and the operations performed
upon these values. Upon completion of the debugging process under CP/M, the TRT
opcodes are removed and the program is reassembled, leaving only the 8080 instruc-
tions required in the production machine. Nachtflieger systems engineers then take
the resulting program and test its operation in a hardware environment.

118

Programmer's Utilities Guide 9.2

Asddt aver, hex

DDT VERS 1.4

NEXT PC

0406 0000

- 9100

TRACE FOR AVERAGING PROGRAM

A-D INPUT AT 4224 111

RDM Q1AD 0111 C210

(TOP)= O111

€-D INPUT AT 4226 222

ROM O255 0222 O111

(TOP)= O222

A-D INPUT AT 4228 555

RDM 0293 0555 0222

(TOP)= 0555

A-D INPUT AT 4230 444

RDM O2D1 0444 0555

(TOP)= addd

FOUR VALUES HAVE BEEN READ

SUM 0312 0999 O222

(TOP)= 0999

SUM 0329 OBBB O111

(TOP)= OBBB

SUM 0340 OCCC C21D

VALUES HAVE BEEN ADDED

(TOP)= OCCC

AVERAGE YALUE CALCULATED

(TOP)= 9333

D-A OUTPUT AT 4240 0333

WRM O3DC 793B C21D

A-D INPUT AT 4224

Machine Emulation

Listing 9-10. Sample Execution of AVER Using DDT

Nachtflieger engineers quickly realized that the KDF-10 design had a number of

deficiencies due to the paucity of arithmetic operators and the total absence of con-

ditional branching instructions. Further, there was no provision for variable storage

other than the stack. Thus, the KDF-11 naturally evolved from the KDF-10, incor-

porating these features. Table 9-1 lists the operation codes of the KDF-11.

119

9.2 Machine Emulation Programmer’s Utilities Guide

Table 9-1. KDF-11 Operation Codes

Code

Meaning

DCL v,n

LIT ¢

VAL v,i,c

STO v,ji,c

DIF

GEQa

BRN a

Declare (reserve) storage for a variable by the name v, with

optional size n. If n is omitted, then n — 1 is assumed. All DCL
opcodes must follow the XIT opcode given below.

Load the value of the literal constant c to the top of the KDF-
11 stack.

Load the value of the variable v optionally indexed by the vari-
able 1 with the optional constant offset c. VAL V loads the value
of V to the top of the stack. VAL V,I loads the value located at
the address of V plus the index value contained in I. VAL V,L3
loads the value at location V plus the index I, plus the constant
index 3. In all cases, the value is placed at the top of the KDF-
11 stack.

Store the value obtained from the KDF-11 stack to the address
given by v, plus the optional index i, plus the optional constant
index given by c. The top element of the KDF-11 stack is removed.

Subtract the top element of the KDF-11 stack from the next-to-
top element of the stack and replace both operands by their
difference.

Test the next-to-top element (top’) against the top of stack ele-
ment (top), and branch to the label given by ‘“‘a” if top’ is greater
than or equal to top. If not, program control continues to the
next opcode in sequence.

Replace the JMP instruction in the KDF-10 architecture to allow
complete separation of the KDF-11 and 8080 machines.

Listing 9-11 gives the macro library that was constructed by the Nachtflieger soft-
ware group for KDF-11 machine emulation. More than half of the macro library
implements trace and debugging functions. The remaining components implement
the KDF-11 opcodes themselves. Each major section of this macro library, called

DSTACK.LIB, is briefly described below, followed by an example of its use.

120

Programmer’s Utilities Guide 9.2 Machine Emulation

macro library for a zero address machine

PETTITT CECE TESTES CeCe eee eS Se eS

* begin trace/dump utilities *

HE I REE EEE EEE EEE

bdos equ OO0Sh isystem entry

rohar equ 1 tread a character

wehar eau 2 jwrite character

wbhuff equ g jwrite buffer

tran eau 100h stransient Program area

data equ 1100h sdata area

cr equ Odh jcarriage return

lf equ Oah sline feed

i

debugst set ie) sitrace debug set false

debugp set Q siprint debug set false

H

prn macro pr

i) Print message ‘pr’ at console

if debugp j$iprint debug on?

local PMS »msg tilocal message

Jmp pms 9 siaround message

msg db crolf Sireturn carriage

db “RPRS ’ tiliteral message

Pmsdg: Push h $isave top element of stack

lxi dimsg hilocal message address

mud ceowbuff iiwrite buffer ‘til $

call bdos siprint it

POP h sirestore top of stack

endif fiend test debuge

endm

H

ugen macro

15 generate utilities for trace or dump

local Psub

JmP psub diJump past subroutines

@ch: hiwrite character in reg-a

mou era

my d crwehar

JmPp bdos fjreturn thru bdos

u35

@nb: jjwrite nibble in reg-a

adi 90h

daa

aci 40h

daa

JmP @ch Sireturn thru @ch

Listing 9-11. Stack Machine Macro Library

121

9.2 Machine Emulation Programmer’s Utilities Guide

@hx: jiwrite hex value in reg-a

PUSA PSW jisave low byte

rre

rre

rrc

rre

ani Ofh timask high nibble

call @nb siprint high nibble

POP PSW

ani Ofh

JmP @nb iiprint low nibble

3

Bad Hiwrite address value in hl

Push h fisayve value

mud ay’! itleading blank

call @ch iiahead of address

POP h ithigh byte to a

mow arh

Push h jicopy back to stack

call @hx iiwrite high byte

POP h

maou asl silow byte

Jmp @hx tiwrite low byte

H

@in: siread hex value to hl from console

mui ay’ / Sijleading space

tall Bch sito console

lxi hed pistarting value

@inO: push h sisave it for char read

mW cerchar itread character function

call bdos Siread to accumulator

POP h Sivalue being built in hl

sul a’ Sinaormalize to binary

CPi 1a tidecimal?

Jc Binl Sicarry if Oslovee oD

or) may be hexadecimal ar.ssof

sui "ALA19'-10

CPi 16 sia through f7?

rnc direturn with assumed cr

@inl: hin range, multiply by 4 and add

rept 4

dad h hishift 4

endm

ora 1 tiadd digit

mou lia tiand replace value

imp @ind iifor another digit

Listing 9-11. (continued)

122

Programmer’s Utilities Guide

psub:

u

%

w
e
e

e
e

e
e
e

gen macro

redef to include once

endm

ugen sidenerate first time

endm

Pee PETES TTC CCEC CCC COC CSO SICO SOLES STS eS SS

* end of trace/dump utilities +

* begin trace (only) utilities *

TC TIC C ECCS CSCC CSCS COLES SESS LoS ee Sy

macro code+mname

trace macro given by mnames

at location given by code

local Psut

ugen jigdenerate utilities

Jmp rsub

ds 2 Sitemp for reg-1

ds 2 sitemp for reg-2

$otrace macro call

be=code address; de=message

shld etl sistore top reg

POP h Sireturn address

xthl sireg-2 to top

shld @t2 s3store to temp

push PoW sisave flags

push b tisayve ret address

mud crowbuff siprint buffer func

call tdos $iPrint macro name

POP h sicode address

call @ad doprinted

lhld @tl sitop of stack

call @ad jiprinted

lhid @t2 setorp-1

call @ad siprinted

POP PSW siflags restored

POP d Sireturn address

lhld @t2 bitor-1

Push h jirestored

Push qd sireturn address

lhld @tl sitop of stack

ret

Listing 9-11. (continued)

9.2. Machine Emulation

123

9.2. Machine Emulation Programmer’s Utilities Guide

Psub: ‘fipast subroutines

trace macro crt

or) redefined tracer uses Btr

local Pmsdsms 9

JmP Pmsg

mst db crolf iicrslf

do ‘BMS’ iimac name

Pmsgs

lxi bec iicode address

lxi dimsg jimacro name

call Qtr isto trace it

endm

a4 back to original macro level

trace codesmname

endm

j

trt macro f

a5 turn on flag "f"

debugif set 1 iiprint/trace on

endm

;

trf macro f

a4 turn off flag "f"

debug&f set 0 jitrace/print off

endm

Listing 9-11. (continued)

124

Programmer’s Utilities Guide

we
e

ee

C
e

e
e
e

@dmo:

macro fm

check debugt toggle before trace

if debugt

trace “Som

endm

PTE TE TECCCIOSICICCCC COCCI SSL S SST Lee SS

* end trace (only) utilities *

* begin dump (only) utilities *

PT UEC ICTS LOCC CSIC ECCS E LCS Ce Ler SS To

macro vname on

dump variable vname for

n elements (double bytes)

local Psub jipast subroutines

ugen $sgen inline routines

JmP Psub fipast local subroutines

sidump utility program

de=ms9 address» c=element count

hl=base address to print

Push h jibase address

push b jselement count

my i crwbuff siwrite buffer func

call bdos iimessage written

POP b tirecall count

POP h Sirecall base address

mou arc jiend of list?

ora a

TZ ifreturn if so

dcr c tidecrement count

mou erm finext item (low)

inx h

mou dam jinext item (high)

inx h iiready for next round

Push h sisave print address

Push b sisayve count

xchg iidata ready

call @ad ieprint item value

JmP @dmo $ifor another value

iidump top of stack only

Prn <(top)=> $i" (TOP)="

Push h

call @ad Jivalue of hl

POP h $itorp restored

ret

Listing 9-11. (continued)

9.2. Machine Emulation

125

9.2 Machine Emulation Programmer’s Utilities Guide

psub:

u3

dime macro Pur?n

ij redefine dump to use @dm utility

local Pmsdamsg

5 special case if null parameters

if nul vname

i dump the top of the stack anly

call @dt

exitm

endif

4 otherwise dump variable name

Jme Pms 9

msgs db criolf iicrlf

db ‘ROSS! Fimessage

pmsg: oadr Pu pihl=address

active set Q siclear active flag

lxi dymsg simessage to Print

if mul ?n thuse length 1

mvt cel

else

mud cr?n

endif

call @dm iito Perform the dump

endm fiend of redefinition

dmp uname yn

endm

j

H TCE CT CCS LOC SCCSCOCCOSSCOSOOSOOS SLOSS ST 2

i * end dump (only) utilities» *

i + begin stack machine opcodes *

j JITTER EIR Ee

active set 0 jactive register flag

j

siz macro size

org tran fiset to transient area

+3 Create a stack when "xit" encountered

@stk set size sisave for data area

Lxi spaestack

endm

Listing 9-11. (continued)

126

Programmer’s Utilities Guide

save macro

$4 check to ensure “enter” properly set uP

if stack isis it Present?

endif

save macro isredefine after initial reference

if active jfelement in hl

Push h sisayve it

endif

active set 1 siset active

endm

save

endm

;

rest macro

5 restore the top element

if not active

PoP h sirecall to hl

endif

active set 1 Simark as active

endm

j

clear macro

13 clear the tor active element

rest tiensure active

active ses) jicleared

endm

H

del macra uname rsize

ay label the declaration

vnames

if nul size

ds 2 dione word rea’d

else

ds sizet2 ‘idouble words

endm

H

lit macTo val

i) load literal value to tor of stack

save fisave if active

xi hival siload literal

Ptr lit

endm

Listing 9-11. (continued)

9.2. Machine Emulation

127

Machine Emulation

adr macro baserinxscon

ui load address of bases indexed by inxs

u5 with constant offset given by con

save sipush if active

if nul inx&con

xi hrbase itaddress of base

exitm sisimple address

endif

cn) must be inx and/or con

if nul inx

lxi hecon*2 Siconstant

else

lhid inx Siindex to hl

dad h iidouble precision inx

if fot nul con

Ixi dycon*2 sidouble const

dad d jtadded to inx

endif finot nul con

endif dinul inx

xi dybase ftready toa add

dad d iibasetinx#Ztcon*2

endm

5

val macro brisvc

Ln) get value of btitc to hl

4 check simple case of b only

if nul ike

save }ipush if active

Thid b $sload directly

else

15 "adr" pushes active registers

adr brie Siaddress in hl

mov eom stlow order byte

ink h

moy dam sthigh order byte

xcohg jjback to hl

endif

?tr val jitrace set?

endm

q

Listing 9-11. (continued)

128

Programmer’s Utilities Guide

Programmer’s Utilities Guide

=
 OQ

we

macro brisc

store the value of the top of stack

leaving the top element active

if

Test

shld

else

adr

POP

mou

nx

mov

endif

clear

Ptr

endm

macro

rest

add the

POP

dad

?tr

endm

macro

compute

rest

POP

mou

sub

mov

moy

sbb

mou

nul ike

b

sto

top two

differen

d

are

1

lia

ard

h

hia

jactivate stack

j

i

5istored directly to b

Sivalue is in de

; jlow byte

jihigh byte

imark emety

itrace?

Sirestore if saved

stack elements

sitop-1 to de

siback to hl

ce between top elements

sirestore if saved

sitap-1 toa de

sitop-1 low byte to a

stlow order difference

siback to 1

jitor-1 high byte

sihigh order difference

iiback to h

carry flag may be set upon return

Ptr

endm

dif

Listing 9-11. (continued)

9.2. Machine Emulation

129

9.2. Machine Emulation

lsr macro len

v4 logical shift right by len

rest siactivate stack

rept len jigenerate inline

xra a siclear carry

mou ash

rar sirotate with high 0

mov hoa

mou asl

rar

mov lia siback with high bit

endm

endm

j

geq macrda lab

a4 dump to lab if (top-1) is greater or

i) egual to (top) element.

dif iicompute difference

clear Siclear active

otr geq

June lab sino carry if greater

Jz lab jizero if equal

3 drop through if neither

endm

j

dup macro

a4 duplicate the tor element in the stack

rest piensure active

Push h

Ptr dup

endm

j

brn macro addr

13 branch to address

Jmp addr

endm

j

Kit macro

Ptr x1t ijtrace on?

ime 0 jirestart at 0000

org data iistart data area

ds @stk*2 ‘tobtained from "siz"

stack: endm

4

Listing 9-11. (continued)

130

Programmer’s Utilities Guide

Programmer’s Utilities Guide

j Oe TE CESS SOLOS CCE COSC SES SSeS CESSES eee

i * memory mapped i/a section *

i PTT TCC ESI LOCSOCOOCCCOSSSOCSOOS OSS SLOT L SS 2

j Input values which are read as if in memory

adcO equ 1080h sa-d converter 0

adel equ 1082h ja-d converter 1

ade2 equ 1084h ja-d converter 2

adc3 equ 1OB8Gh ja-d converter 3

H

dacd equ 1090h id-a converter 0

daci equ 1092h jd-a converter ft

dac2 equ 1094h jd-a converter 2

dac3 equ 1096h jd-a converter 3

j

TWwtrace macro msgdsadr

uf read ar write trace with message

a4 dgiven by "msg" to/from "adr"

prn msg at adr?

endm

i

rdm macta fae

i read a-d converter number "co"

save iiclear the stack

if debugp F3stor execution in ddt

Fwtrace <a-d input 33% adc&?c

ugen ssensure Bin is Present

call Bin sivalue to hl

shid adc&?e Fisimulate memory input

else

read from memory mapped input address

hid adc&?ec

endif

Ptr rdm pitracing?

endm

Listing 9-11. (continued)

9.2. Machine Emulation

131

9.2. Machine Emulation Programmer’s Utilities Guide

wri macro PC

54 write d-a converter number "2c"

rest sirestore stack

if debugp fitrace the output

Pwtrace <d-a outputyr% dack?c

ugen tiinclude subroutines

call @ad jiwrite the value

endif

shld dac&?c

?tr Wri j$tracing output?

clear Siremove the value

endm

5 KEKE EE KER EKER HEHEHE ERE EERE EHH EEE RHEE ERE

i * end of macro library *

H PeeTEC STIL CCTSCE LCCC STL CS SCE ee Se eS SS

Listing 9-11. (continued)

The first portion of the library, which is principally concerned with debugging

functions, begins with CP/M system calls, function numbers, and equates for non-

graphic characters, similar to the examples given earlier. Although these values are

not necessary for operation of the KDF-11, they are necessary for the debugging

functions that operate when the TRT opcode is in effect. Following the CP/M equates,

the toggles DEBUGT and DEBUGP are set to false (0 value), reflecting the conditions

of the debugging switches given by TRT and TRF. When DEBUGT is true (1 value),

machine operation codes are traced. Similarly, when DEBUGP is true, PRN, RDM,

and WRM operations interact with the console.

The PRN macro, for example, produces an inline message with a call to CP/M to

write the message whenever the DEBUGP toggle is true. Otherwise, the PRN pro-

duces no generated code.

The UGEN macro that follows PRN is called the first time the debugging subrou-

tines are required by trace or print/read opcodes. When invoked, the UGEN macro

produces several inline subroutines that are used throughout the debugging process.

132

Programmer's Utilities Guide 9.2 Machine Emulation

If no trace or print/read functions are invoked during the assembly, UGEN is not
invoked. Thus no inline subroutines are included for debugging. If UGEN is invoked,
the subroutines shown below are included inline:

@CH writes a single ASCII character to the console.

(@NB writes a single half byte (nibble) to the console.

@HX writes a full hexadecimal byte value at the console.

@AD writes a full address (double byte) value with preceding blank.

(IN reads a hexadecimal value from the console to HL.

Upon including these subroutines, UGEN then redefines itself to an empty macro
body so that the subroutines are not included on subsequent invocations of UGEN.
This ensures that the inline subroutines are included only once, and only if they are
required by the debugging macros.

The SIZ macro is similar to the opcode defined for the KDF-10, except that the
size of the stack is saved for later declaration in the data area (see the XIT opcode).
Throughout the opcode macros, the SAVE and REST macros save and restore the
HL register pair, based on the ACTIVE flag. The CLEAR macro, however, marks the
top element of the KDF-11 stack as deleted.

The DCL macro simply sets up the variable name VNAME as a label and follows
the label by a DS that reserves the specified number of double words. The DCL
opcodes must all occur at the end of the KDF-11 program, following the XIT opcode.

The LIT opcode is emulated with a macro that first SAVEs the stack top, possibly
generating an HL push. The literal value is then loaded directly into the HL register
pair. The ACTIVE flag is set on completion of this macro because SAVE always
marks HL as active.

133

9.2 Machine Emulation Programmer’s Utilities Guide

The ADR macro is a utility macro used in the VAL, STO, and DMP opcodes to
build the address of a particular variable, with optional variable and constant offsets,

in the HL register pair. Based on the optional parameters, ADR either loads the base
address directly to the HL pair or constructs the address using HL and DE for
indexing. Thus, the following invocations of ADR (in the left column) produce the
machine code in the right column.

ADR XxX LAI H eX

ADR XsI LHLD I

DAD H

LKI DX

DAD D

ADR Xs1+3 LHLD I

DAD H

LXI D+6

DAD D

LHI Dak

DAD D

ADR Kis3 LAI H+6

LAI Disk

DAD D

The final address for the optionally indexed variable remains in the HL register pair.
The code within the ADR macro can be improved slightly by providing a constant
offset. That is, the following invocations in the left column produce the machine
code in the right column by redefining the ADR macro.

ADR Kelsd LHLD I

KI DsX+G6

DAD D

ADR Kee LXI H+K+G

As an exercise, redefine ADR to generate this improved machine code sequence.

134

Programmer’s Utilities Guide 9.2 Machine Emulation

The VAL macro loads a variable value to the stack. STO stores the top of stack
value to memory. ADR constructs the address of the variable whenever optional
indexing is specified. Otherwise, LHLD or SHLD directly accesses the variable. Again,
slight improvements in generated code can be obtained by providing a constant offset
with no variable index.

The opcodes LIT, VAL, and STO all end with an invocation of the ?TR macro
which, as discussed above, checks the DEBUGT flag. If true, the ?TR macro invokes
TRACE with the machine code address and opcode name for display at the debug-
ging console. The ?TR macro invocation produces no machine code trace when
DEBUGT is false.

The SUM opcode first invokes REST to ensure that the HL register pair contains
the topmost KDF-11 element. The second to top element is then loaded to the DE
pair and added to HL, producing an active KDF-11 element in HL. ACTIVE is true
at this point, because REST always leaves the flag set to true.

The DIF opcode definition is similar to SUM, except that the 8080 accumulator
computes the 16-bit difference between the top two KDF-11 stacked elements.

The LSR macro defines the KDF-11 logical shift right operation. The REST macro
is first invoked to ensure that HL is active, followed by a repetition of the machine
code required to perform a 16-bit right shift of the HL register pair. In the case of a
long shift, there is a considerable amount of inline machine code for the operation.
Thus, it is a useful exercise to redefine LSR, so that it generates an inline subroutine

to perform the shift operation for values of LEN sufficiently large to warrant the
subroutine call. Although this requires a subroutine set up and call, the amount of
generated code can be reduced significantly for programs that make heavy use of the
LSR operator.

The GEQ macro follows the LSR definition and allows conditional branching to
the specified label address. GEQ begins by computing the difference between the top
two elements of the KDF-11 stack. This has the side-effect of setting the 8080 carry
bit if the next to top element exceeds the top element in the KDF-11 stack. The ?TR
macro eventually leads to the @TR subroutine where the status flags (including the
carry condition) are saved and restored. Otherwise, GEQ could not count on the
condition of the carry flag.

135

9.2 Machine Emulation Programmer’s Utilities Guide

Further, the 8080 A register contains the least significant byte of the difference
between DE and HL, so the ORA H produces a zero result if the difference is zero.
To be complete, the KDF-11 should have a complete range of conditional tests,
allowing tests for equality (EQL), inequality (NEQ), less than (LSS), greater than
(GTR), and less than or equal (LEQ).

The DUP opcode first ensures that the HL register pair is active, then duplicates
this value by pushing the HL pair to the 8080 stack, emulating a KDF-11 stack push
operation. Note that the HL pair is active at the end of the DUP macro due to the
invocation of REST.

The BRN and XIT macros follow GEQ. The BRN macro simply translates to a
jump instruction in the 8080. The XIT macro first invokes the ?TR macro to check
for machine code tracing. A JMP 0 is then emitted, corresponding to a system restart
in both CP/M and the emulated KDF-11 machine architecture. The XIT macro then
produces an ORG statement that restarts the assembly process in the data area of
the emulated environment (1000H, or 4096 decimal). The area reserved for the stack

is then set up, followed by the declaration of the label STACK at the top of this
reserved area. Note that the SAVE macro includes the statement sequence:

IF STACK 5515 it Present?

ENDIF

which ensures that both the SIZ and XIT macros have been included in the assembly.
If the XIT macro is not included, then the label STACK does not appear unless used
in the KDF-11 program, and the IF STACK test produces an undefined operand (U)
error. Further, if the X!T operator is used, but the SIZ is not, then the statement DS

SIZ*2 within XIT produces an undefined operand message. Although these tests are

by no means complete, they detect the most common errors.

Listing 9-11 also contains the definitions of both the RDM and WRM opcodes,

based on the memory mapped input/output addresses defined by ADCO through

ADC3 for the A-D ports, and DACO through DAC3 for the D-A ports. The RWTRACE

(Read-Write Trace) macro is included for tracing the RDM and WRM macros when

DEBUGP is true. The MSG argument corresponds either to A-D INPUT for the

RDM opcode or to D-A OUTPUT for the WRM opcode. The ADR argument corre-

sponds to the absolute decimal address where the memory mapped input/output is

taking place. Thus, RWTRACE simply constructs a trace message from its two argu-

ments and passes this message to PRN for display at the debugging console.

136

Programmer’s Utilities Guide 9.2 Machine Emulation

The RDM macro reads the port given by the argument ?C (0, 1, 2, or 3). The HL

register pair is pushed, if necessary, by the SAVE macro, leaving the active flag set

for the RDM. RDM then generates an invocation of the RWTRACE macro to pro-

duce the trace message. Note that the argument “% ADC&?C” produces the numeric

value ADCO, ADC1, ADC2, or ADC3, which is included in the trace message. If the

% is omitted, only the name, not the value, of the input port address is printed.

Following the output message, UGEN is invoked to ensure that the utility subrou-

tines have been included inline. The call to @IN allows you to type a hexadecimal

value for the simulated A-D input value. This value is subsequently stored to memory

and left in the HL register pair with ACTIVE true. If DEBUGP is not set, then the

RDM macro simply loads the HL register pair from the appropriate memory mapped

input location. Finally, RDM invokes ?TR to check for possible opcode tracing.

The WRM opcode is similar to the RDM opcode, except that the REST macro is

first invoked to ensure that the HL registers contain the top element of the KDF-11

stack. This value is displayed at the debugging console if DEBUGP is true and then

sent to the appropriate memory mapped output location.

One application of the emulated KDF-11 machine shows the power of this instruc-

tion set. As a small part of a machine control system, a KDF-11 processor monitors

the machine tool head motion. Nachtflieger engineers connect A-D port 0 to a KDF-

11 processor that reads the instantaneous velocity of the tool head at 1 millisecond

(ms) intervals.

The velocity is provided at the A-D port in micrometer (um) increments, and the

processor is synchronized with the input, so that it halts until the 1 ms interval has

elapsed. Nachtflieger engineers also guarantee that the tool head is in motion for no

more than 100 ms before stopping. Thus, with no variations in velocity, if the tool

moved at the constant rate of 256 um/ms over 50 intervals of 1 ms each, total

distance traveled by the tool is

256 um/ms * 50 ms = 1280 um = 1.280 mm

During its travel, however, the instantaneous velocity of the tool head varies

according to the roughness of the cut, wear on the parts, and start/stop intervals.

137

9.2 Machine Emulation Programmer's Utilities Guide

Nachtflieger uses the data collected during a cut to monitor these factors and displays
machine operator information in both digital and analog forms. A primary function
of the KDF-11 processor in this case is to collect instantaneous velocities during a
single cut and hold these values for analysis as the tool returns to its starting posi-
tion. Listing 9-12 shows a KDF-11 program that includes the data collection phase
and an analysis phase described below.

The data collection phase of Listing 9-12 occurs between the labels MOVE? and
COMP; the analysis phase is found between labels COMP and ENDF. The program
is bounded by the SIZ operator at the beginning and the XIT operator at the end,
followed by DCL opccdes that reserve data areas. This program also includes debug-
ging PRN, DMP, TRT, and TRF opcodes for checking out the program.

As for the DCL statements at the end of Listing 9-12, the vector V is declared with
length 100 (double bytes), which holds the collected velocities; | and X are temporary

values used during the collection and analysis phase. The variable TOTAL is a result
produced by the analysis, as discussed below.

The program collects data by performing the following steps. The variable [is first
initialized to 0, corresponding to the first velocity V(O}. The program then examines
the A-D input port for the first nonzero velocity, waiting for the tool head to begin
its travel. When the first nonzero velocity is read, the collection process proceeds by
storing the first value at V(0). The index value I is then moved along as data items
are read, with values placed into V(1), V(2), continuing until a zero value is read,

indicating the tool has ended its travel.

Referring to Listing 9-12, note that the KDF-11 opcodes listed before the label
MOVE? initialize the index I by loading a literal 0 value to the KDF-11 stack,
followed by a store into the variable I. To follow these operations, the TRT P and
TRT T traces are enabled. Note, however, that the TRF T opcode stops the machine

code trace immediately before the MOVE? label.

138

Programmer’s Utilities Guide

0000

0103

0103

0103

0136

0103

O1E8

O1E8

0210

0213

0216

021A

0227

022A

0250

o29C

o29F

o2ac

OZAF

02B3

02B5

02B8

02BB

O2BF

o2cc

O2F4

O2F7

O2FA

O31A

032D

0330

o331

0334

0338

O35F

0372

0389

O3A3

O3a6

0383

MOVE?:

READ:

COMP:

GETNXT:

MACLIB DSTACK jSTACK MACHINE SIMULATION

SIZ 50 190 LEVEL STACK

TRT P sTURN ON PRN TRACK

TRT T iTURN ON CODE TRACE

PRN “COMPUTATION OF TOOL TRAVEL DISTANCE =

LIT) sINITIALIZE INDEX

STO I j1=0

TRE T iTURN CODE TRACE OFF

LOOK FOR STARTING MOTION (NON ZERO VALUE)

JREAD A-D CONVERTER FOR NON ZERO

ROM Q

STG x jHOLD TEMPORARILY

VAL x sRELOAD FOR TEST

LIT 1 3X GEQ 1 TEST

GEQ READ 3X GEO 1 ?

BRN MOVE? HRETRY IF NOT

PRN <STORE FIRST/NEXT VALUE?

DMP Xx

VAL Xx sLOAD FIRST/NEXT VALUE

STO Yol sSTORE TO THE ITH ELEMENT

VAL I sINCREMENT I

LIT 1

SUM iI+i

STO I I=1+1

LIT 9 30, FOR O GTR X TEST

YAL x +ZERO VALUE READ?

GEO COMP sCOMPUTE DISTANCE IF 0

RDM Q sREAD ANOTHER DATA ITEM

STO x sSAVE IT IN X

BRN READ 3TQ STORE AND TEST

PRN <VALUES ARE LOADED?

DMP Vrlo

NOW COMPUTE DISTANCE TRAVELLED BY TOOL

LIT 0)

DUP iTWO ZEROES

sto I i120

STO TOTAL iTOTAL=0

PRN <COMPUTING NEXT INTERVAL?

OMP I

DMP TOTAL

DMP CWaeloe?

LIT Q sZERO AT END

VAL Yoel AT END?

GEQ ENOF 30 GEQ X(I)?

Listing 9-12. Program for Tool Travel Computation

9.2 Machine Emulation

139

9.2 Machine Emulation Programmer’s Utilities Guide

j NOT AT END OF INTERVAL, COMPUTE NEXT TRAPEZO

03C0 VAL Vol

o3cc VAL Volot sV(T) UCT+1)

03DD SUM sV(T)4U(141)

OSDF LSR 1 P(UCT)4UCT41)/2

O3E6 VAL TOTAL SREADY TOTAL

O3EA SUM sTOTAL=TOTAL+TRAPEZOID

O3EC STO TOTAL $BACK TO SUM

O3EF VAL I seit!

O3F2 LIT 1

O3F6 SUM

03F8 STO I iBACK TO 1

O3FB BRN GETNXT

O3FE ENOF: PRN <END OF COMPUTATION>

0420 DMP TOTAL

0437 VAL TOTAL sLOAD FOR O-A OUTPUT

043A WRM 0 SWRITE D-A PORT

0462 XIT

1

j DATA AREA

1164 DCL I INDEX

1166 DCL x i TEMPORARY

1168 DCL Y+100 iVELOCITY VECTOR

1230 DCL TOTAL sTOTAL DISTANCE

Listing 9-12. (continued)

Following the MOVE? label, A-D port 0 is read and examined for the first nonzero
value. Each time the port is read, it is stored into the temporary variable X, then
reloaded and examined for a zero value. Because GEQ is the only comparison oper-
ator in the KDF-11 machine, the test is “1 greater than or equal to X.” Thus, the

branch is taken to READ whenever X is 1 or larger.

Upon encountering the READ label, the value X (just read from port 0) is stored

into V(I), where I is zero. The value of I is then incremented by loading I to the top
of the KDF-11 stack, adding 1 (LIT 1, SUM), and then storing the sum back into I.

After incrementing I, the program proceeds to check the end of the tool travel. X is
loaded to the top of the stack, and the test 0 greater than or equal to X is performed.
If the condition is true, control transfers to the label COMP, where the analysis

phase begins. Otherwise, port 0 is read again, and the value is stored into the tem-
porary X. Control then proceeds back to the READ label to store the next velocity

and test for zero.

140

Programmer’s Utilities Guide 9.2. Machine Emulation

Before 100 intervals have elapsed, the RDM 0 produces a zero value that is stored
into X and subsequently stored into V(I), for the current value of I. Thus, when
control arrives at the label COMP, the instantaneous velocities are stored in V,

terminated by a zero. At this point, the analysis of these collected velocities can take
place.

The single function that takes place in the analysis section of Listing 9-12 is the
computation of the distance traveled by the tool through this interval. Nachtflieger
engineers have determined that it is sufficient to compute the distance traveled by the
tool using the trapezoidal rule that approximates the actual distance by summing the
average of each adjacent pair of velocities. The sums are formed as shown below:

V ot Vi Vit Va Vn tVn
2 2 2

where n is the last interval to sum. Thus, for example, if the velocity is constant at
256 um/ms (which would not occur in practice), then

V, = V2 ='': = V, = 256

The summing formula given above reduces to 256 * n. Given the preceding example,
where n = 50 ms, this formula produces the value 1.280 mm, as given earlier. The

velocity values are not usually constant, so the numerical integration given by the
trapezoidal rule is used to obtain an approximation.

The KDF-11 instructions shown in Listing 9-12 between the COMP and ENDF
labels perform the numeric integration, given by the trapezoidal rule. The temporary
I is used to index through the velocity vector V until the final zero value is encoun-
tered. For each interval, the values of two adjacent velocities are summed and divided
by two. Each result is then summed into TOTAL, where the values are accumulated
until the final zero velocity is discovered.

The opcode sequence immediately following COMP places a zero value at the top
of the KDF-11 stack, then stores this value into both the index I and the accumulat-

ing sum given by TOTAL. Ignoring the trace opcodes, the operations following
GETNXT read the starting point of the next interval to process into the stack, using
VAL V,I (value of V, indexed by I). If 0 is greater than or equal to this value, then

the computation is complete and control goes to the label ENDF. Otherwise, the
value of V(I) is loaded to the KDF-11 stack, followed by the value of V(i+1). The
loaded values are then summed (SUM) and divided by two (LSR 1), producing a

value that remains in the KDF-11 stack. TOTAL is then loaded and added to this

141

9.2. Machine Emulation Programmer’s Utilities Guide

partial sum, and the result is stored back to TOTAL. The index value I is then
incremented to the next interval and processing continues back at the loop header
GETNXT.

Upon processing the final zero velocity, contro] reaches the ENDF label where the
distance traveled is written to D-A output port zero. The output value is sent to
external instrumentation, which processes the result and displays the distance trav-
eled in a form that is readable by the tool operator.

Debugging statements have been placed throughout the program. These can be
used to trace the program execution. Listing 9-12 also contains TRT operators that
have enabled trace code generation. Thus this program, although longer than the
final production version, can be used to follow execution under CP/M.

Listing 9-13 shows the execution of the program of Listing 9-12 under DDT. The
messages printed at the debugging console are a result of the PRN opcodes distrib-
uted throughout the original program that were enabled through the TRT P opcode.
Further, the machine code trace was only enabled for the interval of two operation
codes (LIT and STO) at the beginning. To test this program, simple A-D values were
supplied at the console for the velocities:

Vo = 100H, V; = 120H, V2 = 100H, V3 = 80H, V4 = 0

Upon detecting the final 0 value, the trace of Listing 9-13 shows the first 10 values
of V (the last 5 elements are garbage values), followed by a trace of the sum opera-
tions for each interval. In each case, the pairs of values that are being added are
displayed (using the DMP opcode), followed by their summed value, along with the
running total. Upon completion of the distance computation, the value 320H is sent
to the D-A output port and displayed at the console.

After initial checks under CP/M, Nachtflieger programmers remove the TRT and
TRF statements from the KDF-11 program and reassemble, producing only the abso-
lute input/output instructions required for machine tool control. The resulting pro-
gram, which produces much less code than the debugging version, is placed into the
equipment for further testing and evaluation.

Listing 9-14 also provides an example of the listing produced when all machine
code operators are traced. Although the source program listing is not shown, it is
identical to Listing 9-12 except that the TRF T opcode is removed. Because the
complete trace is quite extensive, only a partial execution is shown in Listing 9-14.

142

Programmer's Utilities Guide

A>DDT INTEG. HEN

DDT VERS 1.4

NEXT PC

9465 90000

-G100

COMPUTATION OF TOOL TRAVEL DISTANCE

LIT 0139 0000 OF77

STO 0106 Goad gooe

A-D INPUT AT 42274 0

A-D INPUT AT 4224 100

STORE FIRST/NEXT VALUE

X= O100

A-D INPUT AT 4224 120

STORE FIRST/NEXT VALUE

R= O120

A-D INPUT AT 42274 100

STORE FIRST/NEXT VALUE

K= 0100

A-D INPUT AT 4224 80

STORE FIRST/NEXT VALUE

x= 0080

A-D INPUT AT 4224 0

STORE FIRST/NEXT VALUE

X= O00?0

VALUES ARE LOADED

Ye 9100 0120 O100 0080 G000 3ECO BAL1 C1C9 SEE! 5623

COMPUTING NEXT INTERVAL

T= 0000

TOTAL= O00

VYaT= O100 6120

COMPUTING NEXT INTERVAL

T= o00f

TOTAL= O110

Wyle O120 0100

COMPUTING NEXT INTERVAL

T= ooo?

Yyr= o100 9080

COMPUTING NEXT INTERVAL

I= 0003

TOTAL= O2EQ

YeT= 0080 0000

COMPUTING NEXT INTERVAL

I= a004

TOTAL= 0329

Yal= 9000 SECO

END OF COMPUTATION

TOTAL= 9320

D-A GUTPUT AT 4240 0320

Listing 9-13.

9.2. Machine Emulation

Sample Execution of Distance Using DDT

143

9.2 Machine Emulation

Abddt

DOT

NEXT

VERS 1.4

PC

0852 9000

-9100

COMPUTATION OF TOOL TRAVEL DISTANCE

LIT

STO

A-D

RDM

STO

YAL

LIT

OIF

GEO

A-D

RDM

STO

VAL

LIT

DIF

GEQ

STORE FIRST/NEXT VALUE

O026E 0000

O30B 0000

INPUT AT

0344 0000

0359 0000

O3BE 9000

0384 9001

O39D FFFF

OSAF FFFF

INPUT AT

0344 0006

0359 0006

O36E 0006

0384 0001

039D 0005

O3AF 0005

X= 0006

VAL

STO

VAL

LIT

SUM

sto

VAL

A-D

ROM

sto

LIT

DIF

GE9

STORE FIRST/NEXT VALUE

O43F 0006

O45E O16F

0473 90000

0489 0001

0490 0001

O4B2 0001

04C7 0006

INPUT AT

0501 9000

0516 9000

OS2B 0001

054d 0005

OS56 0005

X= 0000

VAL

STO

VAL

LIT

SUM

STO

VAL

A-D

ROM

144

043F 0000

O45F 0171

0473 0001

0489 0001

9490 0002

O4B2 0002

0407 0000

INPUT AT

0501 0000

Integ,hex

CABt

0000

128 0

0000

0000

9000

0000

0000

0000

128 6

0000

0000

0000

0006

eTeKer)

0000

0000

0000

0000

0000

0900

0001

0001

128 0

0006

0006

0006

OooL

oooL

0001

0001

0001

0001

0001

0002

0002

128

0000

Programmer’s Utilities Guide

Listing 9-14. Partial Listing of Distance with Full Trace

Programmer’s Utilities Guide 9.2 Machine Emulation

In summary, Nachtflieger MW derived several benefits from their emulation of the
KDF series stack machines. First, there is very little cost involved in designing and
altering their machine architecture. In fact, current prices for 8080 microcomputers
might preclude the custom LSI version of the KDF-? machine. A second advantage of
the KDF emulation is that the KDF programs are highly independent from the host

processor. If a higher performance or less expensive processor becomes available to
Nachtflieger, the existing programs can be used intact by changing only the macro
definitions for each of the KDF opcodes and reassembling using MAC.

Finally, machine emulation through macro defined operation codes offers a distinct
advantage over interpretive approaches because each opcode translates to only a few
host machine operations. Interpretive execution often involves ratios of 1000 to 20,000
emulated instructions per host instruction; macro based opcodes are often in a ratio
of less than 10 to 1. Further, interpretive processors usually require run-time support
consisting of a predefined general purpose subroutine package that is included for
each and every program. For a wide variety of microcomputer applications, machine
emulation through macro defined opcodes offers distinct advantages over alternative
approaches,

9.3 Program Control Structures

Macro facilities can provide program control statements that resemble those found
in many high-level languages. In general, program control statements allow Boolean
tests and conditional branching based on the outcome of the Boolean test. Further,
label names usually provided by you as the destination of a branch are automatically
generated for the particular statement.

The following paragraphs discuss three typical control statements that allow simple
conditional grouping (WHEN-ENDW), controlled iteration (DO-ENDDO), and case

selection (SELECT-ENDSEL). All three statements are program control facilities that

allow well-structured programming, resulting in programs that are easier to write,
debug, and maintain.

Two libraries are first introduced as a foundation for the discussion. The I/O
library shown in Listing 9-15 allows simple character input operations along with
full message output. The READ macro accepts a single character from the console
keyboard and stores this character into the variable given by the parameter VAR.
The WRITE macro shown in Listing 9-15 takes an ASCII message as a parameter
and sends this message to the console output device preceded by a carriage return
line-feed sequence. These simple I/O macros are stored in the disk in the file SIM-
PIO.LIB and are used in the examples that illustrate the control structures.

145

9.3. Program Control Structures Programmer’s Utilities Guide

The second library used in the contro] structure examples is given in Listing 9-16.
Collectively, these macros define a number of Boolean operations that are performed
on 8-bit operands, providing the basic relational operations on unsigned integer values,

including:

LSS less than

LEQ less than or equal to

EQL equal to

NEQ not equal to

GEQ greater than or equal to

GTR greater than

In all cases, the macros accept three actual parameters. The parameters consist of

two data values involved in the test (X and Y), along with a program label that

receives control if the Boolean test produces a true value (TL). The first operand X

can be a labeled memory location containing an 8-bit value, and Y can be either a
labeled 8-bit location or a literal numeric value. If the first operand X is not supplied,
then tke value to be tested is assumed to exist in the 8080 accumulator when the
macro is entered. Thus, for example, the macro invocation

LSS ALPHA» BETAsTRUECASE

compares the values stored at the labeled memory locations ALPHA and BETA,

defined by a DS or DB statement, and transfers to the program step labeled by

TRUECASE if ALPHA contains a value less than the value stored at BETA. The

invocation

LSS *BETA+TRUECASE

is similar, but it compares the contents of the 8080 accumulator with the value

stored at BETA. Finally, the invocation

L55 ALPHA 134+TRUECASE

compares ALPHA with the literal value 34 in the relational test.

146

Programmer’s Utilities Guide 9.3. Program Control Structures

The macro TEST? is used throughout the macro library to construct the relational
test by first loading the initial operand X, if necessary. The second operand type is
then examined by executing an IRPC within the TEST? macro of Listing 9-16. This
extracts the first character of the Y operand. This first character must be either
numeric or alphabetic. If numeric, then the literal value is subtracted from the accu-
mulator, setting the 8080 condition codes. If the first character of Y is nonnumeric,

then the value is assumed to reside in memory. In this case, the HL registers are set
to the Y operand and the value at Y is subtracted from the accumulator value. In
any case, the 8080 condition codes are set as a result of the subtraction operation.
These condition codes are then used in the individual macros to produce conditional
jumps to the destination labels. These macros are collectively stored on the disk in a
file named COMPARE.LIB for use in examples that follow.

i macro library for simple i/o

bdos equ ooosh bbdos entry

conin equ 1 sconsole input function

msdout e9u 9 sPrint message til ¢$

cr equ Odh jcarriage return

lf equ Oah jline feed

i

read macro var

i read a single character into var

mud c+conin console input function

call bdos scharacter is in a

sta var

endm

i

write macro msg

a4 write message to console

local msdlsPpmsg9

ump Pms

msgl: db crolf sileading crif

db ‘AMSG’ diiniine message

db ‘$! simessage terminator

PMS 42 mui Cemsgout syprint message til $

lxi dsms gl

call tdos

endm

Listing 9-15. Simple I/O Macro Library

147

9.3 Program Control Structures

test?

a4

tdig?

ee

ee

ee

oe

e
e

e
e

wa
e

me

—

© 2

148

macro XY

utility macro to generate condition codes

if not nul x sithen load x

lda x 55 assumed to be in memory

endif

lrec By ay ity may be constant operand

set ROY OQ! sifirst char digit?

exitm vistop irepc after first char

endm

if tdig? <= 9 tiy numeric?

Sui y Sivyes, sa sub immediate

else

Ixi hoy tiy not numeric

sub fm $iso0 sub from memory

endm

macro x+ryetl

x 1lss than y tests

transfer to tl (true label) if true»

Continue if test is false

test? KrY fiset condition codes

Jc tl

endm

macro Xeyetl

x less than or eaual to y test

lss Kyat]

Jz tl

endm

macro Xry¥etl]

x equal to y test

test? Kory

Jz tl

endm

macro Xry etl

x not equal to y test

test? X+y

Jnz tl]

endm

Listing 9-16. Macro Library for Simple Comparison Operations

Programmer’s Utilities Guide

Programmer’s Utilities Guide

geq
ae
a4

fl:

macro Kyat]

x greater than

test? xrY

Jnc tl

endm

macto xry¥atl

x greater than

local fl

test? Key

Je fi

der a

une tl

endm

or egual to y test

y test

sifalse label

Listing 9-16.

9.3 Program Control Structures

(continued)

Listings 9-17a and 9-17b show an example of a program that uses both the SIM-
PIO and COMPARE libraries. This program successively reads console characters
and print messages based on the character typed. The program begins by sending the
sign-on message at the label CYCLE. A character is then read and stored into X,
using the READ macro. The LSS test determines whether lower- to upper-case trans-
lation is required, assuming the input is alphabetic. If X is numerically less than 61H,
the value of a lower-case A, then control transfers to the label NOTRAN. Otherwise,

the character is loaded to the accumulator, the lower-case bit is stripped from the
character, and it is replaced in memory. Following the label NOTRAN, the character
is compared with the letters A, B, C, and D. In each case, a message is typed
corresponding to each letter. If one of these four letters cannot be found, the message
at ERROR is typed.

149

9.3. Program Control

0100

0100

0128

CYCLE:

0133

0138

O13E

0140

3A1102

EGSF

321102

NOTRAN:

j

i

0143

014B

0167 C3Q0001

016A

0172

0180 C30001

0190

0198

01B3 C30001

0166

O1BE

0109

O1EB C9

OL1EC

O20E C30001

0211

O212

Listing 9-17a.

150

Structures Programmer’s Utilities Guide

ORG 100H
MACLIB SIMPIO SIMPLE ID LIBRARY
MACLIB COMPARE iCOMPARISON OPERATORS

WRITE <TYPE A CHARACTER FROM A TD D >
READ x
TEST FOR LOWER CASE ALPHABETIC
LSS X+6tH »yNOTRAN

ARRIVE HERE IF X IS GREATER OR EQUAL TOD
A LOWER CASE A (=61H)» TRANSLATE
LDA x
ANI 5FH iCLEAR LOWER CASE BIT
STA x iSTORE BACK TO X

NOW CHECK CASES

NEG Xs A’ NOTA
WRITE <YOU TYPED AN A>
JMP CYCLE

NEO Xo 'B’ yNOTB
WRITE <YOU TYPED A B>
JMP CYCLE

NEQ Ko%/C’ yNOTC
WRITE <YOU TYPED A C>
JMP CYCLE

NEQ X94 'D ‘ERROR
WRITE <YOU TYPED A D>
WRITE <BYE*!>
RET

WRITE <NOT AN Ay By Cy OR D>
IMP CYCLE

ps 1 ;TEMP FOR CHARACTER
END

Single Character Processing using COMPARE

Programmer’s Utilities Guide 9.3 Program Control Structures

In comparing each letter, the macro NEQ starts with the first argument corre-
sponding to the character typed at the console (X); the second argument corresponds
to the letter to match. The % operator in each case produces the numeric value of
the character. This is necessary because the TEST? macro expects either a number or
a label value in the second argument position. The program processes characters
until a D is typed when it returns to the Console Command Processor. The intention
here is to show the use of Boolean tests used by the control structure macros that

follow.

Listing 9-17b shows a partial expansion of the macros given in the previous exam-
ple. The first message expansion is shown, along with the READ and NEQ macros.
The listing has been abstracted, however, and does not show the macro library
statements or the remainder of the program following the NOTA label.

151

9.3 Program Control Structures Programmer’s Utilities Guide

1 + + t

y

CYCLE: WRITE eTYPE A CHARACTER FROM A TO D >

0100+C32301 MP 220002

O103+0D0A8 PPO00L: DB CRLF

0105+545950d520 DB ‘TYPE A CHARACTER FROM A TOD ‘

O122+24 DB ‘$!

0123+0E09 2200023 MUT C »MSGOUT

OL25+110301 LXI Ds? 70001

0128+CD0500 CALL BDaS

READ x

O12B+O0E01 MUI CrCONIN SCONSOLE INPUT FUNCTION

O120+CD0500 CALL BOOS jCHARACTER IS IN A

01304321102 STA K

j TEST FOR LOWER CASE ALPHABETIC

LSS X+GLHsNOTRAN

O133+3A1L102 LDA x

O136+D661 SUI 61H

0138+DAd301 Jc NOTRAN

; ARRIVE HERE IF X IS GREATER OR EQUAL TO

H A LOWER CASE A (=G1H)» TRANSLATE

O13B 3A1102 LDA x

O13E EGSF ANI SFH jCLEAR LOWER CASE BIT

0140 321102 STA Xx SSTORE BACK TO xX

NOTRAN:

j NOW CHECK CASES

5]

NEQ Krk’ A’ sNOTA

O143+3A1L102 LDA x

0146+D641 SUI 65

0148+C26A01 JN2Z NOTA

WRITE <YOU TYPED AN A+

OL14B+CQ5F 01 JMP 2270004

O1dE+OD0A 270003: DB CRLF

0150+594F552054 DB ‘YOU TYPED AN A’

O1SE+24 DB '$!

OLSF+OE09 ?7aogd: MVI C »+MSGQUT

O161+114E01 LKI D+? ?9003

0164+CD0500 CALL BDOS

0167 C30001 JMP CYCLE

J

NOTA: NEQ Kah B’ yNOTB

] ‘ ‘ ‘

Listing 9-17b. Partial Trace of Listing 9-17a with Macro Generation

152

Programmer’s Utilities Guide 9.3. Program Control Structures

The macro library shown in Listing 9-18, called NCOMPARE, expands upon the

basic relational macros by allowing a false branch option. Each macro accepts four

arguments: the X and Y operands, as before, a true label (TL), and a false label (FL).

It is assumed that either the TL or FL is supplied in any invocation of a relational

operator, but not both. If the TL is supplied, then the branch is taken if the relational

operator produces a true result. Conversely, if the TL label is absent but the FL label

is supplied, then the branch to FL is taken if the relational operation produces a false

result. Thus, NCOMPARE expands upon the COMPARE library by allowing all of

the relational operation and their negations. Using the NCOMPARE library, for

example, the macro invocation

LSS X+201 sFALSELAB

branches to the label FALSELAB if X is not less than the value 20. The negation

operations are accomplished within the NCOMPARE library by first testing for a

null TL operand and, if empty, the relational operation is reversed by invoking the

appropriate negated macro. For example, the LSS macro in Listing 9-18 invokes the

GEQ macro, which is equivalent to ‘not LSS’ when the TL argument is empty and

supplies the FL argument to LSS as the TL label to GEQ. These negated relational

forms are used within the control structures described below.

i macro library for Q@-bit comparison operation

test? macta Ky

ag utility macro to generate condition codes

if not nul x pithen load x

Ida x dix assumed to be in memary

endif

irpc Py ay jiy may be constant operand

tdig? set ROY ATO! sifirst char digit?

exitm Sistop irpc after first char

endm

if tdig? <= 9 hoy numeric?

sul y biyes+ so sub immediate

else

Txi hoy diy not numeric

sub fh hiso0 sub from memory

endm

Listing 9-18. Expanded NCOMPARE Comparison Operators

153

9.3 Program Control Structures

5 macro xryetlsfl

x lss than y» tests

e
e

e
e

ae

ee

ee

if tl is present» assume true test

if tl is absent» then invert test

if riul tl

geq xry fl

else

test? Ky diset condition codes

Jc ti

endm

;

leq macro Kevyoetlofl

5 x less than or equal to y test

if nul tl

geq xryofl

else

lss Xryoetl

Jz tl

endm

eql macro xeyotlofl

ii x equal to y test

if nul tl

neq xXevefl

else

test? xry

Jz tl

endm

H

neq macro Xryethofl

a) x not eagual to y test

if nul tl

eq) KXoyofl

else

test? Kay

Jnz tl

endm

i

geq macro Xovoetlofl

a xX greater than or equal to y

if rul tl

1ss5 xevofl

else

test? Key

June tl

endm

Listing 9-18.

154

(continued)

Programmer’s Utilities Guide

Programmer’s Utilities Guide 9.3 Program Control Structures

gtr macro Movyetle fl

a4 x greater than y test

if nul tl

leq xryefl

else

local gfi fifalse label

test? Ky

jc gsfl

der a

une tl

afl: endm

Listing 9-18. (continued)

Listing 9-19a is an example of the use of the NCOMPARE library within a pro-
gram. This program is similar to the previous example, but instead checks to ensure
that alphabetic translation occurs only within the proper range of lower-case letters.
Following the label CYCLE, the character read from the console is compared with a
lower-case a, using the % operation to produce equivalent decimal value 97. Because
the negated form of GEQ is used here, the label NOTRAN receives control if X is
not greater than or equal to %‘a’. If X is greater than or equal to %a, program flow
continues to the next test in sequence where X is compared with a lower-case z
(%‘z’ = decimal 122). In this case, the normal form of GTR is used. Control trans-

fers to NOTRAN if X is greater than %‘z’, which is above the range of lower-case
alphabetics. If X is between %‘a’ and %‘z’, the character is changed to upper-case,
as before, by removing the lower-case bit and replacing X in memory. Note that the
indentation levels between the GEQ and GTR operations are included for readability
of the program.

9.3 Program Control Structures

Listing 9-19b shows the GEQ-GTR section of the program of Listing 9-19a with
full macro trace enabled. (See Section 10.) The trace in this listing shows the transi-
tion from GEQ to the LSS operator, substituting the FL label in place of the TL
label. Again, the macro library statements are not shown, and the listing following
the NOTRAN label is not present.

0100

0100

0128

0133

013B

0147

014A

014C

O1dF

0157

0173

0176

O17E

0199

019C

O1Ad

O1BF

O1Ce

O1CA

O1ES

O1F?

O1F8

02140

021D

O21E

156

3A1D02

ESSF

321002

C30001

C30001

C30001

cg

C30001

Listing 9-19a.

y

NOTRAN:

j

ERROR:

ORG 100H

MACLIB SIMPIO iSIMPLE I0 LIBRARY

MACLIB NCOMPARESCOMPARISON OPERATORS

WRITE <TYPE A CHARACTER FROM A TO D =

READ x

TEST FOR LOWER CASE ALPHABETIC

GEQ Kok’ a’ ss sNOTRAN $BRANCH ON FALSE

X IS GREATER OR EQUAL TO LOWER CASE A

GTR Koh’ 2’ sNOTRAN

LDA x

ANI SFH jUPPER CASE

STA xX iBACK TO X

NOW CHECK CASES

NEQ Xeh’ AS SNOTA

WRITE <YOU TYPED AN A?

JMP CYCLE

NEQ Xo%'B! oNOTB

WRITE ¢YOU TYPED A B*

JMP CYCLE

NEQ Kh‘ COC’ sNOTC

WRITE ¢YOU TYPED A C?

JMP CYCLE

NEQ Xo%’D’ sERROR

WRITE “YOU TYPED A D?

WRITE <BYE*!>

RET

WRITE “NOT AN Ay Bs C+ OR D>

JMP CYCLE

DS 1 STEMP FOR CHARACTER

END

Sample Program using NCOMPARE Library

Programmer’s Utilities Guide

Programmer’s Utilities Guide 9.3 Program Control Structures

j TEST FOR LOWER CASE ALPHABETIC

GEQ Xo%‘a’s++NOTRAN §SBRANCH ON FALSE

+ IF NUL

+ LSS X 197 sNOTRAN

+ IF NUL NOTRAN

+ GEQ KiQ7s

+ ELSE

+ TEST? X97

+ IF NOT NUL X

0133+3A1D02 LDA x

+ ENDIF

+ TRPC PY +97

+ TDIG? SET TROY Q4

+ EXITM

+ ENDM

o00g+rs TOIG? SET g’-'O!'

+ EXITM

+ IF TOIG? <= 9

0136+D661 SUI 97

+ ELSE

+ LXI Hi97

+ SUB M

+ ENDM

O138+DA4FOL JC NOTRAN

+ ENDM

+ ELSE

+ TEST? X97

+ JNC

+ ENOM

i X¥ IS GREATER OR EQUAL TO LOWER CASE A

GTR Xo%'z’ sNOTRAN

+ IF NUL NOTRAN

+ LEQ Krel22s

+ ELSE

+ LOCAL GFL

+ TEST? Kel22

+ IF NOT NUL X

O13B+3Ai1002 LDA x

+ ENDIF

+ IRPC ?¥ 9122

+ TOIG? SET ROY - OQ"

+ EXITM

+ ENDM

aooL+# TOIG? SET t'- 4a"

+ EXITM

+ IF TDIG? ¢= 9

Listing 9-19b. Segment of Listing 9-19a with +M Option

157

9.3 Program Control Structures Programmer’s Utilities Guide

013E+DG7A SUI 122

+ ELSE

+ LXI H+i22

+ SUB M

+ ENDM

0140+DAd701 Jc 220003

0143+3D DCR A

0144+D24FO1 INC NOTRAN

+ 220003: ENDM

0147 3ALDO2 LDA K

014A EGSF ANI SFH SUPPER CASE

O14C 321D02 STA x jBACK TO XK

’

NOTRAN:

Listing 9-19b. (continued)

Given the SIMPIO and NCOMPARE libraries, it is now possible to define the first
complete control structure, called the WHEN-ENDW group. The form of the group
is

WHEN condition

statement-1

statement-2

statement-n

ENDW

where condition is a relational expression taking one of the forms

idjrel,id idjrelnumber ,rel,id ,relnumber

and id is an identifier; rel is a relational operator (LSS, LEQ, EQL, NEQ, GEQ,

GTR), and number is a literal numeric value. Similar in form to the arguments of the

individual relational operators of the COMPARE library, the last two forms shown
above assume the first argument is present in the 8080 accumulator. The condition
following the WHEN is evaluated as a relational expression, according to the rules
stated with the COMPARE library. If the condition produces a true result, then
statement-1 through statement-n are executed. Otherwise, control transfers to the
statement following the ENDW. Nested WHEN-ENDW groups are allowed when

they take the form:

158

Programmer’s Utilities Guide 9.3. Program Control Structures

WHEN ...

WHEN...

WHEN ...

ENDW

ENDW

ENDW

to arbitrary levels, where the ellipses represent interspersed statements. Because of
the simplified implementation, nested parallel WHEN-ENDW groups are disallowed
when they take the form:

WHEN ...

WHEN...

ENDW

WHEN .. .

ENDW

ENDW

The implementation of the WHEN-ENDW group is based upon macros that count
WHEN-ENDW groups and generate branches and labels at the proper levels in the

structure.

Listing 9-20 shows the WHEN macro library, consisting of four macros:

GENWTST (generate WHEN test)

GENLAB generate label)
(
(

WHEN (beginning of WHEN group)
ENDW (end of WHEN group)

159

9.3 Program Control Structures Programmer’s Utilities Guide

These macros, in turn, use the macros in the NCOMPARE library shown previously
and thus are assumed to exist in the user’s program as a result of a MACLIB
NCOMPARE statement. Label generation is based on the WCNT (WHEN count)

and WLEV (WHEN level) counters. WCNT is incremented each time a WHEN is
encountered, and WLEV keeps track of the number of WHENs that have occurred
without corresponding ENDWs.

Upon encountering the first WHEN, the WCNT and WLEV counters are set to
zero, and the WHEN macro is redefined to generate the first WHEN test by invoking
GENWTST, using the relation R, operands X and Y, and WHEN counter WCNT.
The value of WCNT is passed to GENWTST rather than the characters WCNT
themselves. Thus, at the first invocation of GENWTST, the dummy argument NUM
has the value 0. The first argument to GENWTST, called TST, corresponds to a
relational operation (LSS through GTR) and thus is invoked automatically within the
body of GENWTST, using the negated form of the relational because the TL argu-
ment is empty.

Again referring to the body of the GENWTST macro in Listing 9-20, the last
argument, corresponding to the false label of the relational operation, is the con-
structed label ENDW&num, where num has the value 0 initially, and successively
larger values on later invocations. Each time GENWTST is invoked, it generates a
relational test and a branch on false to a generated label. It is the responsibility of
the ENDW macro to produce the appropriate balanced label when encountered in

the program.

In the body of the WHEN macro in Listing 9-20, the WLEV level counter Is set to
the current WCNT, and the WCNT is incremented in preparation for the next WHEN
statement. Similar to nearly all macros that redefine themselves, the outer macro
definition of WHEN invokes the newly created WHEN macro before exit.

Upon encountering the ENDW statement in the source program, the ENDW macro

first invokes GENLAB to generate the appropriate ENDW label. The first argument
to GENLAB is the label prefix ENDW; the second argument is the evaluated param-
eter % WLEV corresponding to the current ENDW label. If only one WHEN state-
ment is encountered, for example, the value of WLEV is zero, and thus GENLAB

produces the label ENDWO, which is the destination of the earlier branch generated
by an invocation of GENWTST. Following the invocation of GENLAB, WLEV is
decremented to account for the fact that one more destination label has been resolved.

160

Programmer’s Utilities Guide 9.3 Program Control Structures

macro library for "when" construct

label generators

enwtst macto tstexery enum

i generate a “when" test (negated form)»

i invoke macro “tst" with Parameters

5 Xey with Jump to endw & num

tst Key evendwknum

endm

r
e

CC

ae

T
e
t

Jenlab macro labenum

a Produce the label "lab" & “num"

lab&nums:

endm

H

; "when" macros for start and end

j

when macro xurTeleyy

4 initialize counters first time

went set 0 jinumber of whens

wher macra XaeDey

PenWtst Pexsyehwont

wiey set wont Sinext endw to generate

wont set wontt+i jinumber of i"when's

endm

when xuareleyy

endm

H

end macro

3 generate the ending code for a "when"

genlab endwrtwiey

wiley set wleyv-1 $count current level down

a4 wlev must not go below © (not checked)

endm

Listing 9-20. Macro Library for the WHEN Statement

161

9.3 Program Control Structures Programmer’s Utilities Guide

As an example of the use of WHEN-ENDW, Listing 9-21a shows a sample pro-
gram that resembles the previous character scanning function, but uses the WHEN
group in place of simple tests and branches. As before, a single character is read
from the console and first tested for possible case conversion. The statement WHEN
X,GEQ,61H causes the three statements that follow to execute only when X is
greater than or equal to 61H (lower-case a). Further, the four WHEN groups that
follow test for the specific characters A, B, C, or D. If an A is typed, the correspond-
ing WHEN group executes, and control transfers back to the CYCLE label where
another character is read from the console. If the letter D is typed, the program
responds with two messages and returns to the console command processor.

Listing 9-21b shows the same program with full macro trace enabled. This portion

of the program shows macro processing for the first WHEN-ENDW group only,

although the remaining groups are processed in a similar fashion. It is a worthwhile

exercise to determine that the nesting rules for WHEN groups are properly stated,

and that the restriction on nested parallel groups is necessary.

0100 ORG 100H

MACLIB SIMPIO i$SIMPLE ID LIBRARY

MACLIB NCOMPARESEXPANDED COMPARE OPS

MACLIB WHEN $WHEN CONSTRUCT

0100 CYCLE: WRITE éTYPE A CHARACTER FROM A TO D >

0128 READ x

i TEST FOR LOWER CASE ALPHABETIC

0133 WHEN X»GEQ,61H

O13B 3A1102 LDA x

O13E EGSF ANI SFH iCLEAR LOWER CASE BIT

0140 321102 STA x 3STORE BACK TO X

0143 ENDW

j NOW CHECK CASES

4

0143 WHEN XrEOL KAS

014B WRITE <Y¥OU TYPED AN A>

0167 C30001 JMP CYCLE

016A ENDW

$

O16A WHEN X+EQL 1% 'B’

0172 WRITE <YOU TYPED A B?

0180 C3000! JMP CYCLE

0190 ENDW

Listing 9-21a. Sample WHEN Program with —M in Effect

162

Programmer’s Utilities Guide 9.3. Program Control Structures

0190 WHEN XvEQL 14°C’

0198 WRITE “YOU TYPED A C?

O1B3 C30001 JMP CYCLE

O1BG ENDW

i

O1B6 WHEN MeEQL % 'D!

O1BE WRITE “YOU TYPED A D>

0109 WRITE <BYE* !>

O1EB Ca RET

O1EC ENDW

j

O1EC WRITE <NOT AN A» Bs Cy OR D?

O20E C30001 JMP CYCLE

i

0211 Xs DS 1 sTEMP FOR CHARACTER

Listing 9-21a. (continued)

j TEST FOR LOWER CASE ALPHABETIC

WHEN X+GEQ,61H

0000+# WONT SET a)

+ WHEN MACRO XrRr¥

+ GENWTST RiXs¥ so SWONT

+ WLEV SET WONT

+ WONT SET WONT+1

+ ENDM

+ WHEN X+GEQ,G1H

+ GENWTST GEQ +x sG1H sZWONT

+ GEQ X+61H» sENDWO

+ IF NUL

+ LSS X»+GtH»ENDWO

+ IF NUL ENDWO

+ GEQ X+61Hs

+ ELSE

+ TEST? X+61H

+ IF NOT NUL X

0133+3A1102 LDA x

+ ENDIF

+ IRPC ?¥+G1H

+ TDIG? SET "ROY '- 70"

+ EXITM

+ ENDM

QQ0b+s TDIG? SET "B’- 10!

+ EXITM

+ IF TDIG? <= 9

Listing 9-21b. Partial Listing of Listing 9-21a with +M Option

163

9.3 Program Control Structures

0136+D861
+

+

+

+

0198+DAd301
+

+
+

+e

+

+
o000+8
O001+#

+
+

O13B 3A1102
O13E EBSF
0140 321102

Programmer’s Utilities Guide

SUI BiH

ELSE

LXI H+61H

SUB M

ENDM

WC ENDWO

ENOM

ELSE

TEST? X+61H

JNC

ENDM

ENDM

WLEY SET WONT

WONT SET WONT+1

ENDM

ENDM

LDA x

ANI FH sCLEAR LOWER CASE BIT

STA x sSTORE BACK TO X

ENDW

Listing 9-21b. (continued)

A second control structure, called the DOWHILE-ENDDO group, takes the gen-
eral form:

DOWHILE

statement-1

statement-2

statement-n
ENDDO

condition

where the condition and nesting rules are identical to the WHEN-ENDW group. The
DOWHILE group is similar in concept to the WHEN group, except that statements
1 through n execute repetitively as long as the condition remains true. That is, the
condition is evaluated when the DOWHILE is encountered in normal program flow.
If the condition produces a false value, then control transfers to the statement follow-

ing the ENDDO. Otherwise, the statements within the group execute until the ENDDO

is reached. Upon encountering the ENDDO, control transfers back to the DOWHILE,

and the condition is evaluated again. Iteration continues through the group until the

condition produces a false value.

164

Programmer’s Utilities Guide 9.3 Program Control Structures

The macro library for the DOWHILE group is shown in Listing 9-22, The
DOWHILE statement invokes the relational operator macros to produce the proper
sequence of tests and branches. Upon encountering the ENDDO, the proper label
and jump sequence is again generated. The only essential difference in the DOWHILE
and WHEN groups is that the location of the DOWHILE test must be labeled, and
a JMP instruction must be generated to this label at the end of each group.

5

H

gendtst

oa

5

gendlab

if

5

lab&num:

SendJmp

dJoley

docnt

macro library for “dowhile" construct

macro tstexey enum

generate a "dowhile" test

tst xeysrendd&num

endm

macro labernum

praduce the label lab & num

for dowhile entry or exit

endm

macro num

generate Jump to dowhile test

JmP dtestknum

endm

macto murrelsyy

imitialize counter

set 0 inumber of dowhiles

macro XoPey

denerate the dowhile entry

gendlab dtests%doent

dJenerate the conditional test

Sendtst rexeystdoont

set docnt sinext endd to generate

set docnttt

endm

dowhile xusreleyy

endm

macro

generate the jump to the test

gendimp %dolew

generate the end of a dowhile

gendlab enddstdoley

set dolev-t

endm

Listing 9-22. Macro Library for the DOWHILE Statement

165

9.3 Program Control Structures Programmer’s Utilities Guide

In Listing 9-22, GENDTST (generate DOWHILE test), GENDLAB (generate

DOWHILE label), and GENDJMP (generate DOWHILE jump) are all label genera-
tors used in the macros that follow. Similar to the WHEN macro, DOWHILE uses

the counters DOCNT and DOLEV to keep track of the number of DOWHILE
groups encountered along with the current DOWHILE level, corresponding to the
number of unmatched DOWHILEs. The DOWHILE macro first generates the entry
label DTESTn, where n is the DOWHILE count. The conditional test is then gener-
ated, similar to the WHEN macro, with a branch on false condition to the ENDDn

label that is eventually generated by the ENDDO macro. Finally, the DOWHILE
macro increments the DOCNT counter in preparation for the next group.

The ENDDO macro in Listing 9-22 first generates the JMP instruction back to the
DOWHILE test, using the GENDLAB utility macro, and then produces the ENDDn
label that becomes the target of the jump on false condition. The form of the expanded
macros for one nested level thus becomes:

DTESTO:

conditional Jump to ENDDO

DTEST1:

conditional Jump to ENDD1

+ + +

JMP DTEST1

ENDDI

JIMP DTESTO

Listing 9-23a shows an example of a program that uses the DOWHILE group.
Although this program differs slightly from the previous examples, the principal
function is the same: a STOP character is first read from the console, followed by a
group of statements that repetitively execute in search of the STOP character. Two
DOWHILE groups occur within the program. The first group checks each character
typed (X) to see if it matches the STOP character. If not (DOWHILE X,NEQ,STOP),

the statements up through the matching ENDDO are processed. If the value of X is
the character A, then the message YOU TYPED AN A is sent to the console. Other-
wise, the message NOT AN A is typed, followed by a check to see if the STOP
character was typed. If so, the messages STOP CHARACTER and BYE! appear at
the console. Control continues through the ENDWs to the ENDDO and back to the
DOWHILE header. The DOWHILE X,NEQ,STOP produces a false condition, and

control transfers to the XRA A instruction following the ENDDO.

166

Programmer’s Utilities Guide 9.3. Program Control Structures

0100 ORG 100H

MACLIB SIMPIO sSIMPLE 10 LIBRARY

MACLIB NCOMPARESEXPANDED COMPARE OPS

MACLIB WHEN SWHEN CONSTRUCT

MACLIB ODOWHILE #DOWHILE STATEMENT

0100 WRITE <TYPE THE STOP CHARACTER: >

0127 READ STOP

i X = 0 FOR THE FIRST LOOP

O012F DOWHILE X»NEQ,»STOP sLOOK FOR STOP CHARACTER

0139 WRITE <TYPE A CHARACTER: >

0159 READ Xx

;

0161 WHEN XrEQL + h/A’

0163 WRITE <YOU TYPED AN A>

0185 ENDW

1

0185 WHEN XeNEQ dK ‘A’

018D WRITE <NOT AN A?

01A3 WHEN XsEQL +STOP

O1AD WRITE <STOP CHARACTER?

0109 WRITE <BYE* !>

O1DB ENDW

0108 ENDW

01DB ENDDO

1

i CLEAR THE SCREEN (23 CRLF ‘S)

O1DE AF XRA A

OL1DF 320002 STA x dX=0

O1E2 DOWHILE X+L55+23

O1EA WRITE 4>

O1FB 210002 LXI HX

O1FB 34 INR M iXEK+1

O1FC ENODO

O1FF C9 RET

q

0200 00 xX: DB Q EXECUTES "DOWHILE" FIRST TIME

0201 STOP: OS 1 sSTOP CHARACTER

Listing 9-23a. An Example Using the DOWHILE Statement

167

9.3 Program Control Structures Programmer’s Utilities Guide

i CLEAR THE SCREEN (23 CRLF ‘S)

O1DE AF XRA A

OIDF 320002 STA x pX=0

DOWHILE X»L88 +23

O1E2+3A0002 LDA x

O1E5+0617 SUI 23

OLE7+D2FFO1 JNE ENDD1

WRITE «?

OLEA+C3FOOL JMP 270014

OLED+OD0A 720013: DB CRsLF

O1EF+24 DB "$!

O1FO+QE09 P?0014: MYI C »MSGOUT

OLF2+11EDO1 LXI D+??0013

OLFS+CD0500 CALL BDOS

O1F8 210002 LKI Hix

O1FB 34 INR M SKEK+1

ENDDOQ

OLFC+C3E201 JMP DTEST1

O1FF C9 RET

Listing 9-23b. Partial Listing of Listing 9-23a
with Macro Generation

In Listing 9-23a, the second DOWHILE-ENDDO group clears the normal CRT
screen size of 23 lines. This is accomplished by first setting X to the value zero,
followed by a DOWHILE group that checks the condition X,LS$S,23 which iterates
until X reaches the value 23. The WRITE statement within the DOWHILE group
produces only the carriage return line-feed on each iteration because the character
sequence within the brackets is empty. Following the WRITE statement, X is incre-
mented by one, acting as a line counter. When X reaches 23, the RET statement
following the matching ENDDO receives control, and the program terminates by
returning to the console processor. Note that the DB statement for X provides the
initial value zero, so that the firsts DOWHILE executes at least one time.

Listing 9-23b shows a portion of the program of Listing 9-23a, with partial macro
trace enabled. This trace does not show the generated labels ENDD1 and DTEST1
because no machine code was generated on those lines. The +M assembly parameter
would show the labels, however. The locations of these labels can be derived from

the hex listing to the left; the JNC ENDD1 produces the destination address 01FF

corresponding to the RET statement, and the JMP DTEST1 produces the address

01E2 corresponding to the LDA X instruction at the beginning of the DOWHILE

group.

168

Programmer’s Utilities Guide 9.3 Program Control Structures

The last control structure presented in this section is the SELECT-ENDSEL group,
which corresponds to the FORTRAN computed GO-TO, the ALGOL switch state-
ment, and the PL/M case statement. The general form of the SELECT group is

SELECT id

statement-set-0

SELNEXT

statement-set- 1

SELNEXT

SELNEXT

statement-set-n

ENDSEL

where id is a data label corresponding to an 8-bit value in memory, and statement

set 0 through n denotes groups of statements separated by SELNEXT delimiters.

The action of the SELECT-ENDSEL group is as follows: the variable given in the

SELECT statement is taken as a case number assumed to be in the range 0 through

n. If the value is 0, statement-set-0 is executed and, upon completion of the group,

control transfers to the statement following the ENDSEL. If the variable has the

value 1, then statement-set-1 executes. Similarly, if the variable produces a value 1

between 0 and n, then statement-set-i receives control. There can be up to 255

groups of statements within each SELECT-ENDSEL group, and any number of dis-

tinct SELECT-ENDSEL groups. Nested SELECT-ENDSEL groups are not allowed.

That is, a SELECT-ENDSEL group cannot occur within a statement-set that is enclosed

in another SELECT-ENDSEL group. As a convenience, the variable following the

SELECT can be omitted, in which case the current 8080 accumulator content selects

the proper case.

Listings 9-24a and 9-24b show the SELECT macro library that implements the

SELECT-ENDSEL group. The general strategy is to count the cases as they occur,

starting with the SELECT, delimited by NEXTSEL, and terminated by ENDSEL. As

the cases occur, a case label is generated that takes the form CASEn@m where n

counts the SELECT-ENDSEL groups, and m is the case number within group n. A

jump instruction is generated at the end of each case to the label ENDSn that marks

the end of the SELECT group number n. Upon encountering the end of the group, a

select-vector is generated that contains the address of each case within the group,

headed by the label SELVn, where n is again the group number. Machine code is

thus generated at the SELECT entry, which indexes into the select vector, based upon

the SELECT variable, to obtain the proper case address. The first statement within

the case receives control based upon the value obtained from this vector.

169

9.3 Program Control Structures Programmer’s Utilities Guide

The general form of the machine code generated for the first SELECT group within
a program (group n = Q) is:

LDA id

LXI SELVO

(index HL by id, and

load the address to HL)
PCHL

CASE0@O0:

statement-set-0

JMP —_-_ENDSO
CASE0@1:

statement-set-1

JMP — ENDSO

CASE@n:
statement-set-n
JMP ENDSO

SELVO:
DW CASE0@O
DW CASE0@1

DW CASE0@n
ENDSO:

Listing 9-24a contains the label generators GENSLXI (generate SELECT LXI),

GENCASE (generate case labels), GENELT (generate select vector element), and

GENSLAB (generate SELECT label). Listing 9-24b contains the macro definitions for
SELNEXT (select next case), SELECT, and ENDSEL.

In Listing 9-24b, the SELECT macro begins by zeroing CCNT which counts SELECT-
ENDSEL groups and then redefines itself, similar to the WHEN and DOWHILE
macros. The redefined SELECT macro then generates the select vector indexing oper-
ation by loading the indexing variable, if necessary, and then fetches the specific case
address. No machine code is generated to check that the indexing variable is within
the proper range. The PCHL at the end of this code sequence performs the branch
to the selected case.

170

Programmer’s Utilities Guide 9.3. Program Control Structures

At the end of the redefined select macro, SELNEXT is invoked automatically, to

delimit the first case in the SELECT group (otherwise SELECT would have to be

followed immediately by SELNEXT in the user program to generate the proper

labels). SELECT also zeros the ECNT variable, which counts the cases until ENDSEL

is encountered.

1

;

5

genslxi

ua

i

gencase

$3

ui

macro library for "select" construct

label generators

macro num

load hl with address of case list

1xi hesely&num

endm

macro numrelt

generate jmp to end of cases

if elt gt 0

Jmp ends&num jipast addr list

endif

generate label for this case

caseknum&@kRelt:

j

genelt

v4

H

denslab

a4

endm

macro numrelt

generate one element of case list

dw caseknumk@helt

endm

macTo numrelts

generate case list

selv&num:

ecnt

ecnt

u3

set 0) dicount elements

rept elts Sigenerate dw‘s

genelt numstecnt

set ecntti

endm fiend of dws

generate end of case list label

ends&num:

endm

Listing 9-24a. Macro Library for SELECT Statement

171

9.3 Program Control Structures Programmer’s Utilities Guide

selnext macro

a4 generate the next case

gencase AZccntrZecnt

increment the case element count

ecnt set ecntt+t

endm

;

select macro var

i) generate case selection code

cent set Q ticount "selects"

select macro u Siredefinition of select

a4 select on v or accumulator contents

if not nul y

lda yu Siload select variable

endif

genslxi Z%eent sigenerate the lxi hrselv#

mov @sa jicreate double precision

mui ds0 sou in dse pair

dad d jisingle prec index

dad dg jidouble prec index

may eam Slow order branch addr

nx h hito high order byte

may dm Sthigh order tranch index

xchg diready Granch address in hl

pchl iigone to the Prorer case

ecnt set 0) Stelement counter reset

endm

3 invoke redefined select the first time

select var

selnext j}automatically select case 0

endm

4

endsel macro

a4 end of selects generate case list

gencase Accntr+hecnt jilast case

gernslab Xcento*ecnt Sicase list

13 increment “select” count

cent set centt+l

endm

Listing 9-24b. Library for SELECT Statement

You use SELNEXT, shown at the top of Listing 9-24b, to delimit cases. The
GENCASE utility macro is invoked which, in turn, generates a JMP instruction for

the previous group, if this is not group zero, and then produces the appropriate case
entry label. SELNEXT also increments the select element counter ECNT to account
for yet another case.

172

Programmer’s Utilities Guide 9.3 Program Control Structures

Upon encountering the ENDSEL, the last macro in Listing 9-24b, GENCASE is
again called to generate the JMP instruction for the last case. GENSLAB then pro-
duces the select vector by first generating the SELVn label, followed by a list of
ECNT DW statements that have the case label addresses as operands.

Listing 9-25a gives an example of a simple program that uses two SELECT groups.
The first SELECT group executes one of five different MVI instructions based on the
value of X. The second SELECT group assumes that the 8080 accumulator contains
the selector index and executes one of three different MVI instructions. The program
of Listing 9-25a illustrates generated control structures, and does not produce any
useful values as output. The sorted Symbol Table shown at the end of the listing
gives the generated label addresses for the individual cases.

Listing 9-25b shows a segment of the previous program with generated macro
lines. Note the case selection code following SELECT X at the end of the listing.

Listing 9-25c gives a more complete trace of the SELECT-ENDSEL group, showing
the actions of the macros as they expand for the second SELECT-ENDSEL group of
Listing 9-25a. The listing has been edited to remove the case selection code, which is
listed in Listing 9-25b, and the code generated for case number 2. Cross-reference
Listing 9-25c with the SELECT macro library given in Listings 9-24a and 9-24b if
you are confused about the actions of these macros.

173

9.3 Program Control Structures Programmer’s Utilities Guide

MACLIB SELECT

0000 SELECT xX

0010 3E00 MVI A10

0012 SELNEXT

0015 3E01 MYT Asi

0017 SELNEXT

OO1A 3E02 MUT As2

001C SELNEXT

OOLF 3E03 MUI As3

0021 SELNEXT

0024 3E04 MVI As4

0026 ENDSEL

1

0033 SELECT

0040 0600 MYI B:+0

0042 SELNEXT

0045 0601 MYT Bri

0047 SELNEXT

004A 0602 MVI Bi2

00ac ENDSEL

4

0055 xX: DS 1

0010 CASEQBO 6015 CASEOB1 OO1A CASEDB2 OO1F CASEN@3 G02d4 CASEO 4

0029 CASEQ@5 0040 CASE1@0 0045 CASE1@1 OO4A CASE1@2 GOdF CASEL 3

0033 ENDSO 0055 ENDS! 0029 SELVO OOdF SELY1 0055 K

Listing 9-25a. Sample Program Using SELECT with —M +S Options

174

Programmer’s Utilities Guide

0000+3A5500

0003+212900

OOOB+5F

0007+1600

0009+19

000A+19

OOOB+5E

000C+23

OOOD+56

OOOE+EB

OOOF+ES

0010 3E00

0012+C33300

0015 3EO1

0017+033300

OOLA 3E02

001C+C33300

OOLF 3E03

0021+C33300

0024 3604

0026+033300

0029+1000

002B+1500

002D+1A00

O002F+1F00

0031+2400

9.3 Program Control Structures

MACLIB SELECT

SELECT X

LDA x

LXI H+SELVO

MOV E+A

MYT D0

DAD D

DAD 0

MOV EyM

INX H

MOV D+M

XCHG

PCHL

MVI A+0

SELNEXT

JMP ENDSO

MYI Art

SELNEXT

JMP ENDSO

MYT Ar2

SELNEXT

AMP ENDSO

MVI Arg

SELNEXT

JMP ENDSO

MUI Aid

ENDSEL

JMP ENDSO

DW CASEOBO

DW CASEOBI

DW CASEOR2

DW CASEO0B3

DW CASEO@4

Listing 9-25b. Segment of Listing 9-25a with Mnemonics

175

9.3 Program Control Structures

+
 +

+

+

0033+214F00
+

0000+#

0040 0600

+
+

0042+C35500
+

+

+

0002+8
+

+

+

0000+

O04F +4000

+

OOO1Lt+s

+

176

Listing 9-2Sc.

SELECT

IF NOT NUL

LDA

ENDIF

GENSLXI %CCNT

LXI HySELV1

ENDM

tindexing code similar to Fig 50b)

ECNT SET 0

GENCASE ZCCNT »ZECNT

IF 0 GT 0

JMP ENDS1

ENDIF

CASE1@0:

ENDM

ECNT SET ECNT+1

ENDM

ENDM

MVI B+0

SELNEXT

GENCASE ZCCNT +ZECNT

IF 1 GT 0

JMP ENDS1

ENDIF

CASE1@1:

ENOM

ECNT SET ECNT+1

ENDM

(remaining cases are similar!

ENDSEL

GENSLAB ZCCNT +ZECNT

SELVI1:

ECNT SET rf)

REPT 3

GENELT 1+%ECNT

ECNT SET ECNT+1

ENDM

GENELT 1,4ECNT

DW CASE1@0

ENDM

ECNT SET ECNT+1

GENELT 1,+ZECNT

Programmer’s Utilities Guide

Segment of Listing 9-25a with +M Option

Programmer’s Utilities Guide 9.3. Program Control Structures

0051+4500 DW CASE1@1

+ ENDM

O002+# ECNT SET ECNT+1

+ GENELT 1+%ECNT

0053+4A00 DW CASE1@2

+ ENDM

0009+8 ECNT SET ECNT+1

+ ENDM

+ ENDS1:

+ ENDM

O002+8 CCNT SET CCONT+1

+ ENDM

Listing 9-25c¢. (continued)

It is now possible to show a complete program that uses the WHEN, DOWHILE,
and SELECT groups. Listing 9-26 shows a program similar in function to a more
complicated program that interacts with the console in executing single-character
input commands. The two CP/M programs ED and DDT both take this general form.
(See the CP/M documentation for details.) A single letter selects a single action that

might correspond to an edit request in the ED program or a debug request in DDT.
Upon completion of each command, control returns to the main loop to accept
another single-letter command.

The program given in Listing 9-26 begins by loading the macro definitions for the
SIMPIO, NCOMPARE, WHEN, DOWHILE, and SELECT operations. Several mes-
sages are then sent to the console device, followed by a single DOWHILE-ENDDO
group that encompasses nearly the entire program. The DOWHILE group is con-
trolled by the X,NEW,%‘D’ test and thus continues to loop while the X character is

not the letter D. On each iteration of the DOWHILE group, a single letter is read
from the console and converted to upper-case, if necessary. To ensure that the letter
is in the proper range of values, two WHEN groups follow that convert illegal values
to the letter E, which subsequently produces an error response.

177

9.3 Program Control Structures Programmer’s Utilities Guide

Following the WHEN tests in Listing 9-26, the character must be in the range A

through E. Before indexing into the SELECT group, this value is normalized to the

absolute value 0 through 4, corresponding to each of the possible values. The SELECT

statement uses the value in the accumulator to select one of the five cases, producing

the appropriate response to the letters A through D, or an error response for the last

case. Upon completion of the SELECT group, control returns to the DOWHILE

where the last character typed is tested against the letter D. If X is not equal to the

letter D, the iteration continues. Otherwise, the DOWHILE completes and control

returns to the console processor.

The control structures presented in this section are representative of the forms that

can be implemented. Additional facilities, such as the controlled iteration found in

FORTRAN DO loops or ALGOL FOR loops can be implemented using essentially

the same techniques used for the WHEN and DOWHILE. Further, subroutine

parameters can also be defined with macro libraries. It is relatively easy to include

control substructures for the stack machine given in the previous section, allowing

machine independent programming of control structures and arithmetic operations.

178

Programmer’s Utilities Guide 9.3 Program Control Structures

0100 ORG 100H sBEGINNING OF TPA

MACLIB SIMPIO ‘sSIMPLE READ/WRITE

MACLIB NCOMPARESCOMPARISON OPS

MACLIB WHEN s"WHEN" CONSTRUCT

MACLIB DOWHILE i"DOWHILE" CONSTRUCT

MACLIB SELECT i"SELECT" CONSTRUCT

?

i USING THE CCP‘S STACK» READ INPUT

i CHARACTERS: UNTIL A 2 IS TYPED

0100 WRITE “SAMPLE CONTROL STRUCTURES>

0127 WRITE <TYPED SINGLE CHARACTERS FROM?

0150 WRITE #“A TO D+ I*’*’LL STOP ON D>

1

0174 DOWHILE XsNEQs%'D’

O17C WRITE <TYPE A CHARACTER:

019C READ X

01Aad WHEN X+GEQs% 7A"

O1AC SABFOZES5F LDA X! ANI OSFH! STA K SCONY CASE

01B4 ENDOW

O1B4 WHEN X+LS5+%'A"

O1BC 3E4532BF 02 MYT Av ‘E’! STA X SSET TO ERROR

o1ct ENDW

O1ct WHEN KsGTRs%/E’

O1CC SEA4S32BF02 MYT Ay‘E’! STA X SET TO ERROR

O1D1 ENDW

O1DL SABFO2DG41 LDA XK! SUI ‘A’ NORMALIZE TO 0-4

01D6 SELECT :BASED ON X IN ACCUM

OL1ES WRITE <YOU SELECTED CASE A»

0204 SELNEXT

0207 WRITE <YOU SELECTED CASE B>

0228 SELNEXT

0228 WRITE <YOU SELECTED CASE C?

024C SELNEXT

O24F WRITE <YOU SELECTED CASE D>

0270 WRITE “SQ I1’°’M GOING BACK*!>

0290 SELNEXT

0293 WRITE <BAD CHARACTER:

O2AE ENDSEL

02BB ENDDQ

O2BE C9 RET sBACK TO CCP

; DATA AREA

O2BF 00 Xt DB re) #X=200 INITIALLY

Listing 9-26. Program Using WHEN, DOWHILE, and SELECT

179

9.4 Operating System Interface Programmer’s Utilities Guide

9.4 Operating System Interface

In a general purpose computing environment, macros often provide systematic and
simplified mechanisms for programmatic access to operating system functions.
Throughout this manual, the examples have shown various low-level calls to the
CP/M operating system that implement functions such as single-character input, sin-
gle-character output, and full message output. In each case, the macros simplify the
operations by performing the low-level register setups and calls that perform the
function.

This section introduces more comprehensive operating system interface macros and
shows a sample macro library that allows simplified disk file operations for sequen-
tial stream input/output operations. The principal macros of this library that allow
file access are listed below:

FILE set up a named file for subsequent disk operations.

GET read a single character from specific data source.

PUT send a character to a specific data destination.

FINIS terminate file access for specific group of files.

ERASE remove a specific disk file.

DIRECT search for a specific file on the disk.

RENAME rename a specific disk file.

Before introducing the macro library that performs these functions, the operation of
each macro is described, followed by a simple example.

The FILE operation takes the form:

FILE mode,fileid,diskname, filename, filetype,buffsize,buffadr

where the individual parameters of the FILE macro describe a file to be accessed in
the program. The parameter values for the FILE macro are:

mode INFILE (input file)
OUTFILE (output file)

SETFILE (set up filename for ancillary functions)

180

Programmer’s Utilities Guide 9.4 Operating System Interface

fileid file identifier for internal reference throughout the program.

diskname disk drive name (A, B,...) containing the file being accessed, or
empty if the default drive is being used.

filename the filename (up to eight characters) of the disk file being accessed;
if “1” or “2” is specified, then the first or second default filename
is used, respectively.

filetype the filetype (up to three characters) of the file being accessed; if
“4? or 2”? has been specified for the filename parameter and an
empty filetype is given, then the filetype is taken from the selected
default filename; otherwise, the filetype is set to blanks.

buffsize the size in bytes of the buffer area used for this file; the value is
rounded down to an integral multiple of the disk sector size; if
the rounding produces a result that is too small, or if the param-
eter is empty, then only one sector is buffered.

buffaddr the address of the buffer area to use during accesses to this file;
if empty, then the buffer address is assigned automatically.

For example, the FILE statement

FILE INFILE +2Z0T »A+NAMES sDAT

sets up the file NAMES.DAT on disk drive A for subsequent access. Internal to the

program, this file is referenced by the name ZOT. Further, the buffer address is
assigned automatically, and the buffer size is set to one sector (usually 128 bytes).
Larger buffers are useful in minimizing rotational delay on the disk due to missed

sectors during the file operations. If the NAMES.DAT file does not exist, an error

message is sent to the console, and the program aborts. For example, an output file

can be created using the statement:

FILE OUTFILE +ZAP>B+ADDRESS +DAT +1000

which creates the file ADDRESS.DAT on drive B for subsequent output, referenced

internally by the name ZAP. In this case, the buffer size is set to 1000 bytes (rounded

down to 7 * 128 = 896 bytes), and the base address of the buffer is set automati-

cally. The sample programs show alternative FILE options.

181

9.4 Operating System Interface Programmer’s Utilities Guide

The GET macro invocation takes the form:

GET device

where device specifies a simple peripheral or a disk file defined by a previously
executed FILE statement. The GET statement reads one byte of data into the 8080
accumulator from the specified device. The possible device names are:

KEY console keyboard input

RDR reader device

fileid previously defined file identifier given in a FILE statement

The following GET invocations perform the functions shown to the right below.

GET KEY read one keyboard character.

GET RDR read one reader character. (See the CP/M documentation for

READER entry point definition.)

GET ZOT read one character from the file given by the internal name ZOT.
(The NAMES.DAT file if the above FILE statement had been

executed.)

The end-of-data can be detected in two ways: if the file contains character data, the
end-of-file is detected by comparing the individual characters with the standard
CP/M end-of-file mark, which is a CTRL-Z (hexadecimal 1AH). The GET function

also returns with the 8080 zero flag set to true if a real end-of-file is encountered, so
that pure binary files can be read to the end-of-data.

The PUT macro performs the opposite function from the GET macro. The PUT
invocation takes the form:

PUT device

182

Programmer’s Utilities Guide 9.4 Operating System Interface

where device specifies a simple output peripheral or a disk file defined previously

using the FILE macro. The possible device names are

CON console display device
PUN system punch device
LST system listing device
fileid previously defined output file identifier

These PUT invocations perform the following functions:

PUT CON write the accumulator character to the console.

PUT PUN write the accumulator character to the punch.

PUT LST write the accumulator character to the list device.

PUT ZAP write the accumulator character to the file with the internal name

ZAP. (The ADDRESS.DAT file in the preceding example.)

Note that the character in the accumulator is preserved during the invocation, so

that it can be involved in further tests or macro invocations following the PUT

statement.

The FINIS statement closes a file or set of files upon completion of file access. In

the case of an output file, the internal buffers are written to disk, and the filename is

permanently recorded on the disk for future access. The form of the FINIS invocation

takes the form:

FINIS filelist

where filelist is a single internal name that appeared previously in a file statement or

a list of such filenames, enclosed within angle brackets and separated by commas.

183

9.4 Operating System Interface Programmer’s Utilities Guide

Although it is not necessary to close input files with the FINIS statement, it is good
practice, because the file close operation might be required on future versions of the
macro library. An example of the FINIS statement is:

FINIS ZAP

write all buffers for the ZAP file, and record the file in the disk directory; in the
above example, the ADDRESS.DAT file is closed.

The ERASE macro allows programmatic removal of a disk file given by the speci-
fied file identifier defined in a previous FILE statement. If the file identifier is not used
in a GET or PUT statement, then the FILE statement can have the mode SETFILE.
This mode requires less program space than an INFILE or OUTFILE parameter.
Examples of the ERASE statement are given later in this section. In the example

ERASE 2Z0T

however, the file NAMES.DAT is removed from the disk, given the previous FILE
statement that defines ZOT.

The DIRECT macro searches for a specific file on the disk. Similar to the ERASE
macro, the file identifier must be previously given in a FILE statement using one of
the three possible file modes. The DIRECT invocation sets the 8080 zero flag to false
if the file is present on the disk. In both the ERASE and DIRECT macros, the file
identifiers can reference filenames and types with embedded ? characters, similar to
the normal CP/M DIR command, where the question mark matches any character in
the filenames being scanned. The macro invocation

DIRECT ZAP

for example, returns with the zero flag cleared if the file ADDRESS.DAT is present,
and with the zero flag set if the file is not present, given the original FILE statement
involving the ZAP file identifier.

The RENAME macro takes the form:

RENAME newfile,oldfile

where newfile and oldfile are file identifiers that have appeared in previous FILE
statements. The RENAME macro changes the filename given by oldfile to the file-

184

Programmer’s Utilities Guide 9.4 Operating System Interface

name given to newfile. The file identifiers newfile and oldfile must appear in previously
executed FILE statements, but can have a mode of SETFILE if they are not used in GET
or PUT macros. If the drive names for oldfile and newfile differ, then the drive name of

newfile is assumed. The sequence of macro invocations

FINIS ZAP iCLOSE ZAP

ERASE z0T IREMOVWE ZOT

RENAME ZOT +ZAP SCHANGE NAMES

for example, first closes the ADDRESS.DAT file on drive B, then erases the
NAMES.DAT file on drive A. The RENAME macro then changes the ADDRESS.DAT
file to the name NAMES.DAT file on drive A.

Listing 9-27 shows the use of the FILE, GET, PUT, and FINIS macros in a working
program. This program reads an input file, specified at the Console Command Pro-
cessor level as the first filename, and translates each lower-case alphabetic character
to upper-case. The output is sent to the file given as the second parameter at the
command level. For a program assembled, loaded, and stored as CASE.COM on the

disk, a typical execution would be

CASE LOWER.DAT UPPER.DAT

This causes the CASE.COM file to load and execute in the Transient Program Area.

Before execution, the Console Command Processor passes LOWER.DAT as the first

default filename, and UPPER.DAT as the second filename. (See the CP/M documen-

tation for exact details.)

In Listing 9-27, the CASE program begins by initializing the stack pointer to a

local stack area in preparation for subsequent subroutine calls that occur within the

various macros in the SEQIO macro library. The first default file specification is then

taken as the SOURCE file, as defined in the first FILE macro. The second FILE

statement assigns the second default file specification as an output file with the inter-

nal name DEST. In both cases, the FILE statements open the respective files and

initialize the buffer areas, consisting of 2000 bytes rounded down to a multiple of

the sector size.

Note that if the UPPER.DAT file already exists, the second file statement removes

the existing file and creates a new UPPER.DAT file before continuing. In either case,

the appropriate error messages appear at the console if the files cannot be accessed

or created in the FILE statements.

185

9.4 Operating System Interface Programmer’s Utilities Guide

0100 ORG 100H

i COPY FILE 1 TO FILE 2+ CONVERT

; TO UPPER CASE DURING THE COPY

j AND ECHO TRANSACTION TO CONSOLE

MACLIB SEQIO sSEQUENTIAL 1/0 LIB

9000 = BOOT EQU OOOOH iSYSTEM REBOOT

OOSF = UCASE EQU SFH jUPPER CASE BITS

'

0100 317003 LXI SP +STACK

j DEFINE SOURCE FILE:

i INFILE = INPUT FILE

i SOURCE = INTERNAL NAME

i (NUL) = DEFAULT DISK

i 1 = FIRST DEFAULT NAME

i (NUL) = FIRST DEFAULT TYPE

i 2000 = BUFFER SIZE

0103 FILE INFILE sSOURCE +s +1++2000

4

i DEFINE DESTINATION FILE:

; QUTFILE = OUTPUT FILE

i DEST = INTERNAL NAME

i (NUL) = DEFAULT DISK

j 2 = SECOND DEFAULT NAME

j (NUL) = SECOND DEFAULT TYPE

j 2000 = BUFFER SIZE

O1EC FILE OUTFILE +DEST + +25 +2000

$

j READ SOURCE FILE: TRANSLATE, WRITE DEST

O2EA CYCLE: GET SOURCE

O2ZED FELA CPI EOF sEND OF FILE?

O2EF CAQCO3 Jz ENDCOPY #SKIP TO END IF SO

i NOT END OF FILE» CONVERT TQ UPPER CASE

O2F2 FEG1 CPI va’ iBELOW LOWER CASE "A"?

O2F4 DAFEO2 JC NOCONY SKIP IF SO

02F7 FE7B CPI 'z/4tl jBELOW LOWER CASE “z"?

O2F9 D2FEO2 JNC NOCONY §SSKIP IF ABOVE

; MASK OUT LOWER CASE ALPHA BITS

O2FC EGSF ANI UCASE

O2FE NOCONY: PUT CON jWRITE TO CONSOLE

0306 PUT DEST sAND TO DESTINATION FILE

0309 C3EAQ2 JMP CYCLE sFOR ANOTHER CHARACTER

Listing 9-27. Lower- to Upper-case Conversion Program

186

Programmer’s Utilities Guide 9.4 Operating System Interface

ENDCOPY:

030C FINIS DEST sEND OF DUTPUT

034D C30000 JMP BOOT iBACK TO CCP

5

0350 oS 32 316 LEVEL STACK

STACK:

BUFFERS:

1270 = MEMSIZE EQU BUFFERS+@NXTB jPROGRAM SIZE

0370 END

Listing 9-27. (continued)

The CASE program main loop is shown in Listing 9-27 between the CYCLE and

ENDCOPY labels. Each successive character is read from the SOURCE file (in this

case, LOWER.DAT) and tested to see if the character is in the range of a lower-case

a to lower-case z. If in this range, the character is changed to upper-case. At the

NOCONV label, the (possibly translated) character in the accumulator is sent to the

console device using the PUT CON macro and then sent to the DEST file (in this

case, UPPER.DAT). Looping continues back to the CYCLE label where another

character is read and translated.

Because the data file is assumed to consist of a stream of ASCII characters, the

end-of-file is detected when a CIRL-Z is encountered. When this character is found,

control transfers to the label ENDCOPY where the DEST file is closed using the

FINIS macro. An error in writing or closing the DEST file produces an error message

at the console, and the program aborts immediately. Upon completion of the pro-

gram, control returns to the console processor through a system reboot JMP BOOT).

The SEQIO library macros assume that all file buffers are located at the end of the

user’s program, as shown in Listing 9-27. In particular, the label BUFFERS must

appear as the last label in the user’s program, and becomes the base of the buffers

allocated automatically in the FILE statements. The actual memory requirements for

the program can be determined using an EQU as shown in Listing 9-27, with a

statement of the form:

MEMSIZE EQU BUFFERS+@NXTB

that produces the equated value 1270H at the left of the listing. In this case, the

program does not use the memory area beyond 1270H.

187

9.4 Operating System Interface Programmer’s Utilities Guide

The macro library for SEQIO is shown in Listing 9-28. This listing is the most
comprehensive macro library shown in this manual, containing an instance of nearly
every macro facility available in MAC. The following discussion of SEQIO outlines
the general functions of each macro, but it is left to you to investigate the exact
operation of the library.

The SEQIO library begins with generally useful equates and utility macros. The
label FILERR at the beginning becomes the destination of transfers upon encounter-
ing a file operation error. Because this is a SET statement, it can be changed in the
user's program to trap error conditions rather than rebooting. The use of FILERR is
apparent throughout the macro library.

i sequential file i/o library

H

filerr set OOO0Oh sreboot after error

@bdos eau O00Sh ibdos entry point

@tfcb equ Q0Sch jdefault file control block

@tbuf equ Oo8Oh jdefault buffer address

j

j tdos functions

@msg equ 9 isend message

@opn equ 15 ifile open

Bcls equ 16 jfile close

@dir equ 17 sdirectory search

@del equ ig ifile delete

@frd equ 20 jfile read operation

@fwr equ 21 5file write operation

@mak equ 22 sfile make

Bren equ 23 jfile rename

@dima equ 26 iset dma address

}

@sect equ 128 jsectar size

eof equ lah jend of file

cr equ Odh jcarriage return

lf equ Qah jline feed

tab equ Ooh thorizontal tab

H

@key equ 1 ikeyboard

@con equ Z jconsole display

@rdr equ 3 ireader

@pun equ 4 iPunch

i} slist device @ist equ

Listing 9-28. Sequential File Input/Output Library

188

Programmer’s Utilities Guide 9.4 Operating System Interface

H Keywords for "file" macro

infile eau 1 jinput file

outfile equ 2 jouteutfile

setfile equ 3 isetuPp name only

5

i the following macros define simple sequential

3 file operations:

i

fillnam macro ferc

cn) fill the file name/type given by fo for co characters

@cnt set c bimax length

1rec ?ferfe sifill each character

if may be end of count ar nul name

if @cnt=0 or nul ?fc

exitm

endif

db "ROFC’ gs fill one more

@cnt set @cnt-1 idecrement max length

endm fiof irpc 7fe

u5

i) Pad remainder

rept @cnt si@cnt is remainder

db nf jipad one more blank

endm siof rept

endm

j

filldef macro fobstfls?in

uf fill the file name from the default feb

on) for length ?in (9 or 12)

local Psub

JmP psub jiJump past the subroutine

@def: jdithis subroutine fills from the tfeb (+16)

mou arm higet next character to a

stax d fistore to fcbh area

inx h

ink d

der c sicount length down to 0

un2 @def

ret

Listing 9-28. (continued)

189

9.4 Operating System Interface Programmer’s Utilities Guide

ce) end of fill subroutine

Psubs:

filldef macro Pfcbhs?fr?t

Lxi hr @tfcbt?f sieither @tfcb or @tfob+16

1xi dy?feb

myi c+? tilength = 9912

call @def

endm

filldef fob s?fi+?in

endm

H

fillnxt macro

uy initialize buffer and device numbers

@nxtb set 0 tinext buffer location

O@nxtd set @lstt+l Finext device number

fillnxt macro

endm

endm

fillfceb macro fidsdnefnoeftsbsrba

a4 fill the file control block with disk name

cn) fid is an internal name for the file:

on) dn is the drive name (asb..)+ or blank

on) fn is the file names or blank

on ft is the file type

i bs is the buffer size

a4 ba is the buffer address

local Pfcb

a) set up the file control block for the file

a5 look for file name = 1 or 2

@c set 1 isassume true to begin with

irtpc ?crfn iilook through characters of name

if not (/R?C’ = “1! or ‘RPC’ = '2")

@c set 0 Siclear if not 1 or 2

endm

a) @c is true if fn = i or 2 at this Point

if @c s3then fn = 1 or 2

4 fill from default area

if nul ft Fitype specified?

@c set 12 sibath name and type

else

Listing 9-28. (continued)

190

Programmer’s Utilities Guide

@c set 9 Siname only

endif

filldef fcb&fids(fn-1)#16:8c j3to select the fcb

Jmp pfcb sipast fob definition

ds @c sispace for drive/filename/type

fillnam ft+i2-@c viseries of db’s

else

Jmp Pfch viPast initialized fcb

if nul dn

db 0 Siuse default drive if name is zero

else

db ‘RDN'-‘/A‘HI. jiuse specified drive

endif

fillnam fns8 sifill file name

5 now generate the file tyre with padded blanks

fillnam fts3 ifand three character type

endif

feb&fid equ $-12 sibeginning of the fob

db 0 Ssextent field OO for setfile

a4 now define the 3 byte field» and disk map

ds 20 VixexerosdmO...dml5+cr fields

45

if fid&typ<a2 trin/outfile

i generate constants for infile/outfile

fillinxt 53@nxtb=0 on first call

if bs+O¢@sect

i) bs not supplied» or too small

Bbs set @sect s3default to one sector

else

15 compute even buffer address

@bs set (bs/@sect)#@sect

endif

‘4

14 now define buffer base address

if nul ba

3 use next address after @nxtb

fidkbuf set bufferst@nxth

i count past this buffer

@nxtb set Bnxtb+ bs

else

fidkbuf set ba

endif

cr) fid&buf is buffer address

fidkadr:

dw fid&buf

Listing 9.28. (continued)

9.4 Operating System Interface

191

9.4 Operating System Interface Programmer’s Utilities Guide

ui

fidksiz equ @bs ssliteral size

fid&len:

dw Bbs tibuffer size

fid&etr:

ds 2 jiset in infile/outfile

5 set device number

@&fid set @nxtd sinext device

@nxtd set Onxtd+i

endif isof fid&tyP<=2 test

pfcb: endm

file macro mdsfidrdnefroeftrbsrba

create file using mode md: y

5 infile = t input file

ui outfile = 2 output file

4 setfile = 3 setup fcb

on) (see fillfcb for remaining parameters)

local PsubsmsdsPmsg

local PndseodseobsPnc

construct the file control block ee
a3

ae
a

fid&tye equ md siset mode for later ref’s

fillfcbh fidsdnsfneftrbssyba

if md=3 sisetur fob only+ so exit

exitm

endif

i) file control block and related Parameters

uy are created inline, now create io function

JimP psub Sipast inline subroutine

if md=t hsinput file

gethfid:

else

Put&fid:

push PSW jisave output character

endif

lhld fid&len tiload current buffer length

xchg tide is length

lhid fidketr siload next to get/put to hl

may aol sicompute cur-len

sub e

mow ash

sbb d sicarry if next<length

Jc Pnc ficarry if len gtr current

4 end of buffers fill/emety buffers

lxi h+0

shld fid&etr siclear next to get/Put

Listing 9-28. (continued)

192

Programmer’s Utilities Guide 9.4 Operating System Interface

pnd:

4 Process next disk sector:

xchg hifid&etr to de

Thid fid&len Sido not exceed length

cn de is next to fill/empty» hl is max len

mou are sicomPute next-len

sub 1 5$to get carry if more

may ard

sbb h s5to fill

une eob

iy carry gen’ed:s hence more to fill/emety

Thid fidkadr jibase of buffers

dad d sohl is next buffer addr

xchg

mud c+8@dma fiset dma address

call @bdos tidma address is set

Ixi dsfcba&fid fifcbh address to de

if md=1 giread buffer function

myi cr@frd isfile read function

else

mui c*@fwr ifile write function

endif

call @bdos iird/wr to/from dma address

ora a jicheck return code

Jnz eod fiend of file/disk?

MW not end of file/disk» increment length

lxi ds@sect fisector size

lhld fidkptr Sinext to fill

dad d

shld fidketr siback to memory

JmP pnd jiProcess another sector

35

eod

WW end of file/disk encountered

if md=1 Siinput file

lhld fid&etr sslength of buffer

shld fid&len streset length

else

i fatal errors end of disk

local emsg

mud c+O@msg Ftwrite the error

Txi dsemsg

call @bdos sserror ta console

POP PSW tiremove stacked character

Jmp filerr jsusually reboots

Listing 9-28. (continued)

193

9.4 Operating System Interface Programmer’s Utilities Guide

emsg: db crelf

db ‘disk full: &FID’

db "$/

endif

a9

eob

is end of buffer, reset dma and Pointer

lxi ds@tbuf

mui c+Bdma

call @Bbdos

lxi hed

shld fidketr iinext to get

44

pnci

i Process the next character

xohg Siindex to get/put in de

lhid fidkadr jibase of buffer

dad dq jiaddress of char in hl

xchg jtaddress of char in de

if md=t jjinput processing differs

lhld fid&len jiifor eof check

mov ay] 5700007?

ora h

mui aveof Ssend of file?

rz sizero flag if so

ldax d finext char in accum

else

3 store next character from accumulator

POP PSW Sirecall saved char

stax d jicharacter in buffer

endif

lhid fid&eptr fiindex to get/put

inx h

shld fid&etr ispointer updated

i) return with non zero flag if get

ret

3

Listing 9-28. (continued)

194

Programmer’s Utilities Guide

psubi

msg:

jipast inline subroutine

xTa a sizero to acc

sta feb&fidt+l2 hiclear extent

sta fob&fidt32 ticlear cur rec

1xi hofid&siz sibuffer size

shld fidk&len siset buff len

if md=1 sFinput file

shld fid&etr sicause immediate read

mui cv@opn ssopen file function

else droutput file

xi hid Siset next to fill

shld fid&etr ispointer initialized

mut cr@del

lxi dyfcob&fid didelete file

call @bdos sito clear existing file

mui c+@mak ‘sicreate a new file

endif

now open (if input)» or make (if output)

1xi difcb&fid

call Bbdas tiopen/make ok?

intr a 53255 becomes 00

Jnz Pms 9

mud c+@msd Ssrprint message function

lxi diamsg jierror message

cali @bdos tiprinted at console

JmpP filerr $to restart

do crelf

if mda pinPut message

db ‘no &FID file’

else

db ‘na dir space: &FID’

endif

db '$/

endm

macra fid

close the file(s) given by fid

ire of fid>

skip all but output files

if PPREYPEZ

local eob?speofrmsgysPpmsg

write all partially filled buffers

Listing 9-28. (continued)

9.4 Operating System Interface

195

9.4 Operating System Interface

ecb?:

Pmsgi

erase

196

jsare we at the end of a buffer?

lhld ?fRetr jinext to fill

mov arl dion buffer boundary?

ani (@sect-i) and Offh

Jnz Peof siput eaf if not 00

if Bsect 255

check high order byte also

moy arh

ani (@sect-1) shr 8

Jnz Peof iiput eof if not 00

endif

arrive here if end of buffers set length

and write one more byte to clear buffs

shld Ofklen siset to shorter length

mV 1 areof Siwrite another eof

Push PSW gisave zero flag

call Puth?f

POP PSw s3recall zero flag

Jnz eob? jinon zero if more

buffers have been writtens close file

mui cr@cls

xi difcba&?f tiready for call

call @bdos

int a $3255 if err becomes 09

Jnz pms g

file cannot be closed

mud ci@msg

Txi dimsg

call @bdos

Jmp Pmsg sierror message printed

do crelf

db ‘cannot close &7F’

db ‘$/

endif

endm ssof the irp

endm

macro fid

delete the file(s) given by fid

ire PF si fid?

mud c@del

Txi di fcba?f

call @bdos

endm sof the ire

endm

Listing 9-28. (continued)

Programmer’s Utilities Guide

Programmer’s Utilities Guide

direct

i

j

rename
oe
9

@rens:

rend:

Psubs

rename

macro fid

perform directory search for file

sets zero flag if not Present

lxi dyfcb&fid

my i c+@dir

call @bdos

int a $900 if not Present

endm

macro newsold

rename file given by “old” to “new

local psubsrend

include the rename subroutine once

JmP psub

sirename subroutines hl is address of

Siold fob» de is address of new fcb

push h fisave for rename

lxi biG $3b=00+c=16

dad b toh] = old febtié

ldax d sinew fob name

mou ya Sito old fcb+i6

ink d Sinext new char

inx h Sinext fob char

der c Sicount down from 16

JnZz rend

old name in first half+ new in second half

POP d s3recall base of old name

my i cs@ren tirename function

call @bdos

ret Sirename complete

mactTo n+o isredefine rename

lei hefcb&o $so0ld fob address

xi drfcb&m sinew fot address

call @rens $jrename subroutine

endm

Tename newold

endm

macro dey

read character from device

if @Bkdev <= Bist

Listing 9-28. (continued)

9.4 Operating System Interface

197

9.4 Operating System Interface Programmer’s Utilities Guide

v4 SimPle input

mud c;@k&deu

call @bdos

else

call getkdev

endm

4

;

Put macro dey

3 write character from accum ta device

if @&deyv <= Bist

i Simple outPut

Push PSW yisave character

my d c+@&dev fswrite char function

mou era fiready for outrut

call @bdos diwrite character

POP PSW iirestore for testing

else

call Put&dey

endm

Listing 9-28. (continued)

The equates that follow define the usual BDOS entry points and functions along
with the disk sector size (@SECT) and special nongraphic characters (EOF, CR, LF,

and TAB). The equates for @KEY through @LST are used in the GET and PUT

macros to determine the source or destination device. The INFILE, OUTFILE, and

SETFILE equates are used in the FILE macro as mnemonics for the file mode attribute.

FILLNAM is a utility macro used in the construction of a File Control Block.
FILLNAM accepts a filename or filetype along with a field size and builds a sequence
of DBs that fill the name or type field with padded blanks.

FILLDEF is a utility macro similar to FILLNAM, but FILLDEF fills the File Con-
trol Block name or type field from the default File Control Block at @TFCB or

@TFCB+ 16. FILLDEF is invoked to extract either the default filename (first eight
characters) or default filetype (following three-character field).

The FILLDEF macro constructs an inline subroutine to perform the data move
operation the first time it is invoked and calls the inline subroutine (@ DEF) on
subsequent invocations.

198

Programmer’s Utilities Guide 9.4 Operating System Interface

FILLNXT initializes two assembly time variables: @NXTB and @NXTD. @NXTB

counts the accumulated size of buffers as they are automatically allocated in the FILE
statement. @NXTD counts files in the FILE macro for later reference in GET and

PUT statements. They are included within a macro, so that they are properly initial-
ized in the two successive passes of the macro assembler. FILLNXT is invoked by
the FILE macro where the expansion initializes @NXTB and @NXTD. FILLNXT
then redefines itself as an empty macro, so that subsequent FILE invocations do not

reset the two counters.

The macro FILLFCB constructs a File Control Block in the CP/M standard format,

where FID is the file identifier; DN is the disk name; FN is the filename; FT is the
filetype; BS is the buffer size, and BA is the buffer address, as described in the FILE
statement above. Recall that some of these parameters might be empty, causing
default conditions to be selected.

The FILLFCB macro begins by searching for a “1” or a “2” as the FN parameter,
indicating that default name 1 or 2 is to be selected for the file. The IRPC loop
involving ?C results in a value of 1 for @C if either FN=1 or FN=2, and a value
of 0 for @C if FN is not 1 or 2. The FILLFCB macro then selects either the default

name or the user-specified name along with the default or user-specified drive num-
ber. The equate for FCB&FID then produces the address of the File Control Block
for the file identifier followed by DB 0 for the extent field and DS 20 for the remain-
der of the File Control Block.

The remainder of the FILLFCB macro is devoted to storage allocation for buffer
areas. The @BS variable is set to the buffer size after rounding and size checks.
FID&BUF then becomes the address of the file buffer area, and FID&ADR labels a

DW containing this literal value. FID&SIZ becomes the literal size of the buffer, and
FID&LEN labels a DW containing the literal size. FID&PTR is also allocated as a
double byte that subsequently holds the buffer index of the next character to get or
put in the file. All of these values are used in the file operations that occur later.

The principal file access macro, FILE, sets up the File Control Block, buffers, and

access subroutines for a file. Similar to the FILLFCB macro, the parameters FID, DN,

FN, FT, BS, and BA describe the particular characteristics of a file. The MD param-

eter, however, indicates the file mode and must have the value 1, 2, or 3. The FILE

macro begins by assigning the mode value to FID&TYP, so that subsequent macros

can determine the type of access for this file. The FILLFCB macro is then invoked to

construct the File Control Block for this macro and sets generally useful parameters

for the file, as discussed previously. The FILE macro then generates the label GET& FID

for input files or PUT&FID for output files, followed by a subroutine that GETs a

single character or PUTs a single character for this file.

199

9.4 Operating System Interface Programmer’s Utilities Guide

The GET&FID reads a single character from the input buffer and, when the
input buffer is exhausted, fills the buffer area again in preparation for following GET
operations. Upon detecting a real end-of-file, the EOF character is returned with the
zero flag set. Similarly, the PUT&FID subroutine generated for output files stores the
accumulator character into the output buffer at the next character position and,
when the buffer is full, writes the sequence of sectors and returns to accept more
output characters. In the case of an output error, the appropriate message is printed,

and control transfers to FILERR, which usually remains at O000H, causing a system
reboot.

The generated code that follows the label PSUB initializes the file pointers to the
proper position for file access. The file extent and next record fields of the File
Control Blocks are zeroed for both input and output files. In the case of an input
file, the buffer index variable FID&PTR is set to the end of the buffer, causing an

immediate read operation when the first character is read. In the case of an output
file, the FID&PTR is set to zero, indicating that the next position to fill is the first
character of the output buffer. If the file is an output file, any duplicate files are
erased, and a new file is created. In both cases, the file is opened upon completion of
the FILE operation, and the buffer pointers are set for the next GET or PUT invoca-
tion. Note that the FILE statement is executable; it must occur ahead of the GET or

PUT statements for the file and performs its function each time control passes through
the FILE machine code.

The FINIS macro serves to empty the output buffers and close the file for output.
Input files are skipped because no actions need take place to close an input file. The
FINIS macro fills the remaining buffer segment (one size sector) with EOFs, then

writes the partially filled buffers.

The ERASE macro accepts a file identifier or list of file identifiers and successively
calls the BDOS to erase each file, while the DIRECT macro searches for a single file
given by the file identifier FID. In the case of the DIRECT macro, the zero flag is
cleared if the file exists. No prechecks are made to see if the file exists before the
ERASE operation takes place, although erasing a nonexistent file is of no conse-
quence. The DIRECT macro can, of course, be used to check if a file exists before
the ERASE is executed.

200

Programmer’s Utilities Guide 9.4 Operating System Interface

The RENAME macro allows a file to be renamed by accepting two file identifiers,
denoted by NEW and OLD. These file identifiers must correspond to the FCB names
created by FILLFCB in an earlier FILE invocation, and have the effect of renaming
the OLD file to the NEW filename. This is accomplished within the RENAME macro
through an inline subroutine, called @RENS, which is included the first time the
RENAME macro is invoked. The inline subroutine moves the new File Control Block
information (first sixteen bytes) into the second half of the old File Control Block in
the form required for a rename operation under CP/M. (See the CP/M documenta-
tion.) The BDOS is then called to perform the rename function. There is no check to
ensure the old file exists before the rename takes place.

The GET and PUT macros are similar in structure: both accept a device or file
identifier as the formal parameter DEV and perform the corresponding input or
output function on that device. If the device is a simple peripheral, the BDOS is
called directly to perform the input and output function. If, instead, the device name
was created by a FILE macro, the corresponding GET&FID or PUT&FID subroutine
is called to accomplish the input or output operation. Note that the accumulator is
preserved (PUSH PSW) upon output to a simple peripheral within the PUT macro,
the save/restore sequence is performed within the PUT&FID subroutine if the desti-
nation is a disk file.

Listings 9-29 shows the full expansion of a segment of the case conversion pro-
gram of Listing 9-27 (using the ““+M” assembly parameter). It begins with the
invocation of FILE, followed by FILLFCB, again followed by FILLDEF. The @ DEF
subroutine is included inline, and the FILLDEF macro is redefined to exclude the

subroutine. Upon completion of the FCB construction, the file parameters are gener-
ated, as shown in Listing 9-29b, along with the beginning of the GETSOURCE

subroutine.

The conditional assembly ignores the portions of this FILE macro expansion that
are related to output files but includes the machine code for the input SOURCE file.

In each case, the &FID labels result in names with the prefix or suffix SOURCE,

associating the generated labels with this internal name. The machine code that

initializes the File Control Block fields and buffer pointer follows the label ??0001.

Upon completion of the FILE macro, the SOURCE file is ready for access. Each call

to GETSOURCE reads one more character into the accumulator. Due to the length

of the expanded macro form, the remainder of the case translation program is not

shown.

201

9.4 Operating System Interface Programmer’s Utilities Guide

To illustrate the facilities of the SEQIO macro library, two additional programs
are given. The first, called PRINT, formats the output from the macro assembler for
printing on the system line printer. The second, called MERGE, performs a simple
merge operation on two disk files.

FILE INFILE sSOURCE : 115.2000

+ LOCAL PSUB +MSG +PM5SG

+ LOCAL PND »EQD »EDB+PNC

aqoO,+= SOURCETYP EQU INFILE

+ FILLFCB SQURCE+:1,;:2000,

+ LOCAL PFCB

O0dL+a eC SET 1

+ IRPC PC ert

+ IF NOT (/R7C’ = ‘Lt! OR ’RPC! = 424)

+ @C SET 0

+ ENDM

+ IF NQT (’t' = ‘tt! OR ‘1! = 2B")

+ @C SET 0

+ ENDM

+ IF @c

+ IF NUL

Gooc+# @C SET 12

+ ELSE

+ @C SET 9

+ ENDIF

+ FILLDEF FCBSOURCE s(1-1)*16+@C

+ LOCAL PSUB

OL103+C30F01 JMP e7 0009

+ @DEF:

OLOB+7E MOV AiM

O107+12 STAX 7

0108+23 INX B

0109413 INX D

010A+0D DCR c

O10B+C20601 JNZ @DEF

OLQE+C9 RET

+ PPOOOD!

+ FILLDEF MACRO OFCB s?F oy?

+ LXKI H» @TFCB+?F

+ LXI D»?FCB

+ MYT Cr?b

+ CALL @DEF

Listing 9-29. Sample FILE Expansion Segment

202

Programmer’s Utilities Guide

+

+

O10F+215C00

OLi2+111b0t

OLL5+0E0C

O1Li7+CD0601

+

+

O11A+C34401

O11D+

+

Oo0g+48 @CNT

+

@CNT

e
e
e

i

e
e

ee

eo

+

ENDM

FILLDEF

LXKI
WT
Na

MYT

CALL

ENDM

ENDM

JMP

DS

SET

IRPC

IF

EXITM

ENDIF

DB

SET

ENOM

IF

EXITM

REPT

DB

ENDM

ENDM

ELSE

JMP

IF

DB

ELSE

DB

ENOIF

FILLNAM

FILLNAM

ENDIF

OL1D+= FCBSOURCE

o129+00

O12 A+

+

+

a00d+#s ONKTB

O00G+8 @NXTD

+ FILLNX
+

DB

DS

IF

FILLNXT

SET

SET

ENDM

9.4 Operating System Interface

FCBSGURCE +(1-1)*16+@C

H,»@TFCB+(i-1) #16

D»FCBSOURCE

C,@c

@DEF

20008

@C

12-@C

PFCs

@BCNT=0 DR NUL ?FC

‘ROFL!
@CNT-1

@CNT=0 OR NUL

@CNT
tor

270008

NUL

0

ear aes

1:8

i)

EGU $-12

0

20

SOQURCETYP:=2

Q

@LST+1

MACRO

Listing 9-29. (continued)

203

9.4 Operating System Interface

+
+

+

+

O780+8

+

+

O370+#

O7B0+8

+

+

+

+

O13E+7003

O7BO+=
+

0140+8007
+

0142+

OQ0b+#

O007+8

O144+C3B401
+

+
+

+
+

+

O147+2A4001
O1GA+EB

O14B+2A4201
O14E+7D

014F +93
O1S0+7C
OLS1+9A

015Z2+DASD01
0155+210000

O158+224201

204

ENDM

IF

@BS SET

ELSE

@BS SET

ENDIF

IF

SOQURCEBUF

@NXTB SET

ELSE

SOURCEBUF

ENDIF

SOURCEADR:

DW

SOURCESIZ

SOURCELEN:

OW

SOURCEPTR:

DS

@BSOURCE

BNXTD SET

ENDIF

220008:

IF

EXITM

ENDIF

JMP

IF

GETSOQURCE:

ELSE

PUTSOURCE:

PUSH

ENDIF

LHLD

XCHG

LHLD

MOV

SUB

MOU

SBB

Je

LXI

SHLD

Listing 9-29.

2000+0¢ @SECT

@SECT

(2000/@SECT)*@SECT

NUL

SET BUFFERS+@NXTB
ENXTB+@BS

SET

SOURCEBUF

EQU @BS

@BS

? <

SET @NXTD

Q@NXTD+1

ENDM

INFILE=3

220001

INFILE=1

PSW

SOURCELEN

SOURCEPTR

Ark

E

AtH

D

2?0007

H+0

SOURCEPTR

(continued)

Programmer’s Utilities Guide

Programmer’s Utilities Guide 9.4 Operating System Interface

+ 2270004:

OLSB+EB XCHG

O15C+2A40001 LHLD SOURCELEN

OLSF+7B MOV AE

0160+95 SUB L

O1G1+7A MOV AsD

0162+9C SBB H

0163+D28F01 JNC 220006

0166+2A3E01 LHLD SOURCEADR

0169+19 DAD D

OLGA+EB XCHG

O1GB+OE1A MVI C»@DMA

016D+CD0500 CALL @BDOS

0170+111D01 LXT D + FCBSOURCE

+ IF INFILE=1

0173+0E14 MUI C,@FRD

+ ELSE

+ MVI C+ @FWR

+ ENDIF

0175+CD0500 CALL @BD0S

0178+B7 ORA a

0179+C28901 JNZ 220005

0170+118000 LXI D+ @SECT

OL7F+2A4201 LHLD SOURCEPTR

0182+19 DAD D

0183+224201 SHLD SOURCEPTR

0186+C35B01 JMP 220004

+ 220005:

+ IF INFILE=1

0189+2A4201 LHLD SOURCEPTR

018C+224001 SHLD SOURCELEN

+ ELSE

+ LOCAL EMSG

+ MYI C,+@MSG

+ LXI D+EMSG

+ CALL @BOOS

+ POP PSW

+ JMP FILERR

+ EMSG: DB CR+LF

+ DB ‘disk full: SQURCE’

+ DB ‘g!

+ ENDIF

Listing 9-29. (continued)

205

9.4 Operating System Interface

+

O1BF 4118000
OLS2+0E1A
o194+CD0500
01974210000
OL9A+224201

+

OLSD+EB
OL9E+2A3E01

oLa1+19
OLAZ+EB

+

01834204001
OLAB+7D
OLAT+BA
OLAB+3E1A
OLAA+CE
OLAB+IA

+

+

+
+

OLAC+2ZAGZ01
OLAF+23

OLB0+224701
O1B3+C9

+

OLBO+AF
O1B5+322901
O1B8 323001
OLBB+218007
OLBE+2 24004

+

OLCL+2240201
OLC4+OEOF

+

+
+

t+
+

et
4

+

206

PPOddG:

220007:

PPOOOL:

Listing 9-29.

D+ @TBUF

C+@O0MA

@BDCSs

Hid

SOURCEPTR

SOURCEADR

D

INFILE=1

SOURCELEN

Ask

H

AyEQF

PSW

SOURCEPTR

H

SOURCEPTR

A

FCBSQURCE+12

FCBSOURCE+32

H+SOURCESI2

SOURCELEN

INFILE=1

SOURCEPTR

C+@OPN

Hd

SOURCEPTR

C,@DEL

D»FCBSOURCE

eBDOoSs

C+@MAK

(continued)

Programmer’s Utilities Guide

Programmer’s Utilities Guide 9.4 Operating System Interface

O1CG+111D001 LXI 0 +FCBSOURCE

O1094+CDOS500 CALL @BDOS

O1CC+3C INR A

G1CD+C2ZECol JNZ e?odo3

O1LDO+0E09 MUT C,»@MSG

OLD2+11D0B0O1 LKI D+??0002

O1DS+CD0500 CALL @BOOS

OLD8+C 30000 JMP FILERR

OLDB+0D0A POO002: OB CRLF

+ IF INFILE=1

OLOD+GEGF2Z0534F CB ‘no SQURCE file’

+ ELSE

+ DB ‘no dir space: SOURCE‘

+ ENDIF

O1EB+24 DB ‘$!

+ 2700038

+ ENDM

Listing 9-29. (continued)

The PRINT program, shown in Listing 9-30, executes under the Console Com-
mand Processor and takes the following form:

PRINT filename

where filename is the name of a previously assembled program. PRINT assumes that
there is a PRN file on the disk and possibly a SYM file on the same disk drive. The
PRN file is first printed, with a form-feed at the top of each 56-line page. If the SYM
file exists, it is also printed using the same formatting. If the files are successfully
printed, they are both erased from the disk.

The PRINT program begins by saving the console processor stack, with the inten-
tion of returning directly to the CCP without a system reboot. The input printer file
is then defined with a FILE statement that specifies the internal name PRINT and
obtains the filename from the console command line. The filetype, however, is set to
PRN in this case. After performing an initial page eject, the program loops between
the PRCYC (print cycle) and ENDPR (end print) labels by successively reading char-
acters from the PRINT source and writing to the printer through the LISTING
subroutine. On detecting an end-of-file character, control transfers to the ENDPR

label where the PRN file is erased from the disk.

207

9.4 Operating System Interface Programmer’s Utilities Guide

The program then checks for the presence of the SYM file by invoking the FILE
macro with a SETFILE mode. This creates the proper File Control Block for the
input file with type SYM but does not create buffers or open the file for access.
Following the FILE macro, the DIRECT statement performs a directory search and,
if the file is not present, control transfers to the ENDLST (end listing) label where
execution terminates.

If the SYM file exists, the program performs another page eject and then opens the
SYM file for access. Note that the third FILE macro accesses the SYM file using the
internal name SYMBOL but shares the buffer areas of the PRINT file. The PRINT
file has been erased at this point, so the buffers are available.

If the SYM file is present, the program loops between the SYCYCLE (symbol cycle)
and ENDSY (end symbol) labels where characters are read from the SYMBOL file

and again sent to the printer through the LISTING subroutine. Upon detecting the
end-of-file, control passes to the ENDSY label where the SYM file is erased from the
disk. If no errors occur, control eventually reaches the ENDLST label where the
printer page is ejected. The entry stack pointer is then retrieved from OLDSP, and
control returns to the Console Command Processor, completing execution of the
PRINT program.

0100 ORG 100H

MACLIB SEQIO sSEQUENTIAL 1/0 LIB

PRINT THE X.PRN AND X,SYM FILES ON THE i

; LINE PRINTER WITH PAGE FORMATTING.

j

000C = FF EQU OCH sFORM FEED

0038 = MAXLINE EQU 56 sMAX LINES PER PAGE

j SAVE THE ENTRY STACK POINTER

0100 210000 LXI H+0

0103 39 DAD SP SENTRY SP TO HL

0104 22CF03 SHLD OLDSP jSAYE ENTRY SP

0107 31CF03 LXI SP»STACKSSET TO LOCAL STACK

1

O10A FILE INFILE +PRINTs +1 sPRN11000

j READ THE PRINT FILE UNTIL END QF FILE

O1F2 COBA03 CALL EJECT i3TOP OF PAGE

O1FS PRCYC: GET PRINT

O1F8 FEIA CPI EOF

OLFA CAQ302 JZ ENDPR $SKIP IF END FILE

Listing 9-30. Program for Line Printer Page Formatting

208

Programmer’s Utilities Guide

O1FD

0200

0203

0208

023A

0243

0246

0249

0326

0329

032B

O32E

og3l

0334

033C

O33F

0342

0343

0344

934C

OO4F

0350

C0513

C3F501

CA3CO3

CDB8A03

FE1A

CA3403

CDS51903

C32603

CD8A03

2ACFO3

FQ

cg

21D203

34

cg

ENDPR:

i

CALL LISTING $WRITE TO LISTING DEV

JMP PRCYC

SEND OF PRINT FILE>s DELETE IT

ERASE PRINT

CHECK FOR THE OPTIONAL .SYM FILE

FILE SETFILE sSYMCHK + +1 +SYM

DIRECT SYMCHK i1S IT THERE?

J2 ENDLST SKIP SYMBOL IF SO

SYMBOL FILE I5 PRESENT; PAGE EJECT

CALL EJECT 3TO TOP OF PAGE

FILE INFILE sSYMBOL+ +2 +SYM+1000 sPRINTBUF

SYCYCLE:

j

ENDSY:

j

ENDLST:

i

i

GET SYMBOL

CPI EOF

dz ENDSY iSKIP TO END ON EOF

CALL LISTING §SEND TO PRINTER

JMP SYCYCLE iFOR ANOTHER CHAR

ERASE SYMBOL #§ERASE «SYM FILE

sEND OF LISTING - EJECT AND RETURN

CALL EJECT

LHLD OLDSP SENTRY STACK POINTER

SPHL HRESTORE STACK POINTER

RET 3TO CCP

UTILITY SUBROUTINES

LISTOUT:

sSEND A SINGLE CHARACTER TO THE PRINTER

PUT LST

LXI H+CHARC $CHARACTER COUNTER

INR M SINCREMENT POSITION

RET

Listing 9-30. (continued)

9.4 Operating System Interface

209

9.4 Operating System Interface Programmer’s Utilities Guide

LISTING:

$WRITE CHARACTER FROM REG-A TO LIST DEVICE

0351 FEOC CPI FF sFORM FEED?

0353 C25F03 JNZ LIST®

0356 AF XRA A iCLEAR LINE COUNT

9357 320103 STA LINEC

Q35A 32D203 STA CHARC sCLEAR TAB POSITION

0350 3EOC MUT AYFF sRESTORE FORM FEED

OGSF FEOA LISTO: CPI LF sEND OF LINE?

0361 C27403 JNZ LIST1

0364 AF XRA A jCLEAR TAB POSITION

0365 320203 STA CHARC

0368 210103 LXI H+LINEC $LINE COUNTER

O36B 34 INR M Ss INCREMENTED

O36C 7E MOV AyM iCHECK FOR END OF PAGE

0360 FE38 CPI MAXLINE SLINE OVERFLOW?

OSBF D8 RC sRETURN IF NOT

0370 3600 MUI M+0 iCLEAR LINEC

0372 3E0C MVI AFF SSEND PAGE EJECT

0374 FEQS LISTit: CPI TAB TAB CHARACTER?

0376 C28703 JNZ LIST2

j FEED BLANKS TO NEXT TAB POSITION

0379 3E20 TABOUT: MYT Ar’ !

037B CD4403 CALL LISTOUT

O37E 3AD203 LDA CHARC sCHARACTER POSITION

0381 E607 ANI 7H iMOD 8

0383 027903 JNZ TABOUT iFOR ANOTHER BLANK

j ON CHARACTER BOUNDARY

0386 C3 RET

LIST2: $SIMPLE CHARACTER

0387 C3d403 JMP LISTOUT PRINT AND RETURN

4

EJECT: PERFORM PAGE EJECT

O38A 3E0C MYT AyFF iFORM FEED

038C C34403 JMP LISTOUT

4

j DATA AREAS

038F 0S Bd $32 LEVEL STACK

STACK:

O3CF OLDSP: DS 2 +ENTRY STACK POINTER

ogp1 LINEC: DS 1 iLINE COUNTER

03D2 CHARC: OS i sCHARACTER COUNTER

1

BUFFERS:

93D3 END

210

Listing 9-30. (continued)

Programmer’s Utilities Guide 9.4 Operating System Interface

The next program, MERGE, is more complicated. The MERGE program accepts
two filenames as input, taking the general command form

MERGE filename

where filename is the name of a master file, with assumed filetype of MAS, as well as
an update name with assumed filetype UPD. The files consist of varying length rec-
ords, each of which starts with a six-character numeric sequence number followed
by textual material and ends with a carriage return line-feed sequence. The lines of
information in the master and update files are assumed to be in ascending numeric
order according to their sequence numbers. The MERGE program reads these two
files and merges the records together to form a new file consisting of numerically
ascending, sequence-numbered lines.

Upon completion of the merge operation, the newly merged file becomes the new
master file. Update records are properly interspersed within the new master file
according to the numeric order, and any update record that matches a master record
results in replacement of the master record by the update record. Upon successful
completion of the merge operation, the original master file is renamed to have the
filetype MBK (master back-up), the original update file is renamed to the filetype
UBK (update back-up), and the newly created file becomes the new MAS file. In this

way, the operator can return to the back-up files in case of error, so that the source

data is not destroyed.

9100 ORG 100H

i FILE MERGE PROGRAM

MACLIB SEQIO iSEQUENTIAL FILE 1/0

o000 = BOOT EQU OOOOH jSYSTEM REBOOT

0006 = SEQSIZ EQU cf) SIZE OF THE SEQUENCE #‘5

O3EB = USIZE EQU 10090 sUPDATE BUFFER SIZE

O3EB = MSIZE EQU USIZE iMASTER BUFFER SIZE

0700 = NSIZE EQU USIZE+MSIZE SNEK BUFF SIZE

¥

0100 31ECOS LX SP sSTACK

9103 C3CB801 JMP START 3TO PERFORM THE MERGE

i UTILITY SUBROUTINES

Listing 9-31. File Merge Program

211

9.4 Operating System Interface Programmer’s Utilities Guide

DIGIT: #TEST ACCUMULATOR FOR VALID DIGIT

j RETURN WITH CARRY SET IF INVALID

0106 FE3O CPI ‘QO!

0108 08 RC SCARRY IF BELOW O

0109 FE3A CPI ‘9’ +1 $SCARRY IF BELOW 10

O10B 3F CMC jNO CARRY IF BELOW 10

o10c C9 RET

;

H ERROR MESSAGES FOR READU AND READM

SEQERRU:

0100 7570646174 DB ‘update seq error’ +0

SEQERRM:

OL1E 6DEG1737465 DB ‘master seq error’ 10

+

H GENERATE READU AND READM SUBROUTINES

IRPC °F UM

i INLINE SEQUENCE NUMBER BUFFER

PFRSEQ: DB a) 3T0 START PROCESSING

DS SEQSIZ-13REMAINING SPACE FOR SEQ#

3

READ&?F:

LXI H+ ?F&SEQ SSEQUENCE BUFFER

MOU AyM $1S IT FF (END FILE)?

INR A iFF BECOMES 00

RZ sSKIP THE READ

1

H READ THE SEQUENCE NUMBER PORTION

MYI C+SEQST2 iSIZE OF SEQUENCE #

RD&?FRO:

PUSH H SSAVE NEXT TO FILL

PUSH B iSAYE NUMBER COUNT

GET PFA&FILE READ THE FILE

POP B RECALL COUNT

POP H SRECALL NEXT FILL

CPI EOF jEND FILE?

dz EOF&?F

CALL DIGIT sASCIT DIGIT?

LXI D SEQERRE?F sERROR MESSAGE

Je SEQERR iSEQUENCE ERROR

j NO SEQUENCE ERROR» FILL NEXT DIGIT POSITION

MOV MA

INX H SNEXT TO FILL

DCR C }COUNT=COUNT -1

JN2 RD& PFO sFOR ANOTHER DIGIT

RET SEND OF FILL

Listing 9-31. (continued)

212

Programmer’s Utilities Guide 9.4 Operating System Interface

EOFR?F: sEND OF FILE+ SET SEQ# TO OFFH

MUI A,OFFH
STA 7FRSEQ }SEQ# SET TO FF
RET
ENDM

;
SEQERR:

j WRITE ERROR MESSAGE FROM (DE) TIL 00

O18F 1A LDAX D
0190 B7 ORA a

O19 CAdGOD Jz BOOT
i OTHERWISE» MORE TO PRINT

0194 DS PUSH D
0195 PUT CON iWRITE TO CONSOLE
01590 Di POP D

O1SE 13 INX 0)

O19F C3BFO1 JMP SEQERR iFOR MORE CHARS
1

WRITESEQ:
iWRITE THE SEQUENCE NUMBER GIVEN BY HL
370 THE NEW FILE

O1A2 O£06 MYI CSEQSIZ $SIZE OF SEQs
O1Ad 7E WRITO: MOV AyM
O1AS 23 INX H }NEXT TO GET
O1AaG ES PUSH H 3SAVE NEXT ADDR
0107 C5 PUSH B iSAVE COUNT
OLAS PUT NEW iWRITE TO NEW
O1AB C1 POP B FRECALL COUNT
o1ac Et POP H }RECALL ADDRESS
O1AD OD DCR c }COUNT=COUNT-1
O1AE C2A401 INZ WRITO iFOR ANOTHER CHAR
O1B1 CS RET

4

Listing 9-31. (continued)

213

9.4 Operating System Interface Programmer’s Utilities Guide

j COMPARE THE UPDATE SEQUENCE NUMBER WITH

j THE MASTER SEQUENCE NUMBER: SET:

; CARRY IF UPDATE « MASTER

i ZERG IF UPDATE = MASTER

i -ZERO IF UPDATE = MASTER

COMPARE:

O1B2 112F01 LXI D+ USEQ SUPDATE SEQ#

O1BS 215F01 LxI H»MSEQ iMASTER SEQ#

O1B8 GEOG MYT C+SEQST2 HSEQUENCE SIZE

O1BA 1A CLOOP: LDA D sUPDATE DIGIT

O1BB BE CMP M sUPDATE-MASTER

O1BC D8 RC CARRY IF LESS

OLBD Coa RNZ INZERD IF GTR

i ITEMS ARE THE SAME» CHECK FOR OFFH

O1BE FEFF CPI OFFH sEND OF FILE

oico C8 RZ jBOTH ARE OFFH

o1C1 13 INX D SNEXT UPDATE

o1C2 23 INK H sNEXT MASTER

0103 OD DCR C sCOUNT DOWN

0104 C2BA01 JNZ CLOOP iFOR ANOTHER DIGIT

o1c7 C3 RET sZERO FLAG IF EQUAL

i

i MAIN PROGRAM STARTS HERE

START:

SUPDATE FILE: WITH ASSUMED .UPD TYPE

01c8 FILE INFILEsUFILE+ +t +UPD USIZE

i

iMASTER FILE: WITH ASSUMED TYPE «MAK

02B0 FILE INFILE sMFILEs st MAS MSIZE

i

iNEW FILE+ TEMP.$$$ (RENAMED UPON EQF’S)

038C FILE OQUTFILE sNEWs » TEMP 1 $$$ »NSIZE

i

0470 CD3501 CALL READU SINITIALIZE UPDATE RECORD

o480 CDBSO1 CALL READM SINITIALIZE MASTER RECORD

MERGE: 3MAIN MERGING LOOP

0483 CDB201 CALL COMPARE sCARRY SET IF UPDATE*« MASTER

0486 CAADOG 32 SAME iZERO IF IDENTICAL SEQs

0489 D2Ce0d JNC MASLOW MASTER LOW?

i

j UPDATE SEQUENCE NUMBER IS LOW

Oa48C 212F01 LXI H,»USEQ iCOPY SEQUENCE NUMBER

OdBF CDAZO1 CALL WRITESEQUWRITE THE SEQUENCE #

Listing 9-31. (continued)

214

Programmer’s Utilities Guide

0492

0495

0496

0499

049A

049C

O49F

OdAl

o4ad

O4A7

O4AA

OdaAD

0480

O4B2

O4B5

O4B8

OdBA

O4BD

O4BF

o4C2

04c5

04c8

O4CB

O4CE

o4D1

oa4D2

gaps

O4D6

0408

O4DB

O4DD

OdEO

O4E3

O4E6

FS

Fi

FEOA

CAA704

FEA

CAA704

C39g204

CD3501

C38304

3A5FO1
FEFF
CAEgO4

FELA

cACZ04

FEOR

C2B504

CD6501

C3830d

215F01

cDdazol

FS

Fi

FEOA

CAE304

FE1A

CAE304

C3CE04

CD6501

C38304

ULOOP:

DELMAS:

GETMAS:

j

MASLOW:

MLOOP:

ENDMS:

sUPDATE RECORD TO NEW FILE

CET UFILE iCHARACTER TO A

PUSH PSW sSAVE IT

PUT NEW jOUTPUT TO NEW FILE

POP PSW dRECALL CHARACTER

CPI LF sLINE FEED?

Jz ENDUP

CPI EOF

JZ ENDUP

JMP ULOOP sCYCLE IF NOT END REC

CALL READU sREAD ANOTHER SEQ#

JMP MERGE iFOR ANOTHER RECORD

SEQUENCE NUMBERS ARE IDENTICAL

LDA MSEQ jCHECK FOR OFFH

CPI OFFH

Jz ENDMERGE

NOT THE SAME; DELETE MASTER RECORD

GET MFILE

CPI EOF sEND OF FILE?

Jz GETMAS sGET SEQ# FF

CPI LF

JNZ DELMAS iFOR ANOTHER CHAR

CALL READM iTO NEXT RECORD

IMP MERGE 3FOR ANOTHER

iMASTER SEQUENCE NUMBER IS LOW

XI H»MSEQ

CALL WRITESEQSSEQUENCE NUMBER

GET MFILE

PUSH PSW iSAVE MASTER CHARACTER

PUT NEW

POP PSW sLF OR EDF?

CPI LF

Zz ENDMS

CPI EOF

Zz ENDMS

JMP MLOOP yMORE TO COPY

CALL READM 7READ NEW SEQ NUMBER

JMP MERGE 3TO MERGE ANOTHER

Listing 9-31. (continued)

9.4 Operating System Interface

215

9.4 Operating System Interface Programmer’s Utilities Guide

j

ENDOMERGE:s

iCLOSE ALL FILES FOR RENAMING

O4E9 FINIS CUFILE »MFILE +NEW>

OLD MASTER FILE FOR ERASE/RENAME
0529 FILE SETFILE sOLDMAS +51 »MBK

0558 ERASE OLDMAS

sRENAME MASTER TO .MBK

0360 RENAME OLDMASsMFILE

i

sOLD UPDATE FILE FOR ERASE/RENAME

0580 FILE SETFILE sOLDUPD» +1 +UBK

OSAF ERASE OLDUPD

sRENAME UPDATE TO .UBK
05B7 RENAME OLDUPO .UFILE

i

sRENAME NEW TO MASTER FILE

05Cco RENAME MFILE»NEW

0309 C30000 JMP BOOT

4

OSCC DS 32 316 LEVEL STACK

STACK:

i BUFFER AREA

BUFFERS:

146C = MEMSIZE EQU BUFFERS+NXTB sEND OF MEMORY

OSEC END

Listing 9-31. (continued)

The MERGE program, shown in Listing 9-31, begins with utility subroutines,
including the DIGIT subroutine that tests for valid decimal digits in sequence num-
bers. The IRPC that follows the DIGIT subroutine generates two distinct subroutines,
called READU and READM, for reading the update and master files, respectively.
The generation of these two subroutines has been suppressed in the listing to keep
the listing short. (See Section 10.) These two READ subroutines fill their respective

sequence number buffers from the input source, so that the merge operation can take
place based on the current sequence number values. Upon detecting an end-of-file,
the sequence number is set to OFFH as a signal that the input source has been
exhausted.

216

Programmer’s Utilities Guide 9.4 Operating System Interface

The SEQERR subroutine reports an error condition when a nonnumeric character

is detected in the sequence number field. Although the error reporting 1s spartan,

sequence errors are easily found using the TYPE command on the master or update

file. The WRITESEQ subroutine is called whenever the source for the next record
has been determined. The COMPARE subroutine determines the next source record
(master or update) by comparing the buffered sequence numbers from left to right
while they are equal. If a mismatch occurs in the sequence number scan, COMPARE
returns with the carry flag and zero flag set to indicate which file holds the next

source record.

Execution of the MERGE program begins following the START label where the

update, master, and new files are defined. The UFILE and MFILE sources are defined

with the same buffer sizes, as determined by the earlier USIZE and MSIZE equates.

Both take their primary name from the default value specified at the CCP level by

the operator. The new file is created as a temporary, with filename TEMP and

filetype $$$, but is renamed upon completion of the program to become the master

file.

The merge operation proceeds in Listing 9-31 as follows. First the READU and

READM subroutines are called to fill the sequence number buffers. The loop between

MERGE and ENDMERGE is then repetitively executed until the merge is complete.

On each iteration of this loop, the COMPARE subroutine is called to compare the

buffered sequence numbers. If the update sequence number is smaller than the master

sequence number, it is moved to the new file, and data is copied from the update file

to the new file until the end of the current record is encountered. Upon completion

of the copy operation, the READU subroutine is called again to refill the update

sequence number buffer.

If the COMPARE subroutine instead detects equal sequence numbers, control

transfers to the SAME label, where the master record is deleted. Alternatively, the

COMPARE subroutine causes control to transfer to the MASLOW label when the

master sequence number is lower than the update sequence number. In this case, the

master sequence number and data record are copied to the new file in exactly the

same manner as an update record.

217

9.4 Operating System Interface Programmer’s Utilities Guide

Upon completion of the merge operation, indicated by an end-of-file in both the
update and master files, control transfers to the ENDMERGE label where the files
are closed and renamed. Following the FINIS statement, the previous MBK file (pos-
sibly from an earlier execution) is erased so that the current master (MAS) can be
renamed to the master back-up (MBK). Similarly, any previous UBK file is erased,
and the current update file is renamed to become the new UBK file. Finally, the new
file (TEMP.$$$) is renamed to become the new master file (MAS) before execution
stops.

Listing 9-32 shows an example of the files involved in a typical merge operation.
In this application, the sequence numbers control the ordering of a list of names that
is updated periodically. The NAMES.MAS file, which is the original master, is updated
by merging with the NAMES.UPD file, also shown in the listing. The merge opera-
tion is initiated by typing

MERGE NAMES

and, upon completion, produces the new NAMES.MAS shown in the righthand col-
umn of Listing 9-32.

The SEQIO library is typical of the interface you can construct to provide a higher
level interface between assembly language programs and their operating environment.
Although the library shown here performs only simple sequential file input/output,
you can construct more comprehensive libraries for random access based on this
library.

218

Programmer’s Utilities Guide

NAMES «MAS

000100

000200

Qo0g300

000400

000500

OOOB00

000700

000800

000g00

001000

001090

001100

001200

ABERCROMBIE+ SIDNEY
CARLSBAD: YOLANDA
EGCBERT EBENEZER
GRAWELPAUGH» HORTENSE
ISENEARS+ IGNATZ
KRABNATZ» TILLY
MILLYWATZ+ RICARDO
OPFATZ+ ADCLPHO
QUAGMIRE, DONALD
TWITSWEET: LADNER
VERANDA, VERONICA
WILLOWANDER» PRATNEY
YUPPGANDER+ MANNY

NANES.UPD

ooo110

900200

000210

000330

000410

000540

000620

000710

000820

000930

000960

001010

Oo1110

001210

BERNSWEIGERs ALFRED

CRUENCE+ CLARENCE

DENNINGSKI» HUBERT

FINKLESTEIN: FRANK

HILLSENFIELDS,» RANDOLPH

JOLLYFELLOW, JUNE

LAMBAA» WILLY

NEEBEND,» ASTRID

PRATTWITZ+ HEADY

RUBBLEMEYER» RUNYON

SWIGSTITTS» ULYSSES

UMPLANDER» XAVIER

XYLOPH» ERHARDT

ZEPLIPPS, EGGERWORTZ

Listing 9-32.

000100

000110

000200

000210

000300

000330

000400

000410

000500

000540

000600

000620

900700

000710

000800

000820

000900

000930

000960

001000

0010190

001090

001100

001110

901200

001210

9.4 Operating System Interface

new NAMES.MAS

ABERCROMBIE» SIDNEY

BERNSWEIGER,s ALFRED

CRUENCE+ CLARENCE

DENNINGSKI» HUBERT

EGGBERT, EBENEZER

FINKLESTEIN+ FRANK

GRAVELPAUGH» HORTENSE

HILLSENFIELDS» RANDOLPH

ISENEARSs IGNATZ

JOLLYFELLOW, JUNE

KRABNATZ:+ TILLY

LAMBAA,» WILLY

MILLYWATZ» RICARDDO

NEEBEND;+ ASTRID

OPFATZ+ ADOLPHO

PRATTWITZ+ HEADY

QUAGMIRE» DONALD

RUBBLEMEYER+ RUNYON

SWIGSTITTS,» ULYSSES

TWITSWEET» LADNER

UMPLANDERs XAVIER

VERANDA» VERONICA

WILLOWANDER» PRATNEY

XYLOPH+ ERHARDT

YUPPGANDER» MANNY

ZEPLIPPS» EGGERWORTZ

Sample MERGE Disk Files

End of Section 9

219

Section 10
Assembly Parameters

You can include assembly parameters when you invoke the assembler that controls
various assembler functions. The macro assembler is initiated with the name of the
source file, followed by a dollar sign ($) and the assembly parameters. The parame-
ters are indicated by single controls that denote particular functions. The character
on the left below controls the function shown to the right.

Table 10-1. Assembly Parameters

Character Function

A the source disk for the .ASM file

H the destination of the .HEX machine code file

L the source disk for the .LIB files (see MACLIB)

M MACRO listings in the .PRN file

P the destination of the .PRN file containing the listing

Q the listing of LOCAL symbols

S the generation and destination of the SYM file

J pass 1 listing

Any or all of the above parameters can be included. The A, H, L, and S parameters

are followed by the drive name to obtain or receive the data, where the drives are

labeled A, B,..., Z. By convention, the X disk corresponds to the user’s console;

the P disk corresponds to the system line printer (logical list device), and the Z disk

—
o
ra
=.
°
S

oO

221

10 Assembly Parameters Programmer’s Utilities Guide

corresponds to a null file that is not recorded. The following is a valid assembly
parameter list following the MAC command and source filename:

$PB AA HB SX

that directs the .PRN file to disk B, reads the .ASM file from disk A, directs the

-HEX file to the B disk, and sends the .SYM file to the user’s console. Blanks are
optional between parameter specifications.

The parameters L, S, M, Q, and 1 can be preceded by + or - symbols that enable
or disable their functions. These functions are

+L lists input lines read from the macro library (see MACLIB).
-L suppresses listing of the macro library (default value).

+§$ appends the SYM to the end of the .PRN output.
—§ suppresses the generation of the sorted Symbol Table.

+M_ lists all macro lines as they are processed during assembly.
—M _ _ suppresses all macro lines as they are read during assembly.
*M_ _ lists only hex generated by macro expansions.

+Q lists all LOCAL symbols in the symbol list.
-Q suppresses all LOCAL symbols in the symbol list.

+1 produces a listing file on first pass (for macro debugging).
-1 suppresses listing on pass 1 (default).

The following is an example of a valid assembly parameter list that uses a number
of the parameter specifications given above:

$PB+S-M HB

In this case, the .PRN file is sent to disk B with the symbol list appended (no .SYM
file is created), all macro generations are suppressed, and the .HEX file is sent to disk
B with the .PRN file.

222

Programmer’s Utilities Guide 10 Assembly Parameters

The M parameter can be preceded by an asterisk (*), causing the assembler to list
only macro generations that produce machine code. The asterisk suppresses the list-
ing of the instructions that are produced; positions beyond the hex fields are not
listed. Under normal operation, the macro assembler lists only generations that pro-
duce machine code, along with the generated line.

Given that disk d is the currently logged drive, the macro assembler defaults these
parameters as follows: the .ASM and .LIB files are assumed to originate on drive d;
the .HEX, .PRN, and .SYM files are sent to drive d; a Symbol Table is generated
with LOCAL symbols suppressed. This means symbols beginning with ?? are not
listed, and macro lines that generate machine code are listed. Note, however, that the

filename following the MAC command can be preceded by a drive name, in which
case the P parameter overrides the drive name, if supplied. Whenever a parameter is
repeated in the assembly parameter specification, the last value is assumed. Valid
assembly statements are shown below, assuming the file to be assembled is called
SAMPLE.

MAC SAMPLE $PX+5-M

assembles the file SAMPLE.ASM with listing to the console, symbols at the console,

and no listing of generated macros.

MAC A:SAMPLE $+5 -M+Q

assembles sample.ASM from disk A, creating sample.PRN with appended symbols
on the currently logged drive, suppressing generated macros, and listing symbols that
begin with the characters ?? in addition to the usually listed symbols.

MAC SAMPLE

assembles SAMPLE.ASM from the currently logged drive, creating SAMPLE.PRN
along with sample.SYM (containing the Symbol Table) and SAMPLE.HEX, which
holds the Intel format hex file in the ASCII form.

223

10 Assembly Parameters Programmer’s Utilities Guide

MAC SAMPLE $AB HA PB +9 +5 +L ¥M

assembles the SAMPLE.ASM file from drive B and produces the file SAMPLE.HEX
on drive A, with the SAMPLE.PRN file on drive B. The Symbol Table includes ??
symbols. The Symbol Table is placed at the end of the .PRN file on drive B. The .LIB
files are listed with the .PRN file as the .LIB files are read. The instructions that
correspond to generated macro lines are not included, although generated machine
code is listed.

In addition to the parameters shown above, you can intersperse controls through-
out the assembly language source or library files. Interspersed controls are denoted
by a $ in the first column of the input line, where the form shown on the left below
corresponds to the action described on the right.

$— PRINT stops output listing by discarding formatted lines

$+PRINT enables the output printing when previously disabled

$—-MACRO _ disables generated macro lines, as in —M above

$+MACRO enables full macro trace, as in +M above

$ * MACRO - enables partial macro trace, as in *M above

Because MAC allows each line to be optionally prefixed by a line number, the $
control can be included directly following this line number.

End of Section 10

224

Section 1 1
Debugging Macros

A number of common debugging practices can be used in developing macros and
macro libraries. One technique, called iterative improvement, is often used in the
design of programs and is most useful in building macros. The basic idea of iterative
improvement is that a small portion of the overall macro set is first implemented and
tested before continuing to more complicated macros. In this way, errors can be
isolated at each step as the macro evolves. Further, if errors occur in the macro
generations after a small portion of the macro set has been improved, it is most likely
that the error is being caused by the macros that are changed.

In the case of the Hornblower Highway System macro libraries, for example,
iterative improvement was used to evolve the final macro library. Only the simplest
macros were first implemented, including the SETLITE, TIMER, and RETRY macros.
(See Section 9.) Debugging facilities were then added to these macros, so that the

programs could be traced at the console. Upon successful testing of the basic macro
facilities, the PUSH?, CLOCK?, and TREAD? macros were individually written and

tested, resulting in the final macro library.

At each step, you can use the various assembly parameters to control the debug-
ging information. If the macro generations are not producing the proper machine
code, it might be necessary to obtain a full trace, using the +M option when MAC
is started. If the program produces too much output with the full trace enabled, you
can use the $+MACRO and $-MACRO commands interspersed throughout the
assembly language source program, resulting in full macro generation traces only in
the regions selected for debugging consideration.

If macro generation errors are caused by macro libraries, you can use the +L
parameter when MAC starts to cause the libraries to be included in the listing as

they are read.

225

[|]
UO
ND
AS

11 Debugging Macros Programmer’s Utilities Guide

As a final consideration, it might be necessary to enable the first pass listing of the
assembly language using the +1 parameter. In this case, MAC lists the program as
it is being read on the first pass as well as the second pass. Note, however, that the
listing contains spurious error messages on this pass that might disappear on the
second pass. The first pass listing parameter allows you to view the macro genera-
tions on the two successive expansion passes to ensure that the assembler is process-

ing the program in the same way in both cases.

If a macro expands improperly, and the source of the error is not evident after

examining various traces, it might be necessary to remove the offending macro from

the program and create an isolated smaller test case where the error is reproduced.

Full traces can then be examined to determine the source of the error and, after

fixing the macro, it can be replaced in the larger program and retested.

End of Section 11

226

Section 12
Symbol Storage Requirements

The maximum program size that can be assembled by MAC is determined only by
the Symbol Table storage requirements for the program. The Symbol Table itself
occupies the region above the macro assembler in memory, up to the base of the
CP/M operating system. Thus, the size of the Symbol Table depends on the size of
the current MAC version—approximately 12K program and data, plus 2.5K for I/O
buffers—and the size of the user’s CP/M configuration. The Symbol Table size is
dynamically determined by MAC upon startup and fills as symbols are encountered.
To provide some insight regarding storage requirements, the basic item size for iden-
tifiers and macros is given below.

A name used as a program label, data label, or variable in a SEY or EQUATE

requires

N=L+4+5

bytes, where L is the length of the identifier name. Thus, the statement

PORTVAL EQU 37FH

makes an entry into the Symbol Table that occupies

N = 7 + 5 = 12 bytes

of Symbol Table space. Recall that LOCAL symbols take the form ??nnnn, which

generates a name of length L. = 6.

227

a
io)
ra)
ot.
°
3

N

12 Symbol Storage Requirements Programmer’s Utilities Guide

Macro storage is more complicated to compute. The general form is

M=L+7+H+T

where L is the macro name length; H is the parameter header storage requirement,
and T is the macro text storage requirement, computed as

H=P, +P, +...+P,4+n

where P, is the length of the first parameter name. The text length T is the number
of characters in the macro body, including tab and end-of-line characters. Reserved
symbols, however, are reduced to a single byte from their multicharacter representa-
tions. The jump, call, and return on condition operators, however, require their full

character representations. Comments starting with double semicolon are not included
in the character count. The comment line is backscanned to remove preceding tab or
blank characters in this case. For example, the macro

LOADR MACRO REG;ALPHA $SFILL REGISTER crlf

MYT REG: ‘8:ALPHA ’ s3DATA crilf

ENDM crif

contains a macro header, followed by two macro lines, where each line is written
with tab characters (rather than spaces) and terminated by carriage return line-feeds
(crlfs).

In this case, the macro name length (LOADR) is five characters (L = 5), and the
parameter name lengths are three characters (REG) and five characters (ALPHA),

resulting in the following parameter header storage requirement:

H=P,4+ P,+2=3 +5 +2 = 10 bytes

The first macro line contains a leading tab (one byte), the MVI instruction (reduced

to one byte), another tab character (one byte), the operands REG,“& ALPHA’ (twelve

characters), and the end of line (two characters), for a total of seventeen bytes. Note

that the comment, with the preceding tab, is removed from the line. The second line
contains a tab (one byte), ENDM (one byte), and end-of-line (two characters) for a
total of four bytes. Summing the textual characters, the total is T = 21 bytes. As a
result, the total macro storage for LOADP is

M=L+7+H+T=5+4+7+4+ 10 + 21 = 43 bytes

228

Programmer’s Utilities Guide 12 Symbol Storage Requirements

No permanent storage is required for REPTs, IRPCs, or IRPs, although temporary
storage in the Symbol Table is used while the groups are actively iterating. The
characters contained within the group bounds (from the header to the corresponding
ENDM) are stored in the Symbol Table in their literal form, with no reduction of

reserved symbols to single bytes. Upon completion of the iteration, the storage is
returned for other purposes. Similarly, active parameters for macro expansions require
temporary storage in the Symbol Table. Storage is returned upon completion of the
macro expansion.

In any case, a Symbol Table overflow message results if the total amount of free
Symbol Table space is used up. As mentioned previously, the user can regenerate the
CP/M system, up to the maximum memory space of the 8080 processor, to increase
the symbol table area. The percentage of Symbol Table utilization is always printed
at the console at the end of assembly. The printout takes the form:

OhhH USE FACTOR

where bh is a hexadecimal value in the range 00 to FF, where 00 results from an
almost empty table, and FF is produced from an almost full table. The value 080H,
for example, is printed when the Symbol Table is half full. Keep note of the use
factor as a program develops to gauge the relative amount of free space as the
program is enhanced.

In many of the examples shown in this manual, macros include inline subroutines
that are generated at the first invocation and called upon subsequent invocations.
(See the TYPEOUT macro in Listing 6-11, for example.) These subroutines can be

included in the mainline program to reduce Symbol Table storage requirements, if
necessary. In this case, the subroutines are assumed to exist the first time the macro
is invoked, and thus are not generated by the macro.

End of Section 12

229

Section 13
RMAC,

Relocating Macro Assembler

RMAC, the CP/M Relocating Macro Assembler, is a modified version of the

CP/M Macro Assembler (MAC). RMAC produces a relocatable object file (REL),

rather than an absolute object file (HEX), that can be linked with other modules

produced by RMAC, or by other language translators such as PL/I-80, to produce an

absolute file ready for execution. The differences between RMAC and MAC are

described in the following subsections.

13.1. RMAC Operation

RMAC takes the command form:

RMAC filename.filetype

followed by optional assembly parameters. If the filetype is not specified, ASM is

assumed. RMAC produces three files: a list file (PRN), a symbol file (SYM), and a

relocatable object file (REL). Characters entered in the source file in lower-case appear

in lower-case in the list file, except for macro expansions.

The assembly parameter H in MAC, used to control the destination of the HEX

file, has been replaced by R, which controls the destination of the REL file. Directing

the REL file to the console or printer (RX or RP) is not allowed, because the REL

file does not contain ASCII characters.

The following example directs RMAC to assemble the file TEST.ASM, send the

PRN file to the console, and put the symbol file (SYM) and the relocatable object file

(REL) on drive B.

A®>RMAC TEST $PX SB RB

231

"4
om
a)
a.
°
a

Ww

13.2 Expressions Programmer’s Utilities Guide

13.2 Expressions

The operand field of a statement can consist of a complex arithmetic expression,
as described in Section 3, with the following restrictions:

m In the expression A+B, if A evaluates to a relocatable value or an external,

then B must be a constant.

@ In the expression A-B, if A is an external, then B must be a constant.

@ In the expression A-B, if A evaluates to a relocatable value, then B must be a

constant, or B must be a relocatable value of the same relocation type as A.
That is, both must appear in a CSEG or DSEG, or in the same COMMON

block.

@ [n all other arithmetic and logical operations, both operands must be absolute.

An expression error (‘E’) is generated if an expression does not follow these

restrictions.

13.3 Assembler Directives

The following assembler directives have been added to support relocation and

linking of modules:

ASEG use absolute location counter

CSEG use code location counter

DSEG use data location counter

COMMON use common location counter

PUBLIC symbol can be referenced in another module

EXTRN symbol is defined in another module

NAME name of module

The directives ASEG, CSEG, DSEG, and COMMON allow program modules to

be split into absolute, code, data, and common segments. These segments can be

rearranged in memory as needed at link time. The PUBLIC and EXTRN directives

provide for symbolic references between program modules.

232

Programmer’s Utilities Guide 13.3 Assembler Directives

Note: symbol names can be up to 16 characters, but the first six characters of all
symbols in PUBLIC, EXTRN, and COMMON statements must be unique, because
symbols are truncated to six characters in the object module.

13.3.1 The ASEG Directive

The ASEG statement takes the form:

label ASEG

and instructs the assembler to use the absolute location counter until otherwise directed.
The physical memory locations of statements following an ASEG are determined at
assembly time by the absolute location counter, which defaults to 0 and can be reset
to another value by an ORG statement following the ASEG statement.

13.3.2 The CSEG Directive

The CSEG statement takes the form:

label CSEG

and instructs the assembler to use the code location counter until otherwise directed.
This is the default condition when RMAC begins an assembly. The physical memory
locations of statements following a CSEG statement are determined at link time.

13.3.3 The DSEG Directive

The DSEG statement takes the form:

label DSEG

and instructs the assembler to use the data location counter until otherwise directed.

The physical memory locations of statements following a DSEG statement are deter-

mined at link time.

13.3.4 The COMMON Directive

The COMMON statement takes the form:

COMMON | /identifier/

and instructs the assembler to use the COMMON location counter until otherwise

directed. The physical memory locations of statements following a COMMON state-

ment are determined at link time.

233

13.3 Assembler Directives Programmer’s Utilities Guide

13.3.5 The PUBLIC Directive

The PUBLIC statement takes the form:

PUBLIC label{,label,...,label}

where each label is defined in the program. Labels appearing in a PUBLIC statement
can be referred to by other programs that are linked using LINK-80.

13.3.6 The EXTRN Directive

The EXTRN statement takes the form:

EXTRN | label{,label,...,label}

The labels appearing in an EXTRN statement can be referenced but must not be
defined in the program being assembled. They refer to labels in other programs that
have been declared PUBLIC.

13.3.7 The NAME Directive

The NAME statement takes the form:

NAME ‘text string’

The NAME statement is optional. It is used to specify the name of the relocatable
object module produced by RMAC. If no NAME statement appears, the filename of
the source file is used as the name of the object module. Module names identify
modules within a library when using the LIB-80 library manager.

End of Section 13

234

Section 14

XREF

XREF is an assembly language cross-reference utility program used with the PRN

and SYM files produced by MAC or RMAC to provide a summary of variable usage

throughout the program.

XREF takes the command form:

XREF filename

The filename refers to two input files that are created using MAC or RMAC with the

assumed (and unspecified) filetypes of PRN and SYM, and one output file with an

assumed (and unspecified) filetype of XRF.

XREF reads the file, filename.PRN, line by line, attaches a line number prefix to

each line, and writes each prefixed line to the file filename.XRF. During this process,

XREF scans each line for any symbols that exist in the file fllename.SYM.

After completing this copy operation, XREF appends to the file filename.XRF a

cross-reference report that lists all the line numbers where each symbol in file-

name.SYM appears. It also flags with a # character each line number where the

referenced symbol is defined.

XREE also reports the value of each symbol, as it appears in the file filename.SYM.

As an option, the file specification can include a drive name in the standard CP/M

format, d:. When the drive name is specified, XREF associates all the files described

above with the specified drive. Otherwise, it associates the files with the default drive.

235

 | uon2
25

14 XREF Programmer’s Utilities Guide

XREF also allows you to direct the output file to the default list device instead of
to the file filename.XRF. To use this option, add the string $p to the command line:

XREF filename $P

XREF allocates space for symbols and symbol references dynamically during exe-
cution. If no memory is available for an attempted symbol or symbol reference
allocation, XREF issues an error message and terminates.

End of Section 14

236

Section 15

LINK-80

15.1 Introduction

LINK-80 is a utility program you can use to combine relocatable object modules
into an absolute file ready for execution under CP/M or MP/M IL.

There are two types of relocatable object modules. The first has a filetype of REL
and is produced by PL/I-80, RMAC, or any other language translator that produces
relocatable object modules in the Microsoft® format.

The second has a filetype of IRL and is generated by the CP/M library manager
LIB-80. An IRL file contains the same information as a REL file but includes an
index that enables faster searching of large libraries.

Upon successful completion, LINK-80 lists the following items at the console:

@ the Symbol Table
m any unresolved symbols
@ a Memory Map
m the Use Factor

The Memory Map shows the size and locations of the different segments. The Use

Factor indicates the amount of available memory used by LINK-80 as a hexadecimal

percentage.

LINK-80 writes the Symbol Table to a SYM file suitable for use with the CP/M

Symbolic Instruction Debugger (SID™) and creates a COM or PRL file for direct

execution under CP/M or MP/M IL.

237

 GI
UO
RI
AS

15.2. LINK-80 Operation Programmer’s Utilities Guide

15.2 LINK-80 Operation

LINK-80 takes the general command form:

link filename {,filename2,. . .,filenameN}

where filename1,,. . .,filenameN are the names of the object modules to be linked. If

you do not specify a filetype, LINK-80 assumes filetype REL.

LINK-80 produces two files:

@ filenamel.COM

m@ filenamel.SYM

You can specify a different name for the COM and SYM files with a command of
the form:

link newfilename = filenamel{,filename2,. . .,filenameN}

LINK-80 supports a number of optional switches that control the link operation.
These switches are described in the following section.

During the link process, LINK-80 can create up to eight temporary files on the
default disk. The files are named:

XXABS.$$% XXPROG,. $$$ XXDATA. $$$ XXCOMM, $$$

YYABS.$$% YYPROG. $$$ YYDATA, $$% ¥YCOMM,. $%$

LINK-80 deletes these files following termination. However, they can remain on the
disk if LINK-80 halts due to an error condition.

15.3. Multi-line Commands

If a LINK-80 command does not fit on a single line (126 characters), the command

can be extended by terminating the command line with an ampersand character. The
ampersand can appear after any character in the command and need not follow a

filename.

238

Programmer’s Utilities Guide 15.3 Multi-line Commands

LINK-80 responds with an asterisk on the next line, at which point you can
continue the command. LINK-80 allows any number of lines ending with the amper-
sand. The last line terminates with a carriage return, as in the following example.
The Symbol Table and memory map would appear where vertical ellipses are shown.

A>link mains ltomod1l+ tomod2»s tomod3+s tomodds tomods, &

LINK 1.3

*libl(€s]» lib2t€s]+ Llib3€s],s 1libde

*€sJ+ lastmod[pe20008

*+d200]

cy

A>

Note: you can use XSUB to submit multi-line commands to LINK-80.

15.4 LINK-80 Switches

LINK-80 supports optional run-time parameters called switches that control the
link operation. All LINK-80 switches are enclosed in square brackets, separated by
commas, and immediately follow one or more of the filenames in the command line.

All switches except the $ switch can appear after any filename in the command
line. The S switch must follow the filename to which it refers. For example,

AS>LINK TESTIL4000],IOMOD;+TESTLIBIS+NL sGSTARTI

15.4.1. The Additional Memory (A) Switch

The A switch provides additional space for Symbol Table storage by decreasing
the size of LINK-80’s internal buffers. Use this switch only when necessary, as indi-
cated by a MEMORY OVERFLOW error. Using the A switch causes LINK-80 to
store its internal buffers on the disk, slowing down the linking process considerably,
while allowing linking of larger programs.

239

15.4 LINK-80 Switches Programmer’s Utilities Guide

15.4.2. The BIOS Link (B) Switch

The B switch is used to link a BIOS in a banked CP/M 3 system. LINK-80 aligns
the data segment on a page boundary, puts the length of the code segment in the
header, and defaults to the SPR filetype.

15.4.3. The Data Origin (D) Switch

The D switch specifies the origin of the data and common segments. If you do not
use the D switch, LINK-80 places the data and common segments immediately after
the program segment.

The D switch takes the form:

Dnnnn

where nnnn is the data origin in hexadecimal.

15.4.4 The Go (G) Switch

The G switch specifies the label where program execution begins, if it does not
begin with the first byte of the program segment. Using the G switch causes LINK-
80 to put a jump to the label at the load address.

The G switch takes the form:

G<label>

15.4.5 The Load Address (L) Switch

The load address defines the base address of the COM file generated by LINK-80.
The load address is usually 100H, which is the base of the Transient Program Area
(TPA) in a standard CP/M system. The L switch also sets the program origin to
nnnn, unless otherwise set by the P switch.

The L, switch takes the form:

Lnnnn

where nnnn is the desired load address in hexadecimal.

Note: COM files created with a load address other than 100H do not execute prop-

erly under a standard CP/M system.

240

Programmer’s Utilities Guide 15.4 LINK-80 Switches

15.4.6 The Memory Size (M) Switch

The M switch can be used when you are creating PRL files to indicate that the
program requires additional data space for proper execution.

The M switch takes the form:

Mnnnn

where nnnn is the amount of additional data space needed in hexadecimal.

15.4.7. The No List (NL) Switch

The NL switch suppresses the listing of the Symbol Table at the console.

15.4.8 The No Recording of Symbols (NR) Switch

The NR switch suppresses the recording of the Symbol Table file on the disk.

15.4.9 The Output COM File (OC) Switch

The OC switch directs LINK-80 to produce a COM file. This is the default condi-
tion for LINK-80.

15.4.10 The Output PRL File (OP) Switch

The OP switch directs LINK-80 to produce a page-relocatable PRL file rather than
a COM file. See Section 7.1 of the MP/M II Operating System Programmer’s Guide
for more information on creating PRL files.

15.4.11 The Output RSP File (OR) Switch

The OR switch outputs RSP (Resident System Process) files for execution under
MP/M.

15.4.12 The Output SPR File (OS) Switch

The OS switch outputs SPR (System Page Relocatable) files for execution under
MP/M.

15.4.13 The Program Origin (P) Switch

The P switch specifies the origin of the program segment. If you do not use the P
switch, LINK-80 puts the program segment at the load address, which is 100H unless

otherwise specified by the L switch.

241

15.4 LINK-80 Switches Programmer’s Utilities Guide

The P switch takes the form:

Pnnnn

where nnnn is the program origin in hexadecimal.

15.4.14 The ? Symbol (Q) Switch

Symbols in many run-time subroutine libraries begin with a question mark to
avoid conflict with user-defined symbols. LINK-80 usually suppresses listing and
recording of these symbols.

The Q switch causes LINK-80 to include these symbols in the Symbol Table listed
at the console and recorded on the disk.

15.4.15 The Search (S) Switch

The S switch indicates that the preceding file should be treated as a library.
LINK-80 searches the file and includes only those modules containing symbols that
are referenced but not defined in the modules already linked.

15.5 The $ Switch

The $ switch controls the source and destination devices. The $ switch takes the

general form:

$td

where t is a type, and d is a drive specification.

LINK-80 recognizes five types:

@ C— Console

we | — Intermediate

a | — Library
& O— Object
a S — Symbol

242

Programmer’s Utilities Guide 15.5 The $ Switch

The drive specification can be a letter in the range A through P corresponding to
one of sixteen logical drives, or one of the following special characters:

m= X — Console

m Y — Printer

m 7 — Byte bucket

15.5.1 $Cd - Console

LINK-80 usually sends messages to the console, but messages can be directed to
the list device by using $CY, or they can be suppressed by using $CZ. Once $CY or
$CZ has been specified, $CX can be used subsequently in the command line to
redirect messages to the console device.

15.5.2 $Id - Intermediate

LINK-80 usually places the intermediate files it generates on the default drive. The
$I switch allows you to specify another drive for intermediate files.

15.5.3. $Ld - Library

LINK-80 usually searches on the default drive for library files that are automati-
cally linked because of a request item in a REL file. The $L switch instructs
LINK-80 to search the specified drive for these library files.

15.5.4 $0Od - Object

LINK-80 usually generates an object file on the same drive as the first REL file in
the command line, unless an output file with an explicit drive is included in the
command. The $O switch instructs LINK-80 to place the object file on the drive
specified by the character following the $O, or to suppress the generation of an
object file if the character following the $O is a Z.

15.5.5 $Sd - Symbol

LINK-80 usually generates a symbol file on the same drive as the first REL file in
the command line, unless an output file with an explicit drive is included in the

command. The $$ switch instructs LINK-80 to place the symbol file on the drive

specified by the character following the $S, or to suppress the generation of a symbol

file if the character following the $5 is a Z.

243

15.5 The $ Switch Programmer’s Utilities Guide

15.5.6 Command Line Specification

The td character pairs following a $ switch must not be separated by commas. The
entire group of $ switches must be set off from any other switches by a comma. For
example, the three command lines shown below are equivalent:

Azlink partilC#szs$od+$lbsa]sparte

Arlink pPartil$szodlbsa)]srparte

Arlink pPartil€C¢sz od lbJ+part2Z2[4q]

The $I switch specifies the drive to be used for intermediate files during the entire
link operation, but the other $ switches can be changed in the command line. The
value of a $ switch remains in effect until it is changed as LINK-80 processes the
command line from left to right. This is especially useful when linking overlays. (See
Section 16.) For example, the command

A>link root (ovll#szez]) (ove) (ovd) (avdlt¢sacx])

suppresses the SYM files and console output generated when OV1, OV2 and OV3
are linked. When OV4 is linked, LINK-80 places the SYM file on drive A and sends
any messages to the console device.

15.6 Creating MP/M II PRL Files

Assembly language programs often contain references to symbols in the Base Page
such as BOOT, BDOS, DFCB, and DBUFF. To run properly under CP/M, or as a
COM file under MP/M II, these symbols are simply defined in equates as follows:

boot equ 8) sJumP to warm boot

tdos equ rey ijumpP to bdos entry Point

dfcb equ och idefault file control block

dbuff equ 80h sdefault i/o buffer

With PRL files, however, the Base Page itself can be relocated at load time, so
LINK-80 must know that these symbols, while at fixed locations within the Base

Page, are relocatable.

244

Programmer’s Utilities Guide 15.6 Creating MP/M II PRL Files

To do this, simply declare these symbols as externals in the modules in which they
are referenced:

extrn boots bdos» dfcbhsr dbuff

and link in another module in which they are declared as publics and defined in

equates:

Public boots bdoss defb:s dbuff

boot equ 0 jJumpP to warm boot

bdos eq ° sJump to bdos entry Point

dfch equ och idefault file control block

dbhuff equ BOh sdefault i/o buffer

end

15.7 The Request Item

Many language translators use the request item, a specific bit pattern in a REL file,
to tell LINK-80 to search the appropriate run-time subroutine library file. When
LINK-80 processes a library request, it first searches for an IRL file with the specified
filename. If there is no IRL file, it searches for a REL file of that name. If both
searches fail, then LINK-80 displays the following error message and halts.

NO FILE: filename.REL

Libraries requested in this manner appear in the Symbol Table listed at the console
with a value of ‘RQST’.

245

15.8 REL File Format Programmer’s Utilities Guide

15.8 REL File Format

REL files contain information encoded in a bit stream, which LINK-80 interprets
as follows:

@ If the first bit is a 0, then the next 8 bits are loaded according to the value of
the location counter.

@ If the first bit is a 1, then the next 2 bits are interpreted as follows:

00 — special link item, defined below.

01 — program relative. The next 16 bits are loaded after being offset by
the program segment origin.

10 — data relative. The next 16 bits are loaded after being offset by the
data segment origin.

11 — common relative. The next 16 bits are loaded after being offset by
the origin of the currently selected common block.

@ A special item consists of:

@ A 4-bit control field that selects one of 16 special link items described
below.

@ An optional value field that consists of a 2-bit address field and a 16-
bit address field. The address type field is interpreted as follows:

00 — absolute

01 — program relative
10 — data relative

11 — common relative

@ An optional name field that consists of a 3-bit name count followed
by the name in 8-bit ASCII characters.

The following special items are followed by a name field only.

0000 — entry symbol. The symbol indicated in the name field is defined in this
module, so the module should be linked if the current file is being
searched, as indicated by the S switch.

0001 — select common block. Instructs LINK-80 to use the location counter
associated with the common block indicated in the name field for

subsequent common relative items.

246

Programmer’s Utilities Guide 15.8 REL File Format

0010 — program name. The name of the relocatable module.

0011 — unused.

0100 — unused.

The following special items are followed by a value field and a name field.

0101

0110

0111

1000

define common size. The value field determines the amount of memory
reserved for the common block described in the name field. The first
size allocated to a given block must be larger than or equal to any
subsequent definitions for that block in other modules being linked.

chain external. The value field contains the head of a chain that ends

with an absolute 0. Each element of the chain is replaced with the
value of the external symbol described in the name field.

define entry point. The value of the symbol in the name field is defined

by the value field.

unused.

The following special items are followed by a value field only.

1001

1010

1011

1100

1101

external plus offset. The following two bytes in the current segment
must be offset by the value of the value field after all chains have been

processed.

define data size. The value field contains number of bytes in the data

segment of the current module.

set location counter. Set the location counter to the value determined

by the value field.

chain address. The value field contains the head of a chain that ends

with an absolute 0. Each element of the chain is replaced with the

current value of the location counter.

define program size. The value field contains the number of bytes in

the program segment of the current module.

247

15.8 REL File Format Programmer’s Utilities Guide

1110 — end module. Defines the end of the current module. If the value field
contains a value other than absolute 0, it is used as the start address
for the program being linked. That is, the current module is the main
module. The next item in the file starts at the next byte boundary.

Item 1111, end file, has no value field or name field. This item follows the end
module item of the last module in the file.

15.9 IRL File Format

An IRE file consists of three parts: a header, an index, and a REL section.

The header contains 128 bytes, defined as follows:

@ byte 0 — extent number of first record of REL section
m byte 1 — record number of first record of REL section
m™ bytes 2-127 — currently unused

The index consists of a number of entries corresponding to the entry symbol items in
the REL section. The entries take the form:

e/r|b]cl}c2}]...+ en] d

Figure 15-1. IRL File Index

where:

e = extent offset from start of REL section to start of module.

r = record offset from start of extent to start of module.

b = byte offset from start of record to start of module.

cl-cn = name of symbol.

d = end of symbol delimiter (OFEH).

248

Programmer’s Utilities Guide 15.9 IRL File Format

The index terminates with an entry in which cl = OFFH. The remainder of the

record containing the terminating entry is unused.

The REL section contains the relocatable object code, as described in Section 15.8.

End of Section 15

249

Section 16
Overlays

16.1 Introduction

You can use LINK-80 to produce a simple tree structure of overlays as shown in ry

Figure 16-1. Currently, the Overlay Manager is part of the PL/I-80 run-time library. a
a

3

Ovs OV6 o

Ovi ove ovs ov"

ROOT

Figure 16-1. Tree-structured Overlay System

In such a system, LINK-80 produces the ROOT.COM and ROOT.SYM files, as

well as an OVL file and a SYM file for each overlay specified in the command line.

The OVL file consists of a 256-byte header containing the load address and length

of the overlay, followed by the absolute object code. The SYM file contains only

those symbols that have not been declared in another module lower in the tree.

The origin of an overlay is the highest address, rounded to the next 128-byte

boundary, of the module below it on the tree. The stack and free space for the PL/I

program are located at the top of the highest overlay which is, again, rounded to the

next 128-byte boundary. LINK-80 displays this address at the console on completion

of the entire link process and patches it into the root module in the location ‘**MEMRY’.

251

16.1 Introduction Programmer’s Utilities Guide

The following restrictions must be observed when producing a system of overlays
for a PL/I program using LINK-80:

® Each overlay has only one entry point. The Overlay Manager in the PL/I Run-
time system assumes that this entry point is at the base (load address) of the
overlay.

No upward references are allowed from a module to an entry point in an
overlay higher on the tree. The only exception is a reference to the main entry
point of the overlay, as described above. Downward references to entry points
in overlays lower on the tree or in the root module are allowed.

™ The overlays are not relocatable, so the root module must be a COM file.

= Common blocks, EXTERNALS in PL/I, that are declared in one module can-

not be initialized by a module higher in the tree. LINK-80 ignores any attempt
to do so.

@ Overlays can be nested to 5 levels.

@ The Overlay Manager uses the default buffer located at 80H, so user pro-
grams should not depend on data stored in this buffer.

16.2 Using Overlays in PL/I Programs

There are two ways to use overlays in a PL/I program. The first method is straight-
forward and suffices for most applications. However, it has two restrictions. First, all
overlays must be on the default drive, and second, the overlay names cannot be
determined at run-time.

The second method does not have these restrictions, but its calling sequence is
slightly more complicated.

16.2.1 Overlay Method 1

To use the first method, simply declare an overlay as an entry constant in the
module where it is referenced. As an entry constant, it can have parameters declared
in a parameter list. The overlay itself is simply a PL/I procedure or group of procedures.

252

Programmer’s Utilities Guide 16.2 Using Overlays

For example, the following program is a root module having one overlay:

root: Procedure options (main) $

declare ovl entry (char (15))5

Put skip list (‘’root’)3

call ovl (‘overlay 1i/’)5

end roots

with the overlay OV1.PLI defined as follows:

oul: procedure (6)3

declare c char (15)3

Put skip list (c)3

end oul’

Note: when passing parameters to an overlay, you must ensure that the number and

type of the parameters are the same in the calling program and the overlay itself.

To link these two programs into an overlay system, use the command:

A>LINK ROOT (OV1)

This causes LINK-80 to produce four files:

At execution time, ROOT.COM first displays the message ‘root’ at the console.

The ‘call ov1’ statement then transfers control to the Overlay Manager.

The Overlay Manager loads the file OV1.OVL from the default drive at the proper

location above ROOT.COM and transfers control to it, passing the CHARAC-

TER(15) parameter in the usual manner.

The overlay then executes, displaying the message ‘overlay 1’ at the console. It

then returns directly to the statement following the ‘call ov1’ in ROOT.PLI, and

execution continues from that point.

If the Overlay Manager determines that the requested overlay is already in mem-

ory, then it does not reload the overlay before transferring control to it.

253

16.2 Using Overlays Programmer’s Utilities Guide

There are several important points to keep in mind regarding overlay method 1:

= The name associated with the overlay in the call and entry statements is the
actual name of the OVL file loaded by the Overlay Manager, so the two
names must agree. Because PL/I truncates symbol names to 6 characters in the
REL file, the names of the OVL files must be limited to 6 characters.

m™ The name of the entry point to an overlay (the name of the procedure) need
not agree with the name used in the calling sequence. The same name should
be used to avoid confusion.

@ The Overlay Manager loads overlays only from the drive that was the default
drive when the root module began execution. The Overlay Manager disre-
gards any changes in the default drive that occur after the root module begins
execution.

mw The names of the overlays are fixed. This means the source program must be
edited, recompiled, and relinked to change the names of the overlays.

® No nonstandard PL/I statements are needed. Thus the program is transportable
to other systems.

16.2.2 Overlay Method 2

In some applications, it is useful to have greater flexibility with overlays, such as
the ability to load overlays from different drives, or the ability to determine the name
of an overlay at run-time, perhaps from the keyboard or from a disk file.

To do this, a PL/I program must declare an explicit entry point into the Overlay
Manager as follows:

declare Tovlay entry (char (10),» fixed (1))5

The first parameter is a character string specifying the name of the overlay to load
and an optional drive name in the standard CP/M format, d:filename.

The second parameter is the Load Flag. If the Load Flag is 1, the Overlay Manager
loads the specified overlay whether or not it is already in memory. If the Load Flag
is 0, then the Overlay Manager loads the overlay only if it is not already in memory.

254

Programmer’s Utilities Guide 16.2 Using Overlays

The ‘call ?ovlay’ statement signals the Overlay Manager to load the requested
overlay, if needed. The Overlay Manager returns to the calling program, which must
then perform a dummy call to execute the overlay just processed by the Overlay
Manager. This allows a parameter list to be passed to the overlay.

Using this method, the example shown in the first method above appears as follows:

root: Procedure options (main)3

declare Povlay entry (char (10)+ fixed (1))5

declare dummy entry (char (15))35

declare name char (10)3

Put skip list (’root’)5

name = ‘OWL'S

call Povlay (names O)3

call dummy (’overlay 17)5

end roots

The file OV1.PLI is the same as before.

At run-time, the Overlay Manager loads OV1.OVL from the default drive because
that is the current value of the variable ‘name’, and then returns to the calling
program, in this case, ‘root.’

At this point, the argument ‘overlay 1’ is set up according to the PL/I parameter
passing conventions. The ‘call dummy’ statement transfers control to the Overlay
Manager, which in turn transfers control to the base address of the overlay the name
of which it just processed. When OV1 finishes execution, it returns to the statement
following the call dummy statement.

Note that in this example, name is set to ‘OV1’ in an assignment statement.
However, the overlay name can also be supplied as a character string from some
other source, such as the console keyboard.

255

16.2 Using Overlays Programmer’s Utilities Guide

Observe these important points when using overlay method 2:

m A drive name can be specified, so the Overlay Manager can load overlays
from drives other than the default drive. If no drive is specified, the Overlay
Manager uses the default drive as described in Method 1.

w The name of the overlay can be up to 8 characters in length because it is
specified in the character string and not by the entry symbol.

w If there are any parameters in the dummy call following the call ?ovlay, they
must agree in number and type with the parameters in the procedure declara-
tion in the overlay.

16.3 Specifying Overlays in the Command Line

The syntax for specifying overlays is similar to that for linking without overlays,
except that each overlay specification is enclosed in parentheses.

An overlay specification can take one of the following forms:

A>LINK ROOT(OVI)

A>LINK ROOT(OV1 +PART2 »PART)

A*LINK ROOT(OVI=PARTI +PART2 +PART3)

The first command produces the file OV1.OVL from a file OV1.REL. The second
command produces the file OV1.OVL from OV1.REL, PART2.REL, and PART3.REL.

The third command produces the file OV1-OVL from PART1.REL, PART2.REL,
and PART3.REL.

256

Programmer’s Utilities Guide 16.3 Specifying Overlays

Note that a left parenthesis, indicating the start of a new overlay specification, also
indicates the end of the group preceding it. Thus the following command line is
invalid, and LINK-80 flags it as an error:

A>LINK ROOT(OVI) »sMOREROOT

All files to be included at any point on the tree must appear together, without any
intervening overlay specifications. Thus the following command is valid:

ASLINK ROOT sMOREROOT(OV1)

Any filename in the command line can be followed by a number of LINK-80
switches. The overlay specifications are not set off from the root module or from
each other with commas. Spaces can be used to improve readability.

To nest overlays, they must be specified in the command line with nested parenthe-
ses. For example, the following command line can link the overlay system shown in
Figure 16-1:

A>LINK ROOT (OV1) (OV2 (OVS) (QVUG)) (OV3) (O0U4)

16.4 Sample LINK-80 Execution

Listing 16-1 shows the console output from a LINK-80 operation. Note that OV1
is flagged as an undefined symbol. LINK-80 indicates that OV1 has not been defined
in the current module and assumes it is either the name of an overlay or a dummy
entry point to an overlay.

When linking overlays, each entry variable that refers to an overlay, by actual
name or a dummy entry, appears as an undefined symbol. No symbols other than
these actual or dummy overlay entry points should be undefined.

Listing 16-2 shows the console output when executing the resulting COM file.

257

16.4 Sample LINK-80 Execution Programmer’s Utilities Guide

Azlink root(ovl)

LINK 1.3

PLILIB ROST ROOT 0100 /SYSIN/ 1A15 /SYSPRI/ iASA

UNDEFINED SYMBOLS:

OVA

ABSOLUTE o000

CODE SIZE iBBC (0100-19BB)

DATA SIZE o2ZA9 (1A90-1D38)

COMMON SIZE oO0OD4 (19BC-iA8F)

USE FACTOR 4E

LINKING OVi,O¥UL

PLILIB ROST

ABSOLUTE oo000

CODE SIZE oo2za (1D80-1DA3)

DATA SIZE 0002 (iDA4-1DA5)

COMMON SIZE 0000

USE FACTOR og

MODULE TOP 1E00

Listing 16-1. LINK-80 Console Interaction

A?root

root

overlay i

End of Execution

A>

Listing 16-2. Console Int :raction with ROOT

258

Programmer’s Utilities Guide

16.5 Other Overlay Systems

16.5 Other Overlay Systems

You can also use LINK-80 to produce a system of overlays that is not a tree
structure, but contains instead a number of separate overlay areas, as shown in

Figure 16-2.

top of TPA

OV2A

OV2B

— overlay area 2

OVIA
OVIB

OV1IC
— overlay area 1

 ROOT

100H

Figure 16-2. Separate Overlay System

In such a system, the root module can reference any of the overlays. An overlay

can reference entry points in the root module or the main entry point of any overlay

that is not in the same overlay area.

259

16.5 Other Overlay Systems Programmer’s Utilities Guide

Linking a system of overlays as shown above is done in a number of steps. One
link operation must be performed for each overlay area because LINK-80 must be
supplied the address of the top of the overlay area when linking the next higher
overlay area.

For example, from the command

ASLINK ROOT (QGQVIA)(OV1IB) (OVIC)

LINK-80 generates the three overlays in overlay area 1 and indicates the top address
of the module. This address is then supplied as the load address in the next command:

A>LINK ROOT (OVZAELmod top] (QV2ZB [Lmod top])

This command creates the overlays for overlay area 2 at the appropriate address.
Note that the overlay area that is the highest in memory should be linked last
because LINK-80 always writes the module top address into the root module at the
end of the link operation.

At some point after the entire system has been linked, it is desirable to relink only
one overlay, which might not be at the top overlay area. This can be done using the
$OZ switch to prevent generation of a root module that would contain an erroneous
?>MEMRY value.

If only OVIC is changed, the following command creates a new OVIC overlay
without creating a new root module. The root module is included in the LINK
command so that LINK-80 can resolve references to the root from OVIC.

For example,

A?LINK ROOT (#0Z1(QVICEI$0A])

Note: when using this type of overlay system, you must ensure that none of the
overlays overlap and that no overlay attempts to reference another overlay in the
same overlay area.

End of Section 16

260

Section 17

LIB-80

17.1. Introduction

LIB-80 is a utility program that creates libraries. Libraries are files consisting of
any number of relocatable object modules. LIB-80 can perform the following functions:

H concatenate a group of REL files into a library

™ create an indexed library (IRL)

™ select, delete, or replace modules from a library

™@ print module names and PUBLICS from a library
2

"Nn
o
(a)
4
°
3

“

17.2 LIB-80 Operation

LIB-80 takes the general command form:

LIB filename = filename],. . .,filenameN

This command creates a library called filename.REL from the _ files
filename1.REL,. . .,fillenameN.REL. If you omit the filetypes, LIB-80 assumes filetype
REL.

A filename can be followed by a group of module names enclosed in parentheses.
Only the modules indicated are included in the LIB function being performed. If
omitted, LIB-80 includes all the modules in the file.

For example, the command

A=LIB TEST=A(A1+AZ) +BsC(C1-C45C6)

creates a file named TEST.REL consisting of the modules Al and A2 from A.REL,
all the modules from B.REL, and the modules between C1 and C4, and C6 from

C.REL.

261

17.2 LIB-80 Operation Programmer’s Utilities Guide

LIB-80 can delete or replace modules in a library with a single command. To do
this, enter the names of the modules to be affected and enclose them in angle brack-
ets immediately following the name of the source file that contains the modules.

For example, the command

A®LIB NEWLIB=OLDLIB<MOD1>

creates a new library named NEWLIB.REL that is the same as OLDLIB.REL except
that the module MOD1 is replaced with the file MOD1.REL. Use this form of the
command if the name of the module being replaced is the same as the filename of
the REL file replacing the module.

The command form:

LIB NEWLIB = OLDLIB<MOD1 = FILE1>

creates a new library with the module MOD1 replaced by the file FILE1.REL. Use
this form of the command when the name of the module being replaced is not the
same as the name of the file replacing it. This form of the command must be used if
the filename within angle brackets has more than 6 characters because module names
in the REL file are truncated to 6 characters.

The command form

LIB NEWLIB = OLDLIB<MOD1>

creates a new library from OLDLIB.REL, deleting the module MOD1.

The command form

LIB NEWLIB = OLDLIB<MOD1,MOD2 = FILE2,MOD3 = >

creates a new library from OLDLIB.REL with MODI.REL replacing the module
MOD1, FILE2.REL replacing MOD2, and deleting MOD3. This command demon-
strates that a number of replace and/or delete instructions can be included within the
angle brackets.

262

Programmer’s Utilities Guide

17.3. LIB-80 Switches

17.3 LIB-80 Switches

LIB-80 supports optional parameters in the command line that control its opera-
tion. These parameters are called switches. They are enclosed in square brackets and
appear after the first filename in the LIB command. Table 17-1 shows the LIB-80

switches.

Table 17-1. LIB-80 Switches

Switch

Function

D

]

displays contents of object modules in ASCII form.

creates an indexed library (IRL).

prints module names.

prints module names and PUBLICS.

For example, the command

AYLIB TEST=A+B+C

creates a file TEST.REL consisting of A.REL, B-REL, and C.REL.

263

17.3 LIB-80 Switches Programmer’s Utilities Guide

The command

A®LIB TEST=TEST>+D

appends D.REL to the end of TEST.REL.

The command

ASLIB TESTEII

creates an indexed library TEST.IRL from TEST.REL.

The command

A®LIB TESTLII=AA+B+C+D

performs the same function as the preceding examples, but LIB-80 creates a file
TEST.IRL without creating a file TEST.REL.

The command

ASLIB TEST [P]

lists all the module names and PUBLICS in TEST.REL.

End of Section 17

264

Appendix A
MAC/RMAC Error Messages

When errors occur within the assembly language program, they are listed as single-
character flags in the leftmost position of the source listing. The line in error is also
echoed at the console so that the .PRN file need not be examined to determine if
errors are present. The single-character error codes are listed in Table A-1.

Table A-1. MAC/RMAC Error Messages

Flag Meaning

B Balance error: macro does not terminate properly, or conditional

assembly operation is ill formed.

Cc Comma error: expression was encountered but not delimited properly
from the next item by a comma.

V
x
i
p
u
a
d
d
y

D Data error: element in a data statement (DB or DW) cannot be placed
in the specified data area.

E Expression error: expression is ill formed and cannot be computed at
assembly time.

I Invalid character error: a nongraphic character has been found in the
line other than a carriage return, line-feed, tab, or end-of-file; edit the

file, delete the line with the I error, and retype the line.

L Label error: label cannot appear in this context; it might be a dupli-
cate label.

M Macro overflow error: internal macro expansion table overflow; might
be due to too many nested invocations or infinite recursion.

N Not implemented error: features that appear in RMAC, such as relo-

cation, are recognized, but flagged in MAC.

265

A MAC/RMAC Error Messages Programmer’s Utilities Guide

Table A-1 (continued)

Message

Meaning

O

Overflow error: expression is too complicated (i.e., has too many

pending operators), string is too long, or too many successive substi-
tutions of a formal parameter by its actual value in a macro expan-
sion. This error also occurs if the number of LOCAL labels exceeds

9999,

Phase error: label does not have the same value on the two passes
through the program, or the order of macro definition differs between
the two successive passes; might be due to MACLIB that follows a
mainline macro; if so, move the MACLIB to the top of the program.

Register error: the value specified as a register is not compatible with
the operation code.

Syntax error: the fields of this statement are ill formed and cannot be
processed properly; might be due to invalid characters or delimiters
that are out of place.

Undefined symbol: a label operand in this statement has not been
defined elsewhere in the program.

Value error: operand encountered in an expression is improperly
formed; might be due to delimiter out of place or nonnumeric operand.

The error messages shown in Table A-2 indicate terminal error conditions that

abort the MAC execution. Whenever possible, the disk drive name, followed by the

relevant filename, is printed with the message.

266

Programmer’s Utilities Guide A MAC/RMAC Error Messages

Table A-2. Terminal Error Conditions

Message Meaning

CANNOT CLOSE FILE:

An output file cannot be closed. The disk might be write protected.

INVALID PARAMETER:

An invalid assembly parameter was found in the input line. The

assembly parameters are printed at the console up to the point of

the error.

NO DIRECTORY SPACE:

The disk directory is full. Use the ERA command of the CCP to

remove files you do not need. Often superfluous .HEX, .PRN,

and .SYM files can be removed.

NO SOURCE FILE PRESENT:

The source program file (ASM) following the MAC command

cannot be found on the specified disk. Use the DIR command in

the CCP to locate the source file.

OUTPUT FILE WRITE ERROR:

An output file cannot be written properly, probably due to a full

disk. As in the NO DIRECTORY SPACE error above, use the

CCP commands to erase unnecessary files from disk.

SOURCE FILENAME ERROR:

The form of the source filename is invalid or not specified. The

command form must be

MAC filename $assembly parameters

where the filename is the primary name (up to eight characters)

of the source file, with an assumed filetype of.ASM. Filetype is

not specified.

267

A MAC/RMAC Error Messages Programmer’s Utilities Guide

Table A-2. (continued)

Message Meaning

SOURCE FILE READ ERROR:

The source file cannot be read properly by the macro assembler.
Use the CCP TYPE command to display the file contents at the
console.

UNBALANCED MACRO LIBRARY:

A MACRO definition was started within a macro library, but the
end of file was found in the library before the balancing ENDM
was encountered. Examine the macro library using the TYPE
command of the CCP, or use the +L assembly parameter to
ensure that the library is properly balanced.

End of Appendix A

268

Appendix B
XREF Error Messages

During the course of operation, XREF might display error messages. These error
messages and brief explanations of their causes are shown in Table B-1.

Table B-1. XREF Error Messages

Error Cause

No SYM file

The file filename.SYM is not present on the default or specified drive.

No PRN file

The file filename.PRN is not present on the default or specified drive.

Symbol Table averflow

No space is available for an attempted symbol allocation.

Invalid SYM file format

XREF issues this message when it reads an invalid filename.SYM
file. Specifically, a line in the SYM file that does not terminate with
a CRLF forces this error message.

Symbol Table reference overflow

No space is available for an attempted symbol reference allocation.

filename.XRF make error

XREF issues this message if the CP/M BDOS returns an error code

after a make file request for the file filename.XRF. This error code

 usually indicates that no directory space exists on the default or

specified drive.
269

>
3
xe)
@
=
2.
x
@

B XREF Error Messages Programmer’s Utilities Guide

Table B-1. (continued)

Error Cause

XREF issues this message if the CP/M BDOS returns an error code
after a close request for the file filename.XRF.

XREF issues this message if the CP/M BDOS returns an error code
after a write request for the file filename.XRF. This error code usu-
ally indicates that no unallocated data blocks are available, or no
directory space exists on the default or specified drive.

End of Appendix B

270

Appendix C
LINK-80 Error Messages

When LINK-80 detects any kind of command line error, it echoes the command
tail up to the point where the error occurs and follows it with a question mark. For
example,

Atlink a» bs oF d

Ay By» C3?

Arlink longfilename

LONGFILEN?

During the course of operation, LINK-80 can display error messages. These error
messages are described in Table C-1 below.

Table C-1. LINK-80 Error Messages

Message Meaning

CANNOT CLOSE:

 An output file cannot be closed. The disk might be write-protected.

COMMON ERROR:

>
x
i
p
u
e
d
d
y

An undefined common block has been selected.

DIRECTORY FULL:

There is no directory space for the output files or intermediate
files.

DISK READ ERROR:

A file cannot be read properly.

271

C LINK-80 Error Messages Programmer’s Utilities Guide

Table C-1. (continued)

Message Meaning

DISK WRITE ERROR:

A file cannot be written properly, probably because the disk is

full.

FIRST COMMON NOT LARGEST:

A subsequent COMMON declaration is larger than the first
COMMON declaration for the indicated block. Check that the
files being linked are in the proper order, or that the modules in
a library are in the proper order.

INDEX ERROR:

The index of an IRL file contains invalid information.

INSUFFICIENT MEMORY:

There is not enough memory for LINK-80 to allocate its buffers.
Try using the A switch.

INVALID REL FILE:

The file indicated contains an invalid bit pattern. Make sure that

a REL or IRL file has been specified.

MAIN MODULE ERROR:

A second main module was encountered.

MEMORY OVERFLOW:

There is not enough memory to complete the link operation. Try

using the A switch.

272

Programmer’s Utilities Guide C LINK-80 Error Messages

Table C-1 (continued)

Message Meaning

MULTIPLE DEFINITION:

The specified symbol is defined in more than one of the modules
being linked.

NO FILE:

The indicated file cannot be found.

OVERLAPPING SEGMENTS:

LINK-80 attempted to write a segment into memory already used
by another segment. Probably caused by incorrect use of P and/or
D switches.

UNDEFINED START SYMBOL:

The symbol specified with the G switch is not defined in any of
the modules being linked.

UNDEFINED SYMBOLS:

The symbols following this message are referenced but not defined
in any of the modules being linked.

UNRECOGNIZED ITEM:

An unfamiliar bit pattern has been scanned and ignored by

LINK-80.
End of Appendix C

273

Appendix D
Overlay Manager Run-time

Error Messages

At run-time, the Overlay Manager can display certain error messages. These mes-

sages and a brief explanation of their causes are shown in Table D-1.

Table D-1. Run-time Error Messages

Error Cause

ERROR (8) OVERLAY: NO FILE d:filename.OVL

The Overlay Manager cannot find the indicated file.

ERRCR (9) OVERLAY» DRIVE di filename. OVL

An invalid drive code was passed as a parameter to ?ovlay.

ERROR (10) OVERLAY + SIZE di:filename.OVL

The indicated overlay would overwrite the PL/I stack and/or free
space if it were loaded.

ERROR (11) OVERLAY» NESTING d:filename.OVL

Loading the indicated overlay would exceed the maximum nesting

depth.

>
3
ae
oO
>]
a
x

Oo

ERROR (12) OVERLAY» READ d:filename. OWL

Disk read error during overlay load, probably caused by premature

EOF.

End of Appendix D

275

Appendix E
LIB-80 Error Messages

During the course of operation, LIB-80 can display error messages. These error
messages and a brief explanation of their causes are given in Table E-1.

Table E-1. LIB-80 Error Messages

Error Cause

CANNOT CLOSE: LIB-80 cannot close the output file. The disk might
be write-protected.

DIRECTORY FULL: There is no directory space for the output file.

DISK READ ERROR: LIB-80 cannot read the file properly.

DISK WRITE ERROR: LIB-80 cannot write to the file properly, probably
due to a full disk.

FILE NAME ERROR: The form of a source filename is invalid.

NO FILE: LIB-80 cannot find the indicated file.

NO MODULE: LIB-80 cannot find the indicated module.

SYNTAX ERROR: The LIB-80 command line is not properly formed.

 End of Appendix E
J
x
i
p
u
a
d
d
y

277

Appendix F
8080 CPU Instructions

Table F-1. 8080 CPU Instructions

OP . 4 OP OP
Code MNEMONIC Code MNEMONIC Code MNEMONIC

00 NOP 1D DCR E 3A LDA Adr

O1 LX! B,D16 1E MVI E,D8 3B DCX SP

02 STAX B 1F RAR 3C INR A

03 INX B 20. --- 3D DCR A

04 INR B 21 + LXI H,D16 3E MVI A,D8

05 DCR B 22 SHLD Adr 3F CMC

06 MVI B,D8 23. INX H 40 MOV B,B

07 RLC 24 INR H 41 MOV — B,C

O08 --- 25 DCR H 42 MOV B,D

09° DAD B 26 MVI H,D8 43 MOV _ BE

OA LDAX B 27 DAA 44. MOV BH

OB DCX B 28 --- 45 MOV © BL

OC INR Cc 29 DAD H 46 MOV BLM

OD DCR C 2A LHLD Adr 47 MOV BA

OE MVI C,D8 2B DCX H 48 MOV CB

OF RRC 2C INR L 49 MOV CGC

10.—s—--- 2D DCR L 4A MOV C,D

11 ~=LXI D,D16 2E MVI L,D8 4B MOV CGE

12 STAX D 2F CMA 4C¢ MOV CGH

13. INX D 30 --- 4D MOV CL

14. INR D 31 LXl SP,D16 4E MOV CM

15 DCR D 32 STA Adr 4F MOV C,A

16 MVI D,D8 33 INX SP 50 MOV D,B

17. RAL 34 INR M 51 MOV D,C

18 --- 35 DCR M 52 MOV D,D

19 DAD D 36 MVI M,D8 §3 MOV D,E

1A LDAX D 37 STC 54 MOV DH

1B DCX OD 38 + 55 MOV D,L

1C INR E 39 DAD SP 56 MOV D,M

279

>
xe)
x]
0
5
2
4 an

F 8080 CPU Instructions Programmer’s Utilities Guide

Table F-1. (continued)

OP OP OP
Code MNEMONIC Code MNEMONIC Code MNEMONIC

57 MOV D,A 7B MOV A,E 9F SBB A
58 MOV __ E,B 7C MOV A,H AO ANA B
59 MOV E,C 7D MOV A,L Al ANA C
SA MOV — E,D 7E MOV A.M A2 ANA D
SB MOV EE 7F MOV AJA A3 ANA E
5C MOV — E,H 80 ADD B A4 ANA H
5D MOV E,L $1 ADD C AS ANA L
SE MOV E,M 82 ADD D A6 ANA M
SF MOV E,A 83 ADD E A7 ANA A
60 MOV H,B 84 ADD H A8 XRA B
61 MOV = 4H,C 85 ADD L AQ XRA CC
62 MOV H,D 86 ADD M AA XRA D
63 MOV H,E 87 ADD A AB XRA E
64 MOV H,H 88 ADC B AC XRA H
65 MOV H,L 89 ADC Cc AD XRA OL
66 MOV H,M 8A ADC D AE XRA M
67 MOV H,A 8B ADC E AF XRA A
68 MOV L,B 8C ADC H BO ORA B
69 MOV L,C 8D = =ADC L Bl ORA C
6A MOV L,D 8E ADC M B2 ORA D
6B MOV LE 8F ADC A B3 ORA E
6C MOV L,H 90 SUB B B4 ORA H
6D MOV LL 91 SUB Cc BS ORAL
6E MOV L,M 92 SUB D B6 ORA M
6F MOV LA 93 SUB E B7 ORA A
70 MOV M,B 94 SUB H B8 CMP B
71 MOV M,C 95 SUB L B9 CMP C
72 MOV M,D 96 SUB M BA CMP D
73 MOV M,E 97 SUB A BB CMP E
74 MOV M,H 98 SBB B BC CMP H
75 MOV M,L 99 SBB C BD CMP L
76 HLT 9A SBB D BE CMP M
77 MOV M,A OB SBB E BF CMP A
78 MOV A,B 9C SBB H CO RNZ
79 MOV A,C 9D SBB L Cl POP B

7A MOV A,D 9E SBB M C2 JNZ = Adr

280

Programmer’s Utilities Guide F 8080 CPU Instructions

Table F-1. (continued)

OP OP OP
Coge| MNEMONIC | <0),| MNEMONIC | c,y,| | MNEMONIC

C3. JMP Adr D7 RST 2 £B XCHG
C4 CNZ Adr D8 RC EC CPE Adr
C5 PUSH B DI + ED ---
C6 ADI D8 DA JC Adc EE XRI D8
C7 RST O DB IN D8 EF RST 5
C8 RZ pC CC Adr FO RP
C9 RET Adr DD -- Fl POP Psw
CA Jz DE SBI D8 F2 JP Adr
CBO Oe DF RST 3 3 ODI
cc CZ Adr EO RPO F4 CP Adr
CD CALL Adr El POP H F5 PUSH = PSW
CE ACI D8 E—2 JPpo Adr F6— ORI D8
CF RST 1 E3. XTHL F7 RST 6
DO RNC E4 CPO Adr F8 RM
D1 POP D ES PUSH H F9 SPHL
D2 JNC Adr E6 ANI D8 FA JM Adr
D3 OUT D8 E7 RST 4 FB OL
D4 CNC Adr E8 RPE FC CM Adr
D5 PUSH D E9 PCHL FD --
D6 SUI D8 EA JPE Adr FE. CPI D8

FF RST 7

D8 = constant or logical/arithmetic expression that evaluates to an 8 bit quantity.

Adr = 16-bit address.

D16 = constant or logical/arithmetic expression that evaluates to a 16 bit data

quantity.

Reproduced with permission from Intel Corporation, Santa Clara, CA.

End of Appendix F

281

Index

$ controls, 224

$ parameters, 221

$ switches, 242

$Cd, 243

$Id, 243

$Ld, 243

$Od, 243

$Sd, 243

8080 registers, 7

°?TR macro, 135

??, 60

A

absolute file, 237

absolute location counter, 232

absolute object file, 231
accumulator character, 183

accumulator immediate instruction,

32

accumulator/carry operations, 37

accumulator /register instructions, 37
actual parameters, 5, 67, 146

bracketed, 89

options, 84

additional memory switch, 239

ADR macro, 134

alphabetic translation, 155, 185

ampersand, 238

concatenation operator, 52, 86

inside string quotes, 8

angle brackets
leading, 85

apostrophe, 8
double, 8, 75, 76, 85

leading, 85
quoted string, 70, 75

arithmetic logic unit operations, 37

arithmetic operators, 8
ASCII strings, 8, 21, 22, 24

assembler directives; also see

statements
ASEG, 232
COMMON, 232
CSEG, 232
DSEG, 232
EXTRN, 232
NAME, 232
PUBLIC, 232

Assembly parameters
1, 221
??, 223

A, 221

asterisk in, 223

controls, 224

debugging, 225
default, 222

disabled, 222
enabled, 222

H, 221
L, 221
M, 221

P, 221
Q, 221
S, 221

assembly process
computations, 10

restart, 136

Asterisk
in assembly parameters, 223
in LINK-80, 239

leading, 4

283

B

back-up files, 211

base address, 25
base page symbols, 244
binary constant, 6
blanks, leading, 85
boolean tests, 145, 146, 151

bracket nesting, 56, 85

bracketed expressions, 89

bracketed notation, 88

BRN macro, 120

BUFFERS, label, 187

C

call instruction, 30

CASE program, 187

CASEn@m, 169

character list, 54

character strings, 8

CLEAR macro, 133

code location counter, 232

comment field, 4
COMPARE, 217

COMPARE library, 149
concatenation operator&, 52, 86

condition flags, 30

conditional assembly
and recursion, 82

nested, 46

with EXITM, 58

with IF, ELSE, ENDIF, 16-21

with NUL operator, 46
conditional assembly groups, 20
conditional branching, 135

conditional tests, 136

constant, 6

constant labels, 50

control instructions, 39

284

controlling identifiers, 51-56
translated to upper-case, 55

controlling variable, 53

conversion

lower to upper-case, 177
CPI instruction, 8

cross-reference utility, 235

D

data location counter, 232

data movement instructions, 34

data origin switch, 240
DB instruction, 8

DB statement, 21, 25

DCL macro, 133

DDT, 115, 118, 142
debug flags, 105
debugging

assembly parameters, 225
codes, 105

full trace, 225

iterative improvement, 225

macro, 135

trace code generation, 142

traces, 105, 116, 135, 142
debugging opcodes

DMP, 116

PRN msg, 116

TRF p, 116
TRF t, 116

TRT, 118, 132

TRT p, 116
TRT ct, 116

debugging subroutines
@AD, 133
@CH, 133
@HX, 133
@IN, 133, 137
@NB, 133

DEBUGP, 132, 136

DEBUGT, 132
decimal constant, 6

decrement instructions, 33

default condition
LINK-80, 238, 241

RMAC, 233

default filename, 198

default filetype, 198
default list device, 236
default stack, 63

default starting address, 14
delimiters, 56, 84, 85

DIF opcode, 135

DIGIT, 216

DIRECT macro, 180, 184, 200

DIRECT statement, 208

directives; see statements, 13

directory search, 208

dollar sign
embedded, 4, 6

in operand field, 7
double apostrophes, 8, 75, 76, 85

double semicolon, 47
double-precision

add instruction, 38

storage words, 22
DOWHILE macro, 166

DOWAHILE statement, 165

DOWHILE-ENDDO group, 164

drive specifications
LINK-80, 242

DS statement, 23

dummy parameters, 5, 76
unevaluated, 89

DUP opcode, 113, 136

DW statement, 22, 25

E

ED, 3

editor program, 92

ELSE, 51

ELSE statement, 19

embedded dollar sign, 4, 6

embedded macros, 76
embedded question mark, 184
empty parameters, 72

default conditions, 199

testing, 72

END statement, 4, 13, 14, 25

end-of-file character, 207

ENDDO macro, 166

ENDIF, 51

ENDM statement, 58

ENDMERGE label, 218

ENDPR label, 207

ENDSEL, 169, 170

ENDW macro, 160, 161

ENTCCP macro, 42, 46

EQU statement, 15, 16

equivalent expressions, 11, 12
ERASE macro, 180, 184, 200

error conditions

terminal, 266

errors

overflow, 60

sequence, 217

undefined operand, 136
value, 10

escape characters, 89
up arrow, 86

escape sequences, 56, 89

evaluation

macro parameters, 87-88

285

exclamation point character, 3, 8, 25

EXITM statement, 58

expanded macros, 76

expressions, 11

bracketed, 89
RMAC, 232

unparenthesized, 11
well formed, 11

F

false branch option, 153
false condition, 17

file access macros, 180

File Control Block, 41, 198, 199,

201

file format

IRL, 248

FILE macro, 180, 198, 199

FILE statement, 182

FILERR label, 188

FILLCB macro, 199

FILLDEF macro, 198, 201

FILLNAM macro, 198

FILLNXT macro, 198

FINIS macro, 180, 200

FINIS statement, 183

flags

condition, 30

debug, 105
load overlay, 254

G

GENCASE, 172

GENDJMP, 166

GENDLAB, 166

GENDTST, 166

GENLAB macro, 160

286

GENWTST macro, 160

GEQ macro, 135

GET device names

fileid, 182

KEY, 182

RDR (reader), 182

GET macro, 180, 182, 201

GET statements

GET KEY, 182

GET RDR, 182

GET ZOT, 182

go switch, 240

H

hexadecima! constant, 6

HL register pair, 38, 136

I

identifiers, 3, 5, 51, 60

controlling; see controlling
identifiers

IF, 16, 51

immediate operand instructions, 32

increment instructions, 33

infinite substitution, 54

inline machine code, 113

inline macros, 49

inline subroutines, 229

input and output instructions, 35

instructions

accumulator immediate, 32

accumulator/carry, 37

accumulator /register, 37

call, 30

control, 39

CPI, 8

data movement, 34

DB, 8

decrement, 33
double-precision add, 38
increment, 33

input and output, 35

jump, 30

load and store direct, 35

load extended immediate, 32

LX], 8

move immediate, 32

RDM, 113

restart, 30

return, 30

stack pop and push, 35
WRM, 118

IRL file, 237

format, 248

IRP-ENDM group, 54

IRPC-ENDM group, $1

iterative improvement, 225

J

jump instruction, 30

L

label field, 3

label generators

GENCASE, 170
GENDJMP, 166
GENDLAB, 166
GENDTST, 166
GENELT, 170
GENSLAB, 170
GENSLXI, 170

labels, 5

BUFFERS, 187

constant, 50

ENDMERGE, 217

ENDPR, 207

FILERR, 188
MASLOW, 217
optional, 22

SAME, 217

START, 217

unique, 46, 47

with leading ??, 60
leading characters

??, 60

angle brackets, 84, 85

apostrophe, 85
asterisk, 4

blanks, 85

double apostrophe, 85
percent, 85

semicolon, 4

string quotes, 85

tabs, 85

x, 85

LIB-80 switches, 263

line#, 3

287

LINK-80
default condition, 238, 241

multiline commands, 238

run-time parameters, 239

LINK-80 switches, 239-242

additional memory, 239

data origin, 240
go, 240

load address, 240

memory size, 241

no list, 241

no recording of symbols, 241

output COM file, 241

output PRL file, 241

program origin, 241

? symbol, 242
search, 242

$, 242-244
listing device, 77
LIT opcode, 133

literal values, 1
load address switch, 240
load and store direct instructions, 35

load extended immediate instructions,

32
Load Flag

overlays, 254

local stack, 42

LOCAL statement, 46, 60

logical operators, 8
lower-case names, 7

LSR macro, 135

LSR opcode, 113
LXI H instruction, 7

288

M

machine emulation, 145

MACLIB statement, 92

macro calls

multiple, 46
macro debugging; see debugging, 225
macro definitions, 76

nested, 76

macro error messages, 265

macro groups
DOWHILE-ENDDO, 164
IRP-ENDM, 54

IRPC-ENDM, 51
MACRO-ENDM, 66
nested WHEN-ENDW, 159

REPT group, 50

REPT-ENDM, 49
SELECT-ENDSEL, 169
WHEN-ENDW, 159

macro invocation, 82

macro libraries

COMPARE, 149
comprehensive, 188
DOWHILE statement, 165

expanded NCOMPARE, 153
NCOMPARE, 153, 155
SELECT statement, 171

SEQIO, 187, 188, 218

stack machine, 121

WHEN, 160

WHEN statement, 161

Zilog Z80, 92

macro opcodes
machine emulation, 145

macro redefinition, 79

macro storage, 228

macro subroutines, 79

MACRO-ENDM group, 66

macros

?TR, 135
ADR, 134, 135

BRN, 136

CLEAR, 133

DCL, 133
debugging, 135
DIRECT, 180, 184

DOWHILE, 165

embedded, 76

ENDDO, 166

ENDW, 159, 160

ENTCCP, 42, 46

ERASE, 180, 184

expansion, 76

FILE, 198

FILLFCB, 199

FILLDEF, 198, 201

FILLNAM, 198

FILLNXT, 198

GENLAB, 160

GENWTST, 160

GEQ, 135

GET, 201

inline, 49

LSR, 135

MOVE, 79

negated, 153

NEQ, 151

NULMAC, 73

OUTPUT, 77

predefined, 92

PRINT, 70

PUT, 175, 201

RDM, 136

READ, 149

RENAME, 184

REST, 133, 135

RESTORE, 70
RWTRACE, 136

SAVE, 68, 133, 136

SELECT, 170

SETIO, 77

SIZ, 133, 136

TEST?, 147, 151

TIMER, 99

TYPEOUT, 46

VAL, 135

WCHAR, 82

WHEN, 160, 161

WRITE, 145

XIT, 136

macros; also see file access macros

MASLOW label, 217

master back-up, 211, 218

master record, 211

master sequence number, 218

Memory Map, 237

memory size switch, 241
MERGE program, 211, 216, 217

move immediate instruction, 32

MOVE macro, 79

multiline commands

LINK-80, 238

multiple macro calls, 46

289

N

name field
optional, 246

names
overlay, 255

NCOMPARE library, 153

negated macro, 153
negative values, 10
NEQ macro, 151

nested macro definitions, 76-77

nested macro groups, 159
nested overlays, 256

nesting level restriction, 21
NEXTSEL, 169
no list switch, 241

no recording symbols switch, 241
nonmacro labels, 5

nonzero value, 19

notation

bracketed, 88

NUL operator, 10, 72, 75

null parameters, 72

null string, 54

NULMAC macro, 73

numeric constants, 6

O

octal constant, 6

one-character strings, 8
opcode emulation, 108

opcodes
debugging; see debugging opcodes

DIF, 135

DUP, 113, 136

LIT, 133

LSR, 113

PRN, 142

SUM, 135

290

TRT T, 138
WRM, 113, 137

operand field, 10
operand

undefined error, 136
undefined message, 136

operation codes, 29

operation field, 4, 5

operators
ampersand, 52, 55
arithmetic, 8

concatenation, 52, 86

logical, 9
NUL, 10, 72, 75

precedence of, 11
relational, 9

optional label, 23
optional name field, 246
optional value field, 246

options

false branch, 153
ORG statement, 14

output COM file switch, 241
OUTPUT macro, 77

output PRL file switch, 241
overflow error, 60

overlapping overlays, 259
Overlay Manager, 251

overlays

in command line, 255

in PL/I programs, 252

methods, 252, 254

names, 255

nested, 252, 256

origins, 251

overlapping, 259
PL/I, 251, 252

restrictions, 252

specification, 255

tree structure, 251

P

page
breaks, 24

ejects, 24

size, 25

PAGE statement, 23

parameter evaluation, 84-86

conventions, 84

example, 87

parameter specifications, 221
parameters

actual; see actual parameters

dummy; see dummy parameters
empty; see empty parameters
run-time, 239

percent character, 85
percent operator, 151

PL/I overlays, 252
plus sign, 49
predefined macros, 92
PRINT

macro, 70

program, 202, 207

subroutine, 62
PRN

macro, 132

opcodes, 142
program control structures, 145, 158

program origin switch, 241
program starting address, 13, 14

prototype statements, 67, 68, 70, 77

plus sign, 68
recursive macros, 82

redefining, 79

Pseudo operations, 13, 25

DB, 13

DS, 13

DW, 13

ELSE, 13, 51

END, 13

ENDIF, 13

EQU, 13

EXITM, 58

IF, 13, 51

IRP, 41

IRPC, 41

ORG, 3

PAGE, 13

REPT, 41, 49

SET, 13

TITLE, 13

PUT

device names, 183

macro, 182, 200

PUT statements

PUT CON, 183

PUT LST, 183

PUT PUN, 183

PUT ZAP, 183

Q

question mark
embedded, 184

quoted strings, 75, 89

291

R

radix indicators, 6

Random Access Memory, 101

RDM instruction, 113

RDM macro, 136

READ macro, 149

READM, 216

READU, 216

records

updated, 211

recursion, 82

recursive macros

invocation, 82

prototype statements, 82

redefinition of macros, 79

register-to-register move instructions,

34

registers, restoring, 70

REL file, 262

relational operators, 8
relocatable object code

LINK-80, 249
relocatable object file, 231

relocatable object module, 237, 244

RENAME macro, 180, 184, 201
REPT group, 49

REPT loop, 113
REPT-ENDM group, 49

reserved symbols, 228
reserved words, 7, 13

REST macro, 133, 135

restart instruction, 30

RESTORE macro, 67

restrictions

overlays, 251, 252

return instruction, 30

RMAC
default condition, 233
expressions, 232

292

run-time error messages

LINK-80, 271

run-time parameters, 239

RWTRACE macro, 136

S

SAME label, 217
SAVE macro, 67, 133, 136
search switch, 242

SELECT group

CASEn@m, 169
ENDSEL, 169
NEXTSEL, 169
SELVn, 169

SELECT macro, 170

SELECT-ENDSEL group, 169

select vector, 169

SELNEXT, 170, 172
SELVn, 169
semicolon

double, 47

leading, 4

SEQERR, 217
SEQIO library, 218
sequence errors, 217

SET statement, 16, 188

SETIO macro, 77

SID, 237

single-character commands, 177, 180

single-character escape, 86
single-character flags, 265

single-precision storage, 21

SIZ macro, 111, 136

source program line number, 3
special characters

LINK-80, 242

special link items, 246
stack machine macro library, 111

stack pointer, 42

stack pop and push instructions, 35
START label, 46, 217

statement elements

comment, 3

label, 3
line#, 3

operand, 3
operation, 3

statements
ASEG, 232

COMMON, 232

CSEG, 232

DB, 25

DIRECT, 208

DS, 23

DSEG, 232

DW, 25

ELSE, 16

END, 13, 14

ENDM, 58

EQU, 13, 15

EXITM, 58

EXTRN, 232

FILE, 182, 199

FINIS, 183

IF, 16

LOCAL, 46, 60

MACLIB, 92

NAME, 232

ORG, 13

prototype; see prototype statements
PAGE, 23

PUBLIC, 232

PUT, 182

SET, 16, 188

TITLE, 24

storage words
double-precision, 22

storage
in symbol table, 229

macro, 228

single-precision, 21
symbol table, 229

string characters, 22
string constants, 8, 24

string quotes, 53, 86, 89

subexpressions, 11
subroutines

inline, 229

PRINT, 62
subroutines; also see utility

subroutines

substitution
dummy parameters, 86-87
infinite, 86

rules, 56

SUM opcode, 135

switches

LIB-80, 263

LINK-80; see LINK-80 switches

SYM file, 208
symbol storage requirements, 227
symbol table, 47

overflow message, 229

storage, 227, 229

temporary storage, 229

symbols

Base Page, 244

defined in equates, 244

relocatable in Base Page, 244

undefined, 256

user-defined, 242

293

T

tab characters, 1, 3

leading, 86
terminal error conditions, 267-268

TEST? macro, 147, 151

TIMER macro, 97

TITLE statement, 24

tree structured overlays, 251
TRT T opcode, 138
two-character strings, 8
TYPE command, 217
TYPEOUT macro, 46

U

UGEN macro, 132

undefined operand error, 136
undefined operand message, 136
undefined symbols, 256
unique label, 46, 52

up arrow as escape character, 86

update back-up, 211
update records, 211

upper-case names, 7

Use Factor, 237

user-defined symbols, 242
utility subroutines, 46, 216

Vv

VAL macro, 135

value errors, 10

value field

optional, 246

values

negative, 10

294

W

WCHAR macro, 67

well-formed expressions, 11

WHEN macro, 160, 161

WHEN macro library, 160
WHEN-ENDW group, 158

WRITE macro, 145

WRITE statement, 168

WRITESEQ, 217

WRM instruction, 116

WRM opcode, 113, 114, 137

x

XIT macro, 136

XREF, 235

Z

zero value, 19

Reader Comment Card
We welcome your comments and suggestions. They help us provide you with better
product documentation.

Date

1. What sections of this manual are especially helpful?

2. What suggestions do you have for improving this manual? What information
is missing or incomplete? Where are examples needed?

3. Did you find errors in this manual? (Specify section and page number.)

Programmer’s Utilities Guide For the CP/M® Family of Operating Systems
First Edition: September, 1982

3035-2043

COMMENTS AND SUGGESTIONS BECOME THE PROPERTY OF DIGITAL RESEARCH.

—
—

e
e

e
e

e
s

—
—

—
_

—
_
-

—

—

—
_

=

_
—

o
r
w
e
l
l

e
e
e

e
e
e

—
_

—
—

—

—

—

—

—

—
-

—
_

-
—
—

—
—
—

e
e

e
e
e

e
e
e

Attn:
P
u
b
l
i
c
a
t
i
o
n
s

P
r
o
d
u
c
t
i
o
n

B
U
S
I
N
E
S
S

R
E
P
L
Y

M
A
I
L

FIRST
C
L
A
S
S

P
E
R
M
I
T
N
O

1
8
2
.

PACIFIC
GROVE.

CA

e
e

P
O
S
T
A
G
E

W
I
L
L

BE
P
A
I
D

B
Y

A
D
D
R
E
S
S
E
E

0)
DIGITAL

R
E
S
E
A
R
C
H
"

P.O.
Box

579

Pacific
Grove,

California

9
3
9
5
0

Zz
O
U

Oo
Cp)
44
>
‘2 E

za
ina

O
Mm
YN
Cp)
>
we)
~<

IF
M
A
I
L
E
D

IN
THE

U
N
I
T
E
D

S
T
A
T
E
S

	Front cover
	Title page
	i
	Copyright
	ii
	Foreword
	iii
	iv
	Table of Contents
	v
	vi
	vii
	viii
	ix
	x
	xi
	xii
	xiii
	xiv
	Section 1
	Macro Assembler Operation
	1
	2
	Section 2
	Program Format
	3
	4
	Section 3
	Forming the Operand
	5
	6
	7
	8
	9
	10
	11
	12
	Section 4
	Assembler Directives
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	Section 5
	Operation Codes
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	Section 6
	An Introduction to Macro Facilities
	41
	42
	43
	44
	45
	46
	47
	48
	Section 7
	Inline Macros
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	Section 8
	Definition and Evaluation of Stored Macros
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	Section 9
	Macro Applications
	95
	96
	97
	98
	99
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	Section 10
	Assembly Parameters
	221
	222
	223
	224
	Section 11
	Debugging Macros
	225
	226
	Section 12
	Symbol Storage Requirements
	227
	228
	229
	230
	Section 13
	RMAC, Relocating Macro Assembler
	231
	232
	233
	234
	Section 14
	XREF
	235
	236
	Section 15
	LINK-80
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	Section 16
	Overlays
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	Section 17
	LIB-80
	261
	262
	263
	264
	Appendix A
	MAC/RMAC Error Messages
	265
	266
	267
	268
	Appendix B
	XREF Error Messages
	269
	270
	Appendix C
	LINK-80 Error Messages
	271
	272
	273
	274
	Appendix D
	Overlay Manager Run-time Error Messages
	275
	276
	Appendix E
	LIB-80 Error Messages
	277
	278
	Appendix F
	8080 CPU Instructions
	279
	280
	281
	282
	Index
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	Reader comment card
	
	Back cover

